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~ 1. Introduction 

The estimation problem considered in this paper can be described as follows: 

~( t, Tl) , 0 ~ts T called the "system process-fl is a s:t.ochastic process on a 

known probability space (OX' QX' PX), ('fl EOx) which takes values in Rn • 

It is assumed that direct observation of the system process is not possible or 

convenient but data concerning · ~( t) is provided by observations on an 

m-dimensional process ·z(t) given by 

T 

_g;(-r) =J h(u, ~(u))du+_x(-r) , O_s-rsT 
0 

where the 11noisen process :Y(t) is Gaussian, has independent increments and 

is independent of lf( t) o The available data, represented by ~t = IS[ z( T), 0 s ,- st] , 

the a-field generated by the family z ( T) ( 0 ~ T ~ t) , is to be used in 

estimating some given functional 

(1.2) 

of the system processo The precise conditions to be satisfied by h will be 

stated later. The space OX on which the system process is defined corresponds 

to the parameter si:ace in the usual Bayes approach to the theory of estimation. 

Thus the process ~(t) may be regarded as the unknown parameter and PX the 

a-priori distributiono If, as we shall always assume, g is an integrable random 

t variable its least squares estimate based on ~ is the conditional expectation 

E[gl~t] (which for brevity, we write as Et(g)) • By suitably choosing g it 

can be seen that this problem includes smoothing, prediction and filtering. A 

"Bayes" formula for E\g) is obtained in Theorem 2.1. This is a central result 

from a theoretical point of view since the results of Sections 5 and 6 follow 

from ito However, while such a formula might be considered satisfactory for 

fixed t, if the data is coming in continuously we require an estimate which 

can be continuously revised to take into account the new data. A practical 
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method of describing the estimate or filter which depends continuously on time 

is furnished by a stochastic differential equation. To achive this we have to 

specialize to Markov system processeso 

Both these problems (discussed in Sections 2 and 5) have been investigated 

by us in two earlier paperso In [6] is derived the formula for Et(g) when 

~( t) and ,2( t) are one dimensional, ,h( t, x) = x and x( t) is a one 

dimensional standard Wiener processo Here in Section 2 we give the extension 

to vector valued processes and with nonlinear h as in (1-1). In Section 5 

we consider the model (1.1) with ~(t) Markov but assume both system and 

observation processes to be one dimensonalo The main theorems of this section 

give conditions under which the conditional expectation Et[f(x(t))] satisfies 

a stochastic differential equation of Ito type whenever f belongs to the 

domain of the extended infinitesimal generator of x(t) o The proofs of these 

results being lengthy and rather formidable have been omitted since they would 

greatly overburden the papero For the special case h(t, x) = x these details 

are to be found in our second paper [7] which has been submitted for publication. 

However, in order to give the reader some idea of how weproceed ~e have collected 

in Sections 3 and 4 the concepts and auxiliary results which are found essential 

in establishing these resultso 

As our only application of the theorems of Section 5 we give a rigorous 

derivation of the important results of RoEo Kalman and R.S. Bucy on linear 

filtering [8]. Although the Kalman-Bucy theory is by now familiar to engineers 

working in problems of stochastic estimation and control and has even found its 

way into textbooks in this field, we do not know of a published proof that is 

completely satisfactoryo Another reason for including it is the hope that.it will 

attract the interest of probabilists and statisticianso 

Of the literature on the problems considered in this paper we mention 

only the few that have a direct bearing: the paper of W.Mo Wenham [14] which 

treats special cases; the short note by RoSo Bucy [1], and the recent paper by 
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~ Ho Jo Kushner [9]o The last mentioned paper derives the stochastic differential 

equations for Et[f(~(t)] when ~(t) is the solution of a diffusion equation 

under conditions which seem more stringent than ours. To our knowledge the 

work that comes closest to ours is a recent paper, in two parts, by RoSh. Liptzer 

and AoNa Shiryaev [10]. Without studying it carefully it is difficult to compare 

their results with ours. They consider a model in which the system process is 

the (unobservable) component of a two dimensional diffusion process. Their 

paper also contains a discussion of the Kalman-Bucy results and discusses several 

exampleso 
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2. ! Bayes formula for the conditional expectationo E[gl~( ,-) O ~ ,- ~ t] • 

In [6] we have obtained a formula for the conditional expectation· 
I 

E[ g I z ( T) , 0 ~ ,. ~ t] when both the system and the observation process are one 

,_. { dimensional. In this section we present the vector-valued version of that resul 

-
Only a sketch of the proof is given and the auxiliary results that point the way 

to the proof are stated. We have elaborated only on tho~e aspects of the 

argument where the vector-valued situation presents features absent from the 

scalar case while details, mostly of a tedious nature, have been omitted. 

