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I. I.NTRODUCTION 

1.1 Introduction and Summary. 

The problem of inference in multivariate normal populations when 

all the parameters are unknown is considered in great detail by 

Anderson (1958). When some of the parameters are specified in advance 

the problem becomes more difficult. 

Such structure may occur with the parameters in the mean vectors 

or the covariance matrix. There is considerable literature on models 

involving structured mean vectors. Two cases often studied are multi

variate regression, where the restricting coefficients are given 

(cf. e.g., Anderson (1958), Chapter 8) and factor analysis, where 

they are usually unknown (cf. e.g., Anderson and Rubin (1956)). More 

general linear models in growth curve problems are considered by 

Potthoff and Roy (1964). 

Restrictions on the parameters in the covariance matrix have 

been studied less widely. There are frequent applications in time series 

(cf. e.g., Anderson (1963a), (ca. 1969)). Recent literature has 

focused on a broader class of covariance structures. The case in 

which the covariance matrix, or its inverse, is an unknown linear com

bination of given matrices is studied in generality by Anderson (1966). 

The special case in which the given matrices are commutative has been 

more widely considered (cf. Herbach (1959), Graybill and Hultquist (1961), 

Srivastava (1966), and Srivastava & Maik (1967)) in the setting of 

partially balanced incomplete block designs of experiments. A slightly 

different class of structures is given by Bock & Bargmann (1966) and 

Bargmann {1967). 
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Structure on the correlation matrix has been studied in a factor 

analysis setting by foreskog (1963). Most attention has been devoted, 

however, to the case in which all correlations are equal. Votaw (1948), 

Halperin (1951), and Hljek (1962) consider this case under the assumption 

of equal variances. The problem of testing hypotheses when the 

variances are all unknown is studied by Anderson (1963) and Lawley (1963). 

The recent dissertation~ py Han (1967) considers testing homogeneity of 

variances with common unknown correlation coefficient. Additional 

references on these and related topics are to be found in Anderson, 

Das Gupta, & Styan (ca. 1969). 

In this paper we study the case in which the correlations are 

known but the variances and means are all unknown. We make extensive 

use of matrix algebra, using the notion of Hadamard (or Schur) product 

of matrices {cf. Marcus & Mine (1964)), which we believe is an innovation 

in statistical analysis, apart from a brief mention by Srivastava (1967). 

We include an appendix on the algebra and bibliography of this extremely 

useful concept. Vector and matrix differentiation techniques are 

also employed, following Dwyer (1967). 

We estimate the variances by the method of maximum likelihood and 

obtain a closed form for the resulting equations.· These constitute a 

set of simultaneous nonhomogeneous quadratic equations which in general 

cannot be solved analytically. We show that they have a unique real 

solution and obtain an approximation to this by the Newton-Raphson 

technique. We prove that the first iterate based on a consistent trial 

solution is an asymptotically efficient estimate and has a limiting 

normal distribution. The asymptotic efficiency of the sample variances 

is computed and a lower bound determined. The Fr~chet-Cramlr-Rao 
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concerning Hadamard products of positive definite matrices and their 

inverses. 
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We propose large sample chi-square tests based on the first 

iterate for homogeneity of variances and equality of any pair. These 

tests extend and parallel those obtained by Han (1967). We also 

evaluate the corresponding likelihood-ratio tests as well as that 

for a given correlation matrix in a general multivariate normal 

population. 

The last section is devoted to the situation in which all corre

lation coefficients are equal and known. The maximum likelihood 

equations still cannot be solved analytically in general. We derive 

an asymptotically efficient estimator by slightly chang_ing the form 

of the first iterate. The. resulting estimator has a neater closed 

form than the first iterate. We also derive a modified estimator which 

is a common multiple of the sample variances. We find that the 

covariance matrices of the limiting distributions of the sample 

variances, modified estimator and first iterate (or maximum likeli-

hood estimate) all have the same structure with equal diagonal and equal 

off-diagonal elements. The first two matrices have a common multiple 

root, while the last two have a common simple root. The associated 

asymptotic efficiencies are evaluated and we propose large sample tests 

for homogeneity of variances based on these estimators. 

Further study, to be reported later, includes the case in which 

all correlations are equal but unknown and where the correlation matrix 

is an unknown linear combination of given matrices. Extensions to 

include restrictions on mean vectors as well will also be considered. 
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1.2 General Notation. 

Vectors will be denoted by lower case letters, matrices by capital 

letters, and both will have wavy underlining to denote bold face print. 

Transposition will be indicated by a prime, with row vectors always 

appearing primed (Halperin (1965)). The generating element of a 

vector or matrix is given in curly brackets. When A is a square 

matrix, tr(~) denotes its trace, l~I its determinant, and ch. (A) 
J -

its j-th characteristic root. The diagonal matrix formed from A will 

be denoted ~g = (a11 , a22 , ••• , app)dg· We use I for the identity 

matrix,=. for the column vector with each component unity, and !:.j 

for the colunm vector with each element zero except for the j-th which 

is unity (cf. Bodewig (1959)). 

As far as convenient,: an estimate of a parameter is indicated 

by the Latin letter corresponding to the Greek letter for the parameter, 

and the matrix analogue of a scalar quantity is denoted by the capital 

letter corresponding to the lower case letter for the scalar. An 

exception is the scalar parameter p (rho) which we use for correlation 

coefficient. We indicate the population correlation matrix by R 

instead of t (capital rho). Another exception is the population 

covariance matrix which we denote by f, rather than ~ which is 

reserved for summation. The sample analogue corrected for the mean is 

indicated by C. Where there is no confusion we also use £ for the 

centering matrix of order p, I - ee'/p (Sharpe and Styan (1965)). - -
Otherwise we denote the centering matrix by C • 

---e 

If x is a random vector, E(x) denotes its expected value and - --
V(:~) its covariance matrix. If z. is another random vector, the 

covariance matrix between x and x_, E(~ - E(~))(x_ - E{.l))', is 
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denoted by cov{~, V· The joint likelihood is denoted L, with t 

proportional to -log L. The end of a proof is indicated by {qed). 

The symbol § denotes section {number) and cf. means compare or 

see. 
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II. INFERENCE ON VARIANCES WHEN CORRELATIONS ARE KNOWN 

2.1 Introduction and Notation. 

We consider maximum likelihood estimation with N independent 

p-component observations ?!a' a= 1, 2, ••• , N, drawn from a multi

variate normal population with unspecified mean vector .!:.· 

We write the covariance matrix as 

(2.1.1) 

- 7 -

where ~= (cr1 , cr2 , ••• , ap)dg _is the diagonal matrix of unknown popu

lation standard deviations and R = (pi. J is the population. corre-
- J 

lation matrix. We will use ~= {rij} for the sample correlation 

matrix. 

A set of sufficient (but not necessarily minimal sufficient) 

statistics is the sample mean vector 

(2.1.2) 
...;. 1 N 
X = - I: Xrv, 
- N a=l ~ 

and the sample covariance matrix 

(2.1.3) 
1 N 

C = - I: (x - x) {x - x) ' , 
- N Oi=l -ft - ~ -

which may be written in parallel form to (2.1.1) as 

(2.1.4) C =DR D, ---
where ~ = ( J;;_1 , .J;;_2 , ... , ra;,p ) dg is the diagonal matrix of 

sample standard deviation and R is the sample correlation matrix as --
announced. 

The joint likelihood of the observations may be written as 

{cf. Anderson (1958), p. 45) 
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(2.1.5) 
[ N -1 exp - 2 tr 2'! C ] 

L = - -µ 
µ l~_IN/2(2rr)Np/2 

where 

(2.1.6) 
1 N 

C = - ~ (x~ - µ)(x - µ)', 
-µ N Q'.::1 ,_,e, - -.a -

is the sample covariance matrix £ given by (2.1.3) with ~ replacing 

x •. We assume ~ positive definite. 

When we make no assumptions about ~, as in this pa.p~r ,. : ~ is 

always its maxinrum likelihood estimate (cf. Anderson (1958), p. 48). 

The joint likelihood after maximization with respect to !t. is thus 

(2 .1 .• 5) with ~ replacing 1:,, or equivalently £_ replacing 2µ, that 

is 

(2.1.7) L = 

N t-1 exp[- 2 tr ..... £] 
l~_IN/2(2TT)Np/2 

This is maximized whenever 

(2 .1.8) t = - i log L - p log 2TT 

is minimized. In terms of t and C we may write (2.1.8) as 

(2.1.9) t = tr ~
1£ + log lfl • 

2.2 Hadamard Product, Square, and Inverse. 

We will use the concept of Hadamard (or Schur) product of two 

matrices (cf. Marcus & Mine (1964), p. 120). Additional references and 

various properties are presented in Appendix A. 

If ~ = (aij} and ! = (bij J are each m X n matrices, then 

their Hadamard product is the m X n matrix of elementwise products 

(2.2.1) A * B = {a1 . bi··}. 
J J. 
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When A= B we will call (2.2.1) the Hadamard square of A 

(2.2.2) A * A = A ( 2 ) :: (a2 } • 
-.. - - ij 

When A= {a .. } has no zero elements, i.e., a
1

j ¢ O for all 
..... l.J 

i = 1, 2, ••• , m; j = 1, 2, ••• , n then we will call the matrix of 

elementwise reciprocals 

(2.2.3) A (-l) = {1/a } 
·-· ij 

the Hadamard inverse of A. 

The concepts of Hadamard product and inverse are equally well 

defined for vectors. If A= {A.} is a column vector of order n 
- l. 

- 9 -

and 6, = {)"l, A2 , ••• , An) dg is the diagonal matrix formed from ~, 

then ?:. = 6.':.J where ~ is a colunm vector with each component unity. 

Hence 

(2.2.4) 

is the Hadamard square. When lbl J 0, we have for the Hadamard 

inverse 

(2.2.5) 
(-1) 

A. = /\
-1 

e. - ·-
2.3 Maximum Likelihood Estimation of the Variances. 

We will estimate the unknown variances (the diagonal elements of 

~ 2 ), when the correlation matrix R is known and the mean vector ~ - -
is unknown, by the method of maximum likelihood. This is equivalent 

to minimizing (2.1.9). We achieve this by differentiating it with 

respect to 

(2.3.1) 
-1 

= ~ e; - -
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the Hadamard inverse of the vector of standard deviations 

(2.3.2) a= (a1 , a2 , ••• , a)'= 6e. 
~ p --

Since tr f- 1£. = ~'(f-l~~, we have using (2.1.1), 

(2.3.3) tr t:-1c = e'{6-lR-l6-1*C)e = e'6- 1(R-1*C)6-l~ = a(-l)'(R-1*C)a(-l). --- .,..._. ---.... --- --- ~ --- ...... ....._ ..._ -.... ........ ....... --- ......, --- --- ---

Substituting (2.3.3) and (2.1.1) in (2.1.9) we obtain 

(2.3.4) 

Since 

(2.3.5) 

t = ~(-l)'(R-1*C)a(-l) + 2 log 161 + log IRI • 
,..._ --- ....... -... --- ---

p 
log j6j = L 

- i=l 

p 
log ai = - L log (1/ai), we have 

i=l 

a 10g 1~1 _ 
o a{-l) - ·--

-a. 

Therefore 

(2.3.6) 
o t , 1 . ( T-IT = 2( (.R- *C). -1) o a - - S!.. - a]. -- -

Equating (2.3.6) to zero yields the following:· 

THEOREM 2.3.1. The maximum likelihood equations for the variances in· 

a multivariate normal population with given correlation matrix 

sample covariance matrix £. are 

(2.3.7) (R-l*C)'a(-1) = a, --- .,...,. ...... ...... 

R and - -

where a(-l) is the Hadamard inverse of 'a, the maximum likelihood - --- -- - --
estimate of a. 

·(-1)' Premultiplication of (2.3.7) by 'cr 

(2.3.8) A ( -1) '(R-l*C )A (-1) _ 
£ - - ~ - p. 

yields 

The sample covariance matrix C is positive definite with probability 



·.~ 

] 

.,,1. 

·l··.·.·.· 

··:'ffl 
.d~ 

·.~ 

i~ 

- 11 -

one. Since the Hadamard product of two positive definite matrices is 

positive definite (cf. Appendix A), we can premultiply (2.3.7) by 

;.. ( -1 ,..,-1 g_' ! *£J to produce 

(2.3.9) ;., ( -1 )-IA a R *C a = p. 
_....,_ --- ...... ..._ 

There are many ways we can write the system of equations (2.3.7). 

( ) ( ) ( ) ( -1 )h-1 ~ Substituting 2.3.1 and 2.3.2 into 2.3.7 gives R *C ~ e = ~e, 
,. . .,... ----~ ~ ------

so that i-1(R-1*C)i-1e = e. Similarly (R-1*C)-1ie = ~-le and 
....... ---- ------ ---- ..... ........ ..... ..........,_ .......... 

A(R-1*C)-½e = e. Hence (2.3.7) is a system of simultaneous nonhomo-
--...-... ........ ..,,,,,,..,,_,, ---
geneous quadratic equations, which may be written in scalar notation as 

ij 
p p Ci• 

(2.3.10) L xx J = 1 i = 1, 2, ••• , p, 
j=l aiaj 

where !f1
= {pij} and £.= {cij}o 

Another version of (2.3.7) is found by substituting (2.1.4) into 

(2.3.7) to yield 

(2.3.11) 

since E,_ is diagonal. To ease the notation, let 

(2.3.12) /\ -1 6 (-1) = D~ ; A = e = Da • --- ----- --- --- _,,,,,,..,,,. 

. Then (2.3.11) may be written 

where t is the vector of ratios of sample standard deviations to 

maximum likelihood estimates. 
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In general these tnaximum likelihood equations cannot be solved 

-1 analytically. When R *R has constant row sums then an analytical - -
solution is immediate. In such a case we may write 

(2.3.14) 

- 12 -

since the common value of the row sums is a characteristic root of the 

positive definite matrix ~-l*!_ and so is positive. 

and 

(2.3.15) h2 - 2 0-:-i - µ c •• 
l.l. 

i = 1, 2, ••• , p. 

Hence i_(-l)= µe - -

When R = R we have µ2 = 1, and so ~ = c11 i = 1, 2, ••• , p. When 

p = 2, 

( -1 ) 1 ( 1 -pr )~= ( 1-pr)e, (2.3.16) R *Re=--
- -- 2 -pr 1 l-p2 -1-p 

and (2.3.14) is satisfied. Thus 

~i = (1 - pr)c .. /(1 - p2
) 

l.]. 
i = 1, 2, 

as given by Anderson (1958), p. 73. 

