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ABSTRACT 

In this thesis classes of nonparametric tests for circular distributions 

are investigated. In the one-sample problem the null hypothesis states 

that a distribution is symmetric around the horizontal axis. An interesting 

class of alternatives consists of shifts of such distributions by a certain 

angle ~ * O. In the two-sample case the null hypothesis claims that two 

samples have originated from the same underlying distributiono The 

alternatives considered consist of pairs of underlying distributions such 

that one of them is obtained from the other by a shift of the probability 

mass by an angle ~ * O. 

The general outline of the reasoning is about the same for the two 

cases: We first define (Sections 2 and 8) a suitable group of transfor

mations of the sample space, which is large enough to make any invariant 

test nonparametric, in the sense that any invariant test statistic has 

the same distribution for all elements of the null hypothesiso We then 

derive, for parametric classes of distributions, the efficacy of the 

best parametric test, in order to have a standard of comparison for 

nonparametric tests (Sections 3 and 9). Next we find a locally most 

powerful invariant test against shift alternatives (Sectiora4 and 10). 

In both cases this suggests a general class of nonparametric test 

statistics. 

In the next step we find the large-sample distribution of the test 

statistics under the null hypothesis as well as under alternatives (Sections 

5, 12, and 13). In the one-sample situation the differences between the 

linear and the circular case are only minor, and hence the arguments 

follow very closely the classical line of reasoning. The two-sample 

case poses a new type of problem, since the locally most powerful test 
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statistic has a quadratic character. It has been found useful to use 

the theory of measures on Hilbert spaces for determining the asymptotic 

distribution of the test statistic. 

Finally, the asymptotic relative efficiency of these test sequences 

(as compared to best parametric tests) is derived (Sections 6 and 14). 

Bahadur's concept of efficiency seems to be appropriate and is used 

exclusively. The results obtained can be expressed in compact form in 

terms of inner products of vectors in certain Hilbert spaces. These 

expressions immediately yield a solution to the variational problem of 

maximizing the efficiency. Under certain regularity conditions an 

asymptotically efficient nonparametric test exists in both cases. We 

then illustrate the general theory by a few examples of test statistics, 

in particular by a two-sample test proposed by Wheeler and Watson 1 . 

(Section 15). 
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I. PRELIMINARIES 

1. Circular Distributions vso Distributions on the Real Line. 

For convenience we define the circle as the set of complex numbers 

C = {z: lzl = 1}. The relation x __. s(x) ix 
= e 0 ~ X < 2Tf, defines a 

one-to-one correspondence between C and J = [0,2Tf). J is a measurable 

space if the measurable sets are defined to be the Borel sets on this 

interval. By means of the correspondence s(•) we define the measurable 

sets of C to be the images (by s(•)} of the Borel sets on Jo Any 

measure on one of the two ·measurable spaces induces a measure on the other. 

There is then a measure-theoretic isomorphism between the two spaces and 

hence for measure-theoretic consideration we are free to choose the copy 

which is most convenient for the problem in question. A circular distribution 

is then simply a distribution on C or, equivalently, on J. 

With respect to other structural relations the situation is not so 

pleasant. C has a group structure (as a subgroup of the multiplicative 

group of the complex number system), but the group structure on J induced 

by S-1(·) does not coincide with any of the basic algebraic structures on 

J (as a subset of the real line R). 

C and J are topological spaces (with the topologies induced by the 

topological spaces of which they are subsets). With respect to these 

topologies s(·) is a continuous mapping, but it is not a homeomorphism, 

S-1(·) i.e., is not continuous. In fact a homeomorphism (with respect to 

these topologies) cannot exist, since C is compact whereas J is not 

(using the fact that the continuous image of a compact set is compact). 

- 1 -
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One difference between C and J is of considerable importance 

in the investigation of nonparametric tests: J is an ordered set, C 

has no natural order relation. The one-to-one ·mapping s( •) induces an 

order relation on C, but this amounts to choosing a rather arbitrary 

cut-off point and a direction. This fact, for example, makes it impossible 

co define the rank of an observation in a satisfactory way, unless the 

distribution defines a "natural" cut-off point, as, e.g., the symmetric 

distributions considered in Chapter II. 

Statistical analysis of circular distributions: Much work has been done 

in the analysis of circular distributions. There is, on one hand, a wide 

area of applications for these distributions (see, e.g., E. Batschelet 

(1965)); on the other hand probabilists have been attracted by the particular 

features of the circle group and they obtained a number of analogues of 

classical probability theorems for the circle group and for compact groups in 

general (see, e.g., U. Grenander (1963)). We are not concerned with either 

of these two areas of inve·stigation--we restrict our interest to statistical 

problems which arise in connection with circular distributions. 

Parametric classes of circular distributions: Among the parametric classes 

of circular distributions the von Mises distribution certainly is. of extreme 

importance. It is sometimes called a circular normal distribution. Its 

density is 

(1.1) = 
1 

21TIO(k) exp (k cos (x-8)), 0 ~ X < 2fT; 

O ~ 8 < 21T, k ~ o. 

G is the mode of the distribution, and it is usually called the location 

parameter. k is a measure of concentration. In the particular case k = 0 

we get the uniform distribution. I
0

(k) is a suitable normalizing constant. 

- 2 -



- In the Appendix (formula A.3) it is shown to be the Bessel function of purely 

imaginary argument of order zero. In the Appendix we also derive a few 

additional results about this distribution, which are useful in making 

comparisons between parametric and nonparametric tests for the location 

parameter. 

Besides the class of von Mises distributions there is another type of 

unimodal circular distribution, but it is of minor importance: the sine

wave distribution. Its density function is simply 

(1.2) 1 1 
= 21T + 21T cos (x-8), 0 ~ X < 2JT; o ~ e < 21T. 

Finally it should be mentioned that any distribution on the real line 

determines a circular distribution if its probability is wrapped around a 

circle. Thus we get a "wrapped normal distribution11
, a "wrapped Cauchy 

ciistribution"' and so on. For more details see Gumbel, Greenwood, and Durand 

( 1953). 

Moments of circular distributions: Various efforts have been made to define 

moments for circular distributions in a useful way. Some important information 

is contained in the notion of a mean vector. This is the vector from the 

center of the circle to the center of gravity of the distribution. Its 

direction certainly is a descriptive parameter of the distribution. In the 

particular case of a unimodal, symmetric (with respect to the mode) density 

the direction of the mode coincides with the direction of the mean vector 

(see, for example, the v. Mises distribution). The length of the mean vector, 

i.e., the distance between midpoint of the circle and the center of gravity 

of the distribution, is a descriptive measure of the concentration of the 

mass. It varies between 0 and 1. From the Appendix it follows easily 

that for the v. Mises distribution this measure of concentration is 
I 1(k) 

I0(k)' 

where I
1

(k} is the Bessel function of purely imaginary argument of order 

- 3 -
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one. Further connnents on these and other descriptive measures may be found 

in E. Batschelet (1965). 

Trigonometric moments: A useful tool for analyzing circular distributions is 

the sequence of trigonometric moments defined by 

(1.3) µ,m = 

where F is the 

counterparts are 

(1.4) µ,m 
(c) 

2TT imx J e dF(x), 
0 

c.d.f. of the probability 

the sequences µ,m 
(c) and 

2Tf 
= J cos (mx) dF(x), 

0 

m = o~ ± 1, ± 2, ••• 

distribution (on J). Its real 

(s) 
µ,m , m = O, 1, 2, ••• , where 

2TT 
= J sin (mx) dF(x). 

0 

It can be seen that the mean vector defined above is the vector ( (c) (s)) 
µ,1 ' µ,1 • 

The sequence {µm, m = 0, ± 1, ± 2,... } is the sequence of Fourier 

coefficients of F, and it is a well-known fact that it in turn determines 

F, so that the trigonometric moments of a circular distribution characterize 

this distribution. 

- 4 -
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II. ONE-SAMPLE CASE 

2. Invariance Considerations in the One-Sample Case. 

Definition of a location parameter: Let f(•) be a positive, periodic 

function on the real line R, with period 2lT and with the property 

2TT J f(x) dx = 1. 
0 

Let I(x) be the indicator function of [0,21T), i.e., 

= 

~

' I(x) 
o, 

if OS: X < 2TT, 

otherwise. 

The family of densities 

(2.1) ®' = (f(x-8) I(x): 0 ~ 8 < 2TT} 

on (0,2TT) is a one-parameter family of densities and e is called 

location parameter. 

In this definition 8 is defined quite arbitrarily. In many instances 

it seems natural to restrict this arbitrariness somewhat. Thus if f(•) is 

symmetric with respect to some point ~ (0 ~ ~ < 2TT), then we redefine f(•) 

by shifting it by the amount ~, so that it becomes symmetric with respect 

to 0, and hence f(x-8) is axially symmetric (as a density on C) with 

respect to the axis Oeii on the complex plane. If f(·) is symmetric 

with respect to O and periodic with period 2IT, then it is also symmetric 

with respect to rr, since 

(2.2) f(IT+x) = f(IT+x-2TT) = f(x-rr) = f(IT-x), any x. 

This shows that even in the s~etric case t is not defined uniquely. 

However, in most cases of interest we have f(O) ~ f(IT), and in these cases 

we will, w. l.o.g., assume that f(O) > f(IT). Thus, for example, in the case 

- 5 -
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of the v. Mises distribution defined by (1.1) 8 satisfies all our 

assumptions about a location parameter, provided k > O. 

Unless k = 0 these conventions define 8 uniquely for the v. Mises 

distribution. This will be the case in all situations, where the density is 

unimodal and symmetric. There are, however, cases, e.g., the class of densities 

{C(k) exp {cos (2x-8)): 0 ~ 8 < 2Tf}, where a given density does not identify 

8 uniquely. In these cases statistical procedures can never detect the 

ncorrect" 8. The extremely degenerate case of a uniform distribution is 

another case in point. In order to exclude these difficulties we assume, 

for the one-sample case, (i.e., throughout this chapter) that f(•) is 

symmetric withrespect to O, that f(OL.~ f(x) for x E: (0,21T), and that 

f(IT) < f(O). Under these assumptions the location of f(•) is defined 

uniquely {up to multiples of 2Tf), and hence the location parameter 8 

is a uniquely defined parameter for the class of densities (2.1). 

H;ypothesis of symmetry: Let f(•) have the properties described above. If 

we are to test H: 8 = 0 vs. K: 8 ~ O, then this is equivalent to testing 

H: the distribution is symmetric with respect to O vs. C 
K = H • This 

equivalence of symmetry and 8 = 0 will allow us to apply invariance 

considerationa to the problem of testing a simple hypothesis about the 

location parameter e. 

Transformation group: Let F (on (0,2IT]) be the c.d.£. of a circular 

distribution, F continuous, strictly increasing. We now consider the more 

general problem of testing 

(2.3) 
fH: 
LK: 

F(x) + F(21T-x) = 1 for all O ~ x ~ 21T, 

vs. 

F(x) + F(2Tf--x) it 1 

In other words, H is the class of continuous circular distributions 

synnnetric with respect to the horizontal axis and K is the class of all 

- 6 -
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continuous alternatives. In defining a suitable group of transformations 

we make use of the one-to-one correspondence s(•) between {0,2IT) and 

C defined in section 1 (s(x) = eix). By this isomorphism any group 

T = [t} of transformations on C has a corresponding group T' = [t'} of 

transformations on (0,2IT)) and vice versa. 

We define T' and generate T by means of this isomorphism. Let 

T' = [t' ( •)}, where t' ( •) is any continuous, strictly increasing mapping 

of (0,2TT] onto (o,2rr] with the property 

(2.4) t'(2TT-x) + t'(x) = 2TT, all x e (0,2TT]. 

In particular we have t'(O) = O, t'(IT) = IT, t'(2TT) = 2IT, t'((O,IT)) - (o,IT) 

and t'((IT,2IT)) - (IT,2IT). I.e., the induced transformation t maps the 

upper half-circle onto the upper half-circle and the lower half-circle onto 

the lower half-circle. By (2.4) the "deformation" obtained by t is the 

same for upper and lower half-circle. 

Lennna 2.1: The class T' of strictly increasing, continuous trans

formations of (0,2TT] onto [0,2IT] satisfying (2.4) is a group. 

Proof: The existence of a unit element and of a strictly increasing 

continuous inverse function (t')-l is obvious. We only have to show that 

it satisfies (2.4). Assume the contrary. Let x be such that, say, 

'!'hen, applying the strictly increasing t' on both sides, we obtain 

2TT-x > t'(2TT-(t')- 1(x)) = 2TT-t'o(t')-
1

(x) = 2TT-x, 

a contradiction. 

Definition: The transformation group T (on c) is the group of 

transformations corresponding to T1 by means of the isomorphism s(•); 

i.e., t(x) = sdt 1 ds- 1(x) for all x e C. 

- 7 -
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Induced group: If X is a circular random variable1 with a continuous 

c.d.f. F(x), 0 ~ x < 21T, t e T, then t(X) is a circular random 

variable with c.d.f. Fo(t')- 1, where t ~ t' under the isomorphism 

s(·). Define 

(2.5) B = (F: · F is a continuous, strictly increasing c.d. f. 

on [0,2TT)} = H u K. 

Then for every pair of elements t g T, F E: 9 the c. d. f. Fo( t' r l 

is in''fj). It is easy to see that the class of mappings 

(2.6) t : F -~ Fo ( t ' f l 

is itself a transformation group T, acting on members of <9, and that 

the relation t --. t is a homomorphism. T is called induced group. 

Invariance of the hypothesis: If a testing problem exhibits certain 

symmetry relations, one would like to restrict the class of test statistics 

to those which match this type of symmetry, since otherwise a test would 

depend on a specific labeling of the sample points, which might be quite 

arbitrary. Such a restriction is usually possible, provided that the 

problem itself is invariant, i.e., provided that T maps H into H 

and K into K. We show that this requirement is satisfied in our case. 

Let 

t' : 

Lemma 2.2: For every t e T we have tH = H and tK = K. 

-Proof: Since t 

t'(x) = y, then 

IO ,21T] ont~ IO ,2TT) 

has an inverse on ·J, we must have t'9=8. 

( t Ir 1c2rr-y) = 2Tf-( t If 1(y) _.= 2TT-#,,);~y (a~.4).. 

we get the relations 

F € H ~.::;> F(x_) + F(21T-x) a 1 -~---~ FO( t' f \y) + Fo(21T-( t I f 1
(y)) = 1 

Since 

--~ Fo(t•r1(y) + Fo(t•r1(2TT-y)=- 1 ~ Fo(t•r
1 

6 H~tF s H. 

Hence tH = H, and consequently tK = t8-H) = t:0-tH = 9-H = K, 
q.e.d. 

1By definition a circular random variable is a random variable taking its 
values on C, or, equivalently, on J. 

- 8 -
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Maximal invarian~: Let a sample outcome x1 , x2 , ••• ,xn be given on C. 

Construct a set of points y1 , y
2

, ••• ,yn, where 

if x. is on the upper half-circle, 
l. 

(conjugate complex) if x. is on the lower half-circle. 
l. 

