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CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS: 

APPLICATIONS OF LATTICE THEORY 

-1/ I~ Richard Savage -
University of Minnesota 

Introduction. As a typical problem, i~ x1, ••• ,xm are the observations in a 

first sample an~ y1, ••• ,yn are the observa~ions in a second sample, then the ranks 

of the y's in the combined sample is the observed rank order. Thus the observed 

rank order r will be a vector (r1, ••• ,rn) consisting of an ordered subset of the 

integers l, ••• ,m+n. Correaponding to the observed rank order r is the random 

variable R. If the x's and y'• are identically and independently distributed then 

for each possibler, one has P(R=r) = (m+n)-1• On the other hand, if the x's are n . 

a sample from a population with continuous cumulative distribution function F(.) 

and the y's are a sample from a different continuous cumulative distribution 

function G(.) the rank orders will not be equally likely. In general if r*r' there 

will be some choices of F(.) and G(.) for which P(R.:=r) > P(R=r') and other choices 

for which P{R=r) < P(R=r'). In [3] a broad class of choices ~or F(.) and G(.) is 

presented for which the probabilities of the rank orders, P(R=r), are partially 

ordered. In Section 2, this partial ordering is sh~wn to be a distributive.lat­

tice. The associated Jordan-Dedekind distance is found to be the Wilcoxon statistic. 

In Section 3, the one sample problem is considered. Again, the partial order­

ing (obtained in [5]) is a distributive lattice and the distance is the Wilcoxon 

one-sample signed-rank statistic. In Section 4, the partial ordering (obtained in 

[4]) for the trend problem is examined. The partial ordering is not a lattice but 

does satisfy the Jordan-Dedekind chain condition; the distance is Kendall's tau (rank 

co~r.f!lati:on:.stat2istttc);.n~:tn)Secttoii ~,·~:·..aha~:two:.isantp-llecpr,o&:tetir:ts:·.exatn:tned· .when,:only 
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the smaller random variables are observed. In this case the partial orderings 

(obtaind in [2]) are of.the likelihood ratios of the rank orders. The results de- ~ 

pend on the precise form of censoring wh~~h is being used. Section 1 contains the 

necessary lattice theory background for. reading this paper. 

This preliminary report is to fornrulate the kind of results which might be 

obtained with the aid of lattice properties. It is far from exhaustive. 

1. Lattice Theoryi.!..V In the following R is a nonempty set whose elements ar~,-~.de­

signated by r, s, t, r
1

, etc., together with tw6 binary operttions +·and·x.£_~ 

Definition. Risa distributive lattice if it is closed under+ and X and: 

L.1 rxr=r and r+r=r for all r in R. 

L.2 rxs=sXr and r+s=s+r for all rands in R. 

rx(sxt)=(rxs)xt and r+(s+t)=(r+s)+t for·all r, s, and tin R. 

L.4 rx(r+s)=r and r+(rxs)=r for all rands in R. 

(rxs)+(rxt)+(sxt)~(r+s)x(r+t)x(s+t) for all r, 
I 

s, and tin R. 

L.1 through La4 are the lattice properties and~~ is the distributive property. 

Definition. Yor r and s. in R,~s if s=rJt;s: r > s if r ~ s \lut ,:n9t• s ~ r. 

I 
ii,. 

I _, 

i 
~ 

For all r, s, and tin a lattice (L.1-L .• 4), the following conditions: 111111 

. . 
are satisfied, as is easily verified~ i 

P.l r ~ r. 

P.2 If r ~sands~ r then r=s. 

P • 3 If r ~ s and s ~ t then r ~ t. 

Also r+s is the least upper bound and rxs is the greatest lower bound of the set 

consisting of rands. In a finite lattice, i.e., a lattice with a finite number 

of elements·, there is a greatest and a least element. 

a / 

b / 

The basic reference for this section is [1]. Diagrams illustrating the coq~ 
cepts of this section appear in the later ~ectio~s of this paper. 

