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I. INTRODUCTION

1.1 Introduction and Summary.

The problem of inference in multivariate normal populations when
all the parameters are unknown is considered in great detail by
Anderson (1958). Wheﬁ some of the parameters are specified in advance
the problem becomes more difficult.

Such structure may occur with the parameters in the mean vectors
or the covariance matrix. There is considerable 1iteratﬁre on models
involiing structured mean vectors. Two cases often studied are multi-
variate regression, where the restricting coefficients are given
(cf. e.g., Anderson (1958), Chapter 8) and fa;tor analysis, where
they are usually unknown (cf. e.g., Anderson and Rubin (1956)). More
general linear models in growth curve problems are considered by
Potthoff and Roy (1964).

Restrictions on the parameters in the covariance matrix have
been studied less widely. There are frequent applications in time series
(cf. e.g., Anderson (1963a), (ca. 1969)). Recent literature has
focused on a broader class of covariance structures. The case in
which the covariance matrix, or its inverse, is an unknown linear com-
bination of givem matrices is studied in generality by Anderson (1966).
The special case in which the given matrices are commutative has been
more widely considered (cf. Herbach (1959), Graybill and Hultquist.(1961),
Srivastava (1966), and Srivastava & Maik (1967)) in the setting of
partially balanced incomplete block designs of experiments. A slightly
different class of structures is given by Bock & Bargmann (1966) and

Bargmann (1967).
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Structure on the correlation matrix has been studied in a factor
analysis setting by Jdreskog (1963). Most attention has been devoted,
however, to the case in which all correlations are equal. Votaw (1948),
Halperin (1951), and Hijek (1962) consider this case under the assumption
of equal variances. The problem of testing hypotheses when the
variances are all unknown is studied by Anderson (1963) and Lawley (1963).
The recent dissertation by Han (1967) considers testing homogeneity of
variances with common unknown correlation coefficient. Additional
references on these and related topics are to be found in Anderson,
Das Gupta, & Styan (ca. 1969).

In this paper we study the case in which the correlations are
known but the variances and means are all unknown. We make extensive
use of matrix algebra, using the notion of Hadamard (or Séhur) product
of matrices (cf. Marcus & Minc (1964)), which we believe is an innovation
in statistical analysis, apart from a brief mention by Srivastava (1967).
We include an éppendix on the algebra and bibliography of this extremely
useful concept. Vector and matrix differentiation techniques are
also employed, following Dwyer (1967).

We estimate the variances by the method of maximum likelihood and
obtain a closed form for the resulting equations. These constitute a
set of simultaneous nonhomogeneous quadratic equations which in general
cannot be solved analytically, We show that they have a unique real
solution and obtain an approximation to this by the Newton-Raphson
technique, We prove that the first iterate based on a consistent trial
solution is an asymptotically efficient estimate and has a limiting
normal distribution, The asymptotic efficiency of the sample variances

is computed and a lower bound determined. The Fréchet-Cramdr-Rao



Ltiday

\.u:jt

(PRSP

i

iﬁequality leads to some interesting results in matrix algebra
concerning Hadamard products of positive definite matrices and their
inverses.

We propose large sample chi-square tests based on the first
iterate for homogeneity of variances and equality of any pair. These
tests extend and parallel those obtained by Han (1967). We also
evaluate the corresponding likelihood-ratio tests as well as that
for a given correlation matrix in a general multivariate normal
population.

The last section is devoted to the situation in which all corre-
lation coefficients are equal and known. The maximum likelihood
equations still cannot be solved analytically in general. We derive
an asymptotically efficient estimator by slightly changing the form
of the first iterate. The resulting estimator has a neater closed
form than the first iterate. We also derive a modified estimator which
is a common multiple of the sample variances. We find that the
covariance matrices of the limiting distributions of the sample
variances, modified estimator and first iterate (or maximum likeli-
hood estimate) all have the same structure with equal diagonal and equal
off-diagonal elements. The first two matrices have a common multiple
root, while the last two have a common simple root. The associated
asymptotic efficiencies are evaluated and we propose large sample tests
for homogeneity of variances based on these estimators.

Further study, to be reported later, includes the case in which
all correlations are equal but unknown and where the correlation matrix
is an unknown linear combination of given matrices., Extensions to

include restrictions on mean vectors as well will also be considered.
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1.2 General Notation.

Vectors will be denoted by lower case letters, matrices by capital
letters, and both will have wavy underlining to denote bold face print.
Transposition will be indicated by a prime, with row vectors always
appearing primed (Halperin (1965)). The generating element of a
vector or matrix is given in curly brackets. When A is a square
matrix, tr(A) denotes its tracé, |1}_| its determinant, and chj(é‘)
its j-th characteristic root. The diagonal matrix formed from A will

be denoted A We use I for the identity

Age = (2195 2pp» opldg”

matrix, e for the column vector with each component unity, and Ej

Y a

for the column vector with each element zero except for the j-th which
is unity (cf. Bodewig (1959)).

As far as convenient, an estimate of a parameter is indicated
by the Latin letter corresponding to the Greek letter for the parameter,
and the matrix analogue of a scalar quantity is denoted by the capital
letter corresponding to the lower case letter for the scalar. An
exception is the scalar parameter p (rho) which we use for correlation
coefficient, We indicate the population correlation matrix by E
instead of P (capital rho). Another exception is the population
covariance matrix which we denote by _2;, rather than X which is
reserved for summation. The sample analogue corrected for the mean is
indicated by g Where there is no confusion we also use C for the
centering matrix of order p, I - ee'/p (Sharpe and Styan (1965)).
Otherwise we denote the centering matrix by Ee

If x is a random vector, E(x) denotes its expected value and
V(:f‘) its covariance matrix. If y is another random vector, the

covariance matrix between x and y, E(x - E(x))(y - E(y))’', is
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denoted by cov(x, y). The joint likelihood is denoted L, with ¢

Y
LAY
a~

proportional to -log L. The end of a proof is indicated by (qed).

v

The symbol § denotes section (number) and cf. means compare or

see,
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II. INFERENCE ON VARIANCES WHEN CORRELATIONS ARE KNOWN

2.1 Introduction and Notation,

We consider maximum likelihood estimation with N independent
p-component observations Ea’ a=1, 2,..., N, drawn from a multi-
variate normal population with unspecified mean vector .

We write the covariance matrix as

~

(2.1.1) §= A RA,

where A = (01, seees op)d is the diagonal matrix of unknown popu-

%
lation standard deviations and R = {pij} is the population: corre-
lation matrix. We will use R = {rij} for the sample correlation

matrix,

A set of sufficient (but not necessarily minimal sufficient)

statistics is the sample mean vector

2|

(2.1.2) §_=

N
z x_,
o= vy

1

and the sample covariance matrix

2=

N
(2.1.3) ¢C= 021 (x, - x)(x, - %),

which may be written in parallel form to (2.1.1) as
(2.1.,4-) C = 21}'2',

where D = ( ¢y > 'Jc22 seses Jcpp )dg is the diagonal matrix of

sample standard deviation and R 1is the sample correlation matrix as

announced,

The joint likelihood of the observations may be written as

(cf. Anderson (1958), p. 45)
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| (2.1.6) c,

exp[- -g— tr g'lgi]

(2.1.5) L =
38 IE'NIQ(Zﬁ)Np/Q

where

L N
= Z (x,-u)(x, -up)',
N o et RV Tk

is the sample covariance matrix C given by (2.1.3) with B replacing
z.. We assume ¥ positive definite,

When we make no assumptions about u, as in this paper,: X is
always its maximum likelihood estimate (cf. Anderson (1958), p. u48).
The joint likelihood after maximization with respect to E. is thus
(2.1.5) with g_ replacing p, or equivalently C replacing 21, that
is
exp|- -g— tr E-IE]

|Z3_|N/2(ETT)NP/2

(2.1.7) L =
This is maximized whenever

(2.1.8) L = - % log L - p log 2T

is minimized. In terms of ¥ and _(_:_ we may write (2.1.8) as

(2.1.9) L =tr £-19_+ log |2

2.2 Hadamard Product, Square, and Inverse.

We will use the concept of Hadamard (or Schur) product of two
matrices (cf. Marcus & Minc (1964), p. 120)., Additional references and
various properties are presented in Appendix A.

If A= {aij] and B = {bij} are each m X n matrices, then

their Hadamard product is the m X n matrix of elementwise products

o~

(2.2.1)  A*B=la bl
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When A =B we will call (2.2.1) the Hadamard square of A

(2.2.2) A %A= {._(2) = {a2,1.

When A = {aij} has no zero elements, i.e., a5 # 0 for all
i=1,2,i00, m; j=1, 2,.¢., n then we will call the matrix of

elementwise reciprocals
(e.2.3) AV (1/a;,}

the Hadamard inverse of é:

The concepts of Hadamard product and inverse are equally well
defined for vectors. If \ = {Xi} is a column vector of order n
and A: (Xl, Aysenes Kn)dg is the diagonal matrix formed from 1;:,
then A = ZXEJ where e 1is a column vector with each component unity.

Hence
(2.2.4) }_(2) = Nee

is the Hadamard square. When |Z&| # 0, we have for the Hadamard

inverse
(2.2.5) >:_(’1) - /.\:1‘?:

2.3 Maximum Likelihood Estimation 2£ the Variances.

We will estimate the unknown variances (the diagonal elements of
é?), when the correlation matrix 5_ is known and the mean vector E£
is unknown, by the method of maximum likelihood. This is equivalent
to minimizing (2.1.9). We achieve this by differentiating it with

respect to

(2.3.1) o™V = (1o, Uo.yeun, 1a ) =2t
- 1 P ~
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the Hadamard inverse of the vector of standard deviations
— ' -
(2.3.2)  g= (0, 0y 0)' = he.
-1 171 .
Since tr £ °C = e'(Z "%C)e, we have using (2.1.1),
- - - - . - - . -1 - ] - -
(2.3.3)  erglo = e (TR M0e = era TR e e = ol (@ heg)e (Y.
Substituting (2.3.3) and (2.1.1) in (2.1.9) we obtain
B ]
2.3.8) ¢ =g @)D 4 2 10g |a] + 108 [BI.

p p
Since log |A] = T logo, = - T log (1/c;), we have
i= i

i

1 i=1
A
(e.3.5) 2lalsl. o
°g
Therefore
(2.3.6)  —2ty = 21@ M)l - gl

3¢

~

Equating (2.3.6) to zero yields the following:

THEOREM 2.3.1. The maximum likelihood equations for the variances in-

a multivariate normal population with given correlation matrix R and

A~

sample covariance matrix C are

(2.3.1) (& et -,

A(-1)

where © is the Hadamard inverse of gi, the maximum likelihood

estimate of o.

. . 1
Premultiplication of (2.3.7) by %(_1) yields

2.3.8) (1 @ el b

-~

The sample covariance matrix C 1is positive definite with probability
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one, Since the Hadamard product of two positive definite matrices is
positive definite (cf. Appendix A), we can premultiply (2.3.7) by

g' (B *Q)-l to produce

1
: NS T T
(2.3.9)  §'(R'%¢)"'8 = ».
h There are many ways we can write the system of equations (2.3.7).
ba Substituting (2.3.1) and (2.3.2) into (2.3.7) gives (g‘l*g)g'li= gg_
so that ﬁ:l(R'l*C)ﬁ-le = e, Similarly (R:l*C)-lze =3 Ye and
.?ﬁ L d L L d — Eand Ll L d L d L d
] gﬂg{l*g)-l§g_= e. Hence (2.3.7) is a system of simultaneous nonhomo-
4 geneous quadratic equations, which may be written in scalar notation as
kM i
2 (2.3.10) z TF-:l N i-=1, 2,0.0, P>
j=1 ©iCj
where R:1= {pij} and C = {cij}.

B Another version of (2.3.7) is found by substituting (2.1.%4) into

B (2.3.7) to yield
(2.3.11) (B hme(-Y) - % = pol-H (D),
since D 1is diagonal. ‘To ease the notation, let

(2.3.12) A= %-1 s A= e = Eg('l).

. Then (2.3.11) may be written

(2.3.13) (& b)% = 207D,

where N 1is the vector of ratios of sample standard deviations to

maximum likelihood estimates,

R s_i oo ES
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In general these maximum likelihood equations cannot be solved
analytically. When 3;1*3. has constant row sums then an analytical

solution is immediate. In such a case we may write
(2.3.14)  (B7'%R)e = uZe,

since the common value of the row sums is a characteristic root of the
. . \
positive definite matrix R 1*5. and so is positive. Hence 2} 1)= pe

and

(203015) a?- = uzcii H i-= 1, 2,..., P.