Let 

the 

be the ranks of the x. 
l. 

on the upper half-circle among 

where we use the positive direction (counter-clockwise) and 

as the cut-off point to define the order. Then we get the following 

Lennna 2.3: The ranks of the observations on the upper half-circle 

among the Y. (i = 1, 2, ••• ,n) is a maximal invariant under T. 
]. 

0 

Proof: (a) Since any t' s T1 is monotone increasing and skew-symmetric 

around (TT,TT), the corresponding t does not change the relative position 

of the observations, i.eo, r1,···,rm is invariant under T. 

( b) If two samples have the same rank ·sequence r 1 , r 
2

, ••• , rm 

then the corresponding 

of the observations. 

y. 1 s may differ only with respect to the spacing 
l. 

It is then obvious that there exists a (continuous, 

strictly increasing) polygon t'(x) on [O,TT], with t'(O) = O, t'(TT) = TT, 

which maps the first y-sequence into the second one. Extending t'(·) to 

the interval [0,2IT] by skew-synnnetry around (TT,TT) yields an element of 

T'; and since m and r 1 , •• o,rm are the same for the two samples, the 

corresponding element t(•) s T maps the first sample into the second. 

Thus two samples with the same rank sequence r
1

, ••• ,r 
m 

orbit, which proves maximality of the invariant. 

lie on the same 

Distribution of an invariant statistic: E. L. Lehmann (1959~ page 220, 

Thm. 3) shows that the distribution of an invariant statistic depends on 

the underlying distribution F only through the orbit (defined by the 

induced group T) of which F is a member. We now show that all the 

elements of H belong to the same orbit. 

1
sufficiency of the norder statisticn allows us to neglect the order in 
which the x.'s were obtained. 

l. 

- 9 -
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Theorem 2.1: Any test of H vso K depending only on the ranks of 

the observations on the upper half-circle (among the ncombined11 
• sample, 

consisting of the y.'s) is nonparametric, i.e., it has the same distribution 
]. 

for all elements of H. 

Proof: According to Lehmann's theorem referred to above it suffices 

to show that if Fe H and Ge H, there exists a t e T such that 

tF = G, or, equivalently, -1 Fo(t') = G for some element t' e T'. Now 

set -1 
t' = G OFo 

t'([0,2TT]) = [0,2TT]. 

upon applying -1 G , 

is a continuous, strictly increasing mapping and 

Since G(2TT-y) = 1-G(y) 

2TT-y = G-l(l-G(y)). For 

for any ye [o,2rr], we have, 

-1 
y = G oF(x) we obtain 

i.e., ti satisfies (2.4). Since (t')-l = F- 1oG, we have tF = Fo(t')-l 

-1 = FoF oG = G, and this completes our proof. 

- 10 -
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3. Asymptotic Relative Efficiency of Tests for Location Parameters • 

Concept of relative efficiency: Nonparametric tests of a hypothesis have 

the advantage that the probability a for a Type I error can be controlled 

even if only a minimum of information about the underlying distribution is 

available. But in general one has to pay for this advantage by a larger 

probability S for a Type II error, i.e., the power. function for alternatives 

is lower. In many cases the powers of a parametric test and of a suitable 

nonparametric test can be made equal to a certain S for a specific 8 s K 

by taking a larger number of observations for the nonparametric test. The 

n' ratio of the two sample sizes -, where n' corresponds to the best 
n 

parametric test, is then called the (exact) efficiency of the nonparametric 

test. In general, if {T }, 
n 

{T~,} are two sequences of test statistics, 

this efficiency e(T, T' ,) 
n n 

depends on a, S, 8, and, of course, on the 

underlying distribution. Various asymptotic efficiency measures (ARE) have 

been proposed, which are independent of a, S, and 8. The efficiency concept 

used most frequently has been suggested by Pitman (1948). However, the 

Pitman-efficiency is defined only under quite restrictive conditions. In 

particular T has to be asymptotically normally distributed under H as 
n 

well as under K. A more general and for our purposes more suitable measure 

of efficiency, which is applicable for many non-normal cases, has been 

proposed by Bahadur (1960). 

Bahadur-efficiency: Bahadur's concept of efficiency has been extended to 

an even more general class of test statistics by Gleser (1964). We state 

here Gleser's assumptions and show how the efficiency is computed. 

Let T, T' be two test statistics for testing the hypothesis 8 s H. 
n n 

Assumption 1: There exist continuous cumulative distribution functions 

F(i)(x), i = 1, 2 such that for each 8 s H 

(3.1) lim P
8 

{T}i) ~ x} = F(~) (x), all x. 
n - = 

- 11 -



Assumption 2: There exist t. > 0 and a.> 0 such that 
]. ]. 

(3.2) -2 log (1 - F(i)(x)) 
t. 

= a.x J.(1 + o(l)), 
]. 

x-+co, i = 1, 2. 

Assumption 3: There exist continuous, strictly increasing functions 

b (i) (x) mapping ( 0 ,co) onto.. ( O ,co ) , and functions c.(8), 
]. 

0 < c.(e) < co, 
]. 

defined on K, such that 

(3.3) p lim T (i)/b(i)(n) = c.(8), 
n J. 

all e e K; i = 1,2. 

Assumption 4: 

(3.4) 

Bahadur has shown that under these conditions tests with critical 

regions 
( ·) (i) T i ~ C 

n n,a 
are optimal in a certain sense and that an 

(approximate) measure of asymptotic relative efficiency at 8 e K is 

given by 

(3.5) 

If we test a simple hypothesis about 8, e.g., H: 8 = e
0 

vs. K: 8 ~ e
0

, 

then we are primarily interested in evaluating 

(3.6) = lim e(T (l), Tn( 2 )/8), 
e -t e n 

0 

since under these conditions most tests are consistent for all alternatives 

of interest and hence the discriminatory power for alternatives "close to 

the hypothesisL' is the property that is of basic importance for the comparison. 

(3.6a) 
t. 

s.(8) = a.c. ].(e) 
]. ]. ]. 

is sometimes called asymptotic slope of the test based on {Tn(i)}, since 

for a suitably normalized sequence K (i) 
n it is the rate at which the 

- 12 -
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probability escapes to infinity, if 8 :/: e

0 
is the true parameter •. For 

more details see R.R. Bahadur (1960). 

If the test statistic T is asymptotically normally distributed, there n 

is another measure of the effectiveness of this sequence of tests, which is 

closely related to the asymptotic slope of the test sequence. This measure 

is called efficacy. 

Definition: For testing H: 8 = 8
0 

vs. K: 8 > s,
0 

let T be a test 
n 

statistic which is asymptotically normally distributed for all e. Let 

quantity 

(3.7) 

~ -+ =. Assume that 

and is different from 

eff (T) = (c\L~ )2 / cr 2 

n o8 e-e 8 0 
- 0 

cre,-+ cre 
0 

as 

O. Then the 

is called the efficacy of the sequence {T } of test statistics. Under 
• n I 

quite general conditions the Pitman ARE is equal to the ratio of the 

efficacies of the two test sequences. 

If the assumptions for applying Pitman's concept of the ARE of two test 

sequences are satisfied, then Bahadur's assumptions are also satisfied and 

the two values coincide. It follows easily from the definitions that in 

this case we have 

eff (T ) 
n 

1 d
2 I = 2 ~s(8) , 

8=0 

where s(8) is the asymptotic slope. Using this equation as a definition, 

we will extend the notion of efficacy of a test sequence 

cases where Assumptions 1-4 are satisfied. 

(T } to all the 
n 

Some remarks on the consistency of a test sequence: A sequence (T } of 
n 

test statistics for testing H vs. K is called consistent for a particular 
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(T s Critical Region) 
n 

whatever the size of the test might be. 

= 

Lemma 3.1: A sequence of tests of the form 

1 

T ~ C , n n where T 
n 

satisfies (3.1) for 8 e H and (3.3) for es K is consistent for any 

e such that c(e) > o, provided that b(n) - m. 

Proof: Because of (3.1) the critical points C converge to some value 
n 

c. Hence C . ./b(n) - O. n 
(3.3) is equivalent to T /b(n) - c(8) - 0 

n 
in 

probability. Thus we get 

T C T C 
P

8
{T > C} 

n n = Pefb(:) > b(~)} = Pfb(~) - c(e) > b(~) - c(8)} .-. 1 

as n _. m. 

Asymptotic slope of 11best11 parametric tests: In order to evaluate the 

merits of a certain nonparametric test of a hypothesis, one has to have a 

standard with which it is to be compared. Such a standard can usually be 

obtained if it is known· .. that the underlying distribution is a member of a 

certain parametric class. If efficiency is the criterion used to compare 

different tests, then one would derive the asymptotic slope of the (parametric) 

test with highest slope and this value would then be used as standard of 

comparison. We shall derive this standard for a family of distributions 

with a location parameter e. Since:we are not primarily interested in 

parametric tests, we will be somewhat informal in deriving our results. In 

particular we will assume that the densities are sufficiently regular, so 

that the required derivatives exist, that Fishers .. "information11 is finite and 

positive, and that the interchanges of limit processes are justified. For 

the v. Mises distribution, which is of basic interest to us, it is easily 

seen that these assumptions are satisfied. 
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- Let f(·) be a positive, periodic function on R, with period 

2IT, such that 

2TT 
J f(x) dx = 1. 

0 

Define I(x) to be the indicator function of [0,2Tf). Then 

(3.8) [f(x-8) I(x): Os e < 2TT} 

is a one-parameter family of densities of circular distributions. & is 

a location parameter. 

Let X be a circular random variable. If we are to test 

H: X has density f(x) I(x) 

vs. 

K: X has density f(x-8) I(x), some specific ~ > O, 

then according to the Neyman-Pearson lennna the most powerful test of H 

vs. K rejects H if 

(3.9) T ' n,8 = 
n 
I: 

i=l 

f(x.-8) 
l. log -f(_x __ )-

J. 

for some c
9 

depending on ~. 

An equivalent test would be 

(3.10) 
n f(x.-8) 

T l ~ log 1 

n,& = e i=l f(xi) 

(c is to be understood as a generic constant.) By the Central Limit 

Theorem T 
8 

is asymptotically normally distributed. 
n, 

Upper bound for the efficacy: T is not a test statistic for testing 
n,8 

H: e- = 0 vs. K~· t > O, since it depends on a specific 8, but it is 

easy to see that the "efficacy" based on tests Tn,e > c8 is an upper bound 

for the efficacy of any proper test statistic T ' n 
since each of these tests 

is tailor-made for its specific 8. We now compute this upper bound. 
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2rr 2rr 

= :2[ J
O 

(log f}(:~))f(x-8)dx - J
O 

(log f}(:~))f(x)dx] 

2TT ( = n J log f x-8) - log f(x) f(x-8) - f(x) dx 

0 -8 -e 

:::--l,, n lrr a log f(x+8) I of (x+e) I dx 
ij-t() o 08 · 8=0 ae · e=o 

2TT ..r..itl 
= n J

0 
-~ f 1 (x)dx = n In~ (f), 

where Inf (f) = J~c~(W)2 f(x)dx = Eo(~(WY, 
. n ( f ~x)&) } f In the same way 1.t can be shown that Var8 Tn,-e = i2 Var8 log f x i e-+6 n In (f). 

Hence we obtain, as an upper bound. for the efficacy of any sequence of test 

statistics, 

(J.11) 

Example of an efficient parametric test: We will now show that there actually 

exists a test statistic T whose efficacy achieves this upper bound. The n 

heuristic approach we take consists in letting 8 go to 0 in (3.10), 

hoping that the resulting test statistic, 

good as 

we get 

(3.12) 

T e· n, 
Since 

lim ~ (log f(x-8) - log f(x)) 
8 -+ 0 

n f'(x.) 
T I: J. 

n = - i=l f(xi) • 

T say, is asymptotically as n 

= _ a log f(x+e)I = 
ae . e=o - ..r..i.tl ~, 

Tn is asymptotically normally distributed, hence we can compute its 

efficacy. We get 
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(3.13) 

f f.TT~ f(x-8) - f(x) d ~ 1 f ( ) 
n O £{xJ 8 x 8--0 n n f • 

Thus for the particular test statistic 

eff (T) = Inf (f). n 

T we get 
n 

Since this value coincides with the upper bound (3.11), it is the 

maximum achievable and will whence be used as the standard for comparison. 

Likelihood ratio test for the v. Mises distribution: In this subsection we 

derive the likelihood ratio test for the v. Mises distribution and show that 

this is another efficient test. 

First we note that in the case of the v. Mises distribution the test 

statistic T defined in (3.12) has the form 
n 

n 
(3.14) T = k E sin x. > Ck 

n i=l i ,a 

for some suitably chosen constant 
1 

Ck • This makes sense int;uitively, ~ ,a 

since under H sin X has a symmetric distribution with E sin X = 0 

whereas under K: 8 > 0 we get Ee sin X > 0 for small 8 > 0 (see 

Appendix (A.6)) and this shows, incidentally, that 

against these local alternatives. 

The likelihood ratio test has critical region 

(3 .16) 

n 
exp (k E cos x.) 

i~l i 

n 
exp {k E cos (x.-1)) 

i=l i 

where 1 is the MLE. 

< C 

T is consistent 
n 

1s · · d · 1 · 1 ince we are intereste in ocation parameters on y we will always assume 
that k is known. 
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Equivalently 

T ' 
n = 

n 
E 

i=l 
cos (x.-~) -

l. 

n 
E 

i=l 
cos x. > c. 

l. 

A 
It is easy to see that the MLE 1 satisfies tan e = 

(i.e., the location e is estimated by the direction 

E sin x. 
l. 

E COS X 
i 

of the resultant 
n n 

Vector ( ~ cos x ~ s1.·n x ) or "sample mean vector" ~ ' ~ . ' i=l i i=l l. 

1 n 
(- I: cos xi. , 
n i=l 

1 n . 
- E s1.n x.)). Hence we get 
n i=l 1. 

(3.17) 
I\ .A 

T ' = I: cos x. cos e + E sin x. sin e - E cos x. n l. l. l. 

~ 
(I: 

/..\ 
sin x.) - E = cos e cos x. +' tan 8 E cos x. 

l. l. 1 

1 (I: sin x. )2 

= (I: cos x. + 1 ) - E cos 
I: sin x. 2 

1 
E cos x. 

1 + ( l.) l. 

I: cos x. 
]. 

= j(E cos x. )2 + (I: sin x. )2 I: cos x. 
]. ]. ]. 

= R - L, 

where R is the length of the resultant of the sample points, and P 

x. 
1 

is the length of the projection of this resultant onto the axis determined 

by e
0 

of the hypothesis (in our case 8
0 

= 0, horizontal axis). 