The reader interested in a meticulous construction of the proof of Theorem 2.1 

will find these complementary details in our paper cited above • 
• ,!-' 

We begin with a brief explanation of notation~ ~, denotes the transpose of 

the row vector i in t1 . The co-ordinates of J!... wi~b -~~-s~pe-Rt to some~ed _.
1 

basis will be denoted by a.(j =l, ... ,m) am.the inner product in R!11 by ( , ). 
J 

We shall write 11An2 = j!i a~ • 

:..Let ~( t) be a process of independent increments with E~( tj =-0 and variance 

operator 

(2.1) E[ ! ( t) ] I [ ~ ( t) ] ~ .A< t) ( 0 ~ t ~ T) , whereJ 

A ( t) = [A. . . ( t) ]' • ( i, i = 1. ••• , m) • 
- 1J 

We shall adopt the following conveniant notation' due to Skorokhod [1~ ·• If 

a( t) is a measurable function such that 

(2.2) 

the integral 

( 2. 3) 

T J 1: a. ( t) a. ( t) dA •.• ( t) < m , 
0 i,j 1 J 1J 

T s (~(t), 
0 

T 
d_s(t)) =I J a. (t) d~i (t) 

i O 1 

is defined as in the scalar case. We then have 

· 2-1 
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and 

(2.5) 

T 
E J (~( t), ds( t)) = 0 

0 

T 2 T · 
E [J (~(t) , d~(t))] =J .~. a.(t) a.(t) dA .. (t) 

0 0 1,J 1 J 1J 

The notation for the integral given on the left hand side of (2.3) is Skorokhod's 

[12] and enables us to write the formulae in a more compact form. 

Let us now describe precisely the model for the observation process introduced in 

the last section. First, we make the following assumptions: 

(2.6) x(t) , t E [O, T] (y(O) =O) is a separable, m-vector valued 

Gaussian process of independent increments such that 

(2.7) E x( t) = 0 , and 

(2.8) E [x( t) ] ' [x( t) ] = f( t) , 

where E( t) is a continuous functinn of t and E( t) / 0 for each t > 0 • 

(2.9) ~(t, ~) is an n-vector valued, jointly measurable stochastic 

process defined on a probability space (OX' Bx, PX) (O~t~T, ~EOx) • 

(2.10) The ~(t) and x(t) processes are independent. 

From (2.8) it follows that µ(t) =Trace of I(t) is also continuous in t. 

Since f(t) is a positive semi-definite operator in Rm the following 

statements are verified easily. 

(2.11) 

and 

(2.12) 

(2.13) 

µ(t) is a non decreasing function of t, 

µ ( t) > 0 for t > 0 • 

F .. ( t) is absolutely continuous with respect to µ(t) ( i, j = 1, ••• , m) 
1J 

and the derivative of the matrix function 

2-2 
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(2.14) df ( t) = F( t) 
dµ, -

where 

,. 

(2.15) f(t) is a symmetric, positive semi definite operator in K11. 

With respect to some fixed basis in Rm let A.(t) be the eigenvalues with 
J ,. 

corresponding orthonormal eigenvectors ~j(t) (j = 1, ••• , m) of f(t) • 

Clearly A j ( t) 2 0 and we may assume Al ( t) 2 ••• 2 Am ( t) 2 0 • Since the 

A. 1 s are the roots of a determinantal equatinn whose coefficients are 
J 

measurable functions of t, it follows that the eigenvalues A. , and 
J 

consequently, the eigenvectors ~j(t) are Borel measurable functions of t. 

Let I; . ( t) ( j. = 1, ••• , m) be one dimensional, mut ual_ly independnet 
J 

Gaussian processes with independent increments with 

2 
E I; . ( t) s O and E I; . ( t) = µ ( t) • 

J J 

Although the main result of this section can be proved without the following 

additional assumption on µ(t) we make it nevertheless because it is easier 

to verify the various steps in the proof by comparing with the proof given in 

detail in [6] for the one dimensional case. 

(2.16) µ(t) is an absolutely continuous function of t with 

µ' ( t) > 0 for ( t > 0) 

Let 

(2.17) 

be a Borel measurable function of (t, ~). 

Abusing the notation somewhat we shall write h(u, ~) for h(u, ~(u, ~)) • 

The conditions to be satisfied by the process h(u, ~) are as follows. 

There exists a jointly measurable m-vector valued process B(u, ~) 

such that for O ~ u~ T 

2-3 
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(2.18) 

(2.19) 

(2. 20) 

m 
.h ( u, T\) = ~ p . ( u, T\) ~ .§. . ( u) µ,' ( u) a• s • PX • 

j=l J J J 

T 2 J ll12(u, T\)11 µ,'(u)du<= a•s• PX. 
0 

p. ( u, 'fl) =O 
J 

for all u in [ 0, T] for which L ( u) = 0 • 
J 

p. ( u, T\) 
When this happens we shall set { ( ) = 0 ,j . u 

J 

The observation process ~(t) takes values in Rm and is defined by 

( 2. 21) 

or 

(2.21') 

t 
~( t) = J _h( u, ~( u, T\)) du+ y( t) , 0 ~ t ~ T 

0 

d~(t) =h(t, ~(t, 11))dt+d:y(t) • 

Observe that from (2.6) and (2.21), ~(O) =O. 

It is easy to see that (2.18) is equivalent to the relation 

(2.22) (_h(u, 11), .§.j(u)) =JAj(u) pj(u, 11) µ,'(u) j =l, ••• , m. 