When R = R we have p® = 1, and so c? =c;; 5 i=1,2,..., p. When

~

P =2,

1
1-p2 -pr 1 1-p

(2.3.16) (R 'R)e =
and (2.3.14) is satisfied. Thus
(2.3.17) 8 = (1 - pr)e, /(1 -p%) 51=1, 2,

as given by Anderson (1958), p. 73.
Before solving (2.3.7) iteratively (52.4), we find some other
properties of the maximum likelihood estimates.

From (2.3.6) we obtain the second derivatives of ¢ with respect
to o(—l)

~

as

2L

r o= 2(3?1*0 + A3).

(2.3.18)

We indicated just above (2.3.9) that E;l*c is positive definite. Hence

(2.3.18) is positive definite for any real solution of (2.3.7). We note
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that for any solution G of (2.3.7), -8 is also a solution. We
are, of course, only interested in the elementwise positive solution,
and we will assume implicitly in what follows that § and §5-1)
are taken elementwise positive,

Chanda (1954), extending the results of Cramér (1946) and Huzurbazar
(1948), shows that the maximum likelihood equations admit a unique
consistent solution under certain regularity conditions which are

satisfied here, We thus have the following:

THEOREM 2.3.2. The maximum likelihood equations (2.3.7) in Theorem 2.3.1

admit a unique real solution, which is consistent.

Proof. It follows from the positive definiteness of (2.3.18) that
the solution for any finite sample size N will be unique, provided
that (2.3.7) admits at least one real solution. The consistency then
follows from Chanda (1954).

To show that (2.3.7) admits at least one real solution, it suffices

to show that (from (2.3.4))

say, converges to 4w when §_~ 93 or when ei - 40, i =1,..., p, where

A= Rl ; g = g(‘l) = {o;}.

~

@

When § - O, &c - 40 follows immediately, When 91 - 40, i =1,..., P,

we use the inequality
P P k63
(2.3.18a) &c 2 ¥ (k 9? - log ei) = I 1log(e /ei),
i=1 i:'l -

where k > 0 1is the smallest characteristic root of A which is
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positive definite, The inequality (2.13.18a) follows from

B'Af 2 kg'g by definition of smallest characteristic root. Since

- 14 -

the right-hand side of (2.3.18a) converges to 4w, as 8 =@ 1= 1,000, Py

it follows that Lc - o,

(qed)

The usual asymptotic theory of maximum likelihood estimation applies

A

here, The limiting covariance matrix of 45' (gﬂz) - 2‘2)) is the

inverse of the Fisher information matrix per unit obgervationm,

3 log L L
1 [

=l = El—erter
3% 2 3 2 ~.2 a2’2

~ —~

' 1
(2.3.19) U,=-gE

(cf. Ruben (1967), p. 1I-29, Wilks (1962), p. 380), where L“ is
the joint likelihood of the observations as given by (2.1.5), and

analogous to (2.1.8) and (2.1.9),

2 -1 1
(2.3.20) t,=-flosl -plogal=tr z C, + log 1Z],
1 N
where C =% aﬁl (ga - E)(Ea - u)' as in (2.1.6).
We evaluate (2.3.19) using (2.3.6) and (2.3.18). Since
A 3 (-1)' A
(2.3.21) —-(&)- = = c—t
3_9‘_2 ag(2) Q(-l) ‘
we obtain
2 1 1)
o=t 30, (-1) atp a(-1)

M

e
s

3 ,% = .
(2:3.22) —mpmr =l o T I n L e

N 1

Using -‘;Ce—)— = -3, we obtain from (2.3.22),

Rt AL 3o (-1)' aezu

ag(‘l)

_ 3. ) ad = . .
(2.3.23) NONEMS i e4e;'s } a_g('l) + ag(e) - a2(.1)32(..1)- ag(e)' ,

P o

where the unity vector -Ej has each component zero except for the j-th

which is unity (cf. Bodewig (1959), p. 5). Now
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ot 1.y (-1)
(2.3.24) E(;(L_‘-ﬁ) 2E[ (R *g“)g - g], from (2.3.6)

= 2@ el Y- o)

2A(E 48 - De = 0.

Taking expected values of both sides of (2.3.23) thus yields

Pe 3 (-1)" Fe 3(-1)
m _ % . m s
(2.3.25) E(ag(e)ag(e)') " %@ E(ag<-1)ag_<-1)') SOy

=073 2R + 42)en73

2+ Do,

8&»—-

The above result can also be obtained directly from (2.3.18) using

the independence of x and C (cf. Anderson (1958), p. 53). We have
a2

, L >
(2.3.26)  E(—rpertcr) = E(—rmotrrr).
2B T agBg(®)

Substituting (2.3.18) and using ag(-l)'/agﬁe) = -%Af3, yields
?

¢ . ,
(2.3.27)  E( B ) = -2a73e(e[r Mee + 42])-3a73
ag?:zjag’(z)' 20, B % +471)-28
=3P D

as in (2.3.25). We have thus proved:

THEOREM 2.3.3. The limiting distribution of ,jﬁ (§(2) - 3(2)) is

multivariate normal with mean vector Q_ and covariance matrix

(2.3.28) hf(g’l*g + ;_)'lf.

2.4 1Iterative Solution of the Maximum Likelihood Equatioms.

Several methods for the iterative solution of maximum likelihood

equations have been considered in the literature (cf. Barnett (1966),
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Kale (1962)). Most of these use the Newtonian approach (cf. Householder
ﬁj (1953), Scarborough (1950)) based on a Taylor series expansion of the
< likelihood equations. Let 6 be a p-component vector of unknown

ﬁ. parameters. Define

d log L
(~)' ——SE'—_ ’

~—~

(2.&.1) Eﬂe) =

~

@
IN

where K(8) is some p X p matrix depending on @ and L 1is the

j joint likelihood. Particular choices for Eﬁg) are considered below.
% An iteration process may be defined by
(20”".2) ‘Q-r"'l = [E-(—Q-)]G=6 ’ r = o, 1,0.0,

where Qo is an initial trial solution, obtained from other consider-
B! ations (usually a guess), to the maximum likelihood equations
ey d log L/3g = 0. We will call 8, (r = 1,2,...) the r-th iterated

estimate (or more briefly the r-th iterate) of B, the maximum likelihood

estimate,

The Newton-Raphson process sets

e

*log L,-1
(24.3) K@) = (BT

while the method of scoring (Rao (1952), pp. 168-172) sets

k!
=)

(2.k.4) K(Q) - [E(gelgg L)]-l

Kale (1962) shows that given a consistent trial solution,
«gﬁ lim §_ = ? with probability approaching one as N - o, and K(8)
A:! r— -~ .
given by (2.4.3) or (2.4.4). We again assume the regularity conditions

'ma considered for Theorem 2.3.2. The order of convergence for the Newton-

Raphson process is two, while for the method of scoring it is one
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(c£. Barnett (1966)).
We solve (2.3.7) iteratively using the Newton-Raphson process.,

The method of scoring leads to expressions of a much more complicated

nature,
We obtain
@4.5)  g(olDy ool L Byl @

ag("l)ag'('l)' ag('l) ?

where { is as defined by (2.1.8) and (2.1.9). Substituting (2.3.6)

and (2.3.18) in (2.4.5) yields

(2.4.6) g™y = ol - (g e + )17 el - @)

An initial consiétent estimate of o is 22: Substitution in

" (2.4.6) yields the first iterated estimate as

CRI O S e(g_fl*g+ 1_)_2)'11_53

~

]
=

o~

eg'l(gl*g_+ Q-Ig:_, since C = DR D.

Bhattacharya (1965) proves that the first iterate, based on a
consistent initial solution, is asymptotically efficient and normal.
His result is shown for the single parameter case, though he indicates
that the extension to many parameters is straight forward. Han (1967)
gives a proof of this generalization.

We will prove directly that gg-l) is an asymptotically efficient

and normally distributed estimate of gf'l), and derive the limiting



e

ft i

~d
)
]
= 1

famsiif &{:ﬁﬁ% ciiad

- 18 -

distribution of g_;(lg). We use the following result (cf. Anderson

(1958), p. 75):
LEMMA 2.4,1, The limiting distribution of YN = JN(c - 2) is that

1

_o_f a random matrix V which is multivariate normal with mean 9_ and

-~

covariances given by

(2.4.9) E(Vece,'V) = oL+ gf;jgi'é_; i, j= 1,.'--, P.

When we discuss the distribution of a random symmetric matrix of
order p, we consider the distribution of its %-p(p + 1) different
elements,

Anderson (1958), p. 161, shows that (2.4.9) is also the covariance
matrix between Jr—l (‘.‘&j and ./; 9‘24’ where n=N - 1,

COROLLARY 2.4.1. The limiting distribution of ¥N(L lx¢c - I)e 1is

multivariate normal with mean vector Q_ and covariance matrix R_:__l*R + 1.

Proof. Since (g:l*g_- I)e = [g:l*(g_- Z)le, it follows from Lemma 2.4.1
that the limiting distribution of Jﬁ(g: 1*c«_- ;_)g_ is that of
(2-1*V)e, which is multivariate normal with mean vector 0 and

covariance matrix

(2.4.10)  VI(Z™#)e] = {eov(e} (2™ ¥D)e, i@ H)e)]

lej 27 eov(egy, )M e,)

(e oy g+ L egel DL e)

since ¥ = ATR AT M RA = A7



‘0
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COROLLARY 2,4.2, The limiting distribution of /N (De - ¢) is multi-

variate normal with mean vector zero and covariance matrix %A(R*R)A.

Proof, From Lemma 2.4.1 the covariance matrix of J/N (D% - 0(2)) is

' oo ALBD~2 1 _ s ‘s .
{cov(gi‘_lf_i, ?-jzij}}:?oij} = 2¢%. We find the limiting covariance
matrix of &N (De - Q) using a general theorem due to Cramér -(Rao (1965),

p. 322) to be

3!
(2.4.11) a—z%e—yr(eg*g_) =

~ ~

1] .
Substituting 81/81(2) = %A-l and §_*t~=g?(1i*g,_)z§’ in (2.4.11)

~

yields ZA(R*¥R)A.  (g2d)

THEOREM 2.4.1. The limiting distribution of ﬁ (g‘g_‘l) - g__(‘l)) is

multivariate normal with mean vector O and covariance matrix

a e e+ DT

Proof. From (2.4.8), we have that

(e12) o™ - ol st e e - ale =y vy
where ;= DR+ DTN + DT 0)e - 47e
amd g = R+ DT - DE R+ DTHOAT + D7)
Now WKy =N E R e DT e - AT e

= E R ¢ DTHE + DR - o

=i E R ¢ TR - B
stnce (0707 - Kbt = (070 - T e o hna

= p7iaz - £7M%0),



(2.4.13) N,
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we have that AN u = -_12_-1(3-1*1}_+ L)-lg-lg_vﬁ (Z_-l*g_ - I)le. Now
-1,_-1 -1 -1 -1,_-1 -1
D "(B *R + 1) D A converges in probability to A (R *R + I)
and JN (27 1xc

~

- I)e is asymptotically normal by Corollary 2.k.1 with

covariance matrix R 1*13._+ I. Hence »/ITI uy is asymptotically normal
with mean vector O and covariance matrix A_I(B_-I*R + I)-]'A-l.
It remains now only to prove that Jﬁ u, converges in probability

to 9_. We have that

o E e+ e - o -0

—

=7 E R + DT - AR (0 - we).

Now 1_).:1(1'{1*3‘+ Z_I';)-l(l_):l - A’l) converges in probability to O,
and ﬁ (D - A)e 1is asymptotically normal by Corollary 2.4.2. Hence

N.u, converges in probability to 0. (qed)

COROLLARY 2.4,3. The limiting distribution of /N (g_g_e) - g_(g)) is

multivariate normal with mean vector Q_ and covariance matrix

hé_e(li-l*&+ ;_)-lé_a. The vector 2&2) is an asymptotically normal and

efficient estimate g_g g_(e).

Proof, The covariance matrix is

a‘g .
(2.14) W[é' RO¥R + 1) A ]__(551,

y ' .
Substituting 39(2)/39(-1) = -2é3 yields the result. (qed)

2.5 Results in Matrix Algebra,

The characteristic roots of the Hadamard product of a positive
definite matrix and its inverse were studied by Fiedler (1961), who
proved that they were greater than or equal to unity. Such a

Hadamard product always has one root equal to unity with corresponding



)
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characteristic vector e. Marcus and Thompson (1963) have given some
quite general theorems concerning the range of the characteristic
roots of the Hadamard product of any two complex normal matrices.