Asymptotic slope of the LR test for the v. Mises distribution: It is well-

known from likelihood ratio theory that under H 2kT' has asymptotically n 

a x2 -distribution with one d.f. Hence .Assµmption 1 above is satisfied 

with F(x) = F 2 (2kx), where F 2 (·) is the cod.£. of a x2 -variable with 
X X 

one d.f. It has been shown be R.R. Bahadur (1960) that F 2 satisfies 
X 

Assumption 2 above with a= 1, t = 1. Hence F(x) satisfies (3.2) with 

a= 2k, t = 1. To check Assumption 3 we take b(x) = x. Then from (3.17) 
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-

~~1 cos xf r~ cos x. 
1 i=l 1 

(3.18) T '/n = + n n n n 

a.s. 

by the strong law of large numbers. According to Appendix (A.6), (A.7) 

Ee cos X = cos 8 E0 cos X, Ee sin X =sine E0 cos X. Hence 

(3.19) T '/n n 
... ( 1 - cos e) E

0 
cos X 

(1 - cos 
I 1 (k) 

(by Appendix (A.5)) = e) I (k) 
0 

1 
(by Appendix (A.lo)) = (1 - cos 8) k Inf (f) 

= c(e), say. 

For the asymptotic slope s(8) = ac(8) 
t 

we get 

(3.20) 1 s(8) = 2k (1 - cos 8) k Inf (f) 82 Inf (f) 

for e close to O. 

From this result we get the efficacy 

(3.21) eff (T ') = .! d
2

2 s(8) = Inf (f). 
n 2 d8 e=O 

Hence the likelihood ratio test is an efficient test in the case of 

the v. Mises distribution. 
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4. Locally Most Powerful Invariant Test for Shift Alternatives. 

In Section 2 we derived the result that tests are invariant under T 

if and only if they are "rank tests", i.e., if they depend only on the ranks 

of the observations originally on the upper half-circle, among the combination 

of points obtained by reflecting the lower half-circle on the horizontal axis. 

We will denote these ranks by R1 , R
2

, ..• ,Rm and a specific realization by 

r
1

, ••• ,rm. Here m is a random variable, 0 ~ m ~ n, where n is the 

sample-size. We will now, under certain conditions, derive an invariant 

test for a location parameter 8 which is a locally most powerful (LMP) 

invariant test. That is, if 8 is the location parameter, and 8 = O is 

the hypothesis to be tested, then we will obtain a neighborhood U = {0,e], 

e > 0 and a test statistic T n 
such that no invariant test has higher 

power for any 8 s U than the test T ~ C • 
n n,Cl' 

If a family of densities with a location parameter 8 is given, we 

denote by E
8
x the expectation of any variable X, if the location 

parameter has the value 8. For the derivation of a LMP invariant test 

it is convenient to use a result, essentially due to W. Hoeffding, in the 

form presented by Lehmann (1959), page 254, prob. 22: 

Let z1 , z
2

, ••• ,zn be independently distributed with densities £
1

, ..• ,fn 

and let the rank of z1 be denoted by Ti. If f is any probability density 

which is positive whenever at least one of the fi is positive, then 

- l .Er f 1 ( V ( t 1 ) ) 
(4.1) P{T1 = t 1, ••. ,Tn = t } - , . t- ( ) 

n n. l_f (V t 1 ) 

where V(l) < ... < v(n) 

density f. 

is an ordered sample from a distribution with 

We now use this result to derive a theorem which is an analogue to a 

well-known theorem about locally most powerful tests for shift alternatives 

of distributions on the real line. But since shifts on the real line do not 
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exactly correspond to shifts on the circle, our result is not a special 

case of that theorem, and hence it needs a separate proof. 

Theorem 4.1: Let g) be a family of densities, as defined in (2.1); 

if f(•) is symmetric with respect to 0, with a continuous derivative 

f'(·), and if v(i) is the .th 
J. order statistic of a distribution with 

density 2f(·) on [o,rr), then the test 

(4.2) T = n t (r.) J ~ E f' (V i ) . < C 
. 1 (r.) 
i= f (V 1. ) 

is a LMP invariant test for the hypothesis 8 = 0 vs .. 8 > O. 

~: We derive a LMP invariant test for every fixed m. Since m 

can take on only a finite number of values, it follows that the intersection 

of the corresponding neighborhoods of O is non-empty, and on this inter

section all the conditional powers are maximized, hence the unconditional 

power is maximized too. 

Now let m = m
0

, fixed. Under the hypothesis e = 0 every possible 

assigmnent of the m
0 

positions within the n locations is equally likely, 

since f( ·) is symmetric w.r. to o. Hence the probability is 1/(.:) for 
0 

every combination. Thus we ·maximize the power itself by maximizing the 

derivative of the power function, i.e., by taking into the critical region 

those rank combinations for which 

(4.3) 0 
08 Pe [Rl = rl' ••• ,Rm = rm}8=0 

is largest. (The number of points is determined by the size a of the test). 

rr -1 
We now evaluate (4.3). Let J f(x-8) dx = n

6 
, then it follows 

0 
immediately from Lehmann's result stated above and from the periodicity of 

f(·) that 
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(4.4) P8(Rl = r1,••• '~ = rmjm = mo) = 

where 

m D O n-m 
8 (1-n8) o 

2n(mn) E 

0 

(r) 
f(V l -8) 

(r) 
f(V l ) 

(rm ) (sl) 
f(v O -e) f(v +e) 

(rm ) (s ) 
f (V O ) f(V l ) 

( s . ) 
f(V n-mo +8) 

(sn-m) 
f(V O) 

{s1 , s2, ... ,s _. } = {1, 2, ..• ,n} - {r1 , r 2, ..• ,r }. 
n mo mo 

(The factor n! has been replaced by ( n ) , 
mo 

since each rank combination 

is obtained from m
0

!(n-m
0
)! different rank permutations.) Taking the 

derivative under the expectation sign, which is justified by the Lebesgue 

dominated convergence theorem,we get 

(4.5) 
oPe (Rl = r 1' 0 •• ,Rm = rm Im = mo) 

ae 
I ~ 

~ m (r.) D + - kO E f'(V i) 
·- (r.) + 
J.-1 c<v l. ) J 

D' - Du, ·r? E fa (V 
1 

) m ~ (r.)j 
i=l f(V(ri)) 

= 
8=0 

n-m (s.) 
k o E £' (v i l 11 ( n rl= 

i=l f(/si\ mo 

for some constants D, D', D" > O. In the last step we used the fact that 

is a constant. (4.5) shows that tests of the form (4.2) 

are UMP invariant at their corresponding level a, and this completes our 

proof. 
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The test statistic T which yields locally most powerful tests is 
n 

a "linear rank order statistic" in the sense that it can be written in 

the form 

(4.6) T 
n = 

n 
r: 

i=l 
a . z., 
Ill.]. 

where a. are double-sequences of constants and 
Ill. 

(4.7) z. = 
l. 

if the i
th 

value of the "combined" (on the upper 

half-circle) sample corresponds to a value which was not 

reflected (i.e., it was on the upper half-circle originalli 

0, otherwise. 

We now derive a few asymptotic properties for a class of linear rank order 

statistics of this form. 
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5. Some Asymptotic Properties of a Class of Linear Rank Order Statistics 

In this section we will show that a large class of linear rank order 

statistics is asymptotically normally distributed. We will then derive 

the ARE of these tests and, in particular, we will show-that, under quite 

general conditions, there exists an efficient test based on a linear rank 

order statistic. This implies the existence of an efficient nonparametric 

test for testing the location parameter of a symmetric circular distribution. 

Some results obtained by z. Govindarajulu: H. Chernoff and I. R. Savage (1958) 

derived asymptotic normality for a large class of two-sample rank order 

statistics. Zo Govindarajulu (1960) used their results to obtain similar 

theorems for the symmetric one-sample case. These results are useful for 

our problem. Before we state them we introduce some notation: Let H (x) 
n 

O::::: x < TT be the empirical c.d.f. of the "combined" sample, i.e., the 

"sample" obtained by reflecting the observations on the lower half-circle on 

the horizontal axis. F is defined to be the empirical distribution 
m 

function of the observations on the upper half-circle (m is a random 

variable). Let J (·) be an arbitrary function on [0,1], 
n 

easy to see that 

(5.1) T ' n 

TT 
= m f J (H (x)) dF (x) 

'o n n m 

then it is 

is the same linear rank order statistic as T defined by (h.6), provided n 

that 

(5.2) a . 
Ill. 

= i=l,2, ••• ,n. 

The representation (5.1) is somewhat more handy in deriving asymptotic results. 

It is convenient in this section to use F(x), 0 ~ x ~ TT as the (theore

tical) Codof. of the (conditional) distribution on the upper half-circle. 

Correspondingly we use G(x) and G , ( x) m . as the theoretical and empirical 

c1d.f. of the observations on the lower half-circle, where m' = n - m. 



.... 
• 

If we define A = ~, a random variable, then we get 
n n 

(5.3) H (x) = AF (x) + (1 - A) G 1 (x) n nm n m 

We define correspondingly 

0 ~ x ~ TT. 

(5.4) H(x) = A F(x) 1 (1 - A) G(x) = G(x) + AnA(x), n n 

where 

(5.5) 8(x) = F(x) - G(x). 

For the statement of the basic theorem we also need the quantities 

(5.6) q = 1 - p • 
n n 

(5.7) H*(x) = G(x) + p A(x) = p F(x) + (1 - p) G(x). n n n 

(5.8) i = o, 1. 

(5.9) U = 2 £ J G(x) [l - G(y)] J 1 (H* (le)) J ~ ( (H* (y).) )dF(x) dF(y). 
O<x<y<rf 

(5.10) * * V = 2 £ J F(x) [ 1 - F(x)] J' (H (x)) J' (H {y)) dG(x) dG(y). 
0<x<Y<1T 

(5.11) 

(5.12) ~ 2 = np q [p U + q V + (L0 + p 11)2 ]. n n n n n n 

From ?heorems 3.1 and 3.3 and Lennna 5A.l of Govindarajulu (1960) we 

obtain innnediately 

Theorem 5.1: If 

(i) E(An) = pn - p0 such that O < p0 < 1; 

(ii) F(·) and G(·) are absolutely continuous; 

(iii) J(•) is a function on [0,1] with a continuous second derivative, 

J(O) = 0, J(•) is :not constant; 
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,, 

... 

then for 
1T 

(5.13) T = m J J(H (x)) dF (x) n 
O 

n m 

we get 

(5.14) 
T - et 

lim P [ n S n s: w} = i ( w) 
n-.ao n 

- GO< W < ao, 

where i(•) is the c.d.f. of the standardized normal distribution. 

Remark: Govindarajulu's results allow for a more general class of 

approximating functions J (•), but we do not need his results in this 
n 

generality. 

Asymptotic normality of _'J;n in the null case: 

Corollary:.l: Let a circular distribution have density f(x), 0 s: x s: 21T, 

where f(•) > 0 is continuous, f(x + 21Tk) = f(x), k = ± 1, ± 2, •.• and 

f(x) = f(-x). Let J satisfy (iii) of Theorem 5.1. Then T defined by 
n 

(5.13) is asymptotically norm.ally distributed with normalizing constants 

(5.15) 

(i) 

(ii) 

(iii) 

(iv) 

(5.17) 

1 
et = 

2
n f J(u) du 

n 0 

Proof: We show that the conditions of Theorem 5.1 are satisfied: 

E(A) 
n 

1 = 2 for all n • 

F and G have densities 2f(x), 0 S: X S: 1T. 

is satisfied by assumption. 

* First we note that H = F = G. Hence U = V. 

U = 2 J J F(x) (1 - F(y)) J' (F(x)) J' (F{y)) dF(x) dF(y) 
O<x<Y<IT 

= 2 J f u ( 1 - v) J ·' ( u) J 1 
( v) du dv 

O<u<V<l 

1 1 
= J J 2 (u) du - [ J J{u) du] 2

, 
0 0 

where the last step follows from an argument used by Chernoff and 
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Savage (1958), page 978. Hence U > O, since J(•) is not a constant, 

and (iv) is satisfied. We now evaluate the normalizing constants: 

TT 1 
(5.18) 0( = ~ J J(F(x)) dF(x) = ~ J J(u) du 

n 
0 0 

(5.19) ~ 2 
1 1 [ ½u + ½v + ( L0 + ½L1 ) 

2 J • = n • 
2 2 n 

TT 1 
Now L

0 
= J J(F(x)) dF(x) 

0 
= f J(u) du, 

0 
since ~(x) .:.:-=: O. 

(5.20) i:, 2 
n 

1 1 1 
= £ [ J J 2 (u) du - ( J J(u) du) 2 + ( J J(u) du) 2 J 

0 0 0 

1 
= { J J 2 (u) du. 

0 

Asymptotic normality of T under alternatives 
n 

a i:. o: If we consider the 

class of densities {f(x-8 )I(x), 0 s: X ~ 2TT ; 0 ~ e < 2r.1 then from 

Theorem 5.1 one would expect that T 
n 

is asymptotically norm.ally distributed 

for just about all the alternatives 8 ~ O. However, for some 8 * 0 

Assumption (iv) might be violated. Since it is difficult to single out 

these cases and since we are primarily interested in small deviations from 

the hypothesis (for efficiency-considerations) we will prove a n1ocal 11 

result only. 

The quantities pn, qn, L0 , L1, U, V now depend on 8. We indicate 

(e) 
this dependence by a superscript (e.g., pn ) or a subscript (e.g., u

8
). 

It is easy to see that for a fixed 

hence we omit it. 

e p and 
n q do not depend on 

n 
n. 
' 

Corollary 2: Let the assumptions on f(•) of Corollary 1 be satisfied. 

Then there exists a neighborhood u e of 0 such that T has asymptotically 
n 

a normal distribution for all e e U, where the normalizing constants are 
e 

defined by (5.11) and (5.12). 

Proof: Obviously Assumptions (i) - (iii) of Theorem 5.1 are satisfied. 

( ) (e) (e) iv is satisfied for 8 = O. It is easy to see that Po , qC , u
8

, v
8 

are continuous functions of 8, hence Po(e)Ue + q0(e)Ve > 0 for some 
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.. neighborhood u 
€ 

of 0, and this completes our proof. 

Bahadur efficiency of linear rank order tests: Before we derive the ARE 

of test statistics of the form (J.13) we first compute the approximate slope 

t 
ac (0) (see Section 3 for terminology) for a fixed alternative 9. 