Before solving (2.3.7) iteratively (~2.4), we find some other 

properties of the maxinrum likelihood estimates. 

From (2.3.6) we obtain the second derivatives of t with respect 

to a(-l) as 

(2.3.18) 
00(-1}~(-1} 1 ( -1 2) =2R *C+6. - - -- -

-1 We indicated just above (2.3.9) that R *C is positive definite. Hence - -
(2.3.18) is positive ~efinite for any real solution of (2.3.7). We note 
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that for any solution t of (2.3.7), -8 is also a solution. We 

are, of course, only interested in the elementwise positive solution, 

and we will assume implicitly in what follows that 2_ and 

are taken elementwise positive. 

a<-1) -
Chanda (1954), extending the results of Cram~r (1946) and Huzurbazar 

(1948), sh0v1s that the maxinn.1m likelihood equations admit a unique 

consistent solution under certain regularity conditions which are 

satisfied here. We thus have the following: 

THEOREM 2.3.2. The maximum likelihood equations (2.3.7) in Theorem 2.3.1 

admit! unique real solution, which_!! consistent. 

Proof. It follows from the positive definiteness of (2.3.18) that 

the solution for any finite sample size N will be unique, provided 

that (2.3.7) admits at least one real solution. The consistency then 

follows from Chanda (1954). 

To show that (2.~.7) admits at least one real solution, it suffices 

to show that (from (2.3.4)) 

t - log 1~1 = 8'A8 --- p 2 • 
:E log ei = "'c' 

i=l 

say, converges to -f<X> when ! - 2_, or when e. - -f<X>, i = 1, ••• , p, where 
i 

~=If1*£.; !=£.(-1) = {e1J. 

When t-+ Q_, t C -t -f<X> follows immediately• When 8i -+ -f<X>, i = 1, •. •, p, 

we use the inequality 

(2.3.18a) 
p p k8~ 

t ~ E (k 8~ - log 82i) = E log(e i/82i), 
C i=l i i=l 

where k > 0 is the smallest characteristic root of A which is -
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positive definite. The inequality (2.13.18a) follows from 

!'il ~ ki'i by definition of ~mallest characteristic root. Since 

the right-hand side of (2.3.18a) converges to ~. as ei - m, i = 1, ••• , p, 

it follows that t - m. 
C (qed) 

The usual asymptotic theory of maximum likelihood estimation applies 

here. The limiting covariance matrix of $ (2:,(2 ) - i 2)) is the 

inverse of the Fisher information matrix per~ ob~ervation, 

c2.3,19> Mo= - ~ {:C2~::c~J] = ~[~c:,~(2)] 
(cf. Ruben (1967), p. II-29, Wilks (1962), p. 380), where L is µ 

the joint likelihood of the observations as giv.en by (2.1.5), and 

analogous to (2.1.8) and (2.1.9), 

2 ·-1· 
(2.3.20) t = - -N log L - p log 2rr = tr t C + log 

µ µ - -1,L 

! 

ltl' 
1 N 

where C = N ~ (~ - ~)(~ - ~)' as in (2.1.6). 
-µ a::l 

We evaluate (2.3.19) using (2.3.6) and (2.3.18). Since 

(2.3.21) 
~.(-1)' ct 

= ~(2) • ~/1> ' 

we obtain 

o2 t O oa, (-1)' ct oa.-C-1)' (2,3,22) (la(2);(2) I = ( ~ ' ~(2) 1 all) + ~(2) 
( -1) ' -- j . '. . - .... 

00· 1 -3 ( ) Using _._ (2 ) = -2A , we obtain from 2.3.22, 
?£ 

a2t µ 
00'(-1}00 (2)' • 
. .. _ ---

a2t 
3 

. 
5 

ot 00.(-1)' o2 t oa (-1) 
µ ( I A- } ~ + - • µ. • ---c 2-)---.(-2 )~I = 4 ..:_ _F j ~. ~-{ -1} { 2 ) 1 

{ -1) ( -1) I ( 2} I ' 
~00' qq ~ ~ oa aa 

where the unity vector !:.j has each component zero except for the j-th 

which is unity (cf. Bodewig {1959), p. 5). Now 
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( 
0
\. ) ( -1 ) (-1) E :( l) = 2E[ R *C a - a], from (2.3.6) ao-- - .....µ- -

= 2[(~-l*f)£.(-1)_ ~] 

1 . 
= 2~(R- *R - I)e = o • 

....... ---- ~ ---- ·--- ---

Taking expected values of both sides of {2.3.23) thus yields 

The above result can also be obtained directly from (2.3.18) using 

the independence of I and £ {cf. Anderson (1958), p. 53). We have 

o2tµ a2t 
E(~(2)

00
(2) 1 ) = E(~(2) (2)') • 

- OCl. 

Substituting (2.3.18) and using ~(-l)'/o.[(2 ) = -½!3, yields 

( ) ( a2tµ ) 1 ·-3 ( -1 2 ) 1 -3 
2.3.27 E 

00
{2 )

00
{2 )' = -2~ E 2(1!! *£ + ~] -~ 

= ½A.-2(R-l*R + i)~-2, 
---- ·"-' --- ........, ---

as in (2.3.25). We have thus proved: 

THEOREM 2.3.3. The limiting distribution of ./N {~(2 ) - .:!_( 2)) is 

multivariate normal with mean vector O and covariance matrix 

2.4 Iterative Solution of the Maximum Likelihood Equations. 

Several methods for the iterative solution of maximum likelihood 

equations have been considered in the literature (cf. Barnett (1966), 
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Kale (1962)). Most of these use the Newtonian approach (cf. Householder 

(1953), Scarborough (1950)) based on a Taylor series expansion of the 

likelihood equations. Let i be a p-component vector of unknown 

parameters. Define 

(2.4.1) t{e) = e - K(e)· 0 lQg L, 
....... --- --- ----- --- de 

where !_( !) is some p X p matrix depending on ! and L is the 

joint likelihood. Particular choices for !_(i) are considered below. 

An iteration process may be defined by 

(2.4.2) 8 l = [t(8)]8=· e , r = o, 1, ••• , ~+ -- -. ' - .;;,r 

where t, is an initial trial solution, obtained from other consider

ations (usually a guess), to the maximum likelihood equations 

o log L/ae = O. We will call 8 (r = 1,2, ••• ) the r-th iterated - - ~ 

estimate (or more briefly the·r-th iterate) of 1, the maxiUD.1m likelihood 

estimate. 

The Newton-Raphson process sets 

(2.4.3) ~(i) = [ o2 1og L]-1 
o~ af ' 

while the method of scoring (Rao (1952), pp. 198-172) sets 

(2.4.4) 

Kale (1962) shows that given a consistent trial solution, 

lim t, = 1 with probability approaching one as N -+ 00, and ~(!} 
r-+ 00 

given by (2.4.3) or (2.4.4). We again assume the regularity conditions 

considered for Theorem 2.3.2. The order of convergence for the Newton

Raphson process is two, while for the method of scoring it is one 
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{cf. Barnett (1966)). 

We solve (2.3.7) iteratively using the Newton-Raphson process. 

The method of scoring leads to expressions of a much more complicated 

nature. 

We obtain 

(2.4.5) t{a(-1)) _ a(-1) _ ( ?Pt )-1 ot 
-- - - 02:.(-1)~(-1)

1 
02:.(-1)' 

where t is as defined by (2.1.8) and (2.1.9). Substituting (2.3.6) 

and (2.3.18) in (2.4.5) yields 

(2.4.6) t<~(-1)) = ~(-1) _ [2(~1*£_ + A.2) ]-12 [ (~-l*Q,)sr<-1) _ S[_] 

= a(-1) - (R-l*C + 82)-l(R-l*C - 82)a(-1) 
..... --- ..... ...... --.. --- ....., ..... 

( ·-1 2)-1 = 2 R *C + 8 a • 
......., --- ...... ..... 

An initial consistent estimate of a is De. Substitution in - --
(2.4.6) yields the first iterated estimate as 

(2.4.7) 

(2.4.8) -1( -1 T\-1 
=2~ l ~+~ ~ since £.=~~Q_. 

Bhattacharya (1965) proves that the first iterate, based on a 

consistent initial solution, is asymptotically efficient and normal. 

His result is shown for the single parameter case, though he indicates 

that the extension to many parameters is straight forward. Han (1967) 

gives a proof of this generalization. 

We will prove directly that ~-l) is an asymptotically efficient 

(-1) and normally distributed estimate of ~ , and derive the limiting 
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of a random matrix V which is nrultivariate normal with mean O and 

covari-ances given by 

(2.4.9) E(~!_/y_} = aijt + t =..j~ 't i, j = 1, • • •' P• 

When we discuss the distribution of a random symmetric matrix of 

order p, we consider the distribution of its ½P(P + 1) different 

elements. 

Anderson (1958), p. 161, shows that (2.4.9) is also the covariance 

matrix between J;. ~ and J;,. ~, where n = N - 1. 

COROLLARY 2.4.1. The limiting distribution of /N(¥:_ 1*<;._ - !)~ is 

-1 nrultivariate normal with mean vector O and covariance matrix R *R + I. --------------- ----------- - -
Proof. Since (i-l*C - I)e = [i-1*(C - i)]e, it follows from Lemma 2.4.1 

~ ..._ ...... .... --- --- ....__ ....... 

that the limiting distribution of 4N(¥:_1*C__ - !J=.. is that of 
. 1 (¥:_ *YJ~ which is multivariate normal with mean vector O and 

covariance matrix 

(2.4.10) V[(t
1*y_}~) = {cov{=.l(f"

1*y)=.., ~j(¥:_1*y_}~} 

= {=l_ f.-l[cov{:lY-, ;:_jy) ]i:l~j} 

= (~t-1
<0ijt + !_ ~j~ ot-1 

:..j} 

= (ai.e~ i-1e. + (e~e.) 2
} 

J~ - -J -1.--J 

-1 -1 = i *i + I = R *R + I , 
.... .--. --- ....... ........ --- ,.,...., 

. \ 
I 

- -~----/' 
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COROLLARY 2.4.2. The limiting distribution of /N (De - a) is multi-- - - ·-
variate normal with mean vector zero and covariance matrix ½6(R*R)~. 

~ .,.. ....... ··-
Proof. From Lemma 2.4.1 the covariance matrix of JN (D2 e - a(2 )) is .,,._,,_...._. ,.__ 

{cov( e ~Ve.,, e ~Ve .)}=~a2i.} = 'Zi.~. We find the limiting covariance 
~--... -:1-J J - -

matrix of JN (~ - ~) using a general theorem due to Cram&r--(Rao (1965), 

p. 322) to be 

{2-~-4.11) 
ou oa' 

~t°2) I (2¥_*~ ~(2) • 

Substituting 00/'0'1_(2)' = ½~~l and 't*t ~ 62 (R*R)A2 in (2.4.11) --- --- ...._ ,.._ --.... ......, 

yields ½~..(~*~~~ ( q,?d) 

THEOREM 2.4.1. The limiting distribution of /ff c<l-l) - a(-l)) 

nrultivariate normal with mean vector O and covariance matrix 

Proofo 

(2.4.12) 

where 

and 

Now 

Since 

-

From (2.4.8), we have that 

( -l'J (-1) -1( ·-1 )-1 -1 · a · - a = 2D R *R + I e - A e = u + u, :'..J. ... ....... ,,,..,_ --- ...., ~ ...... --- ---1 =-2 

-1, -1 )-1, -1 ·-1 >' -1 
~=~ ~ *~+!.. -~ +!?_ ~~~~ =.. 

-E ~ = IN [~-1<f1*~ + !J-1,~1 + r10 _ !-11-=

= IN D-l[(R-l*R + I)-1(i + D-2A2 ) - I]DA-le --- ......... ...... --., ---- --- --- ,__ ~ ....._. 

(D-2A2 - R- 1*R)DA-l = (D-2A2 - 6i'-16*D- 1cn-1)D6-l 
...._ --- --- --- ___,.,_ ...... --- ....._.._ --- ..... ------ -----

-1 -1 ) = D 6(1 - i *C , 
~ ---- ...... ...... ..... 

is 
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D-1(R-l*R + I)-lD-l6 

20 

-Q.-1(~-l*! + !)-1£l~[JN (¥,.-1*£ _ !) ]~. Now 

--- ---- ..._, ~ ......_ ...... 
-1( -1 T,-1 converges in probability to ~ ~ *~ + !J 

r. . 1 
and ¥N (¥,_- '*£_ - !J=. is asymptotically normal by Corollary 2.4.1 with 

-1 r_ 
covariance matrix ! *~ + !.: Hence ~N ~ is asymptotically normal 

with mean vector O and covariance matrix 6-1(&-l*R + I)-l6-l. --- ....... --- .-.. -.. 

It remains now only to prove that JN u..2 converges in probability 

to O. We have that 

( ) r;.; r;.; -1( -1 )-1( -1 -1 
2 .4.13 ~J.'1 ~2 = ~11 ~ ! *~ + !_ 2!. - -~ - ~ . 0=. 

-1< -1 )-1< -1 -1) c: < ) = D R *R + I D - 6 -~ [~~ D - 6 e] • 
......, --- .._ --- ...... --... --- ............. 

Now p:1
c~-l*~- + 0-1co-1 - ?1) converges in probability to Q.., 

and Ji (12., - V~ is asymptotically normal by Corollary 2.4.2. Hence 

N ~ converges in probability to 9_. ( qcd) 

COROLLARY 2.4.3. The limiting distribution of ,/N <d2 ) - <{2 )) is 

multivariate normal with mean vector O and covariance matrix 

4~(R-l*! + !.r1~2 • The vector d2 ) is !!! asymptotically normal and 

efficient estimate of <r_( 2 ) • 

Proof. The covariance matrix is 

(2.14) 
ac;.c 2 > . . 
- , [6-1(R-1*R + I)-l6-l] 

00 (-1) - - - - --

oo<--1) 
(2) i • 

aa ---
Substituting 00<2> ,oo(-l)' = -2i3 yields the result. 

Results in Matrix Algebra. 

(qed) 

The characteristic roots of the Hadamard product of a positive 

definite matrix and its inverse were studied by Fiedler (1961), who 

proved that they were greater than or equal to unity. Such a 

Hadamard product always has one root equal to unity with corresponding 
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characteristic vector =._• Marcus and Thompson (1963) have given some 

quite general theorems concerning the range of the characteristic 

roots of the Hadamard product of any two complex normal matrices. 