The results of the preceding section suggest the following theorem,
from which we deduce as corollaries some results which do not appear to follow
from the general properties presented by Fiedler (1961) and Marcus
and Thompson (1963).

THEOREM 2.5.1. For any positive definite correlation matrix R, the

matrix
(2.5.1)  B*R - ,2_(3_‘1*3_ + ,I)'l

is positive semi-definite.

Proof, We have been unable to establish this result by a matrix
theoretic method. Our proof will be statistical and is based on the
well known Fréchet-Cramér-Rao inequality (cf. e.g., Rao (1965), p. 265).

Suppose we have the same set-up as in §2.1, but with p = O, Let

Ll

. N
(2.5.2) S== & xx',
Na_=1~0/r~a

which is an unbiased estimate of Z. In parallel to (2.1.9) let
-1
(2.5.3) t=trl S + log [Z].

Then we obtain, as in (2.3.6), that

(2.5.)4) ;jf_lf = 2[(3_‘1*2)2('1) - 9’_]:

A~

so that

(2.5.5) =251 =20 et - gl =@ e - 1
do



Following (2.3.18) we obtain

'azz -1 (-1
(.2.5.6) E[w(-l)&,(-l)‘] = 2E(B‘ *i-i- ‘sz) = zé‘(_R.: *B.- + l).é.o

. t
Using (2.1.8) to define log L in terms of ¢ and ag('l)/ao(e)

we obtain from (2.5.6) that
log L N, -2,,-1 -2
(2.5.7) v(7—§—a, ) = pAT(R7heR 4+ 1)A7E.
32 B\ TRT D
From Anderson (1958), p. 161 we deduce that

(2.5.8) V() = 2A2(R¥R)A% 5 .= (5 )0

Furthermore
9 log L
(2.5.9) cov(gz —g;%gy-) = E(s 51%2%75) because of (2.5.5)
3E g._') 36(2)
39.
Hence
2,2 2
s 7A%(B*¥R)A%, I
(2.5.10) V = 2 .
3 log L 1, 223w *&+ 1)A”
Pel e
If (ﬁ“ V) is a positive semi-definite matrix, then so is

i‘ uv’ lu' = (1, -Uv'l)( v

i V-)(

L
-1 ), provided V 1is nonsingular.
Ul
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= ‘%{33

Applying this to (2.5.10), which befﬁg a covariance matrix is positive

semi-definite, proves (2.5.1). (qed)

COROLLARY 2.5.1. A sufficient but not necessary condition that (2.5.1)

be singular is that

(2.5.11) ‘eiR = ?i’ for at least one i = 1, 2,..0’ p.
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Proof., When (2.5.11) holds,the i-th component of the multivariate

normal random vector under observation is independent of all the other

components, In such a case sii is the maximum likelihood estimate
of c? and this suggests singularity of (2.5.1). Since

e; (B*R) = gi(&:l*gg = e, we obtain
(2.5.12)  ¢f[R*R - 2(R %R + 17 = ¢f.

To show that the converse is false, i.e.,, that singularity of

(2.5.1) does not imply (2.5.11), consider the following example with

p=3:
1 1/2 1/2
(2.5.13) R=|1/2 1 1/ .

1/2  1/4 1
We obtain
5 -2 -2 5 -1 -1
(2.5.4) BT=1| -2 ¥ o s EMwR=3( -1 4 o]
-2 0 X -1 N .
Hence
N 1 1 8 -1 -1
(2.5.15) %‘@6~(§'1*~+Q-£=11; 1 4 /b % -1 7 0 -1
1 1/h L -1 0 7
6 3 3
1 3 3
=s5| 3% 3 &
2 2 3

is singular, and therefore so is (2.5.1). (qed)

COROLLARY 2.5.2. For any positive definite correlation matrix R,

(2.5.16) chy(BR)(E#R+ 1) 225 1= 1,..0s b,
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(2.5.20) A~
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(2.5.17) ﬁ-l*B(_-!- I- 2(.@"&)-1 is positive definite,

(2.5.18)  [eh (R¥R)]IL + ch (K ™*R)1 22, +ksp+1,

where ch, denotes the (j-th) characteristic root.

h|
Proof, Postmultiplying (2.5.1) by 3_-1*_13:+ 1 establishes (2.5.16),

since the product of two matrices, each at least positive semi-definite,
has nonnegative characteristic roots. Premultiplying this product by
(3_*3_)-1 proves (2.5.17). Applying the result chj(é_)chk(g_) 2 chi(Ai),
j+k<1i+1 (cf. Anderson and Das Gupta (1963)) to (2.5.16) yields

(2.5.18) immediately. (qed)

We cannot prove (2.5.18) without using Theorem 2.5.1. While
chp(ﬁ-l*ﬁ) = 1, we have chp(&*_lj._) <1 since tr(R*R) = p.

COROLLARY 2.5.3. For any positive definite matrix A, the matrices

| -1 -1
(2.5.19) A% - 28, (A7 + D)7 Ay,

l*é. +1 - ?édg(é-*é)-lédg

are positive semi-definite, where é-dg is the diagonal matrix formed

from A.

Proof. For any diagonal matrix D, DAD¥DAD = Ea(é_*é_)gz and

1

Qf\‘l?_*(DAD)-l = A¥A"~  (cf. Appendix A). Substituting the correlation

1 1 ,
matrix (‘}.dg)-a-‘?-(é‘.dg) 2for R .in'(2.5.1) yields (2.5.19) after pre=-.and post-

multiplication by A Similar operations on (2.5.17) give (2.5.20).

~dg*

COROLLARY 2.5.4, For any positive definite correlation matrix R,

(2.5.21) tr(g_'l*g_) z2 tr(g*g._)'l - P,
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[

-

it (2.5.22) tr(B._*B)(_B_-l*B._) z p.

i Proof, Taking the trace of (2.5.17) yields (2.5.21) directly, while

(2.5.22) follows by summing (2.5.16) and noting that tr(R*R) = p. (ged)

It follows from a theorem of Frobenius on partitioned matrix
i inversion (cf. e.g., Rao (1965), p. 29) that the diagonal elements of

3;1 are at least equal to 1 (cf. Fiedler (1961)). Therefore

(2.5.23)  ex(BR) " 2 p 5 tr(R*R) = p.

Corollary 2.5.4 does not follow from (2.5.23), and we have been unable

e
I
i

P

to prove (2.5.21) or (2.5.22) without using Theorem 2.5.1,

COROLLARY 2.5.5. For any positive definite matrix A with diagonal

~

TN

elements aii’ i=1,.00, P

3 1 o p

. - - 2

(2.5.24)  |ax¥a|c]a"%A + 1] 2 2 1H1 a2, .

3 Proof. Substituting the correlation matrix (édg) éﬂédg) for

R in (2.5.16) gives (2.5.24) immediately. (qed) Cs
In contrast to (2.5.24), the Hadamard determinant theorem

B (cf. Appendix A, Lemma A.2.3) gives

4

] 2

@529 e < ]l 2,

a while |é_‘1*5_ + 1| 22P follows from ch(A'l*A) =1,
= 2.6 Efficiency of the Sample Variances.

Let t, p X 1, be an unbiased estimate of an unknown parameter

o

vector §, based on N observations, and suppose ngﬁ E) =\yl; Then

iy

the efficiency of t is defined (cf. Anderson (1958), p. 57) as the

square of the ratio of the volume of the ellipsoid

agéi éggi
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v

(2.6.1) N(t - g)l'r;__(g_- 8) =p +2,

-

where U is the information matrix per unit observation (cf. (2.3.19)),

to the volume of the ellipsoid of concentration

(2.6.2)  N(t - gy\z'l(g- 8) =p +2.

Hence (cf. Cramér (1946), p. 301), we obtain

1
(2.6.3) eff (E) = w o
P This is the vector correlation coefficient (cf. Anderson (1958), p. 24L)
between t and the score vector 3 log L/agfe) (cf. (2.5.10)). Rao
(1965), p. 285 gives this as the definition of the efficiency of t.
‘ When (2.6.3) equals 1 we say that t 1is an efficient estimate of §,
When p = 0, we obtain from (2.5.10) with 8 = {Eii}’ p X1, tke
g vector of sample variances; that
"' (2.6.4)  eff (8) = = ! = 2
- - [B¥R) - |3(R ¥R TR¥R] - [R ¥R+
: We obtain a lower bound for this in terms of the diagonal elements of
" -1
R .
i THEOREM 2.6.1. When g = 0, the efficiency of the sample variances satisfies
¥ , oP
p (2.6.5)  eff (s) > p——o,
' ii
[T (1™
i=1

_where pii, i=1,..., p, are the diagonal elements of E:l.

Proof, By the Hadamard determinant theorem (c£. (a.2.23)), |B§Eﬂ <1

(ged)

P .
and |B:1*13,_+£J < H (14p*h).

Equality will hold in (2.6.5) if and only if R =1 (cf. Marcus

A ;5" g: @%ﬁ-’ i

PR,
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and Minc (1964), p. 115). The efficiency tends to zero as R tends

to a singular matrix. Hence no lower bound independent of 3:1 is

T
i

possible. As an indication of the sharpness of the bound (2.6.5),

when B is as given by (2.5.13), eff(s) = 0.650 and the bound 0.551.
Asymptotic efficiency is defined similarly to (2.6.3) for any

consistent estimate é: (c£. wilks (1962), p. 380, Rao (1965), p. 285.)

We thus obtain from Corollafies 2.4.2 and 2.4.3 the following corollary

to Theorem 2.6.1.

COROLLARY 2.6.1, When p is unknown, the asymptotic efficiency of

~

the sample variances, DZ%e, is

oP

P

! (2.6.6) 2 25—

|B¥] - |B "R+ 1] [[1(1..1,“)
i=

2.7 Large Sample Tests Based on the First Iterate.

P b

Many hypotheses about variances may be formulated as linear hypotheses

about logarithms of variances. Variances will be equal if and only

- A
RS

if their logarithms are equal.

We find that the information matrix for the logarithms of the variances

is independent of the unknown parameters (cf. Han (1967)). This enables

us to construct large sample chi-square tests (cf. Rao (1965), p. 350)
é% for any linear combination, of rank at most p, of the logarithms of
the variances., Our tests will be based on the first iterate §§2)’ which
unlike~the maximum likelihoo& estimate 952), may be expressed explicitly

in terms of the observations., The limiting distributions of the
E test criteria will be the same since Jﬁ(g&e) - 3_(2)) converges to Q
in probability as a consequence of Theorem 2.3.3 and Corollary 2.4.3.

We consider as special cases testing the homogeneity of all the variances
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and the equality of any pair. Likelihood rétio tests will be considered

in §2.8.
We will use the following notation, in keeping with thét intro-

duced in §2,2. For any vector a = {ai}, p X1, let
2
(2.7.1) EF ) = {1oge ai}, p X1,

Our results depend on the following:

LEMMA 2.7.1. The limiting distribution o_f_ﬁ(g_gz)- o(*)), where

gi-l) = Qb-l(ﬁfl*§'+ 1)-123 is multivariate normal with mean vector

O and covariance matrix (B_-l*&+ 1)-1, and is independent of the

unknown parameters.

Proof, The result follows from the general theorem due to Cramér which
we used in proving Corollary 2.4.2. We obtain the limiting covariance
matrix from Corollary 2.4.3 as.

32 (8"

o~ —1 .-1 A~
(2.7.2) : « LAR(RTT*R + 1) A% - .
SOME Y 20(2)

P ol

1
Substituting ao(&)/agfe) = %é:a

yields the result, (qed)
A general linear hypothesis about the logarithm of the variances

may be expressed as

(2.7.3 ¢ oo,

~

where G' is g X p, of rank h < g, p. We may set the right-hand
side of (2.7.3) equal to O without loss of generality.

While we can always express a hypothesis of the form (2.7.3) with
a ‘E' such that h = g, we often find that a more natural formulation

involves a G' with h < g (cf. Corollary 2.7.1). To accomodate
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such cases we will use the concept of generalized inverse, which has

recently received much attention in the statistical literature,
(C£. e.g., Rao (1965), p. 2k4).