Lemma 5.1: Let the assumptions on f of Corollary 1 be satisfied, 

(e) (e) 
and let 9 be such that p

0 
u8 + q

0 
v8 :/:. O. Then the function c(B), 

defined in (3.3), is given by 

(J.21) c(e) 

(e)
1 

(e) (o)
1 

(o) 
p O - p 0 

= 2----------

where I jJ(·)I I is the length of the function J(·) as an element of 

the Hilbert space of square integrable functions on LO,l], i.e., 

I IJ( ·) 11 ~ ( JlJ2(u)du/2. 
0 

Proof: In this case the proper normalizing sequence 

makes -6 n 

setting 6 

T - a n n a finite value C ( 8), 
13n 

converge to 

= ~, because then we get 

T 
n - a n 

n 13 n 

T 
n - a 

n 
( 9) 

13 (e) 
1 n 

et (e) - et 

+ 
n n 

T - et (e) a 
n n n 

e 
- a n 

n ½ n IIJ II 
----.--- + 

Sn ( 
8

) ~ IIJ I I 

P(e)1 (e) _ P(o)1 (o) 
P!: • 

2 
___ o ______ o __ 

I IJ 11 

T - a (e) 

-6 
n 

is 

which 

obtained by 

(5.12), and n (G) - N(0,1), hence the 
s 

first summand converges to 0 in probabiliry; the second summand is independent 

of n, and the result follows on account of (5.11). 
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.. Lemma 5.2: Under the assumptions of Lemma 5.1 the asymptotic slope 

for a fixed alternative 8 ¢ 0 is given by 

I ( 8 )L ( e) ( 0 )L ( 0 )°' 2 

(5.23) s(8) = 4~p O - p O · 
. IIJ I I 

Proof:: The asymptotic slope is defined as t s(8) = ac (8), where 

the constants a and t are determined by (3.1) and (3.2). Here, however, 

T has to be replaced by (T - a (o))I~ (o) = T 1 say. Then the c.d.f. n n n ' n n ' 

F of (3.1) is equal to t, the c.d.f. of the standardized normal 

distribution. Bahadur (1960) has shown that for w Assumption (3~2) is 

satisfied with a= 1, t = 2. This result, combined with (5.21), yields 

(5 .23). 

In order to compute the efficiency of a test based on a statistic of 

the form (5.13), we have to analyze s(e) in a neighborhood of O. More 

specifically we need the efficacy of the sequence 

(5.24) eff (T ) 
n 

1 a2 · 
= 2 ae 2 s c e ) I . 

8=0 

(T} defined by 
n 

Theorem 5.2: If, in addition to the assumptions of Corollary 1, 

f has a continuous derivative, the efficacy of the sequence of test statistics 

(T} is given by 
n 

(5.25) eff (T ) 
n = 

4[JtJ(R(x)) f 1 (x) dx] 2 

J1
J 2 (x) dx 

0 

where R(x) = 2 J,xf(u) du, 
0 

0 S: X s; Tf. 

X x-8 
Proof: Define ~(x) = J f(y - 8) dy = J f(u) du= M(x-8) - M(-8), 

o . -e 
where M( ·) ~M0( ·). Now F( ·) and G( ·), the conditional c.d. f. of 

the upper and lower half-circle, respectively, depend on 8; we indicate 

this by writing Fe(·), G8(-). Then obviously 
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(5.26) F
8

(x) 

and 

( 5 .27) G
8

(x) 

X 
r f(y - a) dy Jo 

= M
8 

(TT) 

0 

_ M(x-8) - M(-8)_ 
- Me(Tf) 

= Ix f (y - e) dy __ 
-e 

1x=§f(u) du = M(-0) - M(-x-8) 
1 - M

8 
( rr) 1 - M6(TT) 1 - Me(TT) 

Furthermore 

(5. 28) 

Hence 

(5.29) 

TT 
/8) = J f(y - e) dy = M

8
(TT). 

0 

P(e\ (e) 
0 

TT ,x. 
= Me (TT) J J ( He ( X) ) d Fe ( X ) 

0 
(by (::, .8)) 

TT . 
= M (TT) J J ~ (TT) M(x-8) - M(-e) 

e o ~- -e Me (TT) + 

( ( )) M(-8) - Mt-x-8) ~ + 1 - M8 TT l _ M... TT) . ~ dx 
-tj - e 

TT 
= J J(M(x-8) - M(-x-8)) f(x-6) dx 

0 

TT-e 
= J J(M(u) - M(-u-28)) f(u) du. 

-e 

By using the result just derived we obtain 

(5.30) a (e)L (e)j = 
ae P O e=o 

TT 
= -J(M(TT) - M(-TT)) f(TT) + J(M(0) - M(0)) f(0) + 2f J'(M(u) - M(-u))f(u) 2 du 

TT o 
= -J(l) f(TT) + J(o) f(0) + 2 J J'(2M(u)) f(u) 2 du, 

0 

since f(·) is symmetric, and therefore M(·) is skew-symmetric. 
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If we express everything in terms of the conditional c.d.f. 

R(·) = 2M(·) and conditional density r(·) = 2f(·) for the upper (or 

lower) half-circle under H:.8 = 0, we get 

(5.31) 
TT 

J(O) f(O) - J(l) f(1T) = -J(R(x)) f(x)I = 
0 

TT TT 
-[ J J' (R(x)) r(x) f(x) dx + J J(R(x)) f' (x) dx]. 

0 0 

Hence we obtain from (5.30) 

(5.32) ..Q_ /8\ ce)I 
08 0 8=0 

1 TT 1T 
= - 2 J J'(R(x))r2 (x) dx - J J(R(x)) f'(x) dx 

0 0 

1T IT 
+ ½ J J(R(x)) r2(x) dx = - J J(R(x)) f' (x) dx. 

0 0 

Since s(O) ~ 0, (5.23) and (5.24), combined with (5.32) yield the 

desired result (5.25). 

Lemma 5.3: If the efficacy given by expression (5.25) is positive, 

then there exists a neighborhood U of O such that the tests based 

on (T } are consistent for all 6 e U. 
n 

Proof: --
1 d2 

Since the efficacy is equal to 2 dS 2 s(e)8=0' where s(6) 

is the asymptotic slope, and since 

easily from (3.6a), here a= 1, 

d 
s(O) = 0, de s(e)0=0 = 0 (this follows 

t = 2) we must have s(6) > O in some 

neighborhood U of O. In this neighborhood we then have c(e) ~ 0, since 

c(8) = g s(e) for some constant g. The result follows from Lemma 3.1. 

The space of square-integrable functions h(·) on {0,1] is a Hilbert space 

If we denote the inner product of two functions h
1

, h
2 

of this space by 

(h
1

, h
2

), and the length of a function h by I lhi I, i.e., 

= 

then we obtain directly the following 
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Theorem 5.3: If under H a circular distribution has a symmetric 

positive density f with a continuous derivative, then the Bahadur 

efficiency against shift alternatives of a test sequence based on 

is 

T = n 

n . 
I: J(.!) z. 

. 1 n l. 
l.= 

= 

1 r' 1 (r J(v) -o R- (v)dv) 2 
Jo r (5.33) e(T, best test/f) 

n 1 1 r' -1 J J(v)2 dv J - oR (v)) 2 dv 
0 0 r 

r' -1 (J ( •) , - o R ( • ) ) 2 
r 

= 

where r,R are the density and c.d. f. of the distribution on the 
) 

J(·) upper half-circle, provided that has two continuous derivatives, 

J(O) = 0 and J(.) is not a constant. 

Proof: Upon replacing R(x) by V we obtain 

TT 1 I 1 
(5.34) 4( J J(R(x)) f' (x) dx) 2 = (J J(v) _;_ o R- (v) dv) 2 • 

0 0 r 

Also from (3.11) and (3.13) we know that the efficacy of the best 

(parametric) test for detecting shift alternatives is given by 

(5.35) eff = Inf (f) 
2TT~ 

= { (~)2 f(x) dx = 

1 ' 1 = J (Lo R- (x))2 dx. 
0 r 

Since the efficiency is equal to the ratio of the efficacies of the two 

corresponding test sequences, we obtain the desired result by combining 

(5.25), (5.34) and (5.35). 

- 32 -



I -

• 

6. Existence of an Efficient Nonparametric Test. 

Interpreting the efficiency of T as the square of the inner product 
n 

of two normalized functions gives us an immediate solution to the variational 

problem of finding a function J(•) which maximizes this efficiency. 

Theorem 6.1: If for a symmetric non-uniform circular distribution r(•) = 2f(•) 

r' R-l(v) is positive and - o r has two continuous derivatives, then the 

sequence of test statistics (T } 
n 

r I -1 
based on J(v) = - o R (v) maximizes r 

the expression (5.33). The maximum efficiency is equal to 1. 

Proof: By the Schwarz inequality (and by the definition of efficiency) 

(5.33) can never exceed 1. For our particular choice it is equal to 1, 

and it is easy to see that this choice is legitimate: r'(o) = O by 

symmetry of r; r'(·) is not constant, since the distribution is not 

uniform; finally, the required derivatives exist. 

Remark: It follows from Lemma 5.3 that the sequence of test statistics 

( } ( ) r, R-1 (v) T based on J\v = -o 
n r is consistent in a neighborhood of o. 
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7. Efficiencies of a Few Standard Tests • 

In this section we derive the Bahadur-efficiency of the Wilcoxon 

test and of the sign test for the case of av. Mises distribution. These 

efficiencies will depend on the concentration parameter k of the distri

bution, and hence we will get efficiency-curves. 

Wilcoxon test: This test corresponds to the function J(u) = u. The 

hypothesis is rejected if the sum of the ranks of the reflected (at the 

horizontal axis) values is too large. For the computation of the numerator 

of the efficacy we first evaluate (5.30). J(O) f(O) - J(l) f(H) + 

rr rr 
2 J J' (2M(u)) f(u) 2 du = 2 J C(k) 2 e2k cos xdx - e -kC(k) ·-

0 0 

..Q.(kl: -k 1 1o(2k) -k) 
c{2kJ - e C(k) = 2HIO(k) (Io(k) - e , by Appendix (A.3). 

Furthermore 
1 

J J 2 (u)du 
0 

By (5.25) and (5.31) we obtain the efficacy of the Wilcoxon test 

(7.1) eff(Wilcoxon; v. Mises distribution) = 

3 
r0 (2k) 

-k)2 
rr2I (k)2 <r

0
(k) - e • 

0 

In Sec. 3 it has been shown that the efficacy of the "best" test for the 

location parameter e in this case is equal to 

Inf (f) = (see A.10). 

Hence we get 

(7.2) e (Wilcoxonfbest test; v. Mises distribution) 

.3. (I0 (k)e-k - I
0

(2k)) 2 

rr2 
kI0 (k) 3 I 1(k) 

.. 34. -
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Part of the graph of this efficiency curve is shown on Figure 1. We are 

here particularly interested in the two limiting cases k - 0 and k - =· 
If k is close to zero we use the power-series expansions (A.11), 

(A.12), and a straightforward computation yields 

(7.3) lim e(Wilcoxonfbest test; v. Mises distribution) 
k-. 0 

If k is very large we may use the approximations (A.13), (A.14) 

and we obtain 

(7.4) lim e(Wilcoxonlbest test; v. Mises distribution) 
k-= 

::: j 
rr 

Remark: In the limiting case k - = the efficiency of the Wilcoxon 

test approximates ~, which is equal to the efficiency of the Wilcoxon 

(one- or two-sample) test for shifts in case of a normal distribution. 

This is not too surprising if we note that for k -= the "shape" of 

the van Mises distribution, properly normalized, approaches that of a 

N(0,1) distribution. This is a special case of a very general result 

obtained by Buehler (1965), page 1880. 

Sign test: The sign test rejects the hypothe_sis 8 = O against K: e > o, 

if the number T of observations on the upper half-circle is too large. n 

This test corresponds to J(u) .'._ 1, but here J(•) is a constant and 

our theory is not applicable. However, the Pitman-ARE can easily be 

computed directly. 

It is well-known that 

where p (8) 

(7.5) 

under 

under 

is 

(8) 
p 

H: T N(~, *), n 

K: T N(np(e), np(e)(l-p(e))), 
n 

defined by 

JTT ( ) k cos (x-e)d = C k e x 
0 

- 35 -
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The efficacy is 

(7.6) eff(sign test; f) = 
n(..2... P ( e) I )2 

08 8=0 = (£(0) - £(TT))2 

1/4 ' 

since a (e) I a Jrr ae P e=o = Cae o f(x-e )dx]e=o 
0 rr-e 

= o8 (_f 8 f(u)du]e=O = f(0) - f(TT). 

In the case of the v. Mises distribution we get f(0) - f(TT) = C(k)(ek - e-k) 

1 ( k -k) and hence we arrive at = 2TTI
0

(k) e - e ' 

(7.7) e(sign testlbest test; v. Mises distribution) = 

4f2TTl~(k) (ek - e-k)J2 = 

'kl1 (k) 
I0(k) 

This efficiency curve is plotted on Figure 2. We again investigate the 

cases k - 0 and k - ~. Using the approximations (A.11) - (A.14) we obtain 

(7.8) 

(7.9) 

lim e(sign testlbest test; v. Mises distribution) = ~2 • 

k - 0 

lim e(sign testlbest test; v. Mises distribution) 
k-ao 

As one would expect, the last result again coincides with the efficiency 

of the sign test for detecting shifts for a normal distribution. 
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III. TWO-SAMPLE CASE 

Let x1 , x
2

, ••• ,Xm and Y1 , Y2 , ••• ,Yn be two samples from circular 

distributions with c.d.f. F and G, respectively. Our goal is now to 

find tests for the hypothesis H: the two samples have the same underlying 

distribution vs. K: the underlying distributions are different. In 

particular we will be concerned with the subset of K which consists of 

shift alternatives. 

8. Reduction by Invariance. 

As in the one-sample case the class of tests for H vs. K may be 

reduced considerably by the principle of invariance, if a suitable group 

of transformations is used. In the linear case one usually uses the 

order relation on R to define one-sided alternatives, either for the 

particular case where G is obtained by shifting F by a fixed amount 

e > O, or for the more general case that G is stochastically larger than 

F. Since the points on a circle cannot be ordered in a "natural" way, it 

is impossible to define one-sided alternatives in a satisfactory way. We 

will therefore have to take a group of transformations which rules out 

one-sided tests. 

Before we define a group of transformations of the sample space we 

redefine the term "c.d.f." in a somewhat unconventional, but for our 

purposes more convenient way. A monotone increasing distribution function 

defines a probability mass distribution µ by µ((a,b]) = F(b) - F(a). 

But we could just as well define a monotone decreasing c.d.f. corresponding 

to µ by µ([a,b)) = F(a) - F(b). We will allow both versions for 

representing the probability measure and hence we arrive at the 

Definition: F is a c.d.f. for the circle if 

(a) F: R-+ R, monotone. 

(b) F(x + 2nrr) = F(x) ± n for every x e R, every integer n. 
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It is obvious that such a function F defines a unique probability 

distribution on the interval [0,21T) (and hence on the circle), and 

that any probability measure on the circle defines such a c.d.f. up to 

a constant sum or difference. 

Throughout this chapter we assume that the two samples are from 

continuous distributions and that the distribution functions are strictly 

increasing. I.e., we assume that F and G satisfy part (a) of the 

above definition in the strict sense and that they are continuous. Under 

these conditions the states of nature e for our testing problem is 

given by the set of pairs 

(8.1) (d) = {(F,G): F, G are continuous, strictly monotone c.d.f. 's}. 

H is the subset defined by 

(8.2) H = {(F,G): F - G = const. or F + G = const.}. 