The results of the preceding section suggest the following theorem, 

from which we deduce as corollaries some results which do not appear to follow 

from the general properties presented by Fiedler (1961) and Marcus 

and Thompson (1963). 

THEOREM 2.5.1. For any positive definite correlation matrix _!!, the 

matrix 

(2.5.1) R*R - 2(R-l*R + I)-l 
....... --- ...... --- ..... ..... 

is positive semi-definite. 

Proof. We have been unable to establish this result by a matrix 

theoretic method. Our proof will be statistical and is based on the 

well known Frlchet-Cram&r-Rao inequality (cf. e.g., Rao (1965), p. 265). 

Suppose we have the same set-up as in §2.1, but with µ = o. Let - -
(2.5.2) 

N 
1 x' S =- L ~ 

- N O';::::l 

which is an unbiased estimate of t:_. In parallel to (2.1.9) let 

(2.5.3) t = tr f-l~ + log I.ti• 

Then we obtain, as in (2.3.6), that 

(2.5.4) 
ot oar=rY = 2[(!-l*S)a(-1) -- - a] _, 

so that 

{2.5.5) at ( -1 t.) (:1) ( -1 ) 
E [ 

00 
{ - l) ] = 2 [ ~ *- £ . - £_] = 2~ ! *~ _ !. !: = £. 

,,. 
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Following (2.3.18) we obtain 

( 6) 'cit ( -1 2) . ( . -1 ) 
.2 • 5. E [ ( l) ( l) t J = 2E R *S + /J. = 2/J. R *R + I !J.. 

cc:," - o:r' - -- ~ --- --- --- ...... --- ----- -
Using (2.1.8) to define log L in terms of t and ~(-l)/ac,(2) = -½~-3, 

,. . .._, ...... ...... 

we obtain from (2.5.6)·that 

(2.5.7) V(o,lo' L) = N6-2(R-l*R + I)~-2. 
0,(2 4~ - - --

From Anderson (1958), p. 161.we deduce that 

(2.5.8) V(!:) = g!J.2 {R*R)tJ.2 
N---- ................ s = - (§_ )dg!..· 

Furthermore 

(2.5.9) 

Hence 

(2.5.10) 

( . a log L) ( . o log L) ( ) cov !_, oa<2 ) = E !. 
00

(2)' , because of 2.5.5 

V 
B -

o log L 
. (2) 

OC1 

-
= ~m. = ~~~~. = !.· 
~ ~ 

= [
~(!*fil~, I l 
~ i~_-2<f 1*Il + !)[~ 

If (~ }) is a positive semi-definite matrix, then so is _,_ I 
-1 ( -1 T U ( -1. - 'QY. t = !i -YY. Hiji' v·) _1 , ) , provided y_ is nonsingular. 

- ' - -V U 
Applying this to (2.5.10}, which being a covariance matrix is positive 

semi-definite, proves (2.5.1). (~ed) 

COROLLARY 2.5.1. !_ sufficient but not necessary condition that (2.5.1) 

be singular is that 

(2.5.11) :J.~ = :.l_, for at least one i = 1, 2, ••• , p. 
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Proof. When (2.5.11) holdsithe i-th component of the multivariate 

normal random vector under observation is independent of all the other 

components. In such a case sii is the maximum likelihood estimate 

of °i and this suggests singularity of (2.5.1). Since 

~ (l*~ = !t (~1*fil = ~, we obtain 

To show that the converse is false, i.e., that singularity of 

(2.5.1) does not imply (2.5.11), consider the following example with 

p = 3: 

( 1~2 
1/2 1/2 ) . (2.5.13) ~= 1 1/4 

1/2 1/4 1 

We obtain 

( 5 
-2 -2 l ; ( 5 

-1 -1) 
(2.5.14) 

·-1 1 
4 0 

-1 1 4 0 • P. = - -2 R *R = - -1 
- 3 - - 3 

-2 0 4 -1 0 4 

Hence 

4 1 

1\ )· ¼ (-~ 
-1 

-1 l (2.5.15) 1 1 1 ( 4 2!!"~(R- *~ + !) - !_ = 4 1 7 0 . 

1 1/4 4 -1 0 7 

6' 3 3 

1 3i 3 3 
= 24 t 

3i 3 3 ~ 

is singular, and therefore so is (2.5.1). (qed) 

COROLLARY 2.5.2. For any positive definite correlation matrix fu 

-I 
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(2.5.17) R1*l + l - 2(~fil-
1 is positive definite, 

(2.5.18) [chj(~*!~)J[1 + c1icc~-
1
*IDl ~ 2, j + k ~ p + 1, 

where chj denotes the (j-th) characteristic root. 

Proof. Postmultiplying (2.5.1) by R-l*R + I establishes (2.5.16), - - -
since the product of two matrices, each at least positive semi-definite, 

has nonnegative characteristic roots. Premultiplying this product by 
. 1 

(Ji*.B)- proves (2.5.17). Applying the result chj(~)c~(~) ~ chi(~), 

j + k ~ i + 1 (cf. Anderson and Das Gupta (1963)) to (2.5.16) yields 

(2.5.18) immediately. (qed) 

We cannot prove (2.5.18) without using Theorem 2.5.1. While 

ch (R-l*R) = 1, we have ch (R*R) ~ 1 since tr(R*R) = p. p --- ....... p --- --- --.. __,, 

COROLLARY 2.5.3. For any positive definite matrix ~, the matrices 

(2.5.19) A*A - 2~..1 (A-l*A + I'-lt..:1 , 
- - --ug - - '!:;_I -ug 

(2.5.20) ~l*~ + .l - ~g(~*!)-l~g 

are positive semi-definite, where ~..:1 is the diagonal matrix formed 
- - --ug - -- ----- ---

from ~-

Proof. For any diagonal matrix D, DAD*DAD = D2 (A*A)D2 and .... _ . ...,.,,,..,,.., ~ ...... ......., ...... ---
DAD*(DAD)-1 = A*A-l (cf. Appendix A). Substituting the correlation ~.,,,_ .....,.,,.,..._ ....._ ........ 

1. 1 

matrix (A..:1 )-2A(A..1··)-2 for R'',in:·.~2.5.~1) yields (2.5-.·19)' after pre-.. and post-
-ug - ~g -

multiplication by ~g· Similar operations on (2.5.17) give.· (2.5.20). (qed) · 

COROLLARY 2.5.4. For any positive definite correlation matrix R, ---- -
(2.5.21) tr(R-l*R) ~ 2 tr{R*R)-l - p, ,..... ....... ,.._. ....... 
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. . 1 

(2.5.22) tr{~*fil(R.- *fil ~ p. 

Proof. Taking the trace of (2.5.17) yields (2.5.21) directly, while 

(2.5.22) follows by summing (2.5.16) and noting that tr(R*R) = p. --
It follows from a theorem of Frobenius on partitioned matrix 

inversion (cf. e.g., Rao (1965), p. 29) that the diagonal elements of 
·-1 l are at least equal to 1 (cf. Fiedler (19(51)). Therefore 

( ( · )-1 -1 2.5.23) tr R*R ~ p; tr{R *R) ~ p. -- -

{qed} 

Corollary 2.5.4 does not follow from (2.5.23), and we have been unable 

to prove (2.5.21) or (2.5.22) _without using Theorem 2.5.1. 

COROLLARY 2.5.5. For any positive definite matrix ~ with diagonal 

elemeuts aii' i = 1, ••• , p, 

(2.5.24) 

Proof. Substituting the correlation matrix 

l in (2.5.16) gives (2.5.24) immediately. 

. 1 1 
(A )-2A(A )-2 
::dg - ::dg 

for 

(qed) 

In contrast to (2.5.24), the Hadamard determinant theorem 

(cf. Appendix A~ Lemma A.2.3) gives 

(2.5.25) I!.*~ " l a~\ , 

while l~-l*~ + 11 ~ 2P follows from ch{A-l*A) ~ 1. 

2.6 Efficiency of the Sample Variances. 

' 'j 

Let ,t, p X 1, be an unbiased estimate of an unknown parameter 

vector .§_, based on N observations, and suppose v{J'N !_)~'!'-:Then -
the efficiency of ,t is defined {cf. Anderson (1958), p. 57) as the 

square of the ratio of the volume of the ellipsoid 
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(2.6.1) N(t - ~ '~ (!_ - ft) = p + 2, 

where U is the information matrix per unit observation (cf. (2.3.19)), 

to the volume of the ellipsoid of concentration 

(2.6.2) 

Hence {cf. Cram&r (1946), p. 301), we obtain 

(2.6.3) 1 
ef f c 0 = I QJ • ~ • 

-
This is the vector correlation coefficient (cf. Anderson (1958), p. 244) 

between t and the score vector a log L/02:.(2 ) (cf. (2.5.10)). Rao 

(1965), p. 285 gives this as the definition of the efficiency of E_. 

When (2.6.3) equals 1 we say that t is an efficient estimate of e. -
When I;!_= Q., we obtain from (2. 5 .10) with !_ = {~i}, p X 1, tl-.e 

vector of sample variances;that 

(2.6.4) 

We obtain a lower bound for this in terms of the diagonal elements of 

-1 
~ . 
THEOREM 2.6.1. When µ = O, the efficiency of the sample variances satisfies -.-- -- . ---

(2.6.5) 
2P 

eff (!) ~ -p---

IT (1+pu) 
i=l 

where ii -1 
p , i = 1, ••• , p, !!.= the diagonal elements of ! . 

Proof. By the Hadamard determinant theorem (cf. (A.~.15)), l!*ru ~ 1 
p 

and If 1*tt., + !J ~ IT { l+p ii). ( c,.ed) 
i=l 

Equality will hold in (2.6.5) if and only if ~=!_.(cf. Marcus 
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and Mine (1964), p. 115). The efficiency tends to zero as i tends 

to a singular matrix. Hence no lower bound independent of -1 
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possible. As an indication of the sharpness of the bound (2.6.5), 

when R is as given by (2.5.13), eff(s) = 0.650 and the bound 0.551. - -
Asymptotic efficiency is defined similarly to (2.6.3) for any 

consistent estimate t • (Cf. Wilks (1962), p. 38o, Rao (1965), p. 285.) 

We thus obtain from Corollaries 2.4.2 and 2.4.3 the following corollary 

to Theorem 2.6.1. 

COROLLARY 2.6.1. When ~ is unknown, the asymptotic efficiency of 

the sample variances, ~:!? is 

(2.6.6) 

2.7 Large Sample Tests Based~ the First Iterate. 

Many hypotheses about variances may be formulated as linear hypotheses 

about logarithms of variances. Variances will be equal if and only 

if their logarithms are equal. 

We find that the information mat~ix for the logarithms of the variances 

is independent of the unknown parameters (cf. Han (1967)). This enables 

us to construct large sample chi-square tests {cf. Rao (1965), p. 350) 

for any linear combination, of rank at most p, of the logarithms of 

the variances. Our tests will be based on the first iterate d2 ), which 

unlike~the maximum likelihood estimate i 2), may be expressed explicitly 

in terms of the observations. The limiting distributions of the 

test criteria will be the same since /Nc'4_2 ) - t 2 >) converges to 0 

in probability as a consequence of Theorem 2.3.3 and Corollary 2.4.3. 

We consider as special cases testing the homogeneity of all the variances 
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and the equality of any pair. Likelihood ratio tests will be considered 

in §2.8. 

We will use the following notation, in keeping with that intro

duced in §2.2. For any vector a= (ai}, p x 1, let 

Our results depend on the following: 

LEMMA 2. 7 .1. The limiting distribution of ,/N(~~ t) - ~( t)), where 

(-1) '-1( ·-1 T,-1 £.i = 2~ ~ *t + !.J !_, is multivariate normal with ~ vector 

( -1 T,-1 £ and covariance matrix !i *!l + L, , and is independent of the 

unknown parameters. 

Proof. The result follows from the general theorem due to Cra~r which 

we used in proving Corollary 2.4.2. We obtain the limiting covariance 

matrix from Corollary 2.4.3 as. 

'( t) oa 
- 4 2( -1 0-1 2 '(2), • ~ R *R + I ~ acr ...... ...... ...... ...... 

(t)' aa -
'(2) 

ocr. 

(qed) 

A general linear hypothesis about the logarithm of the variances 

may be expressed as 

(2.7.3) 

where~· is g x p, of rank h ~ g, p. We may set the right-hand 

side of (2.7.3) equal to O without loss of generality. 

While we can always express a hypothesis of the form (2.7.3) with 

a G' such that h = g, we often find that a more natural forDU1lation 

involves a £' with h < g (cf. Corollary 2.7.1). To accomodate 
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such cases we will use the concept of generalized inverse, which has 

recently received much attention in the statistical literature. 

(Cf. e.g., Rao (1965), p. 24). 

DEFINITION 2.7.1. We define.! generlized inverse {g-inverse) of.! 

matrix ~' m X n, .!!. any n X m matrix A- such that 

- 29 -

In general A- will not be uniquely determined, though certain 

products involving any solution of (2.7.4) will.be unique (cf. Lemma 2.7.2). 

Wh A i d i 1 A- = A- l i h 1 1 i f en -· s square an nons ngu ar, st eon y so ut on o -
LEMMA 2.7.2. Let !_, p x p, be positive definite and ~' p X g, of 

rank h ~ g, p. Then 

(2.7.5) 
and 

(2. 7 .6) £_(£'!.-1£) -9_, is unique and symmatr:i.c ran~ h, 

for every g-inverse (~'!l~- E..~ .£.'!
1

~_. 

Hence (2.7.5) follows since !:l is positive definite, p X p, and 

~ has rank h ~ p. To show (2.7.6) we proceed similarly and use 

(2.7.5). Let (G'T-1G)- and (G'T-1G)+ be any two different g-inverses 
_..,.. ...... ,... r-.- ~.., ----

of G'T-1G. Then we have [G(G'T-1G)-G' - G(G'T-1G)+G']T-1[G(G'T-1G)-G' ··- --- ..... ~ ...... ,.,__ --- --... ........ ......... -..,, .,._ .,....,. -..- .,,,,..,.,. ,-.,. ---- .... -..-

- G(G'T-1GtG' ]' = G[(G'T-1GfG'T-lG - (G'T-1G)+G'T-1G][(G'T-l.Gr~(G'T~1G)+]G'=O 
_,,_..._._..._, ..... ...... ,.,,_ ......,_..,,.. --.. ....__,,,.__ --- ........ --... --- _.._,.,__ ""-' ...... ,,,,.~ ........ ...... .............. ,,,,,,_ ....... 