DEFINITION 2.7.1. We define a generlized inverse (g-inverse) of a

-~

matrix A, m X n, as any n X m matrix A  such that
(2.74) M= A

In general A" will not be uniquely determined, though certain
products involving any solution of (2.7.4) will be unique (cf. Lemma 2.7.2).

[

When A 1is square and nonsingular, A" = A-l is the only solution of

(2.7.4).

LEMMA 2.7.2. Let T, p X p, be positive definite and G, p X g, of

rank h < g, p. Then

(2.7.5)  &(e'TQ) T e = g,
and
(2.7.6) :ﬂgfzjlg)-gj is unique and symmetric rank h,

Proof. [G(G'T-lg)-gj’

~ . I

1

(e'T9)e'Te - 11'[6'] '

6(c't™ )76'TT'G - 6'TT 6] = 0, by (2.7.4).

~

Hence (2.7.5) follows since ! s positive definite, p X p, and
G has rank h < p., To show (2.7.6) we proceed similarly and use

(2.7.5). Let (G'Ijlg)-' and (Ej;j1§)+ be any two different g-inverses

- - -1 -1 -1 \-
"G, Then ve have [6(G'T76) ' - 6(€'T76)'e I E(S'T ) E!

1 1

of G'T-

- I R - - PITSS SR -1
- G(G'T 1c;)”c']' = ¢[(6'T 1G) G'T G - (G'T +9_'1:_ 19_][((_;"3 g) -(¢'T" g)*]g_'=9_

~

6)

from (2.7.5). Hence G(G'T-IG)'G' is unique., Symmetry follows since

~—~ e e e

G'T" G admits a symmetric g-inverse. From (2.7.5) the rank of
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1 .

G(Q'Z: G) G' is at least h, but since G . is also a factor the rank

. -~ P

must equal h, Thus (2.7.6) is proved. (qed)
We apply these results to obtain a large sample test criterion

for (2.7.3).
THEOREM 2.7.1. The limiting distribufion of

@1n  wand? gl ee”,

-
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where T = B;l*§.+ I, under the hypothesis (2.7.3), is chi-square with

h degrees of freedom. A large sample test of size ¢ has critical

region

(2.7.8) w z Xﬁ(l - €),
wvhere :

(2.7.9) P(xg 2 x;(1 - €)) = e.

Proof, From Lemma 2.7.1 we have that ‘Jﬁggt) has a limiting multi-

variate normal distribution with limiting covariance matrix 2:1.

Hence by a theorem due to A. T. Craig (cf. Rao (1965), p. 152) it
suffices to prove that 2:1 is a g-inverse of QIQ:I:IQ)'Q:, which
is unique and symmetric by (2.7.6). But:this follows directly from

(2.7.5). The number of degrees of freedom is h since "
(2.7.10) T g(6'T e
has rank . h. (qed)

The hypothesis of homogeneity of variances

(2.7.11) 0?. = O’S =,6e= o;

is a special case of (2.7.3) with h < g. The variances are equal

if and only if their logarithms are, or c(&) proportional to e.

-~
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Hence (2.7.11) is

(2.7.12) gg_(”) = 0,

~

where C =1 - ee'/p is the centering matrix (cf. Sharpe and Styan

(1965)). Pre-multiplication of a matrix by C subtracts the column

mean(s) from every row, i.e., centers the rows. Similarly post-

multiplication by ¢ centers the columns., The rows and columns of C

all sum to O and g is symmetric idempoteht of rank p - 1. It
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represents an identity transformation in the spbspace of vectors with

elements adding to zero. Thus (2.7.12) is a natural symmetric way of

formulating (2.7.11). When g‘z) is proportional to e, (2.7.12)
holds since Ce = 0. When (2.7.12) holds, gﬁz) is proportional to
e since C has rank p - 1, When there is a chance of confusion
with the sample covariance matrix defined at (2.1.3), we will denote
the centering matrix by Eé‘

We obtain the following consequence of Theorem 2.7.1 for the
hypothesis (2.7.11) or (2.7.12).

COROLLARY 2.7.1. A large sample test of size ¢ for homogeneity of

variances has critical Eggion

(e-7.13)  mig 1ol - 22’2l 22 (1 - 0,

where T = R-I*R +I.

Proof, It suffices to prove that

(2.7.1%)  ¢(c'T7'e)C = T - 2ee'/p,

since the left-hand side of (2.7.14) is the matrix of the quadratic

form (2.7.8) with G' replaced by C. Since 2;12‘= (3;1*5-+ Z)-%i

=

Ze

~’
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* Ce = 0. Then using (2.7.5), C = 2192;19)-92:

-3 -

1 szlggflp = 92:1 - Cee'/2p = QI;I, since

o =ger e

we have szlg.= CcT

—e

Post-multiplying by T yields nggrlg)'g_= CT =T - ee'T/p =T - 2ee'/p.
| (qed)

Another special case of Theorem 2,7.1 is when g = h, and szf%;
is :honsingular. The theorem holds with (ng-lg)-l replacing

(G".r'l

-

G)” throughout, When g =h =1, v simplifies considerahlys

. COROLLARY 2.T7.2. A large sample test of size ¢ for a single linear

combination u'c(c) = 0 has critical region

~~

(2.7.15)  N(w'e{*)2/(a'TTy) 2 201 - o).
Equality of a pair of variances,

(2.7.16) Z =02 (i43),

may be formulated as a special case of Corollary 2.7.2, with u=ge, - Eﬂ'

COROLLARY 2.7.3. A large sample test of size ¢ for (2.7.16) has

critical region

(2.7.17) N(log o,;- log clj)al(tii +edd etij) > xi(l -€),

where log oy, 1is the i-th element of ggz) and ¢t is the
(1, j)-th element of T ! = (R#r + 1)L,

2.8 Likelihood Ratio Tests.

The generalized likelihood ratio test for homogeneity of variances,
when correlétions are known, leads to a criterion with the same
limiting distribution as (2.7.13). We also find a large sample test
for a given correlation matrix. Both test criteria use the first

iterated estimate 21'
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We first formulate the generdlized likelihood ratio test. Let
w be the region in the parameter space {1 specified by the null

hypothesis. Then the test has critical region (cf. e.g., Anderson

(1958), p. 91),
max L

9}
w
(2‘8'1) A = max L < k’

9!

where k is a constant, predetermined so that the probability of (2.8.1)
under ® 1is the test size ¢, fixed in advance, and Lp is as
defined by (2.1.5).

To test homogeneity of variances when correlations are known, we

have

(2.8.2) w: = o°R ; o3, E‘ unknown,

~

(2.8.3) O : §_= ARA ; 4., E‘ unknown.,

o

Under (2.8.2), we find the maximum likelihood estimate of o2 by

minimizing (cf. 2.1.9))

(2.8.4) tr ¥~ §_+ log |Z] = i; tr 3;1§_+ p log o + log |EJ.
Straightforward differentiation of (2.8.4) yields

(2.8.5) 8 =Zer Bc,

Under (2.8.3), we have from §2.3 that the maximum likelihood estimate

of LY is the unique solution of

(2.8.6)  (R7c)a e = Be,

~—

which may be obtained iteratively (cf. §2.4),
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i - From §2.3 we find that (2.8.1) is equivalent to the critical

region

|2,

(2.8-7) — < k,
|2, ]

<

where 2h, 2@ are the maximum likelihood estimates of g‘ under , w,

respectively, and k is used generically (cf. also Anderson (1958),

g Lemma 3.2.2, p. 47). Substituting (2.8.5) and (2.8.6) into (2.8.7)
| yields:
.§ THEOREM 2.8.1. The generalized likelihood ratio test for homogeneity

of variances has critical region
| 2 .0
(2.8.8) ——-_1_E- < k,
(er R ¢)P

bt

where k is predetermined so that the probability of (2.8.8) under

(2.8.2) is the test size ¢, fixed in advance, and 81,..., Gb are

the diagonal elements of 3 satisfying (2.8.6).

The test just formulated presents the practical difficulty that
we are not able to find the exact distribution of the criterion in
(2.8.8) under (2.8.2). In addition its numerator must be computed
iteratively. We can, however, find a large sample test based on the

same limiting distribution as (2.8.8) but which avoids the above

Lidds

i difficulties, We may substitute 9 for §} since we have already
1 shown that Jﬁ(gl - §) converges to O in probability (cf. Theorem
i 2.3.3, Corollary 2.4.3).

3 . ' The limiting distribution, under w, of

(2.8.9) N[ m:,n Yoo mén Yl
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is chi-square with r degrees of freedom (cf. Rao (1965), p. 350),
where r 1is the number of restrictions specified by w, and 8}‘l is zs
given by (2.3.20).

THEOREM 2.8.2. A large sample test of size ¢ for homogeneity of

variances based on the generalized likelihood ratio criterion has

critical region

(2.8.10) N[p log tr _3_-19_ -plogp - 29_'9’?)] = xﬁ_l(l -€)

) -1)

9.& = 29_'1(3_"1*& + l)'lg_, using (2.7.1).

Proof, Evaluating (2.8.9) we obtain N[1log |/Zw| - log |{Q)|]

E obtained from

where g_gl'

= N[log I(% tr 3:19_)_13..] - log |é2_13..|] = N[p log tr E-l(i -p log p - log IQIZ].
The result follows substituting the asymptotically equivalent first

P
iterate values for ’&l,..., ’drp in log. Iyz =2 I log 'b‘i. (qed)

i=1
To test for a given correlation matrix R_,o, we have, analogous

to (2.8.2) and (2.8.3),
(2.8.11) w: R=R ;4,p unknown

(2.8.12) Q: L, p unknown.

Under (2.8.12) the maximum likelihood estimate of % is C. (cf. e.g.,
Anderson (1958), p. 47), and using (2.8.7) we obtain:the critical

region

where 2 is the unique solution of (2.8.6). Using (2.8.9) we obtain

COROLLARY 2.8.1. A large sample test of size ¢ for a given corre-

lation matrix B‘o based on the generalized likelihood ratio criterion

e
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has critical region

(2.8.14) N[QE:ggz) + log IBbl - log ’QJ] < xs(p-l)/E(l -€),

where giz) is obtained from gg"l) = 22:1(§?§-+ 1)-lg, using (2.7.1).

2.9 Special Case of All Correlation Equal.

When all correlation coefficients are equal, i.e., pij =p for

all i £ j, we can simplify many of the above results. We may write
(2.9.1)  R=(1-p)I +pee'.

When R 1is positive definite we obtain immediately

-1 1 1
(2.9.2) B =15 L- gy el e <L

-1
from which we note that in this special case R and g have the

-~

same "structure," i.e., all diagonal elements are equal and all off-

diagonal elements are equal. The characteristic roots are

(2.9.3) ch(B) =1 -p ,. malt, p.-'1

1 + p(p-l), mult. 1 [y

where mult. stands for multiplicity., When p > O, B: has a unique
maximal root, while when p < 0, B has a unique minimal root., When
p =0, §_= E: the identity matrix and all roots are‘equal to one.

The maximum likelihood equations still cannot be solved analytically
in general. We can obtain, however, an estimate with the same
limiting distribution as the first iterate (or the maximum likelihood
estimate), but which is easier to compute, We also obtain a modified
estimate, considerably simpler in form, but find that it is hof

asymptotically efficient. We obtain its limiting distribution and
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compare its asymptotic efficiency with that of the sample variances.
We conclude with some tests of hypotheses based on the above estimates,

2.9.1 An Asymptotically Efficient Estimator of the Variances.

The maximum likelihood equations given by (2.3.13), may be written,

using (2.9.2) as

(2.9.%4) [T - me(m &]z.: (l-p)‘&('l),

where \ = 29"1) = {ME:;/oi}, as defined in (2.3.12) and R 1is the
sample correlation matrix (cf. (2.1.4)).

We can solve (2.9.4) in general only iteratively. From (2.4.12)

(2)

we obtain an asymptotically normal and efficient estimate of ©

based on the first Newton-Raphson iterate which satisfies

(2.9.5) & =pal"V = 210 (2-0)L - Ty BT

which we cannot simplify further, in general.

Using (2.4.9), we rewrite (2.9.5) as
(2.9.6) A =e- (B®R+1)
Let us write

(2.9.7) R=(1- r)l + r;é_‘e;_'; r = p—(ﬁ—ﬁ i_Ejrij’

the matrix with average sample correlations, Consider

(2.9.8) a=e- B+ 1) HEMR - De.

*
Then the estimate based on kl rather than Kl will also be asymptotically

efficient, since (cf. Han (1967))
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-

(2.9.9) WSROy - A = (EHR+ D™ - @M=+ DIWRE R - o)

converges to O 1in probability because E; and R  both tend in
probability to R.