Let us now set 

(2.23) 
'T 1 

w. ( 'T) = J ~( ) ds . ( u) 
J O µ, u J 

and 

,.. ,- (~. ( u) ) 
z . ( 'T) = J · ,/ , dz ( u) • 

J O A • ( u) µ, 1 ( u) -
J 

(2. 24) 

Then w. ( 'T) ( 0 ~ T ~ T) ( j = 1, ••• , m) are independent standard Wiener processes 
J 

and we have from (2o21) and 
m t 

y( t) = i: J ~ .§. . ( u) ds . ( u) 
j=l O J J J 

that 

(2.25) 

2-4 



~ The arguments used in [6] can now be applied to vector valued system and 

observation processes related by the model (2.21} or (2.25). fheorem 2.1 and its 

corollaries are based on two results stated below. The first of these, given 

in r6], constitutes a general version of Bayes' theorem. The second is an 

extension due to Skorokhod [12] of a theorem of R. Cameron and R. Graves (see 

[6] for reference). 

Lemma 2.1 

(i) On the probability space (0, a, P) lEt g(w) be an integrable 

random variable measurable with respect to a sub a-field Cl_x and let QlA, w) 

be a version of the conditional probability 

(2.26) 

for A E a , a sub a-field of a . Then q, defined by z g 

(2.27) cpiA) = J g(w) Q(A, w) P(dw) 

is a finite signed measure on (0, OZ) • It is absolutely continuous with 

respect to PZ (q,g <<Pz) 

derivative given by 

the restriction of P to OZ with Radon-Nikodym 

(2.28) 

(ii) Suppose that the following conditions are fulfilled. 

(2.29) The conditional probabilities Q(A, w) are regular (see 

[llj, p. 137). 

(2.30) az is generated by a countable family of sets. 

(2.31) There exists a probability A on (O, QZ) such that 

Q( •, w) <<A for w EO' where P(O') = 1 • 

Then 

2-5 
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( 2. 32) Pz <<A , 

(2.33) there exists a function q(w', w) which is measurable on 

(O XO , azx a_x) and satisfies 

(2.34) q(wr, w) =~ (•,_w)(w') a.e AX P , 

(2. 35) 0 <J q(w 1 , w) P(dw) (co a.s. pz 

and 

( 2. 36) E(gl a ) =J g(w) q(wr, w) P(dw) a.s. Fz z J q(wr, w) P(dw) 

for g °x:-measurable and integrable. 

Lemma 2. 2 [12]. Let i:( t) ( 0 ~ t ~ T) be as in (2.6) - ( 2.8) and :Y(l) ( t) 

be such that 

(2.37) 

where the non random mean function ~ satisfies 

(2.38) 
t m 

a ( t) = J ~ p. ( u) ~ e . ( u) µ,' ( u) du , 
- 0 j=l J J -J 

(2.39) 
T 2 J IIE ( u) 11 µ , ( u) du < co 

0 

where pj(u) are Borel measurable functions and µ,(u) , Aj(u) ~j(u) and z(t) 

~ have been defined earlier. 

- If P and P (l) denote the respective probability measures then, 
:Y :Y 

p (1) <<P 
:Y :Y 

with Ra.don-Nikodym derivative given by 

2-6 



(2.40) 
m t p.(u) 

exp( ~ J ( ~ ~. ( u) , d:Y( u) ) 
j =l O "' A . \ u, J 

J 

1 m t 2 -2 ~ J p . ( u) µ. 1 ( u) du} 
j=l O J 

In applying the Lemmas 2ol and 2.2 to deduce Theorem 2.1 the following 

probability structure is assumed. 

Let 

~( ,-) 

(~)[O, t] be the space of all m-vector valued functions 

(O~T~t) , 8[0, t] the product a-field in (R!11)[0, t] , defined 
m 

in the usual manner, and let C [ 0., T] 
m 

be the space of all continuous functions 

on [O, T] taking values in Rm o Define 

W =C [O T] 0 =W n°[0, t] Z C [O t] 
m m ' ' U•w m U•m ' m = m ' ' 

ij z = Zm nB 1 O' t] ( 0 < t ~ T) e 

m 
Wiener measure on (Wm, Bw ) 

m 
(2.9). Elements of Ox and 

We then take 

Consider the transformations 

(2.43) 

defined by 

I(~,}[)=~ 

and 

m 

Let PW be a standard (m-dimensional) 
m 

amd (ox, ax, PX) is the probability space in 

Wm will be denoted by ~ and li respectively. 

( 2.45) _e: (o, a) - (zm, Bz ) 
m 

defined by 

( 2.46) 

give, ·n by 

( T) + w. ( T) , 0 ~ ,.· ~ t where .e* is 
J 

2-7 
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(2.47) 0~(il){T) = J Jµi('iiY p. (u, T\)du for O ~ T ~t and j =l, •• •, m 
J O J 

if 

if 

m t 2 
~ J p . ( u, . Tl) µ, ' ( u) du < co , and 

j=l O J 

m t 2 
~ J p. ( u, TI) µ, 1 ( u) du = 00 • 

j=l O J 

0~(T\) (-r) =O for O~-r ~t 
J 

The cr-fields °x and az· are then defined by 

(2.48) 

Lastly we identify 

(2.49) Q(A, w) =PS*[f(w)](.eA) 

and 

(2.50) /\(A) = PW t-1 (.eA) . 
m 

where v defined on W by m 

(2.51) [ 1¥ (_~) ](-r)= !!( T) 

The methods of [6] now yield 

and j = 1, ••• , m 

Theorem 2.1. Let the assumptions (2•6) - {2•10) and (2·16) - (2•20) hold. 