For typographical convenience+ and X have been used instead of the con­
ventional di.p and Clllp. 
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.. 
Definition. r covers s if r >sand there does not exist at in R such that r > t 

> s. A chain connecting s to r is a sequence t
1

, ••• , td such that s < t
1 

< •.. < 

td=r, where t 1 .covers i and ti+l covers ti for i=l, ••• ,d-1. Then dis said to be 

the length of the chain connecting s tor. Clearly there can be several chains 

connecting s to r and they need not all have the same. length. If s ~ r and R is 

finite there is plainly at least one. 

Jordan-Dedekind Chain Condition. For each sand r, all chains from s tor are 

of the same .length. (The length can, of course, depend on sand r.) 

Throughout the remainder it i$ assumed that the Jordan-Dedekind conditon is 

met. (The conditlon is met in ·t f;i.nite distributive lattices.) In a finite lat-

tice there will be a least one chain from each element other than the smallest to 

the smallest element. Let d(r) be the length of chains from r to the smallest 

element if r is not that element and d(r)=O if r is the.smallest element. Let d(R) 

be the length of the chains from the smallest to largest· element. Then, for a 

finite distributive.lattice, it is not hard to show: 

A. If r covers s then d(r)=d(s)+l. 

B. d(r) ~ d(R) with equality only if r is the largest element in R. 

C. d(R) is at most one less than. the cardinality of R. If d(R) is that 

large then the system R is isomorphic to the integers o, ••• ,d(R) with 

. the interpretation r+s=max(r,s) and r X s =min(r, s). 

D. d{r+s)+d(sxr)=d{r)+d(s). 

E. 2[d(r+s+t) -d(rxsxt)] =d(r+s)+d(r+t)+d(s+t) -d(rxs) -d(rxt) -d(sxt) 

. Definition. Ifs~ r ~ t, then r' is called a relative complement of r with respect 

to sand t provided r+r'=t and rxr'=s. In distributive.lattices the relative.com­

plement is unique, if it exists. 

-3-



Definition. An element r in R is said to be join-irreduciblefif r=s+t implies r=s 

or r=t. (An element r in R is said ·to be meet-irreducible if r=sXt implies r=s or 

r=t.) 

In a finite distributive lattice, each element r has a unique representation 

in the form r=r
1
+ ••• +rk when k (which depends on r) is made as smaqUas::;possible 

and the r 1, ••• ,rk are join-irreducible. The number of join-irreducible elements 

(excluding the smallest element) equals d(R). If r is join-irreducible and r ~ 

r 1+ ••• +rn then r ~ ri for some ri. If r >sand r is join-irreducible ors is 

meet-irreducible then for u such s < u < r there does not exist a relative comple­

ment. In all of the examples (except in section 3) the largest and smallest 

elements each will be both join- and meet-irreducible. Hence complements will not 

exist--a complement being a relative complement with r being the largest and~ being 

the smallest in the lattice. In most of the examples to be considered relative 

complements will not exist. (Because of the location of join-irreducible elements.) 

2. Two-Sample Problem. Let x1 , ••• ,Xm be independently and identically distri­

buted with density f(x)- and Y1, ••• ,Yn be distributed independently of the X's as 

well as being independently and identically distributed with density g(x). Assume 

that for X < y 

f(x) > f(y) 
g(xJ g(yJ". 

Let w
1

, ••• ,W be the X's and Y's when arranged from smallest to largest. Designate . m-1-n . 

by C=(C1 , ••• ,en) the ordered positions in the W sequence occupied by Y's.. Thus C is 

the vector of ranks of the second sample in the combined sample. The components of 

C will be an ordered subset of n of the first m-1-n integers. Further let c=(c1 , ••• ,c) . n 

be an element in the range of the random variable C. Write c > c' if ci ~ c' i for 

i=l, ••• ,n and strict inequality holds for at least one value of i. Then Theorem 6.1 
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_. · of (31 is equivalent to: If c > c' then P(C=c) > P(C=c'). 
i 

... 