We can simplify (2.9.8). Let us write

o

(1-p)(14p[p-1]) = 14p(p-2) - p3(p-1),
(2.9.10) :
w

20 + p(p-r)(p-1) = 2 + 2p(p-2) - p(p+r)(p-1).

THEOREM 2.9.1. An asymptotically normal and efficient estimate gff)

of 952) is given by (Qflﬁz)('e), where

(2.9.11) A% oL 4 (1 - P2(ir(p-r)p)(p-1)

-1 = wirpp -~ w(w+rpp) )2,

where o 1is defined by (2.9.10) and r = (R - I)e, the vector of row

sums of sample correlations.

Proof, By virtue of Corollary 2.4.3 it suffices to prove (2.9.8) and

(2.9.11) equal. From (2.9.2) and (2.9.8) we obtain

1 p

(2.9.12) R = '1%5 [L - Ty &' (o)L + ree']

= 2 (e +plrap(p-1)1)I - pree'].

Hence

' -1 = -1 o r '
(2.9.13) (R R+D" =g L+ e'l=g

say. Thus Qﬁ.= e, and Q has characteristic root % with corre- .

sponding vector

10 ElR

We substitute



R o Syl

( ) (RR-De 1-p*~  1l4p(p-1) R)e.

% (p(p-1)e - 1)

in (2.9.8) to yield

*

(2.9.15) ) = ¢ - £ alp(p-1)e, - ]

~,

2
E_(l'P—%-—lz)*“%Q&-

It remains to evaluate Qr. From (2.9.13) we have

(2.9.16) Q= o5 [r + &5 (p(p-1)r)el.

Substituting this into (2.9.15) yields

* _ p2(p-1) rZp
(2.9.17) M =g it 1 -—p— (- gxs Ve

which gives (2.9.11) directly. (qed)

2.9.2 A Modified Estimator of the Variances.

The forms (2.9.11) and (2.9.17) are quite complicated. A much
simpler form is obtained by substituting R for R in the maximum
likelihood equations (2.9.4) or in the first iterate (2.9.5). We
show that both substitutions lead to the same limitiﬁg distribution.

We first consider (2.9.4), which expanded yields

(2.9.18) [T - ﬁm E]Z_ = (1-p ):(—1):

- 39 -

where we have written X for R. Substituting (2.9.7) into the left-

o~

hand’ side of (2,9.18) yields
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1

(2.9.19) (1o < (1 - &4

-r pr ' e
) L T ee' X
Hence, using (2.9.10),

(2.9.20) ggf'l) = [(1 + p(p-2) + pr){v- prggj]gk

Proceeding as in (2.3.14), we set g}'l) = Ye, where v2 = Eflcii,

- 2 ‘
with c? written instead of o?. We obtain !

(2.9.21) ay® =1 +p(p-2) -+ pr - prp = 1 + p(p-2) - pr(p-1)
=a + p(p-r)(p-1).

Hence

(2.9.22) ;2 = cii(l +ﬂ&r_z’i_ﬂ Y, i=1

i

seeey Po

For p > 0, (2.9.22) is also positive. But for p < 0, (2.9.22)
may become negative., As an example with p = 100, take p = -1/100
and r = -1. Then « = 101/100%, p-r = 99/100, and p(p-r)(p-1)/a
= -992/101, which is much less than -1. (2.9.22) is positive for
p <0, only when r > (1 + p(p-2))/p(p-1).

We now turn to (2.9.5), which expanded similarly to (2.9.4) yields

2(1-p)[(20)L - Trfogy K1 e

1-r) -1
2(1-p)[(2-p - 1’313 pfl )1 - —9-(—714_;;,_1 ee'] e,

Zi for il' Substituting xg-l) = ye, we obtain

by moving the inverse to the left-hand side of (2.9.23)

(2.9.23) XN

where we now write



[
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p(1l-r) prp

(2.9.24)  2(1-p)y T (p-1) ~ T (p-1)

2 -p -

_ p(l+p(p-1)) _ p(1+r(p-1))
R e F= 5y T (p-1)

_ p(p-r)(p-1
2(1l-p) + 11 (p-1 .

If we now write Y2 = Eilcii, where Ei is the modified estimate obtained

by the substitution in (2.9.5) of R for R, then

(2.9.25) 5, = Jo, (1 +2££:’2’_2}P'—11 Y, i=1

3000y po

'Squaring (2.9.25) yields

seecey Py

(2.9.26) ‘o*i‘ - cii(l + Pip'ri(P-l) + p2(p-r)3(p-1)2 ), i=1

which is (2.9.22) but for a term in (p-r)2. We note that (2.9.26) is
always positive. Furthermore, JN iy Np-r)2 = [vﬁ ciy N(p-r))(p-x),
where 1T 1is a function of p and p but not of r, converges to O
in probability. This is so since N Ciy N(p-r) has the same limiting
distribution as ﬁc’i N(p-xr), and p-r converges to O in probability.

We therefore consider as our modified estimate

(2.9.27) F=c (14 J-E—‘i(l’—l—)z‘ 1=

i

,00-’ Po

The limiting distribution of ./I-\I(E(e) - 0(2)) is thus the same
as that of Jﬁ(’cﬁe) (2)) where o( ) {_2} 0(2) f& The

limiting distribution of Jﬁ(&fz) - g__(e)) is the same as that of

(2.9.28) U -V sNg‘(e),

where u. = Jﬁ(]_)f - é_a)g_, sy = J;I(r-p), and v = p(p-1)/c.
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We need the following results (cf. Anderson (1963)) extending
Lemma 2.4.1,

LEMMA 2.9.1. The limiting distribution of

(2.9.29) = JHe - 2)att

~ e

_i_s_ that _c_’_g a random matrix X which is multivariate normal with mean

.0 and covariances given by

(2.9.30) E(Xe;e;X) =p; B+ BejeiRs 1, 3= 1,00, pe

Proof. Pre- and post-multiplying (2.4.9) by A-l yields (2.9.30). (qed)

LEMMA 2,9.2. The limiting distributions of N(R - B) and

=% - %‘(RX + X ,B«_), where X, = (x )d , are the same,
Proof. Substituting A = QA’I in (2.9.29) gives Xy = Jﬁ( ARA - R)

and X, =aN( A° - I). Thus

(2.9.31) ¥, =/N(ARA - $BAZ - 3 A%R).

This has the same limiting distribution as ./I-\.I(B_ - g), or equivalently

JEA (R - BIA  (since A converges to I in probability), provided

(2.9.32) JN( ABA - 2RAZ - 1 A°R)

converges to O in probability. This is seen by expanding (2.9.32)
as NI(ABR-BRAD(A-L) - (A-ID(AR-R))I. (qed)

We now explore the form of (2.9.30) when all correlations are
equal. We assemble the p + p(p-1)/2 = p(p+l)/2 different components

of Xy = {xij} into a column vector




1
A x,.3, £ = 1,000, P
(2‘9033) EN = -'ié ---------------- ......g..... .

1,5 = 1,00e, P p(p-1)/2
{xij}s i<ij

In what follows we will refer to the covariance matrix of the

limiting distribution as the "limiting covariance matrix."

LEMMA 2.9.3. When all correlations are equal, the limiting covariance

matrix 22 EN ig

{2}[P]

{epa}[P(P-l)]
(2.9.34) L = eeverrns frmmmmmmomomoeeeeo e

M oees
[t L L L e

{1+¢2][%P(P41)]

»

fop23l2P(p-1)(p-2)1 | p2yip(p-1)(p-2)]

® oo

ij -

'?ﬁ *p-1,0 L

where {2}[p] denotes p elements equal to 2, etc,

(202} H0(3-1) (22 (-3)]

st Proof, From (2.9.30) we have

(éo9.35) COV(xik, ij) = pijpkL + pjkpib ; i, j, k, & = 1,.00, P

j§ with pij = (l-p)sij +'p, where 51j is the Kronecker delta.

From (2.9.35) we obtain the components of (2.9.34) as follows:

top left-hand corner

V(xii) =2 , mult, p; cov(xii, xjj) = 2p2, mult. p(p-1).
[i=j=k=2] [i=k, j=t]




ﬁ&“
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lower right-hand corner

v(xij) = 1+p2’ mult, %P(P-l); cov(xik’ xiz) = p+p2’ mult, p(p-l)(p-Q)
[k=3, ¢=i] [3=1]

- 202 L (p-1)(p-2)(p-
cov(x;ys Xy,) = 20%, milt. pp(p-1)(p-2)(p-3)
[all subscripts different.]

lower left-hand corner

cov(xii, xij) = 2p, mult. p(p-1); cov(xii, xj&) = 2p2, mult. 2p(p-1)(p-2)-
[k=b=1]-: [k=i] '
(qed)

We now apply these lemmas to evaluate the limiting covariance

matrix of (2.9.28), which we write in two parts., First

(2.9.35)  w, =4/N(D? - A%)e =J/NA2(H - D)e = A%Rge,

where gdf- is the vector of the first p components of Xye Thus the
limiting covariance matrix of uy 1is from (2.9.34),

(2.9.36) Z,=243[(1-p3)L + p%ee' ]A% = 2A%(R*R)AZ,

-~
)

as in Corollary 2.4.2. Second, 8 =~ﬁ§(r—p) has the same limiting

N
distribution as E:XNEIP(P'l) (cf. Lemma 2.9,2), Further

(2.9.371) ¢!

]
]

e'Xye - e'BXe

= e'Xee - [1 + p(p-1))(e'X e)
(p-1) ; 2 z

= -p p- X + X )

=1 i >y

Hence the limiting variance of 8y is

(2.9.38)  [-p(p-1)e', 2e'] L, [ -p(pfl)s,],

- 2e

~
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with §x given by (2.9.34). Expanding (2.9.38) yields
E (2.9.39)  20%(p-1)%p(1 + p2(p-1)) - bp(p-1)(2p(p-1)p + p(p-1)(p-2)p?]
"ﬂ + 2p(p-1)[1 + 2p(p-2) + p3(1 + (p«1)(p-2)]

2p(p-1)[1 + 2(p-2)p + (pC-6p+6)0? - 2(p-1)(p-2)p3 + (p-1)2"]

2p(p-1)a?.

Hence the limiting variance of s 1is

(2.9.40) ci = 2¢2/p(p-1).

It remains to evaluate the limiting covariance matrix of 's'ﬁ . Fhis is

N~N
g 1/p(p-1) times
- (2.9.41) (8%, 0) Z,  -p(p-1l)e
3 -~ 29.
. (2] § fop }P(p-1)] -p(p-1l)e
= & (2p2}(P(p-1)] § fop2} (2P (p-1)(p-2)] 2e

A%e[-p(p-1)(2 + 20%(p-1)) + bp(p-1) + 20%(p-1)(p-2)]

A2e[2p(p-1)(1 + p(p-2) - p3(p-1))]

2ap (p-1)4%e.

Thus the limiting covariance matrix of SNEN is

(2.9.42) géur(de/p)é?g,

[l

We tie these results together in proving the following:
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~uls THEOREM 2,9.2. The limiting distribution of N(E(e) - 2(2)), where

§(2) i_s_ the vector o_f modified estimates

(2.9.43) }‘; =c,(1 +ﬂﬂ%-p—‘-}l)2, i=1

secey Py

o = (1-p)(1 + p(p-1)), is multivariate normal with mean vector 0 and

covariance matrix

k| (2.9.44)  282[(1-p2)L + (p2/p)ee’ 1A2.
E Proof. It suffices to establish (2.9.44). This is the limiting

covariance matrix of (2.9.28) which is

(2.9.45) I + Gi\)eé_agg_'ge - v[geug_'g_z + A2ec' ].

w ~--sy
E Substituting (2.9.36), (2.9.40), and (2.9.42) in (2.9.45) yields
E vVa?  2awp
2 -n2 (a2 - 2
E (2.9.46)  20%[(1-p%)L + ee'(p® + oromyy - ) 1A%,
B Since wr = p(p-1), (2.9.46) simplifies directly to (2.9.44). (qed)

The matrix (2.9.44) may be said to lie between the limiting

covariance matrix of the maximum likelihood estimates, as given by
(2.3.28), which now becomes
Lo 2 La 12
(2.9.47)  —— A3%(L + 55 ee')A?,
2~ Ll Y o~ ~
2a+pp
and that of the sample variances, as given by (2.9.36). Pre- and

post-multiplying these matrices by ./;é‘g yields the following
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Multiple | Simple
General Form Special Form Root Root
-1.. - 2
serisiee | ot 0t | 2 o] 2|
2a+pp® 2ar+pp2

Modified 2 o . .
Estimator - (1-p=)1 + ee 1-p 1
Sample - 2 . : .
Variances B*R (1-p )}.+ p-ee 1-p 1+ p%(p-1)

It is clear that by multiplying each sample variance by the same

factor (involving R only through r), we decrease the simple root

from 1 + p2(p-1) to 1, but leave the multiple root unchanged.

is so since e 1is the corresponding characteristic vector.