Transformation group: As our class T of transformations we take the 

set of all homeomorphisms of the circle C onto itself, i.e., all bi

continuous, one-to-one mappings of C onto C. It follows from the 

definition of a homeomorphism that T has a group structure if the com

position of two such mappings it taken as group operation. Because of 

the one-to-one correspondence between C and J = [0,2TT) any one-to-one 

mapping t of C onto C defines a corresponding mapping t' of J 

onto J, and vice versa. Continuity is preserved except possibly at 

the point z = O, where t' may and in general will have a jump of 

size 2TT. By defining a suitable mapping t' from J into [0,4TT] 

we can find a continuous version of t' which still corresponds to t 

in the sense that the homeomorphism t of C onto C can be written 

in the form 

t: ix it'(x) e - e • 
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m and n). Take an arbitrary cut-off point and an arbitrary direction on 

one of the circles and determine the ranks R
1 
(l), ••• ,Rm(l) of the 

X-observations in the combined sample of the first pair. 

Definition: The two pairs of samples have the~ arrangement if 

it is possible to find a cut-off point and a direction on the second 

circle in such a way that for the resulting ranks R. (2) 
l. 

of the 

X-observations we get R. (2) = R. (1) 
l. l. 

(i = 1, ••• ,m). 

"Same atrangement" is an equivalence relation. The term "arrangement" 

is used for an equivalence class defined by this relation or for a particular 

sequence of ranks which is a member of this equivalence class. 

Lemma 8.1: The arrangement of a combined sample is a maximal invariant 

under T. 

~: Since a homeomorphism on C can be represented on J by a 

strictly monotone increasing or a strictly monotone decreasing function, 

it follows easily that the arrangement of a pair of samples remains invariant 

under any t. (The directions have to be the same iff t' is monotone 

increasing.) Conversely, if two sample pairs have the same arrangement 

we obtain a suitable ts T by first making a rotation which shifts the 

second cut-off point onto the first. If the directions are different we 

use a reflection, which leaves the cut-off points unchanged, and which converts 

the direction corresponding to the second sample pair to that of the 

first. Finally, spaces between successive observations can easily be 

adjusted by ·means of a suitable homeomorphism. The combination of these 

mappings is a member of T and it maps the second sample pair onto the 

first; this shows that "arrangement" is in fact a maximal invariant. 

Distribution-free tests: By a well-known result by Lehmann the distribution 

of an invariant test statistic depends only on the orbit of (defined 

by the induces group T) to which (F,G) belongs. We use this simple 

fact to show that all invariant test statistics are non-parametric, i.e., 

they have the same distribution for each pair (F,G) e H. 
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Lemma 8.2: Let (F,G) and (F' ,G') be elements of H. Then there 

exists a t e T such that t(F,G) = (F' ,G'). 

Proof: Since every c.d.f. can be replaced by its negative without 

changing the distribution we may w.1.o.g. assume that F, G, F', G' 

are all increasing. We may even go one step further and assume that F=. G 

and F ·- ... , = ..:I' , since a shift by a constant has no influence on the distri-

but ion. The mapping t I = (F' r 1 
0 F from R onto R is continuous, 

strictly increasing and satisfies 

t I (x + 2k1T) = (F')- 1o F(x + 2k1T) = (F' r 1
(F(x) + k) 

= (F')- 1o F(x) + 2TTk = t I (x) + 2fTk. 

Hence ix it I (x) 
is a homeomorphism t and e -+ e 

t(F,G) = = ( 
-1 

F o F o F', -1 ) Go F o F' 

= '(F', G') since F' = G1
• 

This completes our proof. 

Corollary: Test statistics which are invariant under T are 

distribution free. 

Proof: This follows directly from the theorem by Lehmann mentioned 

above. See, e.g., E. L. Lehmann (1959), p. 220, Theorem 3. 
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9. Efficacy of the Best Parametric Test for Detecting Shift Alternatives. 

In Section 3 we discussed the concept of the relative efficiency of 
I 

two test sequences as the limiting ratio .!L of the sample sizes, which 
n 

make the two tests equally powerful for some given alternative. It 

turned out, that the so-called Bahadur-efficiency is an approximate 

measure of this ratio which is particularly suitable for our purpose, 

since it does not require assumptions on the distribution of the test 

statistics which are as strong as those needed for Pitman's concept of 

efficiency. For the same reason we will use Bahadur's notion of efficiency 

for the two-sample problem. 

If for a given sequence of test statistics TN either Pitman's 

conditions or Assumptions 1-4 of Section 3 are satisfied we can define 

and compute the efficacy eff (TN) of this sequence in such a way that 

the ARE is simply the ratio of the efficacies. 

In order to have a standard for comparison for any nonparametric 

test sequence, we now derive the maximum efficacy that any test for 

detecting shift alternatives might achieve, provided that certain regu

larity conditions are satisfied. Since we are not primarily interested 

in parametric tests, we will not state our results in the form of theorems 

with all the regularity conditions. We rather assume that the required 

derivatives exist and that integration and differentiation can be inter

changed. The derivations below follow very closely the corresponding 

arguments for the one-sample case in Section 3. 

For the class of parametric tests we are going to consider, we impose 

a (rather weak) invariance condition: We will only consider tests for 

which the critical region (and hence the acceptance region) is invariant 

under a rotation of the X- and Y-observations by the same angle ~ 

(invariance under the circle group). 
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(9.1) 

Let f(•) > 0 be a density for a circular distribution, i.e., 

f(x + 2kTT) = f(x), k = ±1, ±4••• and 
2TT 

J f(x)dx = 1. 
0 

Let x1,.,.,Xm be a sample from a distribution with density f{x - ~) 

and let Y1, ••• ,Yn be a sample from the distribution with density f(x - 8) 

(0 S X S 2fT) • m 
Assume that N - A, as N - co, where O < A < 1. 

A= e - ~- We are concerned with the problem of testing H: 6 = 0 

vs. K: A> O. 

Set 

Upper bound for the efficacy: In order to derive an upper bound for the 

efficacy we may assume the particular situation ~ = -(1 - A)6, e = A6. 

By the Neyman-Pearson lemma the best test for a specific 6 > O rejects 

H if 

(9.2) T' 
m,n,6 = 

m f(x. + (1-A)A) n f(y. - A6) 
]. 1 I; log __ f_,{_x __ -)-- + ~ log --f (--)- > C 

i=l 1 j=l yj 6 

or, equivalently, 

(9.3) T m,n,6 = 
1 m f(xi + (l-A)6) 1 n f(y. - AA) 

I:: log --f-(x ___ ) __ + ~ I:: log --1~(-y-. )- > C • 
A i=l i j=l J 6 

By the Central Limit Theorem T A is asymptotically normally distributed. 
m,n,u 

Since tests based on (T } are tailor-made for the particular 6 under m,n,A 

consideration, we obtain an upper bound for the efficacy of any test of 

H: A= 0 vs. K: 6 > 0 by formally computing the efficacy of the sequence 

just as in the one-sample case: 

ET - ET 
6 m,n,A O m,n,O = 

6 

m J2TT log f(x + (h\)4) - log f(x) f (x + (1-A)ll) - f(x) dx 
o A 6 

+ nJ2TT log f(x - A4) - log f(x) f(x - All) - f(x) dx 
o 6 6 
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1 I 

~m(l-A)2 f2TT O log f(x + A)I a f(x + 6)1 dx 

6--0 0 °8 
6=0 °8 

6=0 

= 
2TT~ 

[m(l - A) 2 + nA2
] J

0 
f(xJ dx = 

n2 m2. 
(m N2 + n N2 ] Inf (f) 

= m; Inf (f) = N A(l-A) Inf (f). 

In a similar way it can be shown that var
0 

T A converges to the same 
m,n,u 

quantity as 6 ~ O. Thus an upper bound for the efficacy of any test 

sequence (TN} is given by 

(9.4) 

Example of an efficient test: Next we claim that there exists an 

invariant (under the circle group) test which achieves this upper bound, 

provided that some regularity conditions are satisfied. This has been 

shown by Chernoff and Savage (1958), page 983. It is a direct consequence 

of the large sample theory of the maximum likelihood estimator: " A A 6 = cp - a 

(~ and 'e are MLE) is asymptotically normally distributed with mean 6 

and variance (N A(l-A) Inf (f)]-1 , hence the efficacy of a test based on 

~ is equal to k(l-A) Inf (f), and thus it coincides with the upper 

bound given by (9.4). 

For the special case of the v. Mises distribution we derive the 

likelihood ratio test, since it has an interesting geometric interpretation; 

we also show that it is invariant and efficient. " Let cp, $'- be the MLE 

of the first and second sample, respectively. Let -~ be the MLE of the 

combined sample. Then it is easy to see that 
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From likelihood ratio theory it is well-known that -2 log LRN has a 

x
1

2-distribution as N ~=; hence Assumption 1 of Section 3 is satisfiedo 

It was shown by Bahadur (1960) that (3.2) is satisfied for the c.d.f. of 

a x
1
2-variable with a= 1, t = 1. The correct normalizing sequence is 

b(N) = N, since under K: 

(9.9) 
-2 log L~ 

N 

C. E sin x. E cos x. 
= 2k t2 ( m i)2 + A2 ( m i)2]\ 

+ 
E sin y. E cosy. L 

[(1-A)2 ( 3)2 + (1-A)2 ( 3)2]~ 
n n 

r. E sin x. E cos x . 
LA2[( _ i)2 + ( · _ i)2] 

E sin y. E cos y. 
+ (l-A)2 [( 3)2 + ( . 3)2] 

n n 

EE (sin x. sin y. + cos x1 cos 
+ 2A ( 1-A ) [ 

1 1 n m 
yi21·. ~ 

-~ ( 
where i = 1, ••• ,m and j = 1, ••• , n. _) 

According to formulae (A.6), (A.7) of the Appendix we get, by the 

strong law of large numbers, 

(9.10) 
-2 log L~ )\ \ 

~ 2k "( E0 cos X[sin2 8 + cos2 8] 

+ (1-A) E
0 

cos X[sin2 ~ + cos 2 ~]\ 

[A2(E0 cos X) 2 (sin2 8 + cos2 8) 

+ (l-A)2 (E0 cos X) 2 (sin2 ~ + cos2 ~) 

+ 2A(l-A)(E0 cos X) 2 (sin 8 sin~+ cos 8 cos~)] 
~ 

= 2k E0 cos X £1 - rA2 + (1-A) 2 + 2A(l-A) cos (8 - ~) } 

= 2k E0 cos X (1 - J1 - 2A(l-A) (1 - cos 8) } 

== C(8). 
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.\ ., Thus (3.3) is satisfied •. The efficacy of the test·sequence is now given by 

<' 

(9.11) 1 d2 C(l\) I eff (L~) = 2 dl\2 = A(l-A)k E0 cos X = A(l-A). Inf (f) 
!).=0 

by Appendix (A.5) and (A.10). This result shows that the likelihood 

ratio test is an efficient test. 
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10. Locally Most Powerful Invariant Tests for Shift Alternatives. 

In Section 8 we showed that in the two-sample problem with continuous 

c.d.f.'s F and G, an invariant (under T) test statistic for testing 

H: F = G vs. K: F ~G should depend only on the "arrangement" of the 

x's and the y's. Since it is easier to work with order statistics 

instead of with "arrangements" we take an arbitrary cut-off point on the 

circle and specify a direction (e.g., counterclockwise). Then we order 

the combined sample, starting at the cut-off point and going in the 

direction specified. Thus to each sample outcome there corresponds a 

rank-sequence (r1 , ••• ,rm) of the :y's. A test can now be defined by 

choosing a critical region (CR) in the sample space of such rank-sequences. 

We are, however, not completely free in choosing such a CR if the test is 

to be invariant under the transformation group T. In fact, if (r
1

, ••• ,rm) 

is to be in the CR, then, in order to make the test independent of the 

cut-off point, we have to put into the CR all rank sequences of the form 

([r1 + k], ••• ,[rm + k]) for 0 ~ k ~ N-1, where 

(10.1) [t] = 1 + (t-1) mod N. 

(This somewhat uncommon definition of the symbol [.] is convenient, 

since we get [N] = N, whereas N mod N = 0.) We call rank sequences of 

the form ([r1 + k], ••• ,[rm + k]) (0 ~ k ~ N-1) rotations of (r
1

, ••• ,rm). 

In addition, if the test is to be independent of the direction, for every 

point (r1 , ••• ,rm) e CR we have to have (r1• , ••• ,rm') = (N+l-rm,•••,N+l-r
1

)eCR. 

We call (r1• , ••• ,rm') the inver&ion of (r1 , ••• ,rm). 

Theorem 10.1: Let f(•) > 0 be the density of a circular distribution 
2rr 

(i.e., f(•) is periodic with period 2TT and J f(x) dx = 1). Assume that 
0 

f"(·) exists and is continuous. If X has density f(x) whereas Y has 

density f(x-8), then a locally most powerful T-invariant test for H: 8 = 0 

against K: 6 ~ 0 exists. Its rejection region is 
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(10.2) 
N-1 m m r·(v[ri+k])f~(v[rj+k])~· 
E E E E -- - ] > C, 

k=0 J·=l ·-1 [ri+k]) . [r .+k ) 
i- f(V 'f(V J 

where. v<~), v< 2 ), ••• ,v(N) is the order statistic of a sample of size N 

from the X-distribution. 1 

Proof: If we take a specific cut-off point and direction, then 

Hoeffding's result, mentioned in Section 4, ytiel~: ~mmediately (r.) j 
_.!,_ f(V l - A)••• f(V m - A) 

(10.3) ~A(R1 = r 1, ••. ,Rm = rm) = (N) E , (,) (r) 
, · m · ,: f { V · ~ ) f ( V m ) 

If the test is to be invariant under T, then with each rank sequence 

(r
1

, ••• ,rm) e CR we have to take all its rotations into the CR. 

(a) Let us first assume that for each rank order (r1 , ••• ,rm) all 

rotations are different, i.e., for no Os k ~ N-1 is ([r1+k], ••• ,[rm+k]) 

a permutation of (r
1

, ••• ,rm). In this case the power we gain by putting 

(r1 , ••• ,rm) (and also the corresponding rotations and inversions) into 

the CR is equal to QA, 

(10.4) QA(rl'••• ,rm) 

here 

(10.5) 

where QA is defined by ) r [r +k] rr +k] 
6(r1,•••,rm N~l E f(V 1 - A) ... f(V m -

= 
(N) k=O [r 1+k], [r +k) 
m f(V ) ... f(V m ) 

if the inversion of (r1 , ••• ,rm) is 

equal to some rotation; 

otherwise. 

Under H the arrangement (r1 , ••• ,rm) together with its inversion and its 

rotations has the probability 

(10.6) 

1 We write instea4 of the correct expression y([rjJ). 
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Hence it follows that in order to maximize the power in a neighborhood of 

/l = 0 we have to put into CR those rank sequences (r1,•••,rm) for 

which - Q (r , ••• ,r 1 a )I 
6(~1 , ••• ,rm) o~ A 1 m A=0 

is largest. 

We now evaluate this expression. The Lebesgue dominated convergence 

theorem allows us to interchange expectation and differentiation, hence 

we get 

(10.7) 

and thus 

(10.8) 

oQLl (r l' ···,rm) 
oA = 

6(r1 , ••• ,r) N-1 m _______ m__ I: I: 

(N) ~O i=l 
m 

t 
[r

1
+k] 

E f(V -A)••• 
. [r1+k] 

f(V ) • • • 

[r .+k] 
f'(V 

1 
-6) 

[r.+k] 
.. f(V 

1 
) 

... 