---

To put this into the lattice framework, use the following.definitions: 

and 

cMc' = (min[c
1

, c'
1
], ••• , min[cn, ~'n]). 

It is easily verified that c+c' and cxc' are rank orders. The next step is to show 
. . .. 

that these binary operations satisfy the assumptions for a distributive lattice. 

L.l. follows since max (a,a)=a and min (a,~)=a. L.2. follows since max (a,b)= max 

, (b,a) and min (a,b)= mi~ (b,a). L.3. follows since max (a,max(b,c) )= max(max(a,b), 

c) and min (a,min(b,c))= min(min(a,b),c). L.4. follows since min(a,max(a,b))=a and 
1 

max (a,min(a,b) ):'=a. il~. follows since max\imin(a,b), min(a,c), min[b,c) )= "the 

middle one of a,b and c" = min(max(a,b), max (a,c), max (b,c)). 

Next the definition of c > c•· given above is equivalent to (max(c
1

,c•
1
), ..• , 

max(c ,c' ))=(c
1

, ••• ,c) and that c~c' but in terms of the lattice operations this 
n n n 

becpmes c+c'=c~c'. Thus, the definition of c > c' is the lattice definition in 

terms of the binary operation+. 

Since the number of rank orders is (m+n), the lattice is finite. 
n 

c will cover c' if their coordinates are all equal,.except one coordinate of 

c is one larger than the corresponding coordinate of c'. The largest element is 

(mrl, m+2, ••• ,m+n) and -the smallest element is (1,2, ••• ,n)~ If c > c' then a chain 

from c' to c is formed by increasing a single coordinate by one unit at each step 
n 

in the c)!ain. Hence if e: >~p' the distance from c' to c is 
n 

Z (c1-c'i ). So 
!=1 : . n 

that in particular d(c)= ~ c. - n(n+l)/2 and .the length of 
i=l 1. 

the lattice is Z (mti) 
i=l 

- n(n+l)/2 = mn. d(c) then appears as the.Wilcoxon statistic (less a constant). 

The number of c such that d(c)=K is (m+n) P (W=K+n(n+l)/2) where P( • ) is the 
n 

distribution of the Wilcoxon statistic under the null hypothesis, i.e., when the 

c are equally likely. 
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The join-irreducible elements are of the form 

(1,2, ••• ,k-1, k, ck+l' ck+l+l, ••• ,ck+l+n-k-1, ck+l+n-k) 

where k takes on the values 0,1 ••• ,ri. In more colorful language the join-irredu­

cible elements are those rank orders that either have one run in the second sample 

(the Y's) or two runs in the second sample but the smallest run is from the second 

sample. A join-irreducible element is characterized by the pair (k, ck+l). The 

following diagram illustrates the situation for m=4 and n=3• The higher elements ._.. 

are more probable. Join-irreducible, and meet-irreducible elements are designated 

by* and** respectiv~ly. 

d = 12 

11 

7 

6 

.... 

3 

2 

1 

0 
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-

Some examples of representations of elements in terms of join-irreduci6le 

elements is given below. Notice, that at most, three are required since there are 

three coordinates. 

367 = 167 + 345 
457 = 167 + 456 
267 = 167 + 234 
357 = 127 + 156 + 345 
257 = 127 + 156 + 234 

The number of lines in a diagram or average number of.lines per element is a 

measure of the complexity of the diagram. A uniformly most powerful rank order test 

for all levels of significance will exist if the diagram is a chain. Hence it is 

interesting to compare the obtained partial ordering's complexity to that of a chain 

with the same number of elements. In gene.ral, for t~e two sample problem the num­

ber of lines in such a diagram is (m+n-1)_ <m:~i2 ) ~r the. average number of lines per 

element is um/(m+n). This is usually far from 1 - (m+n)-l the value in a chain. . , . . . . n 

The number of elements covered by c is the number of first differences of the co-

ordinates Of C Which exceed ,!&}i·.~~~t~e: ... VOn\teOC.iOnetbei.e. .. 4Li};r~~Y8~'Q'c0o~4¢'1lfcftU'4itt in C 

with value 0). The number of elements covering an element c is also the number of 

first differences of the coordinates of c which exceed 1 (under the convention there 

is always a m+n+l coordinate with value m+n+l). 