Then for any integrable random variable g(T\) defined on (OX' Bx, PX) we 

have the formula 

E[glz(-r), 0~-r~ t] 

(2. 52) 

= 

t m :6.. ( u, 'fl) ~. ( u) 
J g(1))(exp [J

0 
j~l ( J~, (~) 1.)ul 

, . t m 
J exp[J .~ 

0 J=l 

\, 



< • 

.-

"' 
where the denominator is positive a.s., and hj(u, ~).= (h(u, ~), ~j(u)) 

It is also understood that the summation on the right side of (2.52) is taken 

over those indices j for which A . ( u) > 0 • 
J 

C·orollary to Theorem 2.1 Suppose there is an integer r , 1 ~rs m such that 

for j = 1, ••• , r 

( 2. 53) L ( u) > 0 for O ~us T and for j = r + 1, ••• , m , 
J 

L ( u) = 0 for O ~us T • 
J 

Then formula (2.52) holds with the sum on the right hand side expression 

extending from j = 1 to r • 

It is possible to cast the formula in a more compact form in the case of 

full rank i.e., when r = m. 

Theorem 2.2 Let the assumptions of Theorem 2.1 hold. Further suppose that 

the matrix function F( t) is invertible for O ~ t ~ T • Then 

(2.53) 

= 

E[glz(,-), O~T_st] 

t "' 1 f g(~){exp [f ([µ 1 (u) F(u)]- h(u, ~) , dz(u)) 
0 

1 t "' 1 -2 J ([µ 1 (u) F(u)]- h(u, ~), h(u, ~))du]} Px(d~) 0 ___ .. , ________ _ 

t "' 1 f exp[J ((µ 1 (u) F(u)]- h(u, ~), d~(u)) 
0 

1 t 1 
-2 J ( [µ 1 

( u) F( u) r h( u, ~ ) , h( u, ~)) du] P x< d~) • 
0 

If the "noise" in the model (2.21) is an m-dimensional, standard Wiener process, 

where the w.'s are independent, standard 
J 

one dimensional Wiener processes, then the right hand side o_f ( 2. 53) ta.lie on an 

even simpler form, since [µi I ( u) F( u) r 1 = I ' the identity matrix. 

2-9 



3. Stochastic Integrals and Differentials of.!!,£~. 

S:i.nce·.:the:. soochast!f.ciitltggralof K. Ito (5] is a basic tool used in the solution 

of the problems considered in this pape~. it seems desirable to list some of 

its important properties. We state a very important result on stochastic 

differentials also due to Ito which might be looked upon as a "change of 

variables" formula for an Ito integral. The reader is referred to the book 

by I. I. Gikhman and A. V. Skorokhod for proofs and details [4]. 

We shall be concerned with stochastic integrals defined with respect to 

the system 

(3 .. 1) (O,~ ,P), ~, w( t ,w), 0 ~ t ~ T, wen 

where (n,~,P) is an arbitrary probability space. It will be assumed 

that the ~ are complete with respect to P, that 

(3.2) ~c~ ca 
1 2 

and that w(t,w) is a Wiener process such that 

w(t,•) is ~-measurable for O ~ t ~ T, 

and for O ~ t ~ T 

(3.4) ~ is independent of w(v) - w(t) for t ~ v ~ T. 

The notation 'Z(' indicates the completion of the a-field with respect to 

P. We shall consider two classes of processes defined on (n,l{,P). The 

class~ consists of those processes a(t,w), 0 ~ t ~ T, we O which 

satisfy the following conditions: 

(3.5) a{t,w) is measurable on ([O,T] X 0, ~O,T] 4, µ. 1X' P) 

where 8co,T] is the family of Borel subsets of the interval [O,T] and 

µ is Lebesgue measure on [O,T], 

3-1 
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(3.6) a{t,•) is ~-measurable a.e. µ, 

and 
T 

(3.7) J I a( t ,w) I dt < co a.s. P. 
0 

The class ??
2 

is defined to consist of those processes b{t,w) 

(o ~ts T, we 0) which satisfy (3.5), (3.6) and 

T 
{ 3. 8) f [ b ( t ,w) ] 2 d t < co a. s. P. 