This

To achieve

efficiency we must also decrease the multiple root; notice that this

also removes the symmetry in p.

determinants of these matrices, and make further comparisons.

2.9.3 Efficiencies of the Estimators.

In the next section we evaluate the

We now evaluate the quantities in sections 2.5 and 2.6 for the

special case of all correlations equal, These quantities will enable

us to derive the relative efficiencies of the estimates discussed in

§2.9.2.

We begin by considering the results in matrix algebra of §2.5 for

our special case.

algebraically.

From (2.9.1),‘5 = (l-p)z + psg', and so

(2.9.48)  B¥R = (1-p3)I + pZee'.

All of these results are now readily established
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From (2.9.2), 5'1 =15 L- % ee!, where from (2.9.10), @ = (1-p)(14p(p-1))

1
=1+ p(p-2) - p3(p-1). Hence

(2.9.49)  B¥R = [7551 - & ee' [(1-p)1 + pee']
_ p(1-p) ., o ys _ 02
=(1- o + 1-p)£ T w ee’

= 20(a + pp®)I - pee'],

which now has the same "structure" as R. This leads to the specialization

of Theorem 2,5.1, which we now give as

COROLLARY 2,9.1, When all correlations are equal, the matrix in Theorem 2.5.1,

(2.9.50) B*R - 2(B ¥R+ 1) =

p2[( P -1+ (1 - L Jee']

p-(1-p)3(p-2) - p-(1-p)3(p-2) ~

has characteristic roots (p-1)p2, mult. 1, and p3[( P__ - 1)1,
' p-(1-p)3(p-2)

‘Wg mult, p-1, and is positive semi-definite.

Proof. From (2.9.49), we obtain

o

(2.9.51) (Rp+1)7l =
-oT 2a+pp?

Subtracting twice (2.9.51) from (2.9.48) yields

E | (2.9.52) p3(—F— - I +p3(1 -

Jee',
2a+pp2 -

2o+pp2

which simplifies directly to give (2.9.50), since 2o + pp2 = p-(1-p)Z(p-2).
The simple root is found by multiplying (2.9.50) by e, while the
multiple root is the coefficient of I in (2.9.50). Both roots are

“?% clearly nonnegative and so (2.9.50) is positive semi-definite. (qed)
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end
.
A,

COROLLARY 2.9.2. Whenever R is positive definite, the matrix (2.9.50)

is singular if and only if R=1

.
~ o

e

Proof. The matrix (2.9.50) is singular if and only if a root is zero.

The simple root is zero if and only if p = O, while the multiple root

"
¥
&
i

is zero if and only if p =0 or p = 1. The latter case makes LB] =l0,
hence the result. .(qed)

Corollary 2.9.2 shows that when all correlations are equal the
condition in Corollary 2.,5.1 is both necessary and sufficient,

Corollaries 2.5.2 and 2.5.4 are immediate consequences of Corollary

2.9.1 in this special case. Theorem 2.6.1 becomes

COROLLARY 2.9.3. When all correlations are equal, the asymptotic

efficiency of the sample variances is

1

(1 + p2(p-1))[(1-p2)(1 + gﬁ;f) -1

(2.9.53)

with lower bound given by

(2.9.5%) 21 .
4 (1 + £L)yp

Proof., From (2.9.48), |§ﬁ§| = (l-pz)p-l(l + p3(p-1)), and from

. 2
(2.9.49), |__p;1*§ +I]=(1+ g%—)p'l. Hence (2.9.53) follows directly

by substitution in (2.6.6). From (2.9.2), pii = (1 + p(p-2))/a, so

2! -
1+p o148 AT L, and (2.9.54) follows. (qed)

We now investigate the asymptotic efficiency of the modified

’“3 estimator :§(2), introduced in §2.9.2. We obtain

THEOREM 2.9.3. The asymptotic efficiency of 5\2) is

(2.9.55) 1 )

[(1-p2)(1 + B2y P~
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Proof. We substitute the determinant of
02
(2.9.56) (1-p3)L + (G)ee!

(cf. (2.9.44)) for |R*¥R| in (2.6.6) or (2.9.53). The matrix (2.9.56)
khas a simple root of 1 and all other roots equal to 1-p2, Hence
its determinant is (1-1:)‘2)p-1 and (2.9.55) follows directly from
(2.9.53).  (qed)

Values of (2.9.53) and (2.9.55) are tabulated for selected values
of p and p 1in Table 2.9.2 and illustrated in Figures 2.9.1 and
2.9.2.

The improvement of the modified estimator §52) over the sample
variances Q?g‘ is to increase the asymptotic efficiency by a factor
of 1 + p3(p-1), which for p close to 1 will be near p. This
-follows from R¥R and (1-p3)L + (%f)gg: having common multiple
roots (cf. Table 2.9.1), but with the simple rootAreduced from

1 + p2(p-1) to 1. For an efficient estimator we would require the

common multiple root of 1-p2 to be reduced to

(2.9.57) 1 - P~ 5=
1o ()20 D)

the multiple root of 2(3:1*§_+ 1)-1.

The asymptotic efficiency of the modified estimator tends to 1
as p tends to 1, while that of the sample variances tends to 'O and
1/p correspondingly. This is illustrated in Figure 2.9.1.. Thus
the asymptotic efficiency of the modified estimator has a minimum value
between p =0 and p = 1, while that of the sample variances mono-
tonically decreases as p moves away from O (both efficiencies tend

to O as p = - 1/p-1). This leads to the following result:



TABLE 2.9.2, Asymptotic efficiencies of modified and sample estimators, 0 < p < 1 p = 2(1)10(10)50.
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TABLE 2.9.2 (ctd).
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Figure 2,9.1. Asymptotic efficiencies of modified (solid line) and sample (broken line) estimators,
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Figure 2,9.2, Asymptotic efficiencies of modified (solid line) and sample
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COROLLARY 2.9.hk, The asymptotic efficiency (2.9.55) of '6(2) tends }
to 1 as p tends to 1, and has a minimum value over positive p at é
—_— a- ¥
(2.9.58) p = B tup(psd) i
4(p-1) ’ &
i
which tends tc i as p ‘tends to infinity. §
i
Proof, 1t suffices to consider %
2 sz g?

(2.9.59)  (1-p%)(1 + 55-)

as p - 1. Since 2¢ +p®p = p - (1-p)3(p-2), we may write (2.9.59) as

. (2.9.60) (L0 )(1-p)(p - (1-p)%(p-2))

2(1-p)(1 + p(p-1)) .
Cancelling 1l-p and setting p = 1 yields the first result., To
obtain the second result we rewrite (2.9.60) as
2(1-p)(p-2)
2.9.61) 1 42, 1-2)(p
(2.9.61) 1+ 505501 *
and consider the turning point of pZ(1-p)/(1 + p(p-1)). Equating

its derivative to O yields the quadratic 2pZ(p-1) - p(p-4) -2 =0
of which (2.9.58) is the positive root. For large p, (2.9.58) is

approximately 2(p-2)/4(p-1), which tends to 3 as p ~w. (qed)

Values of (2.9.55), the asymptotic efficiency of the modified
estimator, evaluated at (2.9.58), giving its minimum value over

L
positive p, are tabulated in Table 2.9.3 and illustrated in Figure 2.9.3 %
for selected values of p and p. Corresponding values of (2.9.53), i

the asymptotic efficiency of the sample varignces are also included. i
We see that the asymptotic efficiency of the modified estimator is a |

considerable improvement over that of the sample variances. The

improvement is best at p = 5 where the difference is 0.kL,



TABLE 2.9.3.

VCONOOBPWN T

—
o]

11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3s
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50

Minimum efficiency of modified estimator, 0 <p <1, = =--56,-

«6180
5931
«5774
5664
«5583
05520
05469
5428
«5393
05364
5339
«5317
5298
5281
5266
05252
5240
5229
5219
5210
«5201
5193
5186
5179
eS5173
05167
5162
5157
5152
5148
e5143
5139
5136
5132
5129
5125
5122
«5119
«5117
5114
5111
5109
¢5107
«5104
«5102
«5100
«5098
«5096
05094

Asymptotic Efficiency

éfe)

10000
¢ 9376
«8600
¢ 7806
e 7043
6332
«5678
«5084
e4545
«4060
¢ 3624
«3233
«2883
« 2570
¢ 2290
«2040
1817
«1618
21440
e128B2
01141
01016
« 0904
« 0804
«0716
« 0637
« 0566
« 0504
« 0448
« 0399
+ 0355
« 0315
« 0281
« 0249
«0222
« 0197
«0175
« 0156
«0139
«0123
«0110
+ 0098
« 0087
« 0077
« 0069
« 0061
« 0054
« 0048

D%

e7236
«5504
«4300
34109
2753
02239
¢1835%
1514
01256
01047
20876
00736
00620
«0524
00444
« 0377
«0321
«0273
«0233
«0199
«0171
00146
«0126
«0108
«0093
«0080
«0069
+0060
+ 0052
e 0045
«0039
«0033
«0029
«0025
«0022
e0019Q
«0016
«0014
#0012

00011

.0009
.0008
.0007
0006
.0005
.0005
«0004
0004
0003

Improvement

02764
3872
«4300
«4387
«4290
e 4093
03843
03569
¢ 3289
«3013
02748
02497
«2263
e 2046
e 1846
01663
1496
¢1345
e« 1207
21083
¢« 0970
« 0869
« 0778
« 0696
« 0623
e 0557
¢« 0497
00444
¢ 0397
« 0354
«0316
« 0282
00252
«0224
«0200
«0178
«0159
00142
«0126
+0113
«0100
« 0089
« 0080
«0071
« 0063
« 0056
+ 0050
« 0045
«0040

p = 2(1)50.




Figure 2.9.3.

Efficiency

Minimum efficiency of modified estimator, 0 <p < 1, p = 2(1)24, with corresponding

efficiency of sample estimator.
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Study of Table 2.9.2 and Figure 2.9.1 shows that the improvement
can be much larger for positive p. The best improvement is at p
closg to 1 where the difference is 1 - % , which tends to 1 as
p becomes infinite., For negative p there is very little difference
(cf£. Figure 2.9.2).
The computer programs written to generate the above tables are

given in Appendix B.

2.9.4 Testing Homogeneity of Variances.

We now consider the results of sections 2.7 and 2.8 in the special

case of all correlations equal (and known). From Corollary 2.7.1 we

obtain

COROLLARY 2.9.5. A large sample test of size ¢ for homogeneity of

variances has critical region

» ’: 2 - [} 4
~ PZy(8)'g S(8) 5 e
~~§ (2.9.62) N(2 + —§7)g¥ CO% & 2 xp_l(l-e),
55 where é* is as given in Theorem 2.9.1 and c, is the centering matrix,

Proof, It suffices to show (2.7.13) and (2.9.62) equal. From (2.9.49)

we have that

2 2
(2.9.63) T =R *B+L=(2+E ) -2 ee,
Substituting (2.9.63) in (2.7.13) yields
2 '
(2.9.64) (2 + Poyolt)

where ge is the centering matrix introduced in (2.7.12). The result then
follows directly from Theorem 2.9.1 since g, and 2} have the same

limiting distribution. (qed)
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We may express the quadratic form in (2.9.62) as a "centered,"

or "corrected for the mean" sum of squares. For from (2.9.11) we may

write

(2.9.65) g, = [0 "(uyr + '*2&)1('1)’

where Hy and Hy are expressions in r, p and p as given by
2.9.11), and r = {r,} 1is the column vector of off-diagonal row
-~ i

sums of R. Thus we may write

E () _ (rop (L1t
(2.9.66) g, ’ = {log (“1"1 — “2)},
where Csy is the i-th sample variance. Thus we obtain
hat ' P c . P c,
o (2.9.67 ool = B ftos (I _ypz | (3§ 10g (At e

i=1 K1ty * Ho i=1 HiFg * Mo
From Corollary 2.7.3 we obtain the corresponding result for

testing equality of two variances:

(2.9.68) 0% = o2 .