( ) ( -1 )-from 2.7.5. Hence G G'T G G' is unique. Symmetry follows since 
-~ ...... --- --- .,.,,,,,,. 

G'T-lG admits a symmet~ic g-inverse. From (2.7.5) the rank of 
.,.... ...... ----
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G(G'T G) G' is at least h, but since G. is also a factor the rank ......, ...... ..... ,.._ ..... .- ,.._ 

must equal h. Thus (2.7.6) is proved. {qed) 

We apply these results to obtain a large sample test criterion 

.for ( 2 • 7. 3) • 

THEOREM 2.7.1. The limiting distribu~ion of 

(2.7.7) w = Na(t)'G(G'T-1G)-G'a(t), 
-:.J. - - - - - ;::;i 

- 30 -

where !_= f 1
*~+ !_, under the hypothesis (2.7.3), is chi-square with 

h degrees of freedom. !_ large sample~ of .!2:!! e: has critical 

region 

(2.7.8) w ~ x~(l - e:), 
t:hcra 

(g.7.9) P(x~ ~ x~(l - e)) = e:. 

Proof. From Lennna 2.7.1 we have that Jidl) has a limiting nuilti-

variate normal distribution with limiting covariance matrix T-1• -
Hence by a theorem due to A. T. Craig (cf. Rao (1965), p. 152) it 

suffices to prove that 't-1 is a g-inverse of gj['I.-lQ)-~', which 

is unique and symmetric by (2. 7 .6). m:it·:this follows directly from 

(2.7.5). The number of degrees of freedom is h since 

(2 .. 7.10) T-1G( c:;; t-1G )-\_:; • 
--..i -- ...... ..... ...... ....... 

has rank. h. {qed) 

The hypothesis of homogeneity of variances 

(2.7.11) <1=~=···=~ 
is a special case of (2.7.3) with h < g. The_variances are equal 

if and only if their logar-ithms are, or a(t) proportional to e. 

, 
i 

I 
I 
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Hence {2.7.11) is 

ca(t) = o, - -
where C = I - ee'/p is the centering matrix {cf. Sharpe and Styan -- ..... ----
{1965)). Pre-tID.1ltiplication of a matrix by f_ subtracts the column 

mean{s) from every row, i.e., centers the rows. Similarly post

nrultiplication by £ centers the columns. The rows and colunms of C 

all sum to O and C is symmetric idempotent of rank p - 1. It 

represents an identi~y transformation in the sµbspace of vectors with 

elements adding to zero. Thus (2.7.12) is a natural symmetric way of 

fornrulating (2.7.11). When a(l) is proportional to e, (2.7.12) - -
holds since Ce= O. When (2.7.12) holds, ~!t) is proportional to 

-~ since C has rank p - 1. When there is a chance of confusion 

with the sample covariance matrix defined at (2.1.3), we will denote 

the centering matrix by C ;• 
-e 

We obtain the following consequence of Theorem 2.7.1 for the 

hypothesis (2.7.11) or (2.7.12). 

COROLLARY 2.7.1. ! large sample test of size e for homogeneity of 

variances has critical region 

where ·-1 
T = R *R + I. ~- -

Proof. It suffices to prove that 

since the left-hand side of (2.7.14) is the matrix of the quadratic 

form (2.7.8) with G' replaced by .9 .. • 



.. , 
.:J~ 

.• ] 

·~ 

:=ij 

....... :1,. 
'•. 

.. ' 

. ·_::m 

4J 

·1 

.. J 

.·,i \ . 
.. ·:0 

1 
.~ 

_;.I 

- 32 -
-1 -1 -1 ·-1 -1 

we have 2!_ E. = 2!_ - 21 ~· /p = QI_ - ~· /2p = ~ , since 

( ) ( - 1" , - -1 ( -1(' , - -1 ' ~ = Q_. Then using 2. 7. 5 , £. = £. £I. 2-, 2I_ f. = £. Ql ~ ~ • 

( -1(' ,-Post-multiplying by I. yields £. Ql ~ Q. = QI.= I. - ~'I/P = I. - 2~~· /p. 
. (qed) 

-1 Another special case of Theorem 2.7.1 is when g = h, and Q.'I. Q. 

is :honsingular. The theorem holds with (G'T-1G)-l replacing -- -
(G'T-

1
G)- throughout. When g = h = 1, w simplifies considerably.; -- -

COROLLARY 2. 7 .2. !_ large sample test of size e for ! single linear 

combination u'a(t) = 0 has critical region 

(t) · 1 · 
N(µ'a )2 /(u'T- u) ~ x2 (1 - e). 

-::::J. -- - 1 

Equality of a pair of variances, 

~ = er: 
1 J 

(i I: j), 

may be formulated as a special case of Corollary 2.7.2, with ~~= ~ - ~~· 

COROLLARY 2.7.3. A large sample test of size e for (2.7.16) has 

critical region 

where log a1i is the i-th element of cl_t) and 
i . 

t J is the 

( ) -1 ( -1 )-1 i, j -th element of T = R *R + I • - ,..._. ..... ,._. ....... 

2.8 Likelihood Ratio Tests. 

The generalized likelihood ratio test for homogeneity of variances, 

when correlations are known, leads to a criterion with the same 

limiting distribution as (2.7.13). We also find a large sample test 

for a given correlation matrix. Both test criteria use the first 

iterated estimate 2:J_• 
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We first fornrulate the generalized:.likelihood ratio test. Let 

w be the region in the parameter space n specified by the null 

hypothesis. Then the test has critical region (cf. e.g., Anderson 

( 1958), p. 91), 

(2.8.1) A= 
max L 
w µ 

max L 
n µ 

< k, 

- 33 -

where k is a constant, predetermined so that the probability of (2.8.1) 

under w is the test size e, fixed in advance, and L is as 
µ 

defined by (2.1.5). 

To test homogeneity of variances when correlations are known, we 

have 

(2.8.2) w l = a2! ; a2, ~- unknown, 

(2.8.3) n : ~ = ~ ; t, ~ unknown. 

Under (2.8.2), we find the maximum likelihood estimate of a2 by 

minimizing (cf. 2.1.9)) 

(2.8.4) -1 · 1 · 1 · 
tr f £. + log I~ = a2 tr ! £. + p log a2 + log I !I . 

Straightforward differentiation of (2.8.4) yields 

(2.8.5) ~ 1 -1 
o- = - tr R c. p 

Under (2.8.3), we have from §2.3 that the maxiurum likelihood estimate 

of ~ is the unique solution of 

(2.8.6) ( -1 ) -1 R "*Ci e = ie, 
,...- ,,,.,_ ,..." -.... .......... 

which may be obtained iteratively (cf. §2.4) • 
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From §2.3 we find that (2.8.1) is equivalent to the critical 

region 

(2.8.7) 
l~I 

< k, 

where ~, ~.e> are the maximum likelihood estimates of ~ under O, w, 

respectively, and k is used generically (cf. also Anderson (1958), 

Lemma 3.2.2, p. 47). Substituting (2.8.5) and (2.8.6) into (2.8.7) 

yields: 

THEOREM 2.8.1. The generalized likelihood ratio~ for homogeneity 

of variances has critical region 

(2.8.8) 
'of .... -~ 

1 < k, 
{tr ~- 9-l 

where k is predetermined~ that the probability of (2.8.8) under 

(2.8.2) is the~ size e, fixed in advance, and 

the diagonal elements of i satisfying (2.8.6). -· 

~l' ••• , -a- are 
p -

The test just formulated presents the practical difficulty that 

we are not able to find the exact distribution of the criterion in 

(2.8.8) under (2.8.2). In addition its numerator must be computed 

iteratively. We can, however, find a large sample test based on the 

same limiting distribution as (2.8.8) but·which avoids the above 

difficulties. We may substitute ~l for ~' since we have already 

shown that /N('!.,.1 - ~ converges to 

2.3.3, Corollary 2.4.3). 

0 in probability {cf. Theorem ,.~ 

The limiting distribution, under w, of 

(2.8.9) N[ mint - mint ] 
w µ n µ 
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is chi-square with r degrees of freedom (cf. Rao (1965), p. 350), 

where r is the number of restrictions specified by w, and t is as 
µ 

given by (2.3.20). 

THEOREM 2.8.2. ! large sample test of size e for homogeneity of 

variances based£!! the generalized likelihood ratio criterion has 

critical region 

(2.8.10) N[p log tr i-1£. - p log p - 2!:,_1£.~t)] ~ X:-1(1 - e}, 

(t) (-1) -1, -1 T\-1 where 2:,1 is obtained from 2,1 = 2)2. ~ *! + L, ~' using (2.7.1). 

Proof. Evaluating (2.8.9) we ~btain N[log l~I - log l'tol] 
1 1 · 1 · = N[log 1(- tr R- C)RI - log l~2 RI] = N[p log tr R- C - p log p -p ""- ,._...... ~II..... ~ --

The result follows substituting the asymptotically equivalent first 
p 

iterate values for "o-
1

, ••• , 'o'p in log. Ii I 2 = 2 I: log o-
1

• ( qed) 
- i=l 

To test for a given correlation matrix R, we have, analogous ,;;,o 

to (2.8.2) and (2.8.3), 

(2.8.11) w R = R ; ~, µ unknown 
- .,._a - -

(2.8.12) 0: "f.,, !:. unknown. 

Under (2.8.12) the maximum likelihood estimate of t is c. (cf. e.g., .. ..,_ -
Anderson ( 1958), p. 47), and using (2 .8. 7) we obtain·::the critical 

region 

(2.8.13) 1£1 < k, 

where 1 is the unique solution of (2.8.6). Using (2.8.9) we obtain 

COROLLARY 2.8.1. !_ large sample test of size e for.! given corre

lation matrix !, based~ the generalized likelihood ratio criterion 
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has critical region 

(2.8.14) N[2:_'~t) + log l~I - log l~l ~ x;(p-l)/2(1 - e), 

where ~t) is obtained from gi-1) = 2E,_- 1(~~ + v-1~ using (2.7.1). 

2.9 Special Case of All Correlation Equal. 

When all correlation coefficients are equal, i.e., pij = p for 

all i ~ j, we can simplify many of the above results. We may write 

(2.9.1) '! = ( 1 - p )!._ + p~' • 

When R is positive definite we obtain immediately 

( ) -1 1 [ p , ] 1 2.9.2 R = -1 - I - 1 ( l) ee , - - 1 < p < 1, -... -p - +p p- -- p-

from which we note that in this special case -1 R and R have the 

same "structure," i.e., all diagonal elements are equal and all off

diagonal elements are equal. The characteristic roots are 

(2.9.3) ch(~)= 1 - p , . mult. P··-: .1 

= 1 + p(p-1), mult. 1, 

where mult. stands for multiplicity. When p > O, R has a unique ·-
maximal root, while when p < O, ~ has a unique minimal root. When 

p = O, R = I, the identity matrix and all roots are equal to one. -- -
The maximum likelihood equations still cannot be solved analytically 

in general. We can obtain, however, an estimate with the same 

limiting distribution as the first iterate (or the maximum likelihood 

estimate), but which is easier to compute. We also obtain a modified 

estimate, considerably simpler in form, but find that it is not 

asymptotically efficient. We obtain its limiting distribution and 

l 
1 

I 
I. 

I 
i. 

' ~ 
f, 
,. . 
ti;-
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compa~e its asymptotic efficiency with that of the sample variances._ 

We conclude with some tests of hypotheses based on the above estimates. 

2.9.1 An Asymptotically Efficient Estimator of the Variances. 

The maximum likelihood equations given by (2.3.13), may be written, 

using (2.9.2) as 

p ~ ( )~(-1) 
[ I - l ( l ) R] A = 1-p A , -f-P p- - - ,. .. 

where ~= ~$!~-l) = {J';ilai}, as defined in (2.3.12) and !,_ is the 

sample correlation matrix {cf. (2.1.4)). 

We can solve (2.9.4) in general only iteratively. From (2.4.12) 

we obtain an asymptotically normal and efficient estimate of a(2 } 

based on the first Newton-Raphson iterate which satisfies 

(2.9.5) (-1) ( ) ( ) p -1 
~1 = ~1 = 2 l-p [ 2 -p !,_ - l+p (p-1) !) !_, 

which we cannot simplify further, in general. 

Using (2.4.9), we rewrite (2.9.5) as 

( -1 ·)-1( -1 ) 
-~;J. = =· - ~ *~ + !. !! *!. - !. =-· 

Let us write 

2 
!_ = (1 - r)!. + r~'; r = p(p-l) E rij' 

i>j 

the matrix with average sample correlations. Consider 

* ( -1 - )-1( -1 11 = !. - li *~ + !.. ~ *!. - !) !· 

* Then the estimate based on li rather than ~l will also be asymptotically 

efficient, since {cf. Han (1967)) 
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Ji<~ _ ~) = [ <i-1*E. + !.r1 _ <if1*!t + v-1](.JN[~-1*!. _ !J~ 

converges to O in probability because R and R both tend in ~. -- --.. 

probability to !i• 

We can simplify (2.9.8). Let us write 

OI = (l-p)(l+p[p-1]) = l+p(p-2) - p2 {p-1), 

(2.9.10) 

w = 2a + p(p-r)(p-1) = 2 + 2p(p-2) - p(p+r)(p-1). 

THEOREM 2.9.1. An asymptotically normal and efficient estimate 

of ~(2 ) is given by (E,~ 1~)(-2), where 

(2.9.11) A*= p r + {l - P
2

(w+r{p-r)p)(p-l))e, 
_.:,i m+ron -· mf m+rnn) ,...,, 

a(2) 
~ 

where w is defined by (2.9.10) and !,_ = (~ .. - I)!_, the vector of~ 

~ E,! sample correlations. 

Proof. By virtue of Corollary 2.4.3 it suffices to prove (2.9.8) and 

(2.9.11) equal. From (2.9.2) and (2.9.8) we obtain 

(2.9.12) R-l*R = 1
1
P [I - 1 ( l) ee']*[(l-r)I + ree'] 

- - - - +p p- - - -

1 
= - [(a+ p[r+p(p-l)])I - pree' ]. 