0 
T 

The stochastic integral J b{t,w)dw{t,w) is defined for be /f
2 

as follows: 
0 

( i) :· If b e ?J'/
2 

is a step function 

b{ t ,w) = b. (w) 
1 

for 

where 

(3.10) 

then define 

(3 .11) 
T 

J b(t,w)dw(t,w) = 
0 

m-1 
I; b . ( w ) ( w{ t . +l ,w ) - w ( t . ,w) } 

• 0 1 1 1 
1= 

(ii) If be ~ 2 , there exist step functions bn e~2 , 

such that 

(3.12) 
T J [b {t) - b(t)] 2 dt - 0 in probability 

0 n 

and the integrals 

T 
(3.13) J b {t)dw(t) 

0 n 

converge in probability to a random variable. We then define 

(3.14) 
T 

J b(t)dw(t) = 
0 

T 
prob lim J bn{t)dw(t). 

n - ('t) 0 

a.s. P. 

n = 1, 2, ••• 

'!he following lemma states some of the familiar properties of the Ito integral• 

3-2 
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(i) 

and 

(3 .15) 

then 

(ii) 

Lemma 3.1: 

If bn e: 912 n = O, 1, 2, ••• 

T J [b (t) - b0(t)] 2dt - o 
0 n 

T 
J b (t)dw(t) 
0 n 

T 
- J b ( t )dw ( t ) 

0 

and 

in probability 

in probability. 

are real numbers then 

a.s. P. 

(iii) < m a.s. for O ~ s ~us ts T, 

and 
..7.. t 
E s HJ b ( u) dw ( u) ] 2 ) 

t g, 
= J E s[b2 (u)]du a.s. P. 

s s 

Integrals on the restricted range [s,t] as in (3.19) are obtained by 

considering functions be~ for which 

b(u,w) = 0 for O ~ u < s and t < u ~ T. 

In addition to the properties mentioned above the proofs of the principal 

theorems of Section 5 require results of a rather specialized nature concerning 

Ito integrals in which the integrand process depends on two probability 

parameters. More precisely, the situation is as follows: 

Let (OX,t,3X,PX) be a probability space and define 

(3.21) 
,<l~A' 

(O,"{ ,P) = 

::: 

--;:s-----::r 
~ X :;j· 

X t 

The product system 

(0 s t ~ T). 

3-3 

then 



.. 

(3.23) 
""I ,..,, ,v 

(O,t{,P), w(t~) 
,-J ;,tJ 

0 S: t S: T, W e 0 

~ 
satisfies the conditions (3o2), (3o3) and (3.4) where w(t) on n is 

defined by 

( 3 • 24) w ( t ,w) = w ( t , Tl ,w ) = w ( t ,w ) . 

__, -./ 

Let ~ and ?f2 be the classes of processe~ for the product system 

(3.21) defined by (3.5), (3.6), (3.7) and (3.5), (3.6) and (3.8), respectively. 

llle following results (of which Lemma 3.3(ii) appears to be new) are Fubini

type theorems about the Ito stochastic integral. [See [7 ]). 

"" Lemma 3.2: If a e ~ 

T . 
f If a(u,~,w) PX(d'fl)l

1
du < = 

0 ox 

and either 

(3.26) a ( u , 'fl ,w ) :;;? 0 a.e. µ. X P 

or 

(3.27) 

then 

(3. 28) 

Lemma 3.3 
'V 

(i) Lf a e ~ and 

(3.29) 

then 

(3.30) 

T 

J J la(t,~,w)I Px(d'fl)dt < = 
0 ox 

3-4 

for i = 1, 2. 

a.s. P, 
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(ii) 

(3.32) 

and 

(3.33) 

Then 

and 

T 
j'0 j' a(t,'11,w)dt Px(d'fl) 

X 0 
..-.; 

Let be~ satisfy 

t 

T 
= J J' a(t ,'l),w) Px(d'fl)dt 

o nx 

j' [j' lb(u,'fl,w)IPx(d11)] 2 du < CD 

s nx 

t t 

a.s. P. 

a. s. P 

a.s. P. 

J [J b ( u , 'f I ,w ) PX ( d'f I ) ] dw ( u ,w ) 
s nx 

= J [J b(u;11,w)dw(u,w)] PX(dTl) 
nx s 

and the integrals in (3.35) are finite a.s. Po 

It is with the help of Lemma 3.3 that we are able to obtain the 

stochastic differentials for the process referred to in Section 2. 

a. s. P 

We now turn to Ito's definition of a stochastic differential ([5], p. 187). 

A process ~(t) defined on (n,t\.,P) [or(O,~,P)] has a stochastic 

differential of Ito type 

ds(t) = a(t)dt + b(t)dw(t) 

provided 

'V 

(3 ° 37) a e 7'11 (or 1?/1) 

~ 
,_. 

(3 ° 38) b e: (or ??2), 
and 

t t ,..J 

(3.39) ~(t) - ~(s) = J a(u)du + J b(u)dw(u) a.s. p (or P) 
s s 

for all 0 ~ s < t ~ T. 
3-5 



The following result of Ito's ([3], p. 222) is used extensively in the 

proofs of the theorems of Section 5 and 60 

Lemma 3o4: Assume that the processes si(t) (i = 1, 2, ••• ,n) have 

differentials 

(3.40) dsi(t) = a.(t)dt + b.(t)dw(t) 
l. l. 

0 ~ t s; T. 