COROLLARY 2.9.6. A large sample test of size ¢ for (2,9.68) has

critical region

2
(2.6.69)  N(1 + BE)[10g (a}/0}) 1% 2 %(1-e),

*
where = {oi}, as given in Theorem 2.9.1.

T

Proof, It suffices to show (2.7.17) and (2.9.69) equal. From (2.9.51)

we have

(2.9.70) eSS N R (1 + Peé); el ] (EE).
2+pp2 opp2 2%




. = & -
® - i1 _jj i ii° ij po2
i Hence t ~ + t°- - 2t™7 =2(t7" -t ") =1+ 5o~ + The result follows
from Theorem 2.9.1. (qed)
From Theorem 2.8.2 we obtain an alternate to Corollary 2.9.5.
g COROLLARY 2.9.7. A large sample test of size ¢ for homogeneity of
variances based on the generalized likelihood ratio criterion has
’:‘g critical region
A (2.9.71) N[p{log (—-1—- tr ¢ - £ e'ce)/p} - 2e'c(l’)] 2 %2 (1-¢)
‘,",‘.1. ¢ 1-p ~ o o . Xp—l ’

where C 1is the sample covariance matrix,

Proof., It suffices to prove (2.8.10) and (2.9.71) equal. From (2.9.2)

we recall that

"1 - 1 R (]
(2.9.72) R = - I-5kee
so that tr 5-19 = —1%3- tr C - % e'Ce. Hence the result. (qed)

We now consider the forms of the above tests when based on the

modified estimator §(2) rather than 25(_2).

COROLLARY 2.9.8. A large sample test of size ¢ for homogeneity of

variances based on the modified estimator 3(2) has critical region

2N ' 2
2.9. L'C L 2 1-
(2.9.73) e Ll xp_l( €)s
“% where C_  is the centering matrix and ¢ = {log dii'}’ is the column

vector of logarithms of sample variances,

Proof. We proceed as in Corollary 2.9.5 but instead of T, use g_m,

say, where from (2.9.44),

(2.9.74) 23_;1 = (1-p2)_5 + %f_gf._'.
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2 .
1-p2

2
Hence T = [T - e ee'], and so
~m ~ p ~

(2.9.75) "1 3" - ergtye - 2 5 50,

'
?md ~ ~pr-—
1-p2

From (2.9.43), E‘e) = kg?g, where A\ is a function of p, r and p.
Thus QE‘L) = (log Ae + (Qﬁg)(c) = (log \)e + 2¢. Substituting in
(2.9.75) yields zifgéfj(l-pe), since C2= 0. The result follows. (qed)

COROLLARY 2.9.9. A large sample test of size ¢ for (2.9.68) based

on the modified estimator ‘3(2) has critical region

X

(2.9.76) L= [log (cy,/e, )1 = xE(1-0).

1-p
‘Proof. Using (2.9.74), 2(tii - tif) = 1-p2, Substitution in (2.7.17)
gives (2.9.76) immediately since Ega) - Egz) =4, - Lj. (qed)
In conclusion, we note that the test in Corollary 2.9.9 remains
unchanged if we use the sample variances DZ®e instead of E{Q). To

e P

see this, let (cf. (2.9.36))
(2.9.77) 22;1 = R*¥R = (l-p2)£+ ngg_'.

Then 2(t;'i - t:j) = 1-p2 = 2(t:;i - t;j) and the proof of Corollary
2.9.9 proceeds unchanged.
On the other hand, the test in Corollary 2.9.8 changes. From

(2.9.77)

(2.9.78) T, = 2 [I - —E— ee'],

1-2 7 1+ p3(p-1) T

and so
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(2.9.19) Wz 'rg") - Ee'g*2 -
an L FO'E - @7V 3 -
1-p% P (1-p2)(1 + p3(p-1))

2N[-—1— E(L)ééé(l’) _ —p3(p-1) (e'é(&))a]
1-p® p(1 + pZ(p-1))

which is the left-hand side of (2.9.73) minus

242 (p-1) ('3 )2/p(1 + p2(p-1)).
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APPENDIX A: ALGEBRA AND BIBLIOGRAPHY OF HADAMARD PRODUCTS - 66 -

1., Preliminaries.,

We will assume throughout this appendix, unless stated to the
contrary, that A = {aij} and B = {bij} are square matrices of
order p. Then following (2.2.1) we define the Hadamard product of

A and B as the square matrix of order p,

(A.1.1) A% = {a b .}

Halmos (1948), p. 144 appears to be the first to give the name
-;E Hadamard product to (A.l.1). It is not clear why this product was

so named, The French mathematician Jacques Hadamard (1865-1963) wrote

about 400 scientific papers (cf. Hadamard (1935), Cartwright (1965),
”$§ ﬁandelbrojt & Schwartz (1965)) as well as several books. The two
references to Hadamard most frequently citéd by later writers in this
area date to 1893 and 1903. 1In the first,Hadamard obtained an upper

bound for an arbitrary determinant, the special case of which, for a

parent positive (semi-) definite matrix, we give below as Lemma A.2.3.

7%% This result is used in §2.6 above and in establishing lower bounds for
|A¥B| below (Corollary A.2.6 and Theorem A.2.6). In the 1903 book,

iﬁ% Hadamard considers quadratic forms of the type §:(éf§)§3 but as

W?% far as this writer can determine only for the special case x = e,

Unaware of any previous work concerning the .product :(A.1.1), the
German mathematician Issai Schur (1875-1941) proved that whenever
A and B are positive (semi-) definite, then so is A*B. Schur (1911)
also proved a remarkable inequality (Theorem A.2.3) concerning the
characteristic roots of _A¥B  which appears to have been overlooked

by subsequent writers., Both results are presented in the next section,
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Thus the product (A.l.l) deserves the name Schur product, but

apparently only Majindar (1963) has used this term. Bellman (1960),

s

P. 107 presentes the first of Schur's two results but does not name

Nig the product. Following Halmos (1948), (1958), later writers including
_ Marcus & Khan (1959), Fiedler (1961), Marcus & Thompson (1963), and
=§@ Marcus & Minc (1964) call (A.1l.1) the Hadamard product. Other writers
using the product fail to give it a name, .

The notation used in (A.1.1) follows that of Marcus & Minc (1964),
p. 120. All the other literature on this topic that we have found uses
a different notation., Fiedler (1957), (1961), Marcus & Khan (1959),
and Marcus & Thompson (1963) use A o B, while Mirsky (1955), p. 421

uses A X B, Other writers use only scalar notation.

The Hadamard product differs from the usual product in many ways.
'mjﬁ To begin with, conformability of the orders of the component matrices

is quite different, When U and V are two matrices of orders

t Xu and v Xw, respectively, then we can define U*V whenever

t=v and u=w (if v =u in addition, we have (A.1.1), but this

et

is not, of course, necessary), while UV is defined only if u =v,

with no further restrictions.

Y

The role of identity matrix in Hadamard products is taken by ee',

 § the matrix with each component unity. That is

(A.1.2)  A¥ee' = A = ee'¥aA,

Hadamard multiplication is commutative unlike regular matrix multi-

plication, i.e.,

(A.1.3)  A¥B = B*A = {aijbij}'




The distributive property is retained, for

(a.1.4) (A +B)*C = AXC + BXC = {a e, # byye ],

where 9_ is also square of order p.
Diagonal matrices are easy to handle in Hadamard products. The

diagonal matrix formed from A is written

= A¥
(A.1.5) A, = A*L.

The row sums of A¥B are the diagonal elements of 1}3’ or BA'., Hence

we may write

(4.1.6)  (A%B)e = (aB')yee = (AB'*D)e
- ' - '
(BA') o2 = (BA'*D)e,

which becomes (AB) g = (AB¥I)e, when B 1is symmetric, and
(Ba) g = (BA¥*I)e, when A ié symmetric,
The trace of AB is the sum of all the elements of 1_&~*B~' , Or A*B

P e

when §' is symmetric. Thus
(A.1.7)  tr AB = e'(a*B')e,

which also follows directly from (A.1.6).
Multiplication of a Hadamard product by diagonal matrices enjoys

a useful associative property, When D. and D, are diagonal matrices

~1 ~2
of order p, we may write
= = *
(8.1.8)  y(a®)D, = (D,4%8)D, = DjAD*B
= (ax;B)D, = 4%D,BD,
- * = * -
= DAMED, = ADp*DE.
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s We have studied the literature concerning Hadamard products and
-z present the main results in the next section. We also consider
i

3 applications to correlation matrices and conclude this appendix with
5 a bibliography.

2. Theorems,

;;g . The most widely used and possibly most important result concerning

Hadamard prbducts was proved, probably for the first time, by Issai

Schur in 1911.

% THEOREM A.2.1 [Schur (1911)]. When é_ and ‘B._ are positive semi-

| definite, then so is their Hadamard product A¥B. When either A

or B is positive definite then so also is AXB.

Proof. Consider the quadratic form:

i (A.2.1)  x'(A¥B)x,

R

where x is p X 1. There exists a matrix T, p X p, such that
B = I'T. Substituting in (A.2.1) gives

P
|}
(a.2.2) i§1 (x*Te, ) 'A(x*Te, ),

which is nonnegative when A and B are positive semi-definite,

When either A or B is nonsingular, (A.2.2) is positive. Hence
the result., (qed)

The above proof shortens the original version given by Schur (1911),

which is also given by Fej&r (1918), PSlya & Szego (1925) & (1954),

pp. 106-107, 307, Oppenheim (1930), Halmos (1948), pp. 143-1Lh, and

(1958), pp. 173-174, Mirsky (1955), p. 421, and Bellman (1960), p. 9k.
An interesting shorter proof follows directly from the following

lemma given by Marcus & Khan (1959) and Marcus & Minc (1964), pp. 120-121.
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LEMMA A.2.1 [Marcus & Khan (1959)]. The Hadamard product is a principal

submatrix of the Kronecker product.

Theorem A.2.1 was extended in 1963 by Majindar, who showed that
any positive (semi-) definite matrix may be expressed as a Hadamard
product of two positive (semi-) definite matrices, though not necessarily
uniquely, We omit the proof of this result., Together with Theorem

A.2.1 we now have:

THEOREM A.2.2 [Schur (1911), Majindar (1963)]. A symmetric matrix is

‘E positive (semi-) definite if and only if it can be written as the
Hadamard product of two positive (semi-) definite matrices.
% A further result proved by Issai Schur in 1911 appears to have
ey " been overlooked by later writers., It is
’g THEOREM A.2.3 [Schur (1911)]. When A and B are positive (semi-)
definite, |
. ig (A.2.3) Chp(é-).bmin < chs(é;*lé_) < chl(é_)'bmax, 8 =1l,4445 Ps

where b . and b are the smallest and largest diagonal elements
——— ‘min — Tmax =

of B
@ Proof, Using (A.2.1) and (A.2.2) we may write
) ' P ' P '
1 (a.2.4)  xi(amhe= 2 (07e,)'Alwde,) < chy(8) 2 (00e,)" (xe,)
¥ - =

°h1(§)’i'(]}.*.1.)’f_s chl(z}._)bmax;g_':i.

This proves the right-hand side of (A.2.3). The.left-hand side follows
similarly. (qed)

COROLLARY A,2.1. When R is a correlation matrix and A 1is positive

,i'u.;‘».-::

| (semi-) definite,

wiet g

izniid



—
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(a.2.5) chp(A_;) < ch_(A%R) < ch, (), s = 1,..., p.

] ] < 1] !
Since Chp(g.)ii < x'Bx Chl@_)’f_ X, we obtain chp(l}_) $b S

b o S chl(g_) by putting x = e Thus we have

25
COROLLARY A.2.2. When A and B are positive (semi-) definite,

(A.2.6) chp(ﬁ)chp(g_) < chs(é‘*g_) < chl(é)chl(g_), s =1,..., P.