Let N(c) [N'(c)] be the number of rank orders below (above) c in the partial 

ordering. Then in forming a critical region it is desirable to put into the region 

those c with large (small) values of N(c) [N'(c)]. Unfortunately the two criteria 

are not compatible as will be seen by the following illustration. Let m=2 and 

n=3, then 

Case A. Criteria compatible. 

N(234)=3, N'(234)=3 

N(l25)=2, N'(125)=5 
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Case B. Criteria incompatible. 

N(l35)=4, N'(l35)=4 

N(234)=3, N'(234)=3 

Case C. N' criterion fails. 

N(145)=5, N'(l45)=2 

N(235)=6, N'(235)=2 

Case.D. N criterion fails. 

N(l25)=2, N'(l25)=5 

N(l34)=2, N'(l34)=6 

When c > c' the two criteria are compatible. The example in Case A suggests that 

possibly further results in describing the partial ordering could be obtained, i.e., 

P(C=(234)) > P(C=(l25)). In fact this conjecture is not true as can be seen from 

Table I, p. 608 of [3] for the case m=n=3 and c=(l56) and c'=(234). 

As a special case assume g(x)=f(x-9) where Q > 0 and f(-x)=f(x). Then if c 

and c' are related in the following manner (assume m=n): c* is the set of integers 

not inc and c' is formed by subtracting the elements of c* from m+n+l, one has 

l 

i .... 

P(C=c)=P(C=c') -- seep. 975 of [4]. Such pairs of rank orders will be said to be -' 

equivalent. 
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Now to keep the lattice properties we will treat equivalent elements as a 
,, 

single element. In the case m=n=3, ·, ,. the diagram becomes: 

d = 9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

In general, the lattice will now contain 2n-l + (2n)/2 elements, 2n elements will 
n 

be of the original form, and the remainder will consist of pairs of equivalent 

elements, The number of lines is (
2rl) (2:=i) + 2n-2 , 

3. ·one-Sample Problem. Assume x
1

, .•• , ~ are independentty and identically dis­

tributed with a density function f(x,. 9) satisfying the following conditions: 

1. f(x,Q) = u(x)v(Q)ea(x)b(Q) , · [Although the parameter Q will not 
play a roll in the following, it is 

..., 2 • v ( Q) ~ 0, introduced to make these conditions 
appear to be the familiar ones used 

... 

... 

3. u(x)=u(-x) > O, in talking about "exponential" 
families of distributions.] 

4. If x < y then a(x) < a(y), and 

5. b(Q) > o. 

The rank order C=(~1, ••• ,CN) is formed in the following way: Take the absolute 

values of x1, ••• , ~ and let CN be the rank.of the largest (originally) positive 
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observation in the absolute values, let CN-l be the next largest rank of the posi­

tive observations, etc. If there were originally n positive observations let the 
I 

first N-n components of C equal O. Then let c=(c1 , ••• ,cN) be a vector in the range 

of C. There are 2N values of c and (N) values of c with N-n components equal to.O. 
n 

Theorems 2.1 and 3.1 of [5] imply that if c_i ~ c\ for i=l, ••• , N with strict in-

equality for some value of i th~n P ( C=c ') > P'( C=c 1 
) • 

Then the lattice operations+ and x are exactly the same as in the two-sample 

case. The proof that this partial ordering; is a distributive lattice is also 

the same as in the two-sample case. The above definition of> is consistent with 

these lattice operations and the definition of covering is the same as in the two-

sample case. The lattice is finite. The largest element is (1,2, ••• ,N) and the 

smallest element is (o, ••• ,o). 
N 

If c > c' the distance between them is E (ci-c'
1
), 

i=l 
N 

and in particular d(c)= E 
i=l 

ci and the length of the lattice N(N+l)/2. d(c) is the 

Wilcoxon one-sample signed rank statistic. The number of c such that d(c)=K is 

N 
2 P(W=K) where P( • ) is the null distribution of th~ Wilcoxon on~-samp~~ statistic 

for a sample of size N. 