Let r(x) be a real-valued function of then-vector x=(x1, •• ,xn) 

defined on an open subset G of Rn which contains almost surely all 

points (s1{t),.oo,sn(t)) (0 ~ t ~ T). Further suppose that 

(3.41) o2r(x) 
ox. ox. 

l. J 

is continuous on G for i, j = 1, 2, ••• ,n. Let 

(3.42) f{t) = r(t(t)) 

Then E(t) has a differential 

d~(t) = A(t)dt + B(t)dw(t) 

where 

(3.44) A(t) = L. ai.(t) ~xof'. (s(t)) + .! ~ 02
f(t(t)) b.(t)b.(t) 

0 2 . . ox. ox . l. J 
l. l. J.,J l. J 

and 

(3 .45) B( t) = L ar(t(t)) b.(t). 
. ox. l. 
l. l. 
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4o Markov Processes With Extended Infinitesimal Generator. 

In this section it will be assumed that x(t,~), 0 ~ts T, ~ e flx, 
is a Markov processo We will say that x(t,~) has jointly measurable 

transition probabilities provided it has regular transition probabilities 

P[x(t) e B)x(s) = x] = P(s,x;t,B} 

(x real and Os s st s T) which are jointly measurable in {s,x,t) for 

all Borel sets of the real line Be 8R. We will be concerned with the 

generalized semi-group (in the sense of Loeve (11], p. 568) 

defined by 

(4.2) (P tf)(x) 
s 

eo 
= f f(y) P(s,x;t,dy) 

- co 

p t 
s 

(0 ~ s st s T) 

on the Banach space with sup norm of bounded measurable functions of a 

real variable; i.e., for f e B(R, ~). The generalized semi-group 

property which corresponds to the Chapman-Kolmogorov equation for Markov 

processes, is given by 

(4.3) p t = p up t 
s s u 

(0 ~ s ~ u ~ t ~ T). 

We suppose that (Pst} has a generalized infinitesimal generator Gt 

(0 ~ t ~ T) defined on a domain £JCB(R,8R)o Specifically, it is 

assumed that for O ~ts T, Gt is a linear operator with domain JJ 
and range B(R,~) which satisfies 

(4.4) sup I (Gtf)(x) I <= 
-oo<x<eo 
~tST 

and 

sup I Gtf(x) -
(P.[t+h]f - f){x) 

(4.5) t I ..... 0 
-co<x<co h 
~t~T 

as h-+ 0 for all f e £), where 
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.. (4.6) [t + h] = t + h if t + h s T 

= T if t + h > T. 

It can be shown that if x(t) is a measurable Markov process with jointly 

measurable transition probabilities (4.1), then for f e ~ 

(4.7) 

is jointly measurable in (t,x) and 

t 
(4.8) (P tf - f)(x) = r (P uG f)(x)du 

s J s u (0 S s S t ~ T) (- co < x <co)• 
s 

For purposes of application we need to obtain stochastic differential 

equations for Et[f(x(t)}] for certain unbounded functions f. The most 

* natural class, say~ of functions for which we can derive the basic 

l'\* stochastic differential equa·tion is defined as follows. 1,.:y. 

of Borel measurable functions f which satisfy 

(4.9) Elf(x(t))I < = for each t· , 

is the class 

there exists a (t,x) * Borel measurable function (Gt f)(x) such that 

(4.10) T * S El(Gt f)(x(t))ldt < =, 
0 

and for O s s < t s T 

t t * 
(Ps f)(x(s)) - f(x(s)) = J (PsuGu f)(x(u})du 

s 

* We shall call Gt the extended infinitesimal generator of the process 

x( t). It is easy to see that ~* contains £). The definition of a 

generalized or extended infinitesimal generator of a vector-valued Markov 

process presents no difficulties. 
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- . $. Ito Stochastic Differential Equation For Et[f(x(t))]. 

(5.1) 

(5.2) 

In this section we make the following assumptions concerning the process 

x(t;n) is a jointly measurable Markov process. 

x(t,~) has regular transition probabilities given by (4.1) 

which are jointly measurable. 

* l\ * (5.3) x(t,~) has an extended generator Gt with domain /:::J. • 

Further let h(x,t) be a real valued, Borel measurable function of (x,t) 

satisfying the following conditions: 

there exists a 8 > 0 such that 

(5.5) 

~rt+8 
16.J~ h 2 (x(u),u)du 

E e t < co 

for all t for which O ~ t < t+8 ~ T. 

Theorem 5.1: Let x(t,~) satisfy (5.1 - (5.5) and let f e £J* satisfy 

(5.6) 

(5.7) 

and 

(5.8) (T JT * 4 ~ E(h(x(t) ,t)[f(x(~)) - · Gu f(x(u) )du]} du < co. 

Then the process Et[f(x(t)}] on (p,{?,P) has a stochastic differential 
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- (5.9) 

+ {Et[h(x(t),t) • f(x{t))] - Et[h(x(t),t)]. Et[f(x(t))]) 

• {dz(t) - Et[h(x(t),t)]dt}. 

Condition (5.5) can be replaced by a stronger but more easily verifiable 

condition. Then, for functions f in fJ. the above result assumes the 

following particularly simple form. 

Theorem 5.2: Suppose x(t,~) satisfies (5.1), (5.2) and the following 

condition: 

(5.10) There exists a positive number c such that for all t in [O,T] 

where M does not depend on t. 

'!hen for f e A9, Et[f(x(t))] satisfies the stochastic equation (5.9). 