... 
[r +k] 

f(V m -6) 
[r +k] 

f(V m ) 

1 oQA (rl, •••,rm) 
6(r1, ••• ,rm) oA 

m 
= __ l_ I: I: E E (V ) N-1 t' [ri+k] ~· 

<.!) i=l k=O [r.+k] 
f (v 1 

) 

= const., 

i.e., the expression we want to maximize does not depend on (r
1

, ••• ,~m). 

Thus it follows that we have to take those arrangements into the CR for 

which 1 o2 

( ) ~A2 QA(r1 , ••• ,r )j is largest. 
r 1 , ••• ,rm ou u m A=0 

By applying the dominated convergence theorem again we ob~ain 

(10.9) 
1 o2QA(r1,•••,rm) 

6(r1,•••,rm) o62 = 
6=0 

1 N~l ; ; Ef '(v[ri+k]l 
(N) '·-1 . 1 . 1 [r.+k] 
m ~ 1.=. 1 ~= f(V 1 ) 

l.rJ 

+ N~l ~ E[f"(V [ri+k] )j • 
k-0 ·-1 [r.+k] 

- J.- f(V 1 ) 

f' (v J .J [r .+k] ~ 
[r.+k] 

f(V J 

The second term is again independent of the particular arrangement. In 

maximizing the second derivative of Q6 at A= 0 we may and will omit 
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this tenn. For convenience we add another constant corresponding to the 

"diagonal" terms where i = j : 

r 
[r.+k]~

2 

f 1 (V 1. ) 

E [r.+k] · • 
f (V 1. ) 

It thus follows that under the assumptions of this part of the proof 

the most powerful test, which is based on the rank statistic (R1 , ••• ,~m) 

and independent of the particular cut-off point, has critical region 

(10.10) 

It is easy to see that 

(10.11) 
N 1 t· [r.+k] - f I (V l. ) 

I: E 
k O [r.+k] 
= f(V 1. ) 

[r .. +k] ~ f I (V J ) 
[r .+k] 

f(V J 

is a function of only. We denote it by hN'(•), 

(10.12) r 
[ i+k] [j+k] ~--

N-1 f I ( V ) f I ( V ) ; 
hN' (i - j) = k~O E . [i+k] [j+k] ; 

f(V ) f(V ) 

i.e., 

i,j = o, ±1, ± 2, ••• 

It is also quite obvious that hN(i-j) = h~(j-i), and this sh-ows that the 

test (10.10) is invariant under an inversion. Since the test (10.10) is 

locally most powerful among all tests invariant under rotations, and is 

also invariant under inversions, it is a locally most powerful invariant 

(under T) test for testing H: A= 0 vs. K: A~ O. 

(b) Assume now that there exists a rank sequence (r
1

, ••• ,~m) and 

a k, 0 < k. ~ N-1 such that ( [r1 + k], ••• , [~m·:+ k]) is a permutation of 

(r1 , ••• ,rm). Let k be the smallest number witn this property. Then 

obviously k divides N. Let t be defined by N = tk. Then under H 

this particular arrangement has only probability 
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instead of But it is easy to see that 

in the definition (10.4) of the power function Q~(r1 , ••• ,rm) k should 

only take.the values O, l, ••• ,k-1, i.e., Q~(r1, ••• ,rm) should be 

divided by a factor t = N/k under K also. But then it follows 

immediately from the Neymann-Pearson lennna that such a division of the 

power function by the same factor under H and under K does not change 

the optimality of a test. Thus the test derived under (a) above, under 

more specific conditions, is also a locally most powerful invariant 

test in the general case 
q.e.d. 
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11. Definition and Representations of a Class of Invariant Two-Sample 

Statistics. 

In the previous section we derived a locally most powerful invariant 

test for detecting shift alternatives. Using (10.12) the test can be 

written in the form 

(11.1) T I 
N = 

m m 
l I:! I:! h ' (R. - R. ) > C. 
N i=l j=l N i J 

In this section we will define a class of test statistics with an arbitrary 

function hN' • More specifically: Let h (·) N 
i 

all values of the form N' i = 0, ± 1, ••• ,± N. 

be a function defined for 

Assume that h (·) N 
is 

synnnetric with respect to O and with respect to½- (It is easy to 

see that hN(•) is then periodic with period 1.) We will consider 

tests based on statistics of the form 

(11.2) 1 m m R. - R. 
= - I:! I:! hN (: 1 i ) • 

N i=l j=l N 

It is obvious that the LMP invariant test has the form TN> C if we 

= h '(i). 
N It is also easy to see that statistics of 

the form (11.2) are invariant under the group T: They are based on 

ranks, are independent of the cut-off point (only difference~ of ranks 

enter into TN, and hN is periodic), and are invariant under inversions 

(since h (·) 
N is synnnetric with respect to o). This also shows that 

TN is non-parametric. 

Alternative representations of TN: If we define a vector z = (z
1

, ••• ,zN)' by 

.;f . th b 
~ i o servation in combined sample is from the 

X-sample 

otherwise, 
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where we assume that arbitrary, but fixed, cut-off point and direction 

have been chosen. Using these "indicators" we may obviously write 

(11.4) 
l N N .. 

= ~ ~ h (1:.:.1.) z.z .• 
N . l . l N N 1 J l.= J= 

This representation of TN as a quadratic form in the z. 's will be 
l. 

of interest, when we derive the limiting distribution of TN in the 

next section. 
N 

If we define gi = ~lzkz[k+i]' i = 1, ••• ,N, then represents 

the number of times a pair of X-values is separated by i "gaps," that 

is by i-1 X- or Y-observations. gi depends on the direction, but 

-
gi = gi + gN-i' i = l, ••• ,N, does not, as can be seen easily. We 

call the symmetric vector g = (g1,•••,gN) the "gap structuren of the 

sample. 1 
In terms of this gap structure we obtain 

(~1.5) -g .• 
1 

A final representation of TN will prove useful when we derive the 

limiting distribution of TN under shift alternatives in Section 13. 

Let F (•), 
m 

G (•) 
n be the empirical c.d.f. (on [o,2rr]) of the X- and 

Y-observations, respectively. Set m "N = N and 

(11.6) 

then HN(·) is the empirical c.d.f. of the combined sample. From (11.4) 

it follows immediately that 

m2 2TT 2TT 
TN = N f f hN(HN{x) - HN(y)) dF (x) dF (y). 

0 0 m m 

We now derive, under certain assumptions, the asymptotic distribution of 

TN under H and under K. 

1
It is obvious that the gap structure of a sample is invariant under T. 
It has been conjectured thatit.is in fact a maximal ·invariant. We have 
not been able to either prove or disprove this conjecture. - 56 -



12. The Asymptotic Distribution of TN under H. 

a. Limit Functions h _!!!£ Equivalence Classes of Sequences (hN} 

Before any statement about :the limiting behavior of a sequence 
. 

(TN, N = 1, 2, ... } of the form (11.2) can be made, we have to make some 

assumptions about the sequence (hN(.), N = 1, 2, ..• }. Actually hN(•) 

has to be defined only at the points ~, where K = O, ±1.., .±2, ••• ,±N, in 

order to make the expression (11.2) meaningful, but we assume that each 

h (•) is defined on [-1,1] in order to facilitate the presentation of proofs 
N 

and results. This is no real restriction on the class of statistics TN. 

By L
2
{0,l] or 1

2 
we denote the space of square integrable functions on 

{O,l]. 1
2 

is a Hilbert space if the usual definition of inner product is 

used, and we denote by I lh I IL , or simply I lh I I , the norm of an element of 
2 

this Hilbert space. 

Approximating sequences and equivalence classes of sequences: Throughout this 

section we make the following two assumptions on a sequence written in the 

(i) hN(·) is defined on [-1,1], symmetric with respect to O 

and periodic with period 1. 

(ii) h (·) N 
is a step function; it is constant on ( 2K-1 ~) 

2N '2N ' 
1 

K = 0 , ± 1 , ±2 , • • • • 

Definition: We say (hN} ~ h (" (hN} converges to h" in this 

particular sense) if the following two conditions are satisfied: 

1 

1 

(a) h is continuous, J h(x)dx = O and 
0 

as N - CIO. 
2 

Note that the elements hN(·) form a linear subspace of 1
2

(-1,1]. 
2

This obviously implies that h( •) is symmetric and periodic, since a 
subsequence of hN(•) converges pointwise a.e. and since continuity implies 
uniqueness of the limit function. 
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- .. f (b) hN(o) - h(O) as N -~. 

We also assume that 
m ·~ 

AN = "ii: = N .... A as N - co (0 < A< 1). 

On the basis of these assumptions we show that the limiting distribution 

of {TN}, if it exists, is a function of h(•) only. 

If we consider several sequences {hN}, {gN}, we sometimes denote the 

corresponding statistics by 

Theorem 12.1: (a) Let 

T , respectively. 
gN 
be a converging sequence. 

Then 

(12.1) 

(12.2) 

(b) If {gN}, {hN} are two sequences satisfying 

(i) and {ii) and if gN(o) - hN(o) - O, 

then as N - co. 

Proof of (a): We first give the proof under the assumption that for 
N . 

each N, _t hN(i) = O. Using representation 11.4 we first compute 
i=l 

Obviously 

ET 2 
N 

l N N N N • , . , • , . , 
= -2 ~ ~ E E h ( 1 -J ) h ( 1 -J ) 

N ~ ~ N N N N z.z.z.,z.,. 
i=l j =1 i '= 1 j '=1 1 J 1 J 

n 
m m-1 --N N-1 

if all indices are equal, 

if any three indices are equal and 

the fourth is different or if any 

two pairs of indices are equal, 
Ez . z . z . , z . , 

l. J l. J 
= 

:!!! .!!!:l ~ 
N N-1 N-2 if there is exactly one pair of 

equal indices, 

:!!! m-1 m-2 m-3 
N N-1 N-2 N-3 if all four indices are different, 

for N large enough to make -~ ~ 3. 
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For convenience we use the symbol A_k 
~k 

to denote N-k' where we 

suppress the N on which A_k actually depends. Obviously A -+ A 
-k 

as N - ~, k fixed. To compute ETN2 we partition the set of quadruples 

of indices into seven subsets Pk: 

p ((" • • f •I) 1 = l.,J,l. ,J i = j = i' = j'}, 

p ((" .. , ·•) 2 = l. ,J 'l. ,J three indices are equal, one is different}, 

p ((" .. , ·•) 3 = l.,J,l. ,J i=j, i'=j', i:/:.i'}, 

p ((" ·. • f • I) 4= J.,J,l. ,J • •I • •I •_J_• • •I • •I •-1.•J l. = l. , J = J , l. r J or l. = J , J = l. , l. r J , 

p {(" • • I •I) 5 = l.,J,l. ,J i = j or i' = j', and all other indices are different 

p {(" • •I •1) 6= J.,J,l. ,J i = i' or i = j' or j = j', and all other indices 

are different}, 

P
7 

= ((i,j,i' ,j') : all indices are different}. 

On each of these partitions sets 

essentially suffices to compute 

Ez . z . z . , z . , 
l. J l. J 

is constant, hence it 

for each 

• • • I • I 
I: h (l:.:l) h (]. -J ) 
p N N N N 

k 

k. For convenience we define c (N) 
h 

• • • I • I 

( l.-J) (]. -1 ) _ ( )2 
~hN N hN N - NhNO • 
pl 

1 N . 
N I: h (-=-)2 

i=l N N • 

• • • I • I N .N . . 
(2::.l) ( l. - 1 ) (.!.::J.) ( ) 

Ep hN N hN N = 4 _El -~·hN N hN 0 
i= Jrl. 2 

N 

= 4 I: (-hN(o) h (o)) = -4N hN(o) 2 ~ 
. 1 N • l.= 

{making use of the symmetry property and of the fact that 
N . 
I: hN ( i) = 0) • 
1 
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4,..J 

~ 

-
_, 

-
._ 

Isl 
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bai 

~ hN(i;j) hN (i';j') = N(N-1) hN(0)2. 
p3 

E h ( i- j) h ( i I - i I ). 

p N N N N 
4 

Eh ci-j) h ci'-i') 
p N N N N 
5 

Eh (i-j) h (i'-j') 
p N N N N 
6 

N 
= -2 L Eh (i-i)2 _ 

i=l j:/:.i N N -

N 
2_E {Nch(N) - hN(o)2 ) 

1.=l 

= 2N{Nch(N) - hN(0)2 ) • 

N •. 
= 2 E E E hN( 1

; 1) hN(o) = -2(N-2)N hN(o) 2 • 
i=l jf:i i I :/:.i 

i I :/:.j 
N • . • I • I 

= 4 E E E h (.!.:.J.) h ( 1 -J ) 
. 1 ·1· •Ii• N N N N l.= Jrl. J rJ 

j I l=i 
N . . • . 

= 4_E _E_ (-hN(O) - hN( 1
;

1)) hN( 1 ;J) 
1.=l J:/:.1. 

= 4N hN(0)2 + 4N h (o)2 - 4N2 C (N) N h 

= 8N h (0)2 - 4N2 c (N) N h • 

Eh (i-j) h (i'-j') -
p N N N N -

N . . . I • I 

E E E t h (.!:..l.) h ( 1 -J ) 
. 1 •1• •If• ., ,., N N N N l.= Jrl. l. FJ J Fl. 7 i':/:i j 1 :/:.j 

j':/:i 

= 
N . . . I • • I • 

E E E h (1;:.l)(-h (0) - h (l..:.:.l) - h (1 -1.h 
. l -1· -,1- N N N N N N N 1.= Jrl. 1. rJ 

i':/:.i 

= 
N . . • . 

_E _E_hN(
1

~
1)(-(N-2) hN(o) + 2hN(o) + 2hN(l.;J)) 

1.=l J~l. . 

= + (N-4) N hN(0) 2 + 2N(Nch (N) - hN(o)2 ) 

= 2N2 ch(N) + N(N-6) hN(o)2• 
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Collecting terms and multiplying by Ez . z . z • , z . , 
l. J l. J 

we get 

N2 ETN2 = N hN(o) 2 A - 4N hN(o) 2 AA_l + N(N-1) hN(0)2 AA_l 

+ 2N(Nch (N) - hN(o) 2 )AA_l - 2(N-2)N hN(o) 2 AA-lA-2 

+ (8N h (0)2 - 4N2 c (N))AA A 
N h -1 -2 

+ (2N2 ch (N) + N(N-6) hN(0) 2 )AA_ 1A_ 2A_
3

• 

Since hN(•) is a step function which satisfies (i) and (ii) above we 

obtain the relation 

c (N) = J_ ~ h (1)2 = ll~llf' 
h N i=l N N 2 

Upon dividing both sides of the above equation by N2 and taking into 

account that hN(O~h(O), w~ obtain 

(12.3) 

Also 

(12.4) 

Hence 

(12.5) 

ETN2 = hN(o) 2 (A
2

-2A3+A
4

) + I lhNI 12 (2A
2

-4A3+2A4 ) + oN(l) 

= (h(O)A(1-A)] 2 + 2(1 lhl 11 A(l-A)] 2 + oN(l). 
2 

ETN 
1 N N .. 