0/ - -

Hence 

(2.9.13) { R- l*R + I )-l = "' [ I + £E. ee' ] = n -
- -.. - w+rpp - w -- v 

say. Thus Qe = ~ e, and Q has characteristic root ,,.,._ w-
sponding vector e • ...... 

We substitute 

0/ - with corre- . w l 
j 
I 

! 
i 

l 
I 
~ 

~ 
1 

i 



i . 1 · 1 
Cf *!. - 0! = r-;)C!_ - 1+p(p-1) ~:. 

= I!. {p(p-l)e - r) 
0/ ...... -

in (2.9.8) to yield 

(2.9.15) i; = ~- - ~ Q[p(p-1)=. - !) 

= e(l - P
2
(p-l)) + E. Qr. 

- w Ot----

It remains to evaluate 9;:.• From (2 .9.13) we have 

Qr= °' [r + pr (p(p-l)r)e]. 
-,. w+rpp - w -

Substituting this into (2.9.15) yields 

A*= p r + [1 - P
2

(p-l) (1 
~:.i w+rpp ,_ w 

which gives (e.9.11) directly. (qed) 

r2p 
--- ) ]_e, w+rpp 

2.9.2 !_ Modified Estimator of the Variances. 

The forms (2.9.11) and (2.9.17) are quite complicated. A much 

simpler form is obtained by substituting R for R in the maximum 

lik~lihood equations (2.9.4) or in the first iterate (2.9.5). We 

show that both substitutions lead to the same limiting distribution. 

We first consider (2.9.4), which expanded yields 

( ) p -1~ ( )-(-1) 
2.9.18 [I - l+p (p-l) ~ ~ = 1-p ~ , 

- 39 -

where we have written ~ for ~- Substituting (2.9.7) into the left

hand' side of (2.9.18) yields 
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Hence, using (2.9.10), 

(2.9.20) ~ ( - l) = ( ( 1 + p ( p-2) + pr) I - p ree' ~-. 
-~ ~ -- -

Proceeding as in (2.3.14), we set t(-l) = y~, where y2 = af!cii' - /\ 
with ~ written instead of ~- We obtain 

(2.9.21) cry2 = 1 + p(p-2)·+ pr - prp = 1 + p(p-2) - pr{p-1) 

=a+ p(p-r)(p-1). 

Hence 

(2.9.22) ~ = cii(l + p(p-r~(p-l) ), i = 1, ••• , p. 

For p > 0, (2.9.22) is also positive. But for p < 0, (2.9.22) 

may become negative. As an example with p = 100, take p = -1/100 

and r = -1. Then a= 101/1002 , p-r = 99/100, and p(p-r)(p-1)/a 

= -95)2/101, which is much less than -1. (2.9.22) is positive for 

p < 0, only when r > (1 + p(p-2))/p(p-1). 

We now turn to (2.9.5), which expanded similarly to (2.9.4) yields 

p .... -1· 
(2.9.23) ~l = 2(1-p)[(2-P)!_ - l+p(p-l) ~] .:. 

( l )[( P(l-r) ·) pr , 1-1 
= 2 -p 2-P - l+p (p-1) .; - l+p (p-1) =!_ !_, 

where we now write ~l for ~1• Substituting ~(-l) = ye, we obtain 
-:-1 -

by moving the inverse to the left-hand side of (2.9.23) 
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(2.9.24) p(l-r) ~rp 
2(1-p)y = 2 - P - l+p{p-1} - l+p{p-1) 

= 2 - 2p + P{l+p(p-l)) _ P(l+r~p-1)) 
l+p(p-1) 1-+p p-1) 

= 2(i-p) + p(p-r)(p-1) • 
l+p (p-1) 

- 41 -

If we now write y2 = ~/cii' where ~ is the modified estimate obtained 

by the substitution in (2.9.5) of R for R, then - -
( ) - ,::- ( p(p-r)(p-1) ) 2.9.25 O'i = ~cii· 1 + n,,.,, , i = 1, ••• , p. 

Squaring (2.9.25) yields 

(2.9.26) ~ - c (1 + p(p-r){p-1) + p2(p-r)2(p-1)2) i - 1 P °i - ii a 
4
a2 ' - , ••• , ' 

which is (2.9.22) but for a term in (p-r)2 • We note that (2.9.26) is 

always positive. Furthermore, /N cii ~(p-r)2 = (/N cii ~(p-r)](p-r), 

where ~ is a function of p and p but' not of r, converges to 0 

in probability. This is so since ./N cii ~(p-r) has the same limiting 

distribution as Ji~ ~(p-r), and p-r converges to O in probability. 

We therefore consider as our modified estimate 

( ) ~ ( p(p-r)(p-1))2 2.9.27 oi = cii 1 + n~ , i = 1, ••• , p. 

The limiting distribution of JN(a(2 ) - a(2 )) is thus the same 

as that .of /Fl(a,:_2 ) - ~ 2)), where i(2 ) = (a~}, ~ 2 ) = taf }. The 

limiting distribution of JN(~(2) - a(2 )) is the same as that of - -
(2) 

(2.9.28) ~ - V Stf-_ , 

where ~ = JN(~ - ~)=.., sN = 4N(r-p), and v = p {p-1)/a. 
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We need the following results (cf. Anderson (1963)) extending 

Lemma 2.4.1. 

LEMMA 2.9.1. The limiting distribution of 

- 42 -

is that of a random matrix X which is DDJltivariate normal with mean 

. .£ and covariances given ~ 

E(Xej~~x' = pijR + Re.e!R; i, j = 1, ••• , p. 
- _J.-:!/ --- - J 1.-

Proof. Pre- and post-multiplying {2.4.9) by ~-l yields (e.9.30). (qed) 

LEMMA 2.9.2. The limiting distributions of ./N('!:_ - ,B) and 

~ = ~ - ½(~ + ~.B), where ~ = (~)dg' !:..=the~-

Proof. Substituting ~ = ~-l in (2.9.29) gives ~ = /N( ~R/J - ,!!) 

and ~=Ji( ff - 1). Thus 

This has the same limiting distribution as JN(!, - ~), or equivalently 

INA (R - R)A ..... --- --- ..... 
(since~ converges to I in probability), provided 

(2 .9.32) 4N( ARA - ½.Bb 2 
- ½ !f~) 

converges to £ in probability. This is seen by expanding (2.9.32) 

as Ji [ ( M - M ) ( 6 - !) - ( /j_ - I) ( 6] - .M ) ] • ( q ed) 

We now explore the form of (2.9.30) when all correlations are 

equal. We assemble the p + p(p-1)/2 = p(p+l)/2 different components 

of ~ = {xij} into a column vector 
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(2.9.33) ~= [~~!!!:_~-~-~:::::_~--] 
( J i,J = 1, ••• , p 
xij ' i < j 

p ...... , ..... 
p(p-1)/2 

In what follows we will refer to the covariance matrix of the 

limiting distribution as the "limiting covariance matrix." 
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LEMMA 2.9.3. When all correlations~ equal, the limiting covariance 

matrix of ~ is 

(2.9.34) 
X pp ........ 

X p-1,p 

------------------------L--------------------------
(2p J [p(p-1)] 

{2p~}[~(p-l)(p-2)] (p+p~}(p{p~l)(p-2)) 

{2p2r}[¾p {-j>-l}(p72 )(p:-J) l 

where {2}[p] denotes p elements equal~ 2, ~

Proof. From (2.9.30) we have 

with pij = (1-p)oij + p, where oij is the Kronecker delta. 

From (2.9.35) we obtain the components of (2.9.34) as follows: 

top left-hand corner 

V(xii) = 2 , mult. p; 

[i=j=k=l] 

cov(x.i, x .. ) = 2p2
, mult. p(p-1). 

l. JJ 
[ i=k, j=t] 
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lower right-hand corner 

V(xij) = l+p 2 , mult. ½P(p-1); cov(xik' xit) = p+p 2
, mult. p(p-l)(p-2) 

[k=j, t=i] [j=i] 

cov(xik' xjt) = 2p 2
, mult. ¾p(p-l)(p-2)(p-3) 

[all subscripts different.] 

lower left-hand corner· 

cov(xii' xij) = 2p, mult. p(p-1); cov(xii' xjt) = 2p 2
, nrult. ½l,(p-l)(p-2) . 

[k=i,=il·: [k=:i] 
(qed) 

We now apply these lemmas to evaluate the limiting covariance 

matrix of (2.9.28), which we write in two·parts. First 

where ~! is the vector of the first p components of ~· Thus the 

limiting covariance matrix of y-N is from (2.9.34), 

(2.9.36) tu=2~2[ (l-p2)l + P2~, ]~2 = 2~2(R*fil~2' -
as in Corollary 2.4.2. Second, sN =JN(r-p) has the same limiting 

distribution as !:..'Itt~p(p-1) (cf. Lemma 2.9.2). Further 

(2.9.37) e'Y e = e'X.._e - e'FX e 
~ ~'-· -· ~,... -· .:.::.::ci,. 

= ~·~! -. [1 + p(p-1) H~:~=.) 
p 

= -p(p-1) E x. 1 + 2 E xi .• 
. 1 1 i>. J 1= J 

Hence the limiting variance of sN is 

(-p(p-1)!.', 2f:_'] ~ 
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with ~ _·. given by (2.9.34). Expanding (2.9.38) yields -
(2.9.39) ~p 2 (p-1)2 p(l + p2 (p-1)) - 4p(p-1)[2p(p-l)p + p(p-l)(p-2)p 2 ) 

+ 2p(p-1)[1 + 2p(p-2) + p2 (1 + (p~l)(p-2)] 

2 2 3 2 4 = 2p(p-1)[1 + 2(p...;2)p + (p -6p+6)p .. - 2(p-l)(p-2)p + (p-1) p ] 

= 2p(p-l)a2. 

Hence the limiting variance of sN is 

(2.9.40) a2 = 2~2 /p(p-1). s 

It remains to evaluate the limiting covariance ma~rix of ~N~· This is 

l/p(p-1) times 

(2.9.41) (t:,,2, 0) t -p(p-l)e -· 
2!:_ 

I 

[

{2}[P] i {2p }[p(p-1)] ] (-p (p-1)~-) 

= A.2 {2p2 }[p(p-1)] i {2p2} [-h,(p-1 ){p-2)] 2~_ 
I 

= ~2 ~_[-p(p-1)(2 + 2p 2 (p-1)) + 4p(p-1) + 2p 2 (p-l)(p-2)] 

= ~2 !:_(2p(p-1)(1 + p(p-2) - p2 (p-1))] 

= 2~p (p-1)~2
~ .. 

Thus the limiting covariance matrix of sN~N is 

(2.9.42) £su:-:-(20fp /p )/l2e • - --
We tie these results together in proving the following:·: 
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THEOREM 2.9.2. The limiting distribution of N(~(2) - 'l,_( 2)), where 

~(2) 
a is the vector of modified estimates ------

(2.9.43) ~ - C (1 + p(p-r)(p-l))2 i - 1 p 
~ - ii 2a ' - , ••• , ' 
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a= (1-p)(l + p(p-1)), is multivariate normal with~ vector O and 

covariance matrix 

Proof. It suffices to establish (2.9.44). This is the limiting 

covariance matrix of (2.9.28) which is 

Substituting (2.9.36), (2.9.40), and (2.9.42) in (2.9.45) yields 

2A2[(1-p2)I + ee'(p2 + ifa2 - ~)]A2 • 
-· - - p(p-1) p -

Since \XX= p(p-1), (2.9.46) simplifies directlr to (2.9.44) • {qed) 

The matrix (2.9.44) may be said to lie between the limiting 

covariance matrix of the maximum likelihood estimates, as given by 

(2.3.28), which now becomes 

4a A2(I + e:, ee')A2, 
2 ,.._ - 2a ~""- -2a+pp 

and that of the sample variances, as given by (2.9.36). Pre- and 

past-multiplying these matrices by Ji;A2 yields the following -
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Table 2.9.1 Limiting Covariance Matrices 

General Form Special Form Multiple Simple 
Root Root 

Efficient 
2(R-1*R + I)-1 20' e.:. 2Q' 

Estimator {I+ ee'} 1 "'J ...... ,...... 2 - 2Q' -- 20'+pp2 2<l'+pp 

Modified 2 
( l-p2 ).I + L ee' l-p2 1 Estimator - - p -

Sample R*R { l-p2 )I + p2ee' l-p2 1 + p2 (p-l) Variances ..... ...... .. 

It is clear that by multiplying each sample variance by the same 

factor (involving R only through r), we decrease the simple root 

from 1 + p2{p-l) to 1, but leave the multiple root unchanged. This 

is so since ~. is the corresponding characteristic vector. To achieve 

efficiency we must also decrease the multiple root; notice that this 

also removes the symmetry in p. In the next section we evaluate the 

determinants of these matrices, and make further comparisons. 

2.9.3 Efficiencies of the Estimators. 

We now evaluate the quantities in sections 2.5 and 2.6 for the 

special case of all correlations equal. These quantities will enable 

us to derive the relative efficiencies of the estimates discussed in 

We begin by considering the results in matrix algebra of §2.5 for 

our special case. All of these results are now readily established_ 

algebraically. 

From (2.9.1), -~ = (1-p ).!_ + p~', and so 

(2.9.48) R*R = (l-p 2 )I + p2 ee'. 
--.4 ... ,... .... .,,..,._, 
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From (2.9.2), -~-l = l~p !_ - ~ ~~~, wher~ from (2.9.10), a= (l-p)(l-1-p(p-l)) 

= 1 + p(p-2) - p2 (p-1). Hence 

(2.9.49) -~-l*~ = [l~p~ - ~ :!:_']*[(1-p)!. + p~'] 

= (1 - p(l-p) + _P_)i - P2 
ee' 

. a 1-p - a .--.. 

1 =-[(a+ pp 2 )I - p2 ee'], a ... ---

which now has the same "structure" as R. This leads to the specialization 

of Theorem 2.5.1, which we nCM give as 

COROLLARY 2.9.1. When all correlations!!! equal, the matrix in Theorem 2.5.1, 

(2.9.50) R*R - 2(R-1*R + I)-l = 
""""*....... ....., ,.._ ---

p 2 [( P - l)I + (1 - 1 )ee'] 
p-(1-p )2 (p-2) -- p-(1-p )2 (p-2) ·-

has characteristic roots (p-l)p2 , nrult. 1, and p2 [( P 
- - p-(l-p)2 (p-2) 

- 1)], 

mult. p-1, and is positive semi-definite. 