Proof: By a use of Jensen's convexity inequality ([1~], p. 159) it is 

easy to see that (5.10) implies that condition (5.5) holds with ~ such 

that O < 8 < c/16. Moreover, it fotlows that for every positive integer n, 

Elh(x(t),t)ln is finite for all t in [O,T] and that 

(5.11) l TElh(x(t),t)lndt < eo. 
·o 

In particular, (5.4) holds and since f e /), f and Gt£ are bounded 

functions. Hence conditions (5.6) - (5.8) are all satisfied and equation 

(5.9) follows. 

In many important applications the process x(t,~) is supposed to be 

a dynamical system. In probabilistic terms this means that the temporal 

development of the process is described by a stochastic differential 

equation. Accordingly we shall assume that x(t) (0 ~ t ~ T) is the 

solution of the Ito stochastic differential equation 
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_, . 

(5.12) dx(t) = m[t,x(t)]dt + cr[t,x(t)]dB(t), O ~ts T, 

or equivalently of the equation 

x(t) = x(s) + Jtm[u,x(u)]du + Jta[u,x(u)]dB(u) 
s s 

(0 s s < t s T). 

Here B(t) is a standard Wiener process and x(O) = x0, a given initial 

random variable. The coefficients m and cr are Baire functions of 

(u,g) which will be assmned to satisfy the following conditions 

(5.14) (- eo < s <ca, 0 s u s T) 

(5.15) 

(5.16) 0 < a(u, s) s K 

and 

(5.17) 

Under these conditions it is well known ([2], Chapter VI) that x(t) is a 

Markov process and is the unique solution of (5.12) almost all of whose 

sample functions are continuous. 

The probability space on which equations (5.12) and (5.13) hold is, 

of course, that of the system process (°x,'8x,Px). 

Lenuna 5.1: Let x(t) be the solution of (5.12) where m(t,x) and 

cr(t,x) satisfy (5.14) - (5.17). Suppose further, that the initial value 

x(O) satisfies 

(5.18) 

Then the functions of the form 

(5.19) f(x) = xnp(x) 
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e where n is any nonnegative integer and p, p' and p'' are bounded 

continuous functions, belong to&*. The extended infinitesimal generator 

* Gt is given by 

(5.20) * (Gt f)(x) = m{t,x) f'(x) + 1/2 cr2 (t,x) f''(x). 

With the aid of the above lemma and Theorem 5.1 we can derive stochastic 

differential equations for the conditional moments of x(t) and, if so 

desired, a stochastic differential equation for the conditional characteristic 

function of x{t). 

Theorem 5.3: Let x{t) be the solution of the equation (5.12) and let 

the conditions (5.4), (5.5), (5.14) - (5.18) be satisfied. Then if p, p' · 

and p'' are bounded and continuous and n is a nonnegative integer 

Et[xn(t) p(x(t))] has a stochastic differential of Ito type 

(5.21), 

+ {Et[xn{t)h(x(t),t) p(x{t))] 

- Et[xn(t) p(x{t))] Et[h(x(t),t)]} 

• {dz{t) - Et[h(x{t),t)]dt} 

where is given by (5.20)0 
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6. '!be Linear Filter: The Kalman-Bucy Theory. 

We shall consider now the important special case of the linear filter, 

i.e., when the observation process is given by 

(6.1) dz(t) = k(t)x(t)dt + dw(t) (0 ~ t ~ T), z(O) = O, 

where 

(6.2) k(t) is a continuous function of t. 

Theorem 6.1: Suppose the system process x(t) satisfies the 

stochastic differential equation (5.12) whose coefficients m(t,x) 

and cr(t,x) satisfy the conditions (5.14) - (5.17). Let the initial value 

x(O) satisfy (5.18). If the observation process is defined by (6.1) then 

dEt[xn(t)p(x(t))] = Et[(Gt*xnp)(x(t))]dt 

+ k(t)(Et[xn+l(t)p(x(t))] - Et[xn(t)p(x(t))]•Et[x(t)]} 

• (dz(t) - k(t) Et[x(t)]dt}. 

Let us now specialize to the case when x(t) is a Gaussian process which is 

the solution of the equation 

(6.4) dx(t) = m(t)x(t)dt + cr(t)dB(t) (0 ~ t ~ T) 

where 

(6. 5) x(O) = x0 , a Gaussian random variable, 

and 

(6.6) m(t) and a(t) are Baire functions and a(t) is bounded and 

nonnegative. 

6-1 



• 
For the process x(t) satisfying (6.4) - (6.6) the following corollary 

is easily deduced from Theorem 6.1. 