The join-irreducible elemen_ts are those c cons is.ting of some O's and a con­

secutiye sequence of positive integers. The following diagram illustrates the 

situation for N=5, where.* designates_ join-irre~ucib~e and.** designates meet-

irreducible. Elements at the top are more probable. 
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d = 15 .**12345* 

I 
14 .**02345* 

I 
.. 13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

'**01345 

**01!45~**00345* 
I · ------- I **01235 00245 · 

I :--------___ I ------------
-**01234 *_ --------. 00235 ____-----**00145 

I --------- . . I ____----- I 
00234* 00135 **00Q45* 

I ~ -l -------- .. --v I 
00134=-=---=------ _yoo 25 · 200035 

I I . I 
00124 00025----· 00034* ,~--1.:><: 

.**00123* . ~00024-- ~00015 

I . . I -------- -'L-'L I 00023*---------00014----.__ **00005* 

I~ ------ t . 00013 . 00004* 

**00b12:------00003*--------- . 

00~*---------
1 

1 **00001* 

0 **00~0* 

In general the number of lines in such a diagram is (N+l)2N-2 • The average 

- number of lines per element is (N+l)/4, a result comparabie to,'the two-sample case. 

... 

-

The number of elements covered by c is one.more than the number of differences be­

tween consecutive .positive elements of c which exceed 1. The number of elements 

covering c can be found by working with the dual of c,~ say c* where c* is formed 

from the ordered positive integers less than or equal to N which do not appear i~ 

c, 1.e., the number of elements covering c is the number of elements covered by c*. 

Again, if c* is join-irreducible then c is meet-irreducible. 
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4. "Trend" Problem. Assume x 1 , ••• , XN are independently distributed and the fol­

lowing conditions will be imposed on f(x, Qi) the density of Xi: 

A. L 91 ~ 92 ~ • • • ~ QN • 

A.2. If Qi< 9. and x < y then f(x, Qi)f(y, 9.)-f(x, 9.)f(y, 9.) 
J J J l. 

~ 0 with strict inequality for some x < y. 

A.3. f(x, 9) is a continuous function in x for each Q. 

A.4. The.set of points· where f(x, 9) > 0 does not depend on h. 
B. f(x, Qi)=g(9i)h(x)e

9
ix. 

c. The Qi=iQ > 0 and f(x, Qi)=f(x-i9)=f(iQ-x). 

The rank .order C=(C
1

, ••• , ~N) associated with·x
1

, ••• , XN is defined in the following 

1 

I ..... 

' - \ 

manner: c1 is the index of the smallest Xi, ~
2 

is the index of second smallest Xi, _, 

••• , CN is the index of the N-th s~llest ( largest) Xi. Let c=(c
1

, •• ·., cN-? be an 

element in the range of C. Then there are N: values of c, each c being a permuta-

tion of the first N positive integers. The rank orders c and c' are.said to be 

equivalent if ci+c'N-i+l=N+l. Under assumption c. equivalen+ rank orders are equally 

probable and hence when assumption C. is used equivalent rank orders will be treated 

as a single element (see Theorem 5 of [4]). 

orders c and c' are related so that 

N 

Under assumption A.1 and B if two rank 

t (c -c'.) ~ 0 for i=l, ••• , N with strict inequality for some i, then 
j=i j J 

P(C=c) > P(C=c'). (See Theorem 3 of [4]). If c can be obtained from c' by inter-

changing.elements of c' such that at each interchange the larger element is moved . . 