Proof. From (2.9.49), we obtain 

(2.9.51) -1 ~ 1 I) = 2 er *~ + -- 2CY-t-pp 
[I + P

2 
ee']. 

..... 2a --

Subtracting twice (2.9.51) from (2.9.48) yields 

(2.9.52) p 2 ( P - 1) I + p 2 ( 1 - 1 ) ee 1 
, 

2a+pp 2 ·•
4 2a+pp 2 -

which simplifies directly to give (2.9.50), since 2a + pp 2 = p-(1-p)2 (p-2). 

The simple root is found by multiplying (2.9.50) by ~, while the 

multiple root is the coefficient of I in (2.9.50). Both roots are 

clearly nonnegative and so (2.9.50) is positive semi-definite. (qed) 



··,-:;,~ 

···, 
j .. 

1"') ,;, 

l 

] 

•,·~.; 
~ _, 

11 ,. 
. 

'
i.\~.~:, ,, :i•' 
~ 

. 11··,··. 

,·, 

.·~ 

!i ' ' 

• ' 
. 

·:1,, ~,:.. .. ... ~---

- 49 -

COROLLARY 2.9.2. Whenever R is positive definite, the matrix (2.9.50) 

_!! singular if and only if R = I. 

Proof. The matrix (2.9.50) is singular if and only if a root is zero. 

The simple root is zero if and only if p = 0, while the nrultiple root 

is zero if and only if p = 0 or p = 1. The latter case makes l.~I = 
1

0, 

hence the result. (qed) 

Corollary 2.9.2 shows that when all correlations are equal the 

condition in Corollary 2.5.1 is both necessary and sufficient. 

Corollaries 2.5.2 and 2.5.4 are immediate consequences of Corollary 

2.9.1 in this special case. Theorem 2.6.1 becomes 

COROLLARY 2.9.3. When all correlations~ equal, the asymptotic 

efficiency of the sample variances is 

(2.9.53) 
1 

with lower bound given EI 

1 

Proof. From (2.9.48), )]*~I= {1-p 2 )p-l(l + p2 {p-1)), and from 

(2.9.49), )~-l*~ + !.I = (1 + ~~
2

)p-l. Hence (2.9.53) follows di~ectly 

oy substitution in (2.6.6). From (2.9.2), pii = (1_ + p(p-2}}/a, so 

ii p2 (p-1) ( ) ) 1 + P = 1 + 2a , and 2.9.54 follows. (qed 

We now investigate the asymptotic efficiency of the modified 

estimator ;(2), introduced in §2.9.2. We obtain -
THEOREM 2.9.3. The asymptotic efficiency of 2(2) is 

(2.9.55) 
1 
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Proof. We substitute the determinant of 

(cf. (2.9.44)) for j~Bj in (2.6.6) or (2.9.53). The matrix (2.9.56) 

has a simple root of 1 and all other roots equal to l-p 2 • Hence 

its determinant is (l-p 2 )p-l and (2.9.55) follows directly from 

(2.9.53). (qed) 

Values of (2.9.53) and (2.9.55) are tabulated f.or selected values 

of p and p in Table 2.9.2 and illustrated in Figures 2.9.1 and 

2.9.2. 

The improvement of the modified estimator 2,.(2 ) over the sample 

variances Q~~ is to increase the asymptotic efficiency by a factor 

of 1 + p2 (p-l), which for p close to 1 will be near p. This 
2 

·follows from R*R and (1-p 2 )I + (L)ee' having common multiple ,._,,,..... --- p --~~ 

roots {cf. Table 2.9.1), but with the simple root reduced from 

1 + p2 {p-1) to 1. For an efficient estimator we would require the 

common multiple root of l-p 2 to be reduced to 

(2.9.57) 
p2 

1 - ---------2 , 
1 - ( 1-p ) 2 ( 1- - ) p 

( -1 T,-1 the multiple root of 2 ~ *i + !.J • 

The asymptotic efficiency of the modified estimator tends to 1 

as p tends to 1, while that of the sample variances tends to O and 

1/p correspondingly. This is illustrated in Figure 2.9.1 •. Thus 

the asymptotic efficiency of the modified estimator has a minimum value 

between p = 0 and p = 1, while that of the sample variances mono

tonically decreases as p moves away from O (both efficiencies tend 

to O as p ~ - l/p-1). This leads to the following result: 
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TABLE 2.9.2. Asymptotic efficiencies of modified and sample estimators, 0 < p < 1 

p p = 2 3 4 5 6 1 8 9 10 20 30 
e99 MODIFIED 1.00 1.00 .99 .99 e98 e98 •97 •97 e97 .92 .97 

SAMPLE e51 .34 .25 .20 • 17 • 14 • 12 • 1 1 • 10 .os .03 

e90 MODIFIED 1.00 e97 .94 .90 .86 .93 .so •76 e73 e47 .30 
SAMPLE •55 e37 .27 .21 e 17 • 14 • 12 • 10 .09 .03 .01 

eBO MODIFIED 1.00 e95 .90 .84 .78 .72 .67 e62 .sa .27 • 13 
SAMPLE •61 •42 •31 •23 • 19 • 15 • 12 • 10 .09 .02 .01 

•70 MODIFIED 1.00 e94 e87 .so .73 •66 e60 .55 .so e 19 e07 
SAMPLE •67 e48 •35 .27 .21 • 1 7 • 14 • 11 .09 .02 .oo 

.60 MODIFIED 1.00 e94 e86 .78 .71 e64 .57 .st .46 e 15 .os 
SAMPLE .74 .55 •41 e32 .25 .20 • 16 • 13 • 11 .02 .oo 

eSO MODIFIED 1.00 .94 e86 e78 • 71 e64 .57 .51 .46 .14 .04 
SAMPLE .so e63 .49 .39 e31 .25 .21 • 17 • 14 .03 .01 

e40 MODIFIED 1.00 e95 .ea .01 e73 •66 e60 .54 e49 .16 .os 
SAMPLE •86 e72 .59 e49 e41 •34 •28 .24 .20 e04 .01 

e30 MODIFIED 1.00 .96 e91 .as .78 e72 .66 e60 .ss .21 .oa 
SAMPLE .92 .a2 e71 e62 .54 •47 e41 .35 e31 .oa .02 

e20 MODIFIED 1.00 .98 .94 .90 .as .01 .76 e7l .67 .33 • 16 
SAMPLE •96 e91 .94 .78 .71 •65 .59 •54 e49 • 19 .07 

elO MODIFIED 1.00 .99 .99 e96 e94 .92 .90 e87 .84 e59 .40 
SAMPLE •99 e97 .95 .93 .90 e87 e84 •Bl .77 .so •31 

.01 MODIFIED 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 e99 .97 
SAMPLE 1.00 1.00 1.00 1.00 1.00 1.00 1 .oo· 1.00 1.00 .98 .97 

l. ,.. .. j m w:1.wJj i~ 
• 

p = 2(1)io{10)50. 

40 50 
e83 e79 
.02 .02 

.20 .13 

.01 .oo 

e06 .03 
.oo .oo 

e03 .01 
.oo .oo 

.02 .01 

.oo .oo 

.01 .oo 

.oo .oo 

.02 .01 

.oo .oo 

.o3 .01 

.01 .oo 

.o7 .03 
e03 .01 

.26 .17 
• 19 • 12 

.95 e92 
e94 .92 

.. 

.. :.'~ 
~ 

!, 

V1 ..... 
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TABLE 2.9.2 (ctd). Asymptotic efficiencies of modified and sample estimators~ - .J,:. < p <,O, 
- p-

p = 2(1)10(10)30. 
p p = 2 3 4 5 6 7 8 9 10 20 30 

-1/30 MODIFIED 1.00 1.00 1.00 .99 .99 .9a .97 .96 .94 e59 .oo 
SAMPLE 1.00 1.00 .99 .99 .98 .97 e96 .95 .93 .58 .oo 

-1/20 MODIFIED le00 1.00 .99 .98 .97 .95 .92 .99 .84 .oo 
SAMPLE 1.00 .99 .98 .97 e95 .93 .90 .87 .a2 .oo 

-1/10 MODIFIED le00 .99 .95 .90 .a1 e67 e48 .24 .04 
SAMPLE .99 .97 .93 .86 .77 e63 .45 .22 .03 

-1/ 9 MODIFIED le00 e98 .94 .86 .74 •56 .30 e06 
SAMPLE •99 e96 e91 .02 .70 e51 •28 .05 

-1/ 8 MODIFIED 1.00 .98 e92 .a1 e64 •38 .09 
SAMPLE e98 .95 • aa .76 .59 .34 .07 . 

-1/ 7 MODIFIED 1.00 .97 .a9 e73 .47 • 13 
SAMPLE e98 .93 .03 .67 .42 • 1 1 

-1/ 6 MODIFIED le00 .95 .83 .sa • 19 
SAMPLE .97 .90 e76 .st • 16 

-1/ 5 MODIFIED le00 •92 •71 .29 
SAMPLE •96 .as e62 .24 

-1/ 4 MODIFIED 1.00 .86 •44 
SAMPLE .94 e75 .35 

-1.I. 3 MODIFIED 1.00 e67 
SAMPLE •89 .51 

-1) 2 MOOtF.IED 1-00 \..n 
f\) 

SAMPLt •73 

-·- -----~~·~~~--••M%-~~-~~~-5WWN~-~~---~ffl~ 
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Figure 2.9.1. Asymptotic efficiencies of modified (solid line) and sallll)le (broken line) estimators, 
- -- 0 < p < 1, p = 3, 10: 30. 
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COROLLARY 2.9.4. The asymptotic efficiency (2.9.55) of a(2) tends -- --- --
to 1 as p tends ~ 1, and has .! minimum value ~ positive p ~ 

{2.9.58) p = p - 4+Jp(p+8) I 

4(p-l) , 

which tends~ ½ .!!. p ·tends~ infinity. 

Proof. 

(2.9.59) 

It suffices to consider 

( l-p2)( 1 + PP2) 
201 

as p ... 1. Since 2a + p2 p = p - (1-p)2 (p-2), we may writ~ (2.9.59) as 

(2.9.60) (1-+P)fl-p~fp - (l-p)2 ~p-2)) 
2 1-p 1 + p(p-1) • 

Cancelling 1-p and setting p = 1 yields the first result. To 

obtain the second result we rewrite (2.9.60) as 

(2.9.61) 1 + p2(1-p)(p-2) 
2(l+p(p-1)) , 

and consider the turning point of p2 (1-p)/(1 + p(p-1)). Equating 

its derivative to O yields the quadratic 2p2 (p-1) - p(p-4) - 2 = 0 

of which (2.9.58) is the positive root. For large p, (2~9.58) is 

approximately 2(p-2)/4(p-1), which tends to ½ as p ... ~. (qed) 

Values of (2.9.55), the asymptotic efficiency of the modified 

estimator, evaluated at (2.9.58), giving its minimum value over 

positive p, are tabulated in Table 2.9.3 and illustrated in Figure 2.9.3 

for selected values of p and p. Corresponding values of (2.9.53), 

the asymptotic efficiency of the sample variances are also included. 

We see that the asymptotic efficiency of the modified estimator is a 

considerable improvement over that of the sample variances. The 

improvement is best at p = 5 where the difference is 0.44. 
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TABLE 2.9.3. Minimum efficiency of modified estimator, 0 < p < 1, :-~-.:.;6~- . 
p = 2(1)50. 

Asymptotic Efficiency 

p p 
~(2) 
a D2 e Improvement 

2 .6180 1.0000 .7236 .2764 
3 .5931 .9376 .5504 .3872 
4 .5774 .8600 .4300 .4300 
5 .5664 .7806 .3419 .4387 
6 .5583 .7043 .2753 .4290 
7 .5520 .6332 .2239 .4093 
a .5469 e5678 .1835 •3843 W,: 

9 .5428 .5084 e 1514 .3569 fi 
10 .5393 .4545 .1256 .3289 ~ .. 
1 1 e5364 .4060 .1047 .3013 

:i·'. 

I' 12 .5339 .3624 .0876 .2748 ~t 

13 .5317 .3233 .0736 .2497 i 14 .5298 .2883 .0620 .2263 
15 .5281 .2570 .0524 e2046 

f 16 .5266 .2290 .0444 .1846 r:' 

17 • 5252 .2040 .0377 e 1663 \ . 

18 .5240 ·.1817 .0321 .1496 

t 19 e5229 el618 .0273 e 1345 
20 .5219 el440 .0233 .1207 ',;, 

21 e5210 .12s2 .0199 el083 

r 22 .5201 .1141 • 0171 .0970 .· . 

it;:~ 
23 .5193 .1016 .0146 .0869 lf.i; 
24 .5186 .0904 .0126 .077.8 ~::' 

25 e5179 .0904 .01oa .0696 

t 
26 e5173 .0716 .0093 .0623 

,:-'-.-

27 e5167 .0637 .ooao .0557 

\ 28 .5162 .0566 .0069 .0497 
29 e5157 .0504 .0060 .0444 ~;· r 

Ir> 
30 e5152 .0448 .oos2 .0397 fr::,· 
31 e5148 .0399 .0045 .0354 ,., 
32 e5143 .0355 .0039 .0316 :/ 

~> 
33 .5139 .0315 .0033 .0202 . 