Theorem A.2.3 and Corollary A.2.2 give the following result
when A = B:

COROLLARY A.2.3. When A is positive (semi-) definite,

(a.2.7)  ch2(a) € ay; ch (&) < ch (alP)) < a ok (a) < B2, 8 = L.l b

In 1959, Marcus and Khan considered the connection between the
characteristic roots of a Hadamard product and those of the corresponding
Kronecker product.

if ¥gseees cvp and Bl,..., Bp are the characteristic roots of
A and B respectively, then the characteristic roots of A®B are

i, j=1,.e.5 p (Marcus (1960) & (196h)’ pP. 5)'

the p® quantities o,B

j;
THEOREM A.2.4 [Marcus & Khan (1959)]. When A and B are positive

(semi-) definite,

(a.2.8)  ch (A)eh (B) < ch o (ADB) < ch (A*B) < ch (A®B) < ch,(A)ch, (B),

8 = 1,..., p-

"Prooi, The result follows directly from Cauchy's Inequalities (Marcus &
Minc (1964), p. 119) and Lemma A.2.1. (qed)
The s-th largest characteristic root of A¥B is thus seen to

lie between the s-th and (s + p2 - p)-th largest of the pairs



.
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aiﬁj; i, 3 =1,..4, p. Extending Theorem A,.2.4 we obtain:
COROLLARY A.2.4. When A and B are positive (semi-) definite,

p-1 P

(a.2.9) ;;];[o ch 2 (a@B) s |a%B| < 81;[ ch_(AsB).

Thus we see that |A¥B| 1lies between the products of the p
largest and p smallest characteristic roots of 5992, A sharper
lower bound is obtained below, but first we introduce the following
additional notation. We will let éi denote the lower principal
submatrix of A of order p-i, with éo = A. We will use the
following lemma:

LEMMA A.2.2 [Mirsky .(19%5),p,k21].When é_ is positive (semi-) definite,

(o] A [

is positive semi-definite.

Proof, When A is singular, (A.2.10) is A and so positive semi-

definite by definition. When A 1is nonsingular,

-1 -1 11
(A.2.11)  ATAY =1 - ATejei/an

1 _,,-1 -1
where a’’= ejA""e, = lélllléJ’ the leading element of A ~. Now

(A.2.11) is symmetric idempotent, so é? is positive semi-definite. (qed)

From this lemma we obtain immediately

(A.2.12) auallz 1,

and so aiiaii 21, i=1,..., p (Fiedler (1961)). Also (A.2.12) may

be written [A] < a . |A,|. Similarly la, | = a22|§e| and so

4] < 258,514,

result of 1893.

. Proceeding inductively we obtain Hadamard's classic
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LEMMA A,2.3 [Hadamard (1893)]. When A is positive (semi-) definite,

(A.2.13) |A] = 8180 ee 8

1R Marcus (1960) & (1964), p. 14 calls Lemma A.2.3 the Hadamard

determinant theorem. An alternate proof of (A.2.13) is due to

Hardy, Littlewood, énd PSlya (1934) & (196&), PP. 3%, 35 writing A
in terms of a correlation matrix. We give this as the following
corollary:

COROLLARY A,2.5. When R 1is a correlation matrix, the diagonal

elements of 3_1,

(A.Q.lh) rii P 1, i = 1’000’ p’

and

(a.2.15) |R| s 1.

b

Proof, (A.2.14) follows directly from (A.2.12)., To show (A.2.15) we

ff% use the arithmetic mean/geometric mean inequality:

- |4 z chs(R) P
3 (A.2.16) |R| = [ en (R) s [ — | - (EERyP o,
X s=1 ° P P

and (A.2.15) is proved. (qed)

k ...,‘.'.1’3. .

Pre- and post-multiplication of R by D yields DRD, where D

is a diagonal matrix. We may express any positive (semi-) definite

-5
ﬂ
R

matrix A in the form DRD (unless A has zero row(s)/colum(s)),
as in (2.1.4). Hence (A.2.13) and (A.2.15) are equivalent.
We now establish a lower bound for Iéfgj, first proved in 1930
by the British mathematician (later Sir) Alexander Oppenheim (1903- ).

THEOREM A.2.5 [Oppenheim (1930)]. When A and B are positive (semi-)

definite,

————F
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A% ’ (A.2.17)  |a*B] = [A]b ... b

PP’

Proof, When A 1is singular or B has a zero diagonal element,(A.2.17)

is trivially satisfied. When A 1is nonsingular and B has no zero
5 1
j : - diagonal elements we may write B = BZ R32 and (A.2.17) is equivalent

adgwd

(a.2.18)  |axr] = |a].

Using Theorem A.2.1 and Lemma A.2.2, we have

| (A - /an)*l_’:J

(A.2.19) 0 < |A%]

|aA%R - e ﬂ/aul

Pn

k. = [A*R](1 - e;(A*R) e, /a").
»ig{ .
B Thus [AXR] 2 [A; %R, |*|a]/|a;|. Similarly [A,*R,[| = [A %R, [ |8, 171451,
so that |A*R] R, |+|4]/]A,|. Proceeding inductively we obtain
i | _ N
(A.2.18) since |A Pk ,.p- |/|A | = app/app 1. (qed)

Applying Lemma A,2.3 to Theorem A.2.5 yields the following

additional lower bound for Iﬁx_.B_i

é COROLLARY A.2.6 [Oppenheim (1930)]. When A and B are positive

(semi-) definite,

(a.2.20) |a*B] = |a)-[B].

We use Theorem A.2.5 to obtain a tighter lower bound than that

in (A.2.17). The only proof we have found in the literature (§3 below)
is in the same 1930 paper of Oppenheim, who credits it to Schur (1911),

x:,g |
- p. 14, which, however, presents only Theorems A.2.l1 and A.2.3. Mirsky
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g (1955), p. 421 mentions. the 8harpening . of (A.2.17) but gives no
proof., Mirsky credits Schur, but clearly is following Oppenheim (1930).

Marcus (1960) & (1964), p. 14 calls (A.2.21) the Schur Inequality.

THEOREM A.2.6 [Oppenheim (1930)]. When A and B are positive (semi-)

definite,

(a.2.21) |axs| + [a]-]B] =2 |4§.J‘-b11... bpp +ayp0.e app|§J.

-
e Proof. If either A or B is singular,(A.2.21) reduces to (A.2.17).

Thus let A and B be positive definite, Then we may write A

and B in terms of correlation matrices Q and R, so that using

(A.1.8), we may write (A.2.21) as

]
"g (a.2.22) o] + [QJ-|R] = [Q] + |R].

o _ v, 11 n_ o, -1 )
E From Lemma A,2.2, R =R - e e /xr™, where r = 2.1?; ey is positive
semi-definite. Hence by Theorem A.2.1, Q¥R° 1is positive definite.
g Thus by (A.2.17),
11 0 11
% (a.2.23) |QJ(1 - 1/r7) < || = |Q*R - e, /t |
|Q,*R, |
. 1"
, = o) (1 - ——=p)-
|QR ]

That is,

(4.2.24)  |Q*] - g, |/=M = [g) - lgJ /2

Let &, . = |Q*R. | + |Q[R]| - lo;| - |R;[i=0,1,..i,p-1. Then ¢, 20 1is

equivalent to (A.2.22). We may write (A.2.24), after some rearrangement,

as

(a.2.25) o -t /rtte (et (R))(g ] - 1g))-
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The first factor is (1 - Igll)lfllwhich is nonnegative by (A.2.15).
The second factor is nonnegative from (A.2.12), and hence so is each

side of (A.2.25). Thus &, = L |R|/|R|. sSimilarly ¢, = z3|§4|/|§2|,

1

so that ¢, 2 £2|§J/|§2|. Proceeding inductively we obtain ¢, 20

(i.e., (A.2.22)), since

(A.2.26) ¢ . =1-q%?+ (1-4®)(1-r®) - (1-¢®) - (1-r?) = O,

p!-].

where q = q_ and r=r

p,p-1 pop-1w  (98d)

Fiedler (1957), (1961) studied the characteristic roots of éféjl,
where A is positive definite. From (A.1.6) it follows that all the
row sums are unity, and so éféjl has a characteristic root of
unity with e the corresponding characteristic vector. This result

is strengthened when tied in with the reducibility of A. We will

say that A has reducibility index s-1, when by roﬁ and column

permutations we can write A as

r— + —

épll o e 9 0. o
A A LN ] o
(A.2.27) 2l =2 . >
A1 A e Ay
where éii’ i=1,..., 8, are square and cannot be reduced further.

We may call the A, irreducible, or with reducibility index O.

Hence (we omit the proof)

THEOREM A.2.7 [Fiedler (1957)]. When A is positive definite with

reducibility index s-1, then A*gfl has minimum characteristic root

unity, with multiplicity s, characteristic vector e, and reducibilty

index s-1,

Marcus & Khan (1959) considered the Hadamard product of elementwise

nonnegative matrices é_ and B. They proved that in such a case
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(A.2.28) chl(g_*;;) < chl(g)chl(B_).

In 1963, Marcus and Thompson considered the Hadamard product of

% normal matrices, and proved (we omit the proof)
&

THEOREM A.2.8 [Marcus & Thompson (1963)]. Let A and B be normal

matrices with characteristic roots Uyseees dp and Bl,..., B ’

respectively. Then the characteristic roots of A¥B 1lie in a

subset of the convex Eolzgon in the plane supported by o, Bj [2(diBj+ ajBi)

when A and B commute].
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APPENDIX B: COMPUTER PROGRAMS

1.

100

103

101

We present listings of the computer programs used on the CDC 6600 at the University of Minnesota
to generate Tables 2.9.2 and 2.9.3.

TABLE 2.9.2,

PROGRAM EFCY (OUTPUT+PUNCH)

DIMENSION ROW]1 (13)+ROW2(13)+ROW3(13)+NP(13)+sIMAT(14)¢IMAU(14)
DO 1 I=1.9

NP (1)=1+1

DO 2 1=10,13

NP (1)=10%(1-8)

PRINT 100.NP

FORMAT (1H1 +16X+2HP=+1316/710X410H REL+EFFe/)
RHO=099

DO 3 I1=1+13

P=NP (1)

T=1e0+(P—2¢0)%#RHO—= (P—14¢0)*¥RHO*RHO
RESV=RESM (RHO +P+T)

ROW1 (I)=(1 ¢0+ (P—1 0 )#RHO#*RHO) #RESV
ROW2(1)=BDRE (RHO P+ T)

ROW3(1)=RESV

CONT INUE

PUNCH 103+ RHOs ROW1s ROW3

FORMAT(FS5¢2+10H MODIFIED ¢13F562/5Xe10H SAMPLE +13FS5e2/)
PRINT 101 +RHO+ROW] yROW3sROW2

FORMAT (1H +4HRHO=4FS5e2+10H MODIFIED+13F6¢3/

1/10Xs 10H SAMPLE +13F643/10Xs10H4 BOUND 113F6e3//)

IF(RHOeEQe0e99) RHO=140
IF (RHOEQeOe0O1Y GO TO 6
RHO=RHO~Oe1

IF (RHO el,LEe¢0e0) RHO=0,01
GO TO 4

CONTINUE

PRINT 100s,NP

DO 22 J=1.13

K=14=J

- 6 -



TABLE 2.9.2 (ctd.)

104

102

21

22

ENCODE (10041044 IMAU) KoK

FORMAT (#(4H —1/+12+9H MODIFIED*I3%¥F5.2/5X+10H SAMPLE

1F5e2/)%)
ENCODE (10041024 IMAT) (Kel=143)

1

FORMAT (# (1 HO 4 7HRHO==1/+13+9H MODIF JED*I3%#F5¢3//710X+10H
*¥I3XF6e3)%)

I3%F663/10Xs10H BOUND
NQ=NP (K
Q=NP (K)
RHO=~10/Q
DO 21 I=1sK
P=NP (1)

T=1e04+(P-2¢0)%¥RHO=(P~160)*RHO*RHO

RESV=RESM(RHO+PsT)

ROW1(1)=(1e0+4+(P~1+0)%RHO*¥RHO ) *RESV

ROW3 (1 )=BORE (RHO+P4T)
ROW2 (1 )=RESV
PRINT IMATs NQo

SToP

END

FUNCTION RESM(RHO+P+T)
NP=pP

A=1 40+ (P=1 ¢0 ) ¥RHO#*#RHO
B=1 ¢ 0—~RHO*RHO

C=1 ¢ O+P¥RHO*¥RHO/ (T+T)
RESM= (B#C ) *¥ (1=NP) /A
RETURN

END

FUNCT1ON BDRE (RHOsP+T)
NP =p

A=1 o0+ (P=] ¢ O ) ¥RHO#RHO/ ( T+T )
BORE=A%% (-NP §

RETURN

END

(ROW3(L)sL=1¢K)

' HI 3%

SAMPLE

(ROWL (L)ol=1¢K) o (ROWI(LL)sL=1+K) e (ROW2 (L) slL=1+K)
PUNCH IMAUs NQs (ROWI(L)sL=14¢K)>

*
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