to the right 4and the smaller element to the left) then under assumption A. one has 

.P(C=c) > P(C=c'). (See Corollary 1.1 of [4]). Actually all one needs to know is 

that the Q's involved in the interchanges are not all equal. 
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The partial orderin~s associated with Theorem 3.and Corollary 1.1 do not in general 

generate a lattice. FQr instance when N=3 the partial ordering is: 

This is not a lattice since 231 and 312 do not have a unique upper bound. In the 

case of N=4, situations of the same sort arise: 

3214><3142 ' \ 3241 3412 

Now 3241 and 3415 do not have.a un~que upper bound. Nevertheless, the partial order­

ing from Corollary 1.1 does satisfy the Jordan-Dedekind chain condition. d(c) is a 
N 

linear function of Kendall's tau, i.e., d(c)= E [number of cJ. which exceed ci where 
i=l 

j > i). The height of the partial ordering is N(N-1)/2. Even with the use of C and 

Theu.r:.em. 5, one does not obtain a lattice -- the example for N=4, given above, shows 

this. Apparently assump~ion 5 and Theorem 3 only yield new results,. i.e., supple­

mental (never contradictory) to Assumption A and Corollary 1.1 when N ~ 5. 

The following diagram illustrates the situation for N=4. Again elements above 

dominate those below. Only the first half of the diagram is given, the other is 

symmetrical to it. In general the number of lines in such a diagram, e.g., just 

using Corollary. 1.1, is given by 

N~[(N-1)/2+2(N-2)/2.3+2(N-3)/3.4+ ••• +2.1/N(N-1)]. 

In particular one obtains 

N 

2 

.3 

4 

5 

Number of lines 

1 

8 

.56 
412 
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d == 6 

5 

4 

3 3214 

-._J - -J 
J 

l 
.\ 

I ... I _ J 
-.. J 

- J 
J 

1234 

. . I . . J _.J : _ J . J , 
-,- I _J 

J 
..::J­,..., 

I 

-~ J --.J 



.. 

5. Two-Sample Problem with Censoring •. As in the two sample problem (Section 2), 

one has two samples of sizes m and n respectively. ·Now, however, a rule is specified 

so that only the smaller observations are obtained. If in fact N* observations are 

obtained and of these m* are from the first and n* are from the second sample, a 

rankf'oriier is formed as in the ·two sample problem but·m* will be added as a new first 

component. Thus if one observed from the.first sample (-3, 8, 4) and from the 

second saq,le (2,9) the rank order would be c=(3;2, 5). The following restrictions 
. ' 

are obvious m*-~ m, n* ~ n, m*+n*=N* ~ m+n, the coordinates of c following the";" 

are a subset of n* of the smaller m*+n* positive integers, and if c has only one 

component there were no observations obtained from second sample. Certain rank orders 

are redundant, i.e., once n*=n or m*=m one knows which additional rank orders will 

be obtained if further observations are collected. Section 2 of [2] describes in 

deta¥.1. the numbers of rank orders and numbers of non-redundant rarik orders for 

various consoring schemes. In this case with the assumption ma.de in Section 2, the 

rank .orders are not equi.:.probable. However,. if each rank order probability is di­

vided by its probability under the null hypothesis to obtain the likelihood ratio 

of the rank orders then the following partial ordering.of the likelihood ratios is 

obtained. (Rules b. and c. sh9"ld not be ap.plied to· pairs of redundant rank orders;): 

a. If c and c' are such that m*"=m'* and ci ~ c'i for i=l, ••• , 

n*(=n'*) then write c > c' and the likelihood ratio of c 

is greater than that of c'. 

b. If c and c' are identical except m* > m*"' then write .c > c' 

and the likelihood ratio of c is greater than that of c'. 