= - I: I: h (~) N • N N Ez.z 
1.=l j=l l. j 

1 N m N m m-1 
= - I: h (o) - - - h (o) - -

N i=l N N N N N N-1 

m m 1 
= hN(O) N (1 - N:l) = h(O)A(l-A) + oN(l). 

var TN = ETN
2 

- (ETN) 2 = 21 lhl If A2 (1-A) 2 + oil). 
2 

1 N . 
- l. We now extend this result to the general case. Let hN = N i~lhN(N)?· 

then the sequence h'N(•) = hN(·) - hN satisfies the assymptions of the 

particular case treated so far. 
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But 

l N . 1 
= I- ~ h (.!.) - J h(x) dxl 

N i=l N N 0 

1 
~ J jhN(x) - h(x)jdx - O, 

0 

1 
= I J (h (x) - h(x)) dxj 

0 N 

since on a finite measure space convergence in L2 implies convergence 

in L
1

• Hence, applying (12.3) we get for the general case 

(12.6) ETN2 = [(hN(o) - hN) A(l-A)]2 + 2[A(l-A)I lhN - hNI 1
2 + oN(l) 

= [h (o) A(l-A)] 2 + oN(l) + 2A2 (1-A) 2 (l jhNI If - hN2
) + oN(l) 

N 2 

= [h(O) A(l-A)] 2 + 2[A(1-A)j jhj I~ ]2 + oil). 
2 

Similarly we have, making use of (12.4), 

(12.7) ET = 
N 

and thus 

(12.8) 

Proof of (b): Replacing hN and 

may apply the result derived under (a). Hence from (12.6) 

(12.9) 

This completes our proof. 

If we define two sequences {gN(·)} and {hN(•)} satisfying {gN - hN}=,o 

to be equivalent (the requirements of an equivalence relation are obviously 

satisfied), then equivalent sequences have identical limiting distributions, 

if a limiting distribution exists at all. We state this fact as a 
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Corollary: If {hN} and {hN'} are sequences converging to the same 

h, then Th and Th, either both converge in distribution to the same 
N N 

limit or neither of them converges in distribution. 

by Theorem 12.1 (b), ~ - T pr. 0 which implies the desired result. 
h ·~ N N 

S· Asymptotic Distribution .2£ TN for h With Finite Fourier Expansion 

Throughout this section we assume that h(•) has the Fourier expansion 

(12.10) h(x) = ~ dk e2TTikx 

k=-K 
1 

where K is arbitrary but finite. From our assumption J h(x) dx = 0 
0 

we get do= o. 

Since h(•) is real we have dk = d_k for each k; but h(•) is 

also symmetric with respect to 0, hence 

K 2TTikx 
E dk e = h(x) 

k=-K 
= h(-x) = 

K -2TTikx 
E dk e 

k=-K 

so that dk = d_k (by uniqueness of expansion). It follows that dk 

is real for all k. Combining the results we get 

(12.11) k = ± 1 , ±2 , ••• ,± K. 

Matrix form of representation: By (11.4) TN can be written in the form 

(12.12) 
N N 

TN = l E E hN (i-i) z.z. 
N . l . l N 1 J 

1= J= 

( (N) (N) (N) 1 where zN = z1 , z
2 

, ••• , zN ) is the vector of indentically 

distributed, dependent random variables which are indicators of the 

X-sample. ~ is defined by 
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Diagonalization of ~: ~ is a symmetric matrix (since hN(•) is 

symmetric with respect to zero) which has the additional property that 

[~Jr,s depends only on (r - s) mod N. Matrices with this latter 

property are called "circulantu matrices. 

G. Wahba (1967) has shown that a unitary matrix WN' which diagonalizes 

circulant matrices of order N, is given by the symmetric matrix WN 

defined by 

(12.13) [W.] = 1. e2TTirs/N. 
N r ,s Ji 

* By WN we denote the adjoint of WN' which is also equal to WN. 

Hence we get the relation 

(12.14) 

where· DN is a diagonal matrix. Since HN is symmetric, the elements 

of DN are real. 

If we set 

(12.15) 

we get 

( 12. 16) * ' W D W TlN
1 DN .,,N ZN N N N ZN = 'I ., 

where d (N) 
l are the diagonal elements of DN (t = 1, 2, ••• ,N). 

way of writing this is 
..... 

(12.17) 
N 

TN = ~ d (N) [Re(11 (N))2 + Im(11 (N))2]. 
t=l l l l 

We now determine d (N). 
l . 

Since -1 * WN = WN we get the relation (from (12.14)) 
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( 12.18) 1 * DN = N WN HN WN, 

[ 
1 N . 

~ WN] = ~ L h (.!.:J.) 
, r,s ~N j=l N N 

2TTij s/N 
e 

- 1 N . 
- - Lh (.J.) 

N j=l N N 
e 

by periodicity and synnnetry of hN(•). Hence 

1 * N (WN ~ WN]t,s 
1 N -21Titr/N 2TTirs/N ~ h (l) 

= ~ Ee e .La N N 
r=l J=l 

2TTi(r-j)s/N, 

2TTij s/N 
e 

(by symmetry of hN) 

= 

N 1 . . 
N Eh (.l) e2ITis .l 

j=l N N N 

0 

using the orthogonality property of WN. 

It is easily recognized that 

(12.19) d (N) 
.f, = .f,th Fourier coefficient of 

Lemma 12.1: If {hN}~ h, then d (N) - d 
t .f, 

if t = s, 

if t I:. s, 

hi·)' .f, s: N. 

as N - co, l = 1, 2, ••• 

Proof: If (. '.) denotes the inner product in the Hilbert space 

L2 ~o,1], then 

d = .f, (h(x), e2TTilx) 

By the Schwarz inequality 

and d (N) .f, = (hN(x), e2TTilx). 

jd.f, - d.f,(N)l2 = l(h(x) - hN(x), e2TTitx)l2 s: I jh - hNI 1~21 I e2TI'itxl I 

- 0 as N - co. 

Equations (12.16) and (12.17) give a first indication as to what the 

limiting distribution of TN might look like. The ~.f,(N),s are linear 

functions of the zN's and can thus be expected to be asymptotically 

normal under quite general conditions. (We will come to this question late~ 
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in this section.) The dt(N) converge to known constants. This 

convergence, however, does not allow us to pass to the limit immediately, 

since it is not uniform in N. We shall see that in fact dt(N) = dN-t(N). 

The next theorem will show how this obstacle can be overcome by exploiting 

more thoroughly the structure of WN and by choosing a particularly 

suitable sequence (hN}~ h. 

Theorem 12.2: Let {hN} be the sequence of step functions satisfying 

(i) and (ii), defined by hN(~) = h(i), 

we may write 

then (h }~ h, and for N > 2K 
N 

(12.20) 

where th 
t component of ~N' 

Proof: Since h(•) is uniformly continuous on [0,1] it is obvious 

By straightforward computation we obtain for the parti-

cular ~ with {IL] = h (.!:.:.!): 
--N r, s N 

(12.21) 

* [W.N HN] r,s 
= .! ~ e-2TTirt/N h(~) 

J°N t=l N 

_ .!. ~ e-2!Tirt/N ~ d (e2!Tik(t-s)/N + e-2!Tik(t-s)/N). 
- fi t=l k=l k 

1 ; e2TTius/N ~ e-2TTirt/N 

N s=l t=l 

~ dk (e2!Tik(t-s)/N + e-2TTik(t-s)/N) 
k=l 

= ~ ~ dk [ ~ e2TTi(u-k)s/N ; e-2!Ti(r-k)t/N 
k=l s=l t=l 

+ ; e2TTi(u+k)s/N ; e-2TTi(r+k)t/N] 
s=l t=l 

1 N 
= N E dk(8(u,r,k) + o'(u,r,k)), 

k=l - 66 -
say. 
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Now 

= {N02 8(u,r,k) 
if k = u and k = r, 

otherwise. 

. JN2 
61 (u,r ,k) = \o if k = N-u and k = N-r, 

otherwise. 

Hence 

where DN is a diagonal matrix with diagonal elements (d1 , d2 , ••• ,dk, 

O, ••• , 0, dk, ••• , d2, dl, 0). 

From this result we get the representation 

where Tl (N) = 
t 

th 
t component of TIN' 

Now ITI (N)l2 + ITI (N)l2 = (Re'Tl (N))2 + (lmTj (N))2 + (ReTj (N))2 + (lmTj (N))~ 
t N-t '1t t N-t N-t 

It is easy to see, that Tlt(N) and TIN-t(N) are conjugate complex, and 

hence ITlt (N)l 2 + ITIN-t (N)l 2 = 21Tlt(N)l 2 - Hence we finally get 

Distribution of Tlt(N): From now on we assume that N > 2K, which is no 

real restriction, since we are interested in the limiting distribution of 

'flt (N) only. 

(12.22) 

(12.23) 

(12.24) 

Theorem 12.3: (a) For each t < N/2 we have 

E'J1t (N) = O. 

var Re(Tjt (N)) = var Im(Tjt(N)) = ½,W (1 - ;:i) - ½ A(l-A), as N -~. 

cov (Re(Tjt(N)), Im(Tjt (N))) = O. 
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(b) If O <A< 1, then Re(Tjt (N)) and Im(Tjt (N)) are asymptotically 

normally distributed with means and variances given by (12.22), (12.g3). 

Proof: (a) 

since the 

ETJ (N) 
.f, 

N 
= I: ,r-4- e -2TTitr /N 

r=r,N Ez _ r -

* 

~ _J.__ ~ e-2TTitr/N = O, 
N .. N r=l 

.f,th row of WN is orthogonal to the Nth, which has the 

1 form $ ( 1 , 1 , 1 , ••• , 1 ) • 

hence 

var Re(Tjl (N)) = E Re(Tj (N) )2 
.f, 

EITJ.r, (N) 12 

= .1... E( ~ e2TTirt/N z + ~ e-2TTist/N z ]2 

4N r=l r s=l s 

1 ~ ~ r 2TTirt/N + -2TTirt/N) = 4N L, L, 1.,e e 
r=l sl:.r 

(e2TTist/N + e-2Tfist/N)AA_
1 

+t ; (e2ITirt/N + e-2!Tirt/N)2 A 
. r=l 

= 
4
~ ; (e2!Tirt/N + e-2!Tirt/N)2 A(l-A~l) 

r=l 

_ A(l-A_ 1) fo + 2N + 0 

- 4N lN + 2N + N 

if 2t I:, N, 

if 2t = N. 

l N N . 
= - E[ I: I: e-2TTitr/N 2TTits/N N e z z ] 

r=l s=l r s 

= i ; t e-2!Titr/N e2!Tits/N AA_l + i ; eOA 
r=l s~r r=l 

1 
= N (-AA_ 1N + AN) = A(l-A_ 1), 

var Im(~t(N)) = El~t(N)l 2 - var Re(~t(N)) = ½ A(l-A_
1
). 
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A similar straightforward computation shows that Re(T]t (N)) and 

Im(T]t(N)) are uncorrelated. 

(b) We prove the result for ~N = Re(T]t (N)), l fixed. The proof 

for the imaginary part can be given in the same way. 

Asymptotic normality follows easily from a very general result by 

From his Theorems 4.1 and 4.2 we compile the following result: 

Let [aNi' i = 1, 2, ••• ,N} and (bNi' i = 1, 2, ••• ,N} be double 

sequences of real numbers. Let (~1 , ~ 2 , ••• ,~) be a random vector 

which assumes the N~ permutations of (1, 2, ••• ,N) with equal proba-
1 N - 1 N 

bilities. Set aN = N _I:
1
aNi' bN =N _I:

1
bNi• 

l.= l.= 

(12.25) 

(12.26) 

Assume that 

lim 
N - CD 

lim 
N-= 

max (aN. - aN) 2 

l::;;iSN 1 

max (bN. - bN) 2 

lSi:5:N 1 

= o, 

= 0, 

[lim 1: = 
N - ex, 

0]'9 lim 
N - CD 

N 

- a )2 
N 

Under these conditions I: bN.aNR . 1 l. • 
i= l. 

is asymptotically normally 

distributed with mean E'.a and variance 
N 

In our case we have 

(12.28) 
1 N 

= m I: cos (21Tj t/N) z .• 
1~ j=l J 

1 
Here, of course, lii~n stands for logical implications. 
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If we set 

(12.29) 
if 1 ~ j :S: ~, 

if ·~ + 1 ~ j :S: N, 

and 

(12.30) 
1 ~ - cos (2TTj t/N), 
~ 

then it is easy to see that aN defined by (12.28) has the form 
N 

aN = _I: bN.aNR. • 
J=l J J 

Now we have to check conditions (12.25), (12.26), and (12.27). 

max 
j 

N 
I: (aN. - aN) 2 = ·~(1-AN) 2 + (N-u1N)A2 N = N Ail-AN) 

j=l J 

N 1'.(1-A) ~~, hence (12.25) is satisfied. for all j, 

~ b2N' = .!.! ~ (e2TTijt/N + e-2TTijt/N)2 = t (o + 2N + o) = ½, this implies 
.

1 
J N4. 1 N 

J= J= 

(12. 26). 

~ To check (12.27) let N < 6 for N ~ N6• 

for N :ii!: N
6 

and all indices jl < j 2 <. • .< j~. 

k 
::.:N( - )2 r;-· aN. - aN 

we get 
a=l Ja 6 for N large enough. 

(12.27) is satisfied and completes our proof. 

This shows that 

We now extend the above result to any finite nwnber of components 

Tl.e, (N) (t = 1, 2, ••• ,L), but before we state our theorem we prove a useful 

Lennna 12.2: Let w (N) - a (N) + i~ (N) 
t - t t (a's and S's real) be the 

. * first L row vectors of WN, (L fixed). Then any linear combination 

double sequence (bNJ.} of the form bNJ. =~ca. (N) + ~ d S _(N) 
t=l t tJ t=l t tJ 

satisfies (12.26). 
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Proof: First note that for N > 2L we have 

- (N) 1 N (N) 
Q't = N I: Q't. = 0, 

j=l J 

~ (N) = l ~ S (N) = O, 
t N . l tj 

. J= 

N (N) (N) 
I: <l'o • O'.f,r • 

. 1 1,J J J= 
= ; S . (N) So,J·(N) = 0 

. 1 tJ 1, J= 

for 1 :s: t < t' :s: L and 
N (N) (N) = 0 for 1 :s; t :s; t' ~ L I:<l't. ~t•· . 1 J J J= 

* are orthogonal if (i.e., all the real and complex components of WN 

L < N/2). We give the proof for a weighted swn of two double sequences 

c
1
a

1
j (N) + c

2
a

2
j (N). The general case can be proved in the same way. 