Corollary~ Theorem 6.1: Suppose that the assumptions (6.1), (6.2), 

(6.4) - (6.6) hold for the processes z(t) and x(t). Then 

and, for n ~ 2 

(6.8) dEt[xn(t)] = {nm(t)Et[xn(t)] + ! a 2 (t)n(n-l)Et[(x(t))n- 2 ]}dt 

+ k(t){Et[xn+l(t)] - Et[xn(t)]Et[x(t)]}{dz(t) - k(t)Et[x(t)]dt] 

The above corollary, together with Ito's lennna given in Section 3 enables 

us to obtain a rigorous derivation of the basic result first obtained by 

R. Kalman and R. S. Bucy [8]. 

For convenience let us first set 

(6.9) and 

Theorem 6.2: I\ 
x(t) (0 ~ t ~ T) is a Gaussian process satisfying the 

stochastic differential equation 

(6 .10) tfx(t) = m(t) 'i(t) dt + k(t)R(t){dz(t) - k(t)i(t)dt} (o ~ t ~ T), ~(o )=Ex0 

where R(t) satisfies the Riccati equation 

Before proving the result we need the following lemmas: 
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Lemma 6.1: Let t be fixed (0 < t ~ T) and let O ~ t 1 < ••· < tn ~ t. 

'!hen the conditional distribution of x(t) given z(t
1

), •.• ,z(tn) is Gaussian. 

Proof: For real constants c
0

, c1 , ••• ,cn define the random variable 

Setting y. 
n J 

f 1 = ~ C .W. 
j=l J J 

t. 

= Jo }k{u )x(1,1 )du\; wrw( t j ) ' 

we have 

~ = ~· + f', 

n 
~· = cox(t) + ~ c.y. 

j=l J J 
and 

where ~· and ~·' are clearly independent. '!he random variable t'' is 

Gaussian since w is a Gaussian process. From (6.4), a separable version 

of the x(t) process (we consider only separable versions here) is a.s. 

sample continuous, i.e.; almost all of its sample functions are continuous. 

Hence by taking an appropriate sequence of subdivisions of the interval 

[O,t] it is seen that g' is the almost sure limit of a sequence of 

random variables each of which is a finite linear combination of the random 

variables of the family {x(u), 0 ~ u ~ t}. Since x is Gaussian it follows 

that is Gaussian. Hence is Gaussian. Since the constants 

are arbitrary we have the joint normality of (x(t), z(t1), ••• ,z(tn)}. 'lhe 

conclusion of the lemma follows immediately. 

Lemma 6.2: '!he conditional distribution of x(t) given ~ (= 8 (z(T), 

0 ~ T ~ t) is Gaussian with mean ~(t) and variance R{t) given by (6.9). 

Proof: It follows from (6.1) that a separable version of z{t) is 

almost surely sample continuous. Let (D} (n = 1, 2, ••• ) be a sequence n 

of finite partitions of [O,t] such that 

V Dn is dense in [O,t]. Now let J-;_n 
n=l 

Dn C Dn+l for each 

= '3[z(T), Te D ]. n 

n and 

'1h l"1 n ,, ~ n+l 
en -4:1 t '-'4 t • 

From the martingale convergence theorem and the a.s. sample continuity of the 

z process it follows that 
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; 

.. 
• (6.12) lim P{x( t) e Bl.3;} = P{x( t) e: Bl.$t} a.s., 

n ... = 

for every Borel set B. By Lemma 6.1 the left hand side probabilities in 

(6.10) are Gaussian. Lemma 6.2 follows. 

LeIImla 6.3: The process ~(t) (0 ~ t ~ T) is Gaussian. 

Proof: The joint normality of the random variables ~(v1), ••• ,~(vp) 

(0 ~ v1 < ··· < vp ~ T) is shown by proceeding essentially as in the 

preceding two leIImlas. 

Proof of Theorem 6.2: Equation (6.10) is nothing but equation (6.7) 

of the Corollary to Theorem 6.1. 'What remains to be established is that 

R(t) is the nonrandom function of t which is the solution of (6.11). 

From (6.9) R(t) is the difference of the two stochastic processes 

Et[x2 (t)] and [~(t)] 2 • Taking n = 2 in (6.a) we obtain 

(6 .13) 

Since the conditional distribution of x(t) given d-t is Gaussian with 

mean ~(t) and variance R(t) (LeIImla 6.2) we have 

Hence 

Et[x3(t)] - Et[x2 (t)fx(t) = [~(t)]3 + 3[~(t)]R(t) - 1(t)[R(t) + (~(t)}2 ] 

= 2~( t )R( t). 

From equation (6.13) we then obtain the following stochastic differential for 

Et[x2 (t)]: 

(6 .14) 

+ 2k(t)R(t)~(t) (dz(t) - k(t):(t)dt}. 
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.. 
From (6.10) and applying Ito's lemma to [~(t)] 2 we have 

(6.15) d[~(t)] 2 = {2m(t)[~(t)]2 + k2 (t)R2 (t)}dt + 2k(t)R(t)~(t)(dz{t) - k(t)~{t)dt). 

Finally from Ito's lemma applied to 

R(t) = Et[x2 {t)] - [~(t)] 2 and from (6.14) and (6.15) 

it follows that R(t) has the following stochastic differential fran which, 

however, the random term is absent. 

(6.16) dR{t) = (2m{t)R(t) + a 2 {t) - k2 {t)R2 (t)}dt (0 ~ t ~ T). 

Hence R(t) is, almost surely, a nonrandom function of t (0 ~ t ~ T) 

satisfying the ordinary differential equation (6.11). The proof of lheorem 

6.2 is complete. 

In view of (6.10) it follows that ~(t) is a Gaussian process which is 

almost surely sample continuous. 
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