· c. If for c and c ' one has m*=m*"' , n* < n*' , and c . =c' . for 
1. 1. 

i=l,2, ••• , min(n*, n*') then write c > c' and the likeli-. 

hood ratio of c is larger than that of c' • 

Clearly this is a more complicated partial ordering than tho~e considered previous­

ly. 
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An application of b. and then c. yields (2;2) > (1;2, 3), i.e., (2;2) > (1;2) 

> (1;2,3). Hence there is more to the partial ordering for fixed N* than a. would 

indicate. 

In discussing the partial orders, one can either work with all of the rank 

orders or those that would appear under a specific censoring scheme. 

In the general case it is easy to show that not all chains between a given 

pair of points have the same length. Consider chains between (3) and (1;2). The 

intervening links for one chain are (2), (1), and for another chain (2), (2;3), 

(2;2). This implies the entire structure does not have the distributive property. 

Considering all of the rank ord~~s as a whole the.structure does form a lattice 

in the following manner: 

Define: 

c+c' = (max(m*,m'*); max(c1,c 1

1), max(c2 ,c' 2 ), ••• ,max(c i ( * '*)'c' i ( * '*))) .m n n ,n m n n ,n 

" 

cxc' is defined in a dual manner, i.e., replace min by max and max by min throughout. 

These definitions will yield the same ordering as given in a., b., and c. Also one 

can verify ·that the assumptions for a lattice are satisfied. 

As a special case assume N* is fixed and that N* < min(m,n). Now it can be 

shown that the lattice is distributive • 

••• ,cN*-m*) is given by 

(N*+l) [m* - N2* ] + N~-m* ci 
i=l 

The distance to the origin from c=(m*;c
1

, 

This is closely related to the statistic of corollary 3.5 of [2], and essentially 

is the Wilcoxon statistic with a "correction for censoring". In structures of this 

form there are 2N* rank orders, and the length of the structure is N*(N*+l)/2. It 

is easily verified that the structure is a sublattice of the lattice of all rank 

orders, i.e., it is a lattice with the same+ and x operations as the lattice for 

all of the rank orders. The number of lines in these diagrams are 
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The following illustrates the partial ordering for N*=5 and 5 < min(m, n) 

( large likelihood ratios are at the top): · · 

d = 15 

14 

i3 

\ 
12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
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As another censoring scheme, _assume n*=k where k ~ n, and thus m* and N* are 

random variables, but n* is fixed. To illustrate the situation.consider the{'case 

where m=4, and kc2 • Then: 

d = 8 (4;5 6) 
I 

1 ------(4;1\ 6)-----
6 (3;4 5) -(4;3 6) 

I I 
5 (3;3 5)---- (4;2 6) 

(2}3 4)~(3;2 5)<(4;t 6) 4 
I ~ . I 

3 (2;2 4) . (3;1 5) 
I I 

2 (1;2 3)----- (2;1,4) 

1 (1;1 3)~ 
I 

0 (O;l 2) 

In this case the structure is isomorphic to the structure for the two-sample 

problem, where the first sample size ism.and the secondsample size is k. How­

ever, here we are talking about likelihood ratios in contrast to probabilities 

(the situation for the two-sample problem). 
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APPENDIX: Some Questions 

1. If d(c)=d(c') can one bound IN(c)-N(c')(? 

2. Are there further details of the· partial orderings which have been described 

here which could be deduced from the present assumptions or slight modifi­

cations of them? We know for instance that in the two-sample problem for 

case of exponential alternatives that the partial ordering has more detail, 

and the same is true for normal alternatives in the one-sample problem • 

. 3. What statistical interpretation could be attached to such concepts as join­

irreducible? 

4. Are there more interesting censoring schemes than those discussed in Section 5? 

5. There are other natural partial orderings to consider, e.g., the two-sample 

problem with two-sided alternatives. Will these yield lattices? 

6. What kinds of assumptions would be rdquired for the "trend" problem in order 

to obtain a lattice? 

7. Are there other lattice concepts, particularly quantitative ones which would 

be of interest here? 
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