34 .5136 .0201 • 0029 .02s2 --.;._ 

35 .5132 .0249 • 0025 .0224 I • 
~~~ 

36 .5129 .0222 .0022 .0200 i;c:. 

37 e5125 .0197 .0019 .0178 ·~t'-
38 .5122 .0175 .0016 .0159 ~~(' 

~.r:· .. 
• 0014 .0142 39 .5119 .0156 !t· 

40 .5117 .0139 .0012 .0126 ·,)~-
41 e5114 .0123 .0011 .o 113 ~r 

42 .5111 .0110 .0009 .0100 t~~~.' 

43 .5109 .0098 .0000 .ooa9 
-~-~, 
~ -i" ·~; 

i~·:-' 

44 e5107 .0007 .0007 .ooeo ~} 
45 .5104 .0077 .0005 .0071 f~ _-
46 .5102 .0069 • coos .0063 

; ~ _ .. 
f;, 

47 .5100 .0061 .0005 .0056 -~-
?'.)·-,: •• 

.5098 .0004 • 0050 
-~- ·.-..:~ .. 

48 .0054 -.:-,. __ .. 

49 .5096 .0048 • 0004 .0045 
!! ...... 

1~· ' 

50 .5094 .0043 .0003 .0040 f: ,·. 
'· i.,·. 

r C . 

it· 
\.· 
I 



Figure 2.9.3. Minimum efficiency of n~dified estimator, 0 < p < 1, p = 2(1)24, with corresponding 
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Study of Table 2.9.2 and Figure 2.9.1 shows that the improvement 

can be much larger for positive p. 

close to 1 where the difference is 

p becomes infinite. For negative p 

(cf. Figure 2.9.2). 

The best improvement is at p 

1 
1 - - , which tends to 1 as p 

there is very little difference 

The computer programs written to generate the above tables are 

given in Appendix B. 

2.9.4 Testing Homogeneity of Variances. 

We now consider the results of sections 2.7 and 2.8 in the special 

case of all cor.relations equal (and known). From Corollary 2.7.1 we 

obtain 

COROLLARY 2.9.5. ! large sample test of size 

variances has critical region 

(2.9.62) 
2 ·(t) 1 (t) 

N ( 2 + Ee:.) a c a ~ x2 ( 1-e ) , a --~ ---e=-* · -p-1 

e for homogeneity of 

where ~-* j.s .!!. ~Y.!:!!. in Theore~ 2.9.1 and ~ is the centering ~trix. 

Proof. It suffices to show (2.7.13) and (2.9.62) equal. From (2.9.49) 

we have that 

(2.9.63) 
1 2 2 

T = R- *R + I = (2 + PP )I - 2.:. ee'. 
---- a-a-

Substituting (2.9.63) in (2.7.13) yields 

(2.9.64) 

where C is the centering matrix introduced in (2. 7 .12). The result th~n 
----e 

follows directly from Theorem 2.9.1 since ~ and ~l have the same 

limiting distribution. {qed) 
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We may express the quadratic form in (2.9.62) as a "centered," 

or '~corrected for the mean" sum of squares. For from (2.9.11) we may 

write 

where µ
1 

and µ
2 

are expressions in r, p and p as given by 

(2.9.11), and r = {ri} is the column vector of off-diagonal row 

sums of ~- Thus we may write 

(2.9.66) 

where c11 is the i-th sample variance. Thus we obtain 

( ") t (,) p lcii p rc.-i 
a"' C a"' = :E [log (-N_-i_:_)]2 - [ I: log ( ,,./ -ii )]~ 
-~ ~~ i=l µlri + µ2 i=l µlri + µ2 

From Corollary 2.7.3 we obtain the corresponding result for 

testing equality of two variances: 

(2.9.68) ~ = 1. 
COROLLARY 2.9.6. A large sample test of size e for (2.9.68) has 

critical region 

(2.6.69) 

where * ~ = {ai}, !! given in Theorem 2.9.1. 

Proof. It suffices to show (2.7.17) and (2.9.69) equal. From (2.9.51) 

we have 

(2.9.70) tii = tjj = a (l + E.:.)- tij = a (2.:.) 
2a ' 2a • 2a+pp 2 2a+pp2 
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Hence 
2 

= 1 + .Ee:. 
20' 

The result follows 

from Theorem 2.9.1. (qed) 

From Theorem 2.8.2 we obtain an alternate to Corollary 2.9.5. 

COROLLARY 2.9.7. ! large sample test of size e for homogeneity of 

variances based~ the generalized likelihood~ criterion has 

critical region· 

where £ is the sample covariance matrix. 

Proof. It suffices to prove (2.8.10) and (2.9.71) equal. 

we recall that 

(2.9.72) -1 1 0 ' R = - I - i:.. ee , 
- 1-p - Q' ·-

so that -1 1 p , 
tr R C = -1 - tr C - - e Ce. ....... --- -p --- Q' ........ ,,_,..,,.,_ 

Hence the· result. 

From (2.9.2) 

(qed) 

We now consider the forms of the above tests when based on the 

modified estimator ;(2 ) rather than (2) 
£* • 

COROLLARY 2.9.8. !!_ large sample~ of size e for homogeneity of 

variances based on the modified estimator -(2) 
(j has critical region ------ - - ---- -----

(2.9.73) ~ t'c t ~ x~ 1(1-e), 
1 2 --a--- --p-p 

where _£e is the centering matrix and t = {log c:ii.), is the column 

vector of logarithms of sample variances. 

Proof. We proceed as in Corollary 2.9.5 but instead of 

say, where from (2.9.44), 

2 
= (l-p 2 )_I_ + .e__ee' 

p --

.!,, use !m' 

\ 
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Hence T = ~ [I - e.:_ ee'], and so 
-m 1-p2 - p ---

(2.9.75) ;( t) 1 
T ;( t) _ _g ( e I a< t) ) 2 = _2 ;( t )~ a< l) • 

- -..rn,,.. p ,.._ ·- 2 - -e ... -1-p 

From (2.9.43), ~(2 ) = A~~!., where A is a function of p, r and p. 

Thus 2o(t) = {log 'k)e + (D2 e)(t) = {log 'k)e + 2t. Substituting in 
....... ,._.. --- ........ .__ ---

(2.9.75) yields 2t'C .t/(l-p 2 ), since C~= O. The result follows. (qed) 
- -.e- ~ -· 

COROLLA.RY 2~9.9. !!_ large sample test of size e for (2.9.68) based 

on the modified estimator ;(2 ) has critical region --- ..... -
_N_ [log (cii/cj .)]2 ~ xf(l-a). 
1-p2 J 

: Proof. Using (2.9.74), 2(tii - tij) = l-p 2 • Substitution in (2.7.17) 
m m 

gives (2.9.76) immediately since a~t) - a~t) = ti - tj. (qed) 

In conclusion, we note that the test in Corollary 2.9.9 remains 

unchanged if we use the sample variances D2 e instead of a(2 ). To 

see this, let (cf. (2.9.36)) 

(2.9.77) 2T-l = R*R = (l-p2 )I + p2 ee'. ....s _,_ ·- -

Then 2{tii - tij) = l-p 2 = 2(tii - tij) and the proof of Corollary 
s s m m 

2.9.9 proceeds unchanged • 

On the other hand, the test in Corollary 2.9.8 changes." From 

(2.9.77) 

(2.9.78) 
2 p2 

T = -- [!,_ - ----- ee' ], 
.. ,.s l-p 2 1 + p2 (p-l) -

and so 



., 
l 

'3 

-·1 • 
- c:~J ~ 

11 
::!I 

,';'ii 

:,i 

'j 
.-~~ 

-·-:1.>~,~ ._.,, I, 

·- •t-M 

~ ... 
. ,A:(fl 

-~,:;, 
.: ·~t; 

_,l , 
~ ,,:2i1 

~:~-1 

··1 •' 

-•~., 

~ .. 
. 

··TIE···_ ... · :, 
_ _.....,.~ 

:::-, 
: ... . ... -... ·.-: 

"'.:~ 

··--··~1 
.. ,,,..,.,._. 

. ,I 
. ,, ....... ·-

··'']II_ 

4 

il-'.:u 
~ I ,o . 
~ 

:,:-~11 

- 62 -

(2.9.79) N[a(t)'T a(t) - g_(e'a(t))2] = 
- -.e- p - -

2N[-l- ;-(t)'a(t) - (e'cr(t))2{.!. + p2 )] = 
l-p 2 - - -- p (l-p2)(1 + p2(p-l)) 

2N[-1- ;(t)~ .;(t) _ p2(p-l) (e'a(t))2] 
1-p2 - -e- p(l + p2 (p-1)) - -

which is the left-hand side of (2.9.73) minus 

2Np 2 (p-1)(!.'2.(t)) 2 /p(l + p2 {p-1)) • 
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APPENDIX A: ALGEBRA AND BIBLIOGRAPHY OF HADAMARD PRODUCTS - 66 -

1. Preliminaries. 

j We will assume throughout this appendix, unless stated to the 
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contrary, that ~ = {aij} and !_ = {bij} are square matrices of 

order p. Then following (2.2.1) we define the Hadamard product of 

A and B as the square matrix of order p, - -

Halmos (1948), p. 144 appears to be the first to give the name 

Hadamard product to (A.1.1). It is not clear why this product was 

so named. The French mathematician Jacques Hadamard (1865-1963) wrote 

about 400 scientific papers (cf. Hadamard (1935), Cartwright (1965), 

Mandelbrojt & Schwartz (1965)) as well as several books. The two 

references to Hadamard most frequently cited by later writers in this 

area date to 1893 and 1903. In the first,Hadamard obtained an upper 

bound for an arbitrary determinant, the special case of which, for a 

parent positive (semi-) definite matrix, we give below as Lemma A.2.3. 

This result is used in §2.6 above and in establishing lower bounds for 

I~~ below (Corollary A.2.6 and Theorem A.2.6). In the 1903 book, 

Hadamard considers quadratic forms of the type ~(~~~ but as 

far as this writer can determine only for the special case x = e • - -
Unaware of any previous work concerning the.product :{A.1.1), the 

German mathematician Issai Schur (1875-1941) proved that whenever 

A and ~ are positive {semi-) definite, then so is ~*1h Schur (1911) 

also proved a remarkable inequality (Theorem A.2.3) concerning the 

characteristic roots of A*B which appears to have been overlooked - -
by subsequent writers. Both results are presented in the next section. 
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Thus the product (A.1.1) deserves the name Schur product, but 

apparently only Majindar (1963) has used this term. Bellman (1960), 

p. 107 presentes the first of Schur's two results but does not name 

the product. Following Halmes (1948), (1958), later writers including 

Marcus & Khan (1959), Fiedler (1961), Marcus & Thompson (1963), and 

Marcus & Mine (1964) call (A;l.1) the Hadamard product. Other writers 

using the product fail to give it a name. 

The notation used in (A.1.1) follows that of Marcus & Mine (1964), 

p. 120. All the other literature on this topic that we have found uses 

a different notation. Fiedler (1957), (1961), Marcus & Khan (1959), 

and Marcus & Thompson (1963) use ~ o ~' while Mirsky (1955), p. 421 

uses ~ x !• Other writers use only scalar notation. 

The Hadamard product differs from the usual product in many ways. 

To begin with, conformability of the orders of the component matrices 

is quite different. When U and V are two matrices of orders -· 
t Xu and v X w, respectively, then we can define !!_*Y whenever 

t = v and u = w (if v = u in addition, we have (A.1.1), but this 

is not, of course, necessary), while UV is defined only if u = v, -
with no further restrictions. 

The role of identity matrix in Hadamard products is taken by 

the matrix with each component unity. That is 

(A.1.2) 

Hadamard multiplication is conmrutative unlike regular matrix multi

plication, i.e., 

(A. l.3) 

ee' - ' 
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The distributive property is retained, for 

where G is also square of order p. 

Diagonal matrices are easy to handle in Hadamard products. The 

diagonal matrix formed from A is written 

(A. l. 5) A.l = A*I. 
"""Ug --

The row sums of A*B are the diagonal elements of AB' or BA'. Hence -- -
we may write 

(A. l. 6) 

= (BA')d e = (BA'*I'e, ------- g--- _,..._. ':../ .,.._ 

which becomes (AB'd e = (AB*I'e, when B is symmetric, and 
~ g~ ,____ ':../,.... --

(~dg~ = (~*!.)~, when ~ is symmetric. 

The trace of AB is the sum of all the elements of A*B', or A*B ........... ...... ....... --- ,__ 

when B is symmetric. Thus -
(A.l.7) tr AB = e' ( A *B ' ) e, 

~ ..... --....-. ...... 

which also follows directly from (A.1.6). 

Multiplication of a Hadamard product by diagonal matrices enjoys 

a useful associative property. When !2.i 

of order p, we may write 

(A.1.8) ~(~*~~ = (~~*~~ = ~~*~ 

= (~~l~~ = ~*~1~ 

. = ~~*J~_D..e = ~ *~~---

and Ee are diagonal matrices 
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We have studied the literature concerning Hadamard products and 

present the main results in the next section. We also consider 

applications to correlation matrices and conclude this appendix with 

a bibliography. 

2. Theorems. 

:·., The most widely used ~d possibly most important result concerning 

I 

' 

'~~ .• ] 

--~a. 
-~ 

,}~ 
. --~ 

·,··i.l ·;., 
... 

.. :.·41 .. ~. ; 

::-/ 

Hadamard products was proved, probably for the first time, by Issai 

Schur in 1911. 

THEOREM A.2.1 [Schur (1911)]. When A and B ------
definite, then~ is their Hadamard product ~*!· 

~ ! is positive definite then~ also is !*!· 

Proof. Consider the quadratic form: 

(A.2.1) x' {A*B)x, 
.-... --..... .... ---

~ positive semi-

When either A 

where x is p X 1. There exists a matrix !,, p X p, such that 

! = !'!.· Substituting in (A.2.1) gives 

which is nonnegative when A and B are positive semi-definite. - -
When either ! or ! is nonsingular, {A.2.2) is positive. Hence 

the result. {qed) 

The above proof shortens the original version given by Schur (1911), 

which is also given by Fej~r (1918), Polya & Szego (1925) & (1954), 

pp. 106-107, 307, Oppenheim (1930), Halmos (1948), pp. 143-144, and 

(1958), pp. 173-174, Mirsky (1955), p. 421, and Bellman (1960), p. 94. 

An interesting shorter proof follows directly from the following 

lemma given by Marcus & Khan (1959) and Marcus & Mine (1964), pp. 120-121. 
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LEMMA A.2.1 [Marcus & Khan (1959)]. The Hadamard product.!!! principal 

submatrix of the Kronecker product. 

Theorem A.2.1 was extended in 1963 by Majindar, who showed that 

any positive (semi-) definite matrix may be expressed as a Hadamard 

product of two positive (semi-) definite matrices, though not necessarily 

uniquely. We omit the proof of this result. Together with theorem 

A.2.1 we now have: 

THEOREM A.2.2 [Schur (1911), Majindar (1963)]. ! symmetric matrix is 

positive (semi-) definite if and only if it can be written as the 

Hadamard product of~ positive (semi-) definite matrices. 

A further result proved by Issai Schur in 1911 appears to have 

been overlooked by later writers. It is 

THEOREM A.2.3 [Schur (1911)]. When A and B .!!=. positive (semi-) 

definite, 

(A.2.3) ch (A)•b i ~ ch (A*B) ~ ch1(A)•b , s = 1, •• ,, p, 
p- mn s-- - max 

where b . and b are the smallest and largest diagonal elements nun max-------

of B. 

Proof. Using (A.2.1) and (A.2.2) we may write 

This proves the right-hand side of (A.2.3). The~left-hand side follows 

similarly. (qed) 

COROLLARY A.2.1. When R is a correlation matrix and A is positive -
{semi-) definite, 
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(A.2.5) 

Since chp(!!.)!.'!. ~ ~·~ s ch1(~)~·~, we obtain chp(!!) ~ bmin ~ 

bmax ~ ch1(~) by putting ?!. = Z..j· Thus we have 

COROLLARY.A.2.2. When ~ and !!_ ~ positive (semi-) definite, 

(A.2.6) 

TheoremA.2.3 and Corollary A.2.2 give the following result 

when A= B: 

COROLLARY A.2.3. When ~ is positive {semi-) definite, 

(A.2.7) ch2 (A) ~ a i ch (A)~ ch (A(2)) -~ a ch1(A) ~ ch2
1(A), s = 1, ••• , p. 

p- mnp-- s- max - -

In 1959, Marcus and Khan considered the connection between the 

.characteristic roots of a Hadamard product and those of the corresponding 

Kronecker product. 

If Q'1 , ••• , Q'p and a are the characteristic roots of 
p 

A and ~ respectively, then the characteristic roots of !®! are 

the p2 quantities Q'.a.; i, j = 1, ••• , p (Marcus (196o) & (1964), p. 5). 
l. J 

THEOREMA.2.4 [Marcus & Khan (1959)]. When A and B are positive -------
{semi-) definite, 

(A.2.8) 

s = 1, ••• , p. 

-Proo£. --Xhe -result follows di-rect;J.y from Cauchy's ""Inequalities (Marcus & 

Mine (1964), p. 119) and Lemma A.2:.1~ (qed) 

The s-th largest characteristic root of A*B is thus seen to 

lie between the s-th and (s + p2 - p)-th largest of the pairs 
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aiaj; i, j = 1, •• ,, p. Extending Theorem A.2.4 we obtain: 

COROLLARY A.2.4. When ~ and !!_ ~ positive {semi-) definite, 

p-1 p 

(A.2.9) Tr ch 2_t(A® B) ~ IA*B I ~ II chs (A~~ B). 
t=O p S=l 

Thus ~e see that l~*!I lies between the products of the p 

largest and p smallest characteristic roots of !®!· A sharper 

lower bound is obtained below, but first we introduce the following 

additional notation. We will let ~i denote the lower principal 

submatrix of A of order p-i, with A = A. We will use the 
-0 -

following lemma: 
I 

LEMMA A.2.2 [Mirsky .(1955),p~421t .. When ~ is positive (semi-) definite, 

(A.2.1O) 0 ~- t A = A - . e,e, ... ..-... A ................ i. 
-1 

_!! positive semi-definite • 

Proof. When ~ is singular, (A.2.1O) is l and so positive semi

definite by definition. When A is nonsingular, 

(A.2.11) -1 0 -1 t ~l 
~ t = 1- - ~ ~=-i'!. , 

11 ' -1 I I 1.-. I -1 where a · = !i~- ~ = ~ / ~ , the leading element of ~ • Now 

(A.2.11) is symmetric idempotent, so !!.,_0 is positive semi-definite. 

From this lemma we obtain immediately 

(A.2 .12) a a ll. .... 1 
11 c:;. ' 

ii and so aiia ~ 1, i = 1, ••• , p (Fiedler (1961)). Also (A.2.12) may 

be written I~ ~ a11 1~1- Similarly l~I ~ a22 1~1 and so 

I~ ~ a11a22 1~1· Proceeding inductively we obtain Hadamard's classic 

result of 1893. 

(qed) 
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LEMMA A.2.3 [Hadamard (1893)). When ~ _!! positive {semi-) definite, 

(A.2.13) I~ :s: all a22 • • • a PP • 

Marcus (196o) & (1964), p. 14 calls Lemma A.2.3 the Hadamard 

determinant theorem. An alternate proof of (A.2.13) is due to 

Hardy, Littlewood, and P61ya (1934) & (1964), pp. 34, 35 writing A 

in terms of a correlation matrix. We give this as the following 

corollary: 

COROLLARY A.2.5. When R is a correlation matrix, the diagonal -- .. _ -- --
-1 elements of R , - ... ~ 

(A.2.14) ii 
r ~ 1, i = 1, ••• , P, 

and 

(A.2.15) IRI :s: 1. ---

Proof. {A.2.14) follows directly from {A.2.12). To show (A.2.15) we 

use the arithmetic mean/geometric mean inequality: 
p 

. p [I: ch (R)]p 
(A.2.16) ,~, = r ch

8 
(R) S: s=l p 

8 
- = (t; R)p = 1, 

S=l 

and (A.2.15) is proved. (qed) 

Pre- and post-multiplication of R by D yields DRD, where D 
.-.,. ...... .,...,.,.,,,,,. ......., 

is a diagonal matrix. We may express any positive {semi-) definite 

matrix ~- in the form ~ (unless ~ has zero row(s)/column(s)), 

as in (2.1.4). Hence (A.2.13) and (A.2.15) are equivalent. 

We now establish a lower bound for IA*BI, first proved in 1930 
#, .. _ ~-

by the British mathematician (later Sir) Alexander Oppenheim (1903- ). 

THEOREM A.2.5 [Oppenheim (1930)]. When ~ .. and ~ !:.= positive (semi-) 

definite, 
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(A.2.17) 

Proof. When ~ is singular or ~ has a zero diagonal element, (A.2.17) 

is trivially satisfied. When ~ is nonsingular and t has no zero 
1 1 

diagonal elements we may write B =~!RB! and (A.2.17) is equivalent 
- ~g---ug 

to 

(A.2.18) 

Using Theorem A.2.1 and Lemma A.2.2, we have 

= ,~~(l 
1 · 11 e'(A*R)- e /a··). 

-~ -- :::.i 

Thus 1~*13J ~ l~*~l·l~/l~I- Similarly l~*~I ~ l~~l·l~l/l~I, 

so that l~~aj ~ I~*~ I· I~/ I~ I• Proceeding inductively we obtain 

(A.2. le) since l~-l *¾,-i 1 / 1~_11 = ap/ app = l~ ( qed) 

Applying Lemma A.2.3 to Theorem A.2.5 yields the following 

additio.nal lower bound for l~X·!!_i: 

COROLLARY A.2.6 [Oppenheim (1930)]. When ~ and ~ ~ positive 

{semi-) definite, 

(A.2.20) 

We use Theorem A.2.5 to obtain a tighter lower bound than that 

in (A.2.17). The only proof we have found in the literature (§3 below) 

is in the same 1930 paper of Oppenheim, who credits it to Schur (1911), 

p. 14, which, however, presents only Theorems A.2.1 and A.2.3. M;rsky 
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(1955), p. 421 met'ttions.:·.t:'he ·:sharpening . of (A.2.17) but gives no 

proof. Mirsky credits Schur, but clearly is following Oppenheim (1930). 

Marcus (196o) & (1964), p. 14 calls (A.2.21) the Schur Inequality. 

THEOREM A.2.6 [Oppenheim (1930)]. When ~ and !_ ~ positive (semi-) 

definite, 

Proof. If either !_ or l is singular,{A.2.21) reduces to (A.2.17). 

Thus let A and B be positive definite. Then we may write A - - -
and B in terms of correlation matrices 

(A.1.8), we may write (A.2.21) as 

{A. 2 • 22) I i*~ + I gj • I !:J :i? I g_j + I~ • 

q_ and ~ so that using 

0 I/ l1 h 11 I -1 From Lemma A.2.2, t = ~ - ~!:.i r , w ere r = ~~ ~, is positive 

semi-definite. Hence by Theorem A.2.1, Q*R0 is positive definite. - --
Thus by (A.2.17), 

(A.2.23) 

That is, 

(A.2.24) I~~ - 1'4*¾1 ,r1-1 :i? lgj - lqj ,ii. 

Let ti+l = 19.a_*~I + l4a.l • l~I - l~I - l~l>i=O,l, .•• ;~_p-l~: Then t 1 :i? 0 is 

equivalent to (A.2.22). We'may write (A.2.24), after some rearrangement, 

as 
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The first factor is (1 - 1!_1 1 )/t11which is nonnegative by (A.2.15). 

The second factor is nonnegative from (A.2.12), and hence so is each 

side of (A.2.25). Thus t·1 ~ t 2 l!_lll!_11. Similarly t 2 ~ t 31~)/l~J, 
so that t 1 ~ t

2
l!_l11!:e1· Proceeding inductively we obtain t 1 ~ 0 

(i.e., (A.2.·2~)), since 

(A.2.26) 

where q = qp,p-l and r = rp,p-l• (qed) 
-1 Fiedler (1957), (1961) studied the characteristic roots of A*A , --

where A is positive definite. From (~.1.6) it ~ollows that all the 

. -1 
row sums are unity, and so A*A has a characteristic root of --
unity with =.. the correspo~ding characteristic vector. This result 

is strengthened when tied in with the reducibility of A. We will -
say that A has reducibility index s-1, when by row and column -
permutations we can write A as -

~11 0 ... ' 0 

~l ~2 ... 0 
(A.2.27) . . ' ~ . . 

~l ~2 ... A -as 

where A~., i = 1, ••• , s, are square and cannot be reduced further. 
-.1.1 

We may call the ~i irreducible, or.with reducibility index O. 

Hence (we omit the proof)_ 

THEOREM A.2.7 [Fiedler (1957)]. When ~ is positive definite with 

reducibility index 
-] . 

s-1, then A*A · has minimum.characteristic root -- -- ---------------
unity, with multiplicity 

index s-1. 

s, characte'ristic vector e, and reducibilty ·- -- -----~ 

Marcus & Khan (1959) considered the Hadamard product of elementwise 
-

nonnegative matrices A and B. - They proved that in such a case 
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(A.2.28) 

In 1963, Marcus and Thompson considered the Hadamard product of 

normal matrices, and proved (t-."e omi.t th.a proof) 

THEOREM A.2 .8 [Marcus & Thompson ( 1963)]. Let ~ and l be normal 

matrices with characteristic roots a1,•••, a and al, ••• , a , 
-- p - p 

respectively. Then the characteristic roots of A*B lie in a -------------- -- -----
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subset_ of the convex polygon in the plane supported ~ a.i~j_J ½(aia j+ Ci ja i) 

when A and B commute]. ------
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APPENDIX B: COMPUTER PROGRAMS 

i~.,;A. 
~ 

We present listings of the computer programs used on the CDC 9600 at the University of Minnesota 
to generate Tables 2.9.2 and 2.9.3. 1 

1. TABLE 2.9.2. 

PROGRAM EFCY(OUTPUT,PUNCH) 
DIMENSION ROWt<l3),ROW2Ct3)•ROW3C13>•NPC13>•IMAT<t4>•IMAU<t4> 
DO 1 I= 1 ,9 

1 NP ( I ) =I+ 1 
DO 2 1=10,13 

2 NP(l)=tO*Cl-8) 
PRINT 100,NP 

100 FORMAT(1H1•16X,2HP=,13Iq//10X,tOH RELeEFFe/) 
RHO=Oe99 

4 DO 3 1=1•13 
P=NP < I ) 
T=1eO+<P-2eO)*RHO-<P-leO)*RHO*RHO 
RESV=RESM(RHO,P,T) 
ROWt<I>=<teO+<P-teO)*RHO*RHO)*RESV 
ROW2(I)=BDRE(RHO,P,T) 
ROW:3<I>=RESV 

j CONTINUE 
PUNCH 103, RHO• ROWl• ROW3 

103 FORMAT(F5e2t10H MODIFIED •13F5e2/5X,t0H SAMPLE ,t3F5e2/) 
PRINT t0t,RHO,ROW1,ROW~,ROW2 

t01 FORMAT(tH •4HRH0=tFSe2•tOH MODIFIED,13F6e3/ 
1/IOX, tOH SAMPLE ,13F6e3/10X,t0H BOUND ,13F6e3//) 

lF(RHOeEOe0e99) RHO=l•O 
tFCRHOeEO.OeOt) GO TO 6 
RHO=RHO-Oel 
IF(RHOeLE.O.O) RHO=Oe01 
GO TO 4 

6 CONTINUE 
PRINT 100,NP 
DO 22 J=l,13 
K=14--J 

~;; ... - ,i ... ) 

-<1 ' 
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TABLE 2.9.2 (ctd.) 

i ' J f:,' .• , - M 

ENCODECl00,104,IMAU) K,K 

Fl!;~ ~ ~ ~ ~,.;.i.l 
~ ~ 

t04 FORMAT<*C4H -1/•l2,9H MOOIFIED•*l3*F5e2/5X,t0H SAMPLE •*13* 
1F5.2/)*> 

ENCODE<t00,102,IMAT> CK,J=t•3) 

.L...f.,:! 
~ 

t02 FORMAT<*<tH0,7HRH0:-1/•J3•9H MODIFJED*I3*F6•3//tOX,tOH SAMPLE * 
1 I3*F6.3/t0X,t0H BOUND *I3*F6•3>*> 

NQ=NPCK) 
Q=NPCK) 
RHO=-teO/Q 
DO 21 I= 1 • K 
P=NP CI) 
T=t•O+CP-2.0>*RHO-<P-JeO)*RHO*RHO 
RESV=RESM(RHO,P,T) 
ROWt(J)=<t.O+<P-leO)*RHO*RHO)*RESV 
ROW3(I)=BDRE(RHO,PtT) 

21 ROW2<I)=RESV 
PRtNT tMATt NQ, CROWt<L>•L=t•K>,<ROW3<L>•L=t•K>,<ROW2<L>•L=t•K> 

22 PUNCH IMAU• NO, CROW! CL) ,L=t •K> • CROW3<L> •L=t ,K) 
STOP 
END 
FUNCTION RESMCRHO,P,T) 
NP=P 
A=1•0+(P-1e0)*RHO*RHO 
8=1.0-RHO*RHO 
C=teO+P*RHO*RHO/CT+T> 
RESM~(B*C>**<t-NP)/A 
RETURN 
ENO 
FUNCTION BDRE(RHO•P,i) 
NP=P 
A=1eO+(P-ie0)4RHO*RHO/(T+Ti 
£3DRE~A'*"*'-NP~ 
RETURN 
END 

~i . . r.L. ,.~ 
~ ~~b If, ,.. 

u ., :l .. ~ 
•·' . ~ 

g, 