Consider 

N a 2 
· N {N) {N) N (N) (N) cl c2 
I: ( C lQ'l • + C Q' . ) 2 = C 2 I: Q' • 2 + C 2 I: Q' • 2 = - + - > Q 

j =l J 2 2J 1 j =l lJ 2 j =1 2J 2 2 

max {c Q' • (N) + c Q' • (N)) 2 :s: max .c 2 0' • (N) 2 + max c 2 0' • (N)2 + 2jc c lmax a . (N)Q'(~ 
j 1 lJ 2 2J j 1 lJ j 2 2J 1 2 j lJ 2J 

~ i ( I c1 I + I c2 I )2 ..... 0 as N ..... co. Hence (12.26) follows. 

Joint distribution of ~t{N), t = 1 2 2 2 ••• 2L: 

Theorem 12.4: Let O <A< 1. For any constant L the joint distribution 

1:m-n {N) 
''1 , 

ReTJ (N) 
2 , 

asymptotically normal with mean vector O and covariance matrix 

; = ½ A(l-A)I2L, where I2L is the identity matrix of order 2L. 

Proof: According to a well-known theorem by H. Cram~r it suffices to 

prove asymptotic normality for any linear combination ~ = ~ c Re~ {N) 
l=l .f, .f, 

L 
+ I: C I I:mTJ (N)_ 

l=l .f, .f, 
But because of Lemma 12.2 this follows directly from 

~ 

another application of Hajek's results. Computation of mean vector and 

covariance matrix is straightforward. 
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Asymptotic distribution of TN; 

Theorem 12.5: Let O <A< 1 and 

of the present section, i.e., if h(x) 

[hN} ~;.h. Under the assumptions 

K 21Tikx 
= I: dk e 

k=-K 
the asymptotic 

distribution of 
m m R. - R. 

TN=_Nl I: I:h ( i J) 
i=l j=l N N 

is the same as the distribution 

K 
of A(l-A) I: dkuk, 

k=l 
where uk are independent x2 random variables 

with 2 d.f. 

Proof: It is easy to see that if -
in distribution, where F is absolutely continuous, then the distribution 

of any quadratic form x'Ax converges to the distribution of the quadratic 

form of the limit (the sets x'Ax st are ellipses, and the F-measure 

of its boundaries are zero). Hence the result follows immediately from 

Theorem 12.2, (12.23), Theorem 12.4, and the Corollary to Theorem 12.1. 

y. Extension of Results!£?_! Class of Functions !l!..!:h Infinite Fourier 

Expansion 

We now extend the results of the previous section to a class of 

functions h with infinitely many Fourier coefficients different from zero. 

For a function h(x) = : dk e2rrikx we found the asymptotic distribution 
k=-K 

o·f TN by first studying 2K-dimensional linear functions of 'the 

passing to the limit (N - co), and then deriving the distribution of 

the quadratic form. 

In the present situation it seems to be natural that a similar path 

could be followed if we study uinfinite-dimensionaP' linear functions of 

the Z IS 
N taking values in some space and then try to pass to the limit. 

A separable, infinite dimensional, Hilbert space will suit our purpose, 

as will be seen in the following theorems. In Appendix~ we present a 

number of definitions and results on measures and convergence of measures 
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on Hilbert spaces. A capital letter A refers to theorems and definitions 

stated in the appendix. 

Under our assumptions on h (real, symmetric with respect to zero) 

we still have dk = d_k = dk in the expansion 

(12.31) h(x) = 

Throughout this section we make the following additional 

Assumption: 

, ( 12.32) 
= 

= 2 I: jdkl < =· 
1 

N 
This assumption implies that I:: dk ... h(O) as N - co. 

-N 
In this section it is convenient to use as approximating sequence the 

sequence (hN} satisfying (i) and (ii) and 

(12.33) = ~ dk e21Tikt/N 
k=-N 

i.e., on the intervals of constancy hN 

partial sum of the Fourier series. 

takes the values at l of the Nth 
N 

Lemma 3: For the sequence (hN} satisfying (i) and (ii) defined by 

(12.33) we have I lhN - hi 11 ... 0 and hN(O) ... h(O) as N ... co; i.e., 
2 

(hN} is a legitimate approximation in the sense that 

Proof: Since ~ dk e21Tikx ~ h(x) uniformly in x 
k=-N 

is continuous) 

we have lhN(x) - h(N)(x)I < e, a1l x, for N ~ N, where h(N)(x) is e 
the approximating step function satisfying (i), (ii) and h(N)(i) = h{-~). 

Hence I lh - h(N)I I - 0 as 
N L

2 

I lh (N) - hi IL ... O, and hence 
2 

N -=· By uniform continuity of h we h~ve 

I lh - h I I ... 0 as N -+co. N L
2 

We have already remarked that hN(O) ... h(O) because of Assumption (12.32). 
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.- We now define a sequence of measures on the real Hi.lbert space H of 

real sequences with finite sum of squares. 

As always in probability theory we assume that there exists an underlying 

probability spa~e (n,l(..,P) where the sequences of i.i.d. random variables 

x1, ~, ••• ad inf. and Y1, Y2 , ••• ad inf. (~ith continuous distribution 

function) are defined. We also assume that to each N there is defined an 

integer ~ :s:: N, such that \q "'~ ... ;- as N ...... , and O < A < 1, 

Since we are only interested in certain rank order statistics, all our 

random variables are functions of the vectors zN defined by (11.3). But it 

should be kept in mind that they are actually measurable functions on (n,OC.,P). 

Any measurable transformation from the space of the Z IS 
N 

to H induces 

a probability measure on H. We now define a sequence of measurable trans

formations SN of the zN 1 s and hence a sequence of measures on H: 

Let VN be the N x 2N matrix defined by 

[WN] s+l if s is odd, 

C (12.34) [VN]r ,s 
r,2 

= 

Set 

(WN] s if s is even. 
r,2 

where t = rk;l], ,1 ~ k ~ 2[~], 

= for 2[~] < k ~ 2N-2, 

for k = 2N-1 and for k = 2N. 

Define c2N to be the diagonal matrix with elements ck(2N) (k = 1, 2, ••• ,2N). 

E.g., for N even c2N has diagonal elements (ld1 1 + 1~_
1

1, 

ld1I + l~-11, ld2l +· ldN-21, ••• , ldN/21 + ldN/21' o, ... ,o, fdNI' l~NI). 

If x = (x1 , x2 , ••• ) is a generic element of the Hilbert space H, 

we define the sequence {SN} of mappings from n to H by the relation 
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(12.36) 

Let µN pe the
1
probability measure on H induced by SN. 

Theorem 12.6: The sequence (µN} of probability measures is compact. 

Proof: We use Theorem A.2 for the proof. 

Condition 1-: This is obviously satisfied. 

Condition 2: As a basis for H we take the vectors (1,0,0, ••• ), 

(0,1,0,0, ••• ), ••• Now let e > 0 be given. Take M, 
C 

even, such that 

co 
E jdkj < f, which is possible by (12.32), and let M > Me be arbitrary. 

k-~M s 

Then for N < M we have 

if 2N < M, 

for M ~ 2N < 2M, by (12.2l 

For N ~ M we set s2N = VN' zN (this is the vector of real and imaginary 

parts of ~N) and use the fact that all the components St(2N) have the 

same expected square ½ A(l-A_ 1) (by (12.23)). Hence 

2N 
JrM2(x) dµN(x) = E (c (2N))2 E(s (2N))2 
H k=M k k 

Hence for M > M we have e sup J rM2(x) clµ,N(x) ~ e, which completes our proof. 
N H 

- 75 -



' ... 
~ 

~ 

-
~ 

'-

.. 
~ 

--
-
,_ 

--
-' 

._ 

~ 

.. 
~ 

-
I._ 

\aal 

'-

Lemma 12.4: Let {µNJ be a compac~ sequence, let M be the closure 

(in the topology of weak convergence) of {µN, N = 1, 2, ••• ]). Then the 

set of characteristic functionals {x(f,µ):µ,eM} is a uniformly equi

continuous set of functions of f (on H). (For the definition of 

x(f,µ) see Appendix (A.16).) 

h22£: Let e > 0 be given. By Theorem A.1 there exists a compact 

K
6 

such that µiK,) c? 1 - {, all N. By Lemma A.1 any µ, s M also 

satisfies this relation, since it is the limit of a suitably chosen 

subsequence µ,N • 
i 

Now K is bounded by some constant K > o. e Let 

I If - g 11 < ;K. Then for any µ.eM lx(f ,µ.). - x(g,µ.) I = l{(ei(f ,x) 

ei(g,x)) dµ.(x)I ,; { lei(f,x)I 11-ei(g-f,x)I dµ(x) + 2 tK ciµ(x) 

e e 

~ J l(g-f,x)I dµ(x) +t ~ J llf-gl( llxll dµ(x) +½ ~ 
K K 

e C K2K+ 2 = e. 
C e 

Theorem 12.7: µN ~ some probability measure µ as N ~m. 

h22£: If µN ~ µ in the sense of weak convergence, then 

µN(R) = 1 = JldµN ~ Jldµ, = µ,(R), thus µ has to be a probability measure. 

We show weak convergence by using Theorem A_.3. 

Let f(k) = (f1, f
2

, ••• ,fk, 0, O, ••• ); then by a slight extension of 

Theorem 12.4 we get 

(12.37) 
k 

(k) ) { 1 ).(1-A) I I 2J x(f . ,jll,N -texp - 2 2 .1: d i:±1,] fi 
· i=l [ 2 

as N ~ co. 

Let µ, be any limit measure of a suitably chosen subsequence. Then 

by the definition of weak convergence 

(12.38) 
k (k) 1 ).(1-A) I If 2J x(f ,µ,) = •exp {- 2 2- . l: d[i+l] i • 

i=l 2 

- 76 -



Since the f(k),s are dense in H, and since the left hand side of 

{12.38) ·is continuous in its first argument we must have: 

(12.39) x(f,µ,)= exp {- .! A(l-A} ; Id . If 2 } 
2 2 i=l [-ill] i 

2 

all f e H. 

(I.e., any limiting measure is normal with S-operator of the form 

Now let f c H and s > 0 be given. By the preceding Lemma 12.4 

we know that Ix(£,µ) - x(f(k)'~N)I <1 uniformly in µ e· M, if only 

11£ - f(k)I I~ 6e for suitably chosen 6
1

•· Fix such an f(k) and let 

N
1 

be such that lx(f(k),~) - x(f(k),~)I <1 for N ~ N
8

, and for 

the particular µ, appearing in (12.38) and (12.39). Then for N ~ N 
e 

we get 

lx(f,µ,N) - x(f,µ,)I 

~ lx(f ,µ,N) - x(f(k) ,µ,N) I + lx(f(k) ,µ.N) - x(ik) ,µ,) I 

+ I X ( t< k )_ , µ. ) - X ( f , µ, ) I 

By Theorem A.3 we get the desired result. 

Theorem 12.8: Under the assumptions of this section TN converges in 

distribution to the distribution with characteristic function 

(12.40) 

Proof: 

Let 6k = tl, 

-1, 

if dk ~ o, 

if dk < o. 

- 77 -



... 

* If T}N = WN zN as previously, then for the components Tl (N) we have 
t 

'rl (N) _ -; (N) 
' 1N-t - ' 1t . With this notation a s~raightforward computation shows that 

(12.41) . T 
N 

N 
= L cl (N) I (Tl ) I 2 

k=l k . N 

= ~ 6 (c (2N))2 [(E (2N))2 + (g (2N))2] 
k=l k 2k . 2k-1 2k . 

where dk(N) are the characteristic values of ~ obtained by 

diagonalizing HN by the matrix WN. 

Combining (12.36) and (12.41) it is easy to see that TN(w) is a 

function of SN(w) and that on H TN has the simple structure 

(12.42) X 2 
k 

since ~l =···= x2N_2 = x2N+l =···= 0 

Now we know from weak convergence that 

(12.43) cpT ( t) 
N 

This limit is continuous and hence TN converges in distribution. We now 

cc, 

evaluate E exp {it E 6 k+l xk2 }. From Theorem 12.7 we conclude that for 
µ, lc::l [7] 

each K 

(12.44) 
2K ~ -l 2K 

E exp {it E 6 k+l ~ 2}~ 11 (1 - 2ik(l-k)dkt) = E exp{it E o k+l x. 2 }. 
µ,N k=l [7 ~ k=l µ, k=l [~] K 
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By the dominated convergence theorem we can pass to the limit in K 

and get 
co 

= n (1 - 2iA(l-A) dkt)-
1

• 
k=l 

Theorem 12.9: Let h have a continuous derivative. Then TN 

converges in distribution to a probability measure with characteristic 

function 

where 

co 

q>(t) = II c1 -
k=l 

dk = fle21T~~(x) 
0 

dx, k = 1, 2, ••• 

Proof: It is a well-known fact in Fourier-analysis that under the 

above conditions ldk) ~ ~ for some constant M. Hence the sequence of 

Fourier coefficients converges absolutely and the result follows from 

Theorem 12.8. 
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- 13. The Asymptotic Distribution of T under Alternatives. 
N 

So far we have only obtained the asymptotic distribution of TN 

defined by ( 11. 2) in the case F S. G. We now derive, under somewhat 

more resttictive conditions, the limiting distribution of TN in cases 

where Fj!!G. The ideas of the proof have been developed by Chernoff 

and Savage (1958) and have since been applied to several problems of a 

similar nature. 

It will be convenient to define a few terms which will appear repeatedly 

in the proof of Theorem 13.1. As before h(•) is a function defined on 

(-1,1], even, periodic with period 1, and J1
h(x) dx = 0. 

0 
Definitions: 

H(x) = A F(x) + (1-A) G(x) 0 S XS 2Tf. 

2Tf 
B(x) = f h(H(x) - H(y)) dF(y) 0 S XS 2Tf. 

Q X 2TI' 

(13.1) 

(13.2) 

(13.3) 

(13.4) 

* B (x) = - J f h'(H(u) - H(y)) dF(y) dF{u) 0 S XS 2TI'. 
0 0 

** * B (x) = B(x) + AB (x). 

Let x1 , ... ,Xm and Y1 , •.. ,Yn be independent samples of circular 

random variables with continuous densities f(.) > 0, g(.) > 0, 

respectively. In this section it is more convenient to use a different 

_normalizing constant for the test statistic TN and we thus define 

1 m m R. - R. 
(13.5) TN = ~ I: I: h( ]. ] ) . 

i=l j=l N 

Let µ,N and (J 2 
N 

be defined by 

(13.6) µ,N = A2 EB(X) 

and 

(13.7) Na 2 4A2 [var ** A * = B (X) + A-l var B (Y)]. N 

With these definitions we get the following 
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Theorem 13.1: If O'N :/: O, if h"(•) exists and is continuous, 

and if m 
~ = N satisfies Ao~ AN~ 1-Ao for some A0 > O, and 

~ -+ A as N -+ ao , then 

(13.8) 
T - µ, X 2/ 

lim P( N N ~ x) = .!,_ f e -t 2dt. 
N -+ ao O'N \2TT ~ 

~: Let again Fm(·), Gn(·) be the empirical c.d.£. of the 

X- and the Y-sample, respectively. Set H.._ = AF + (l-A)G and -~ m n 

H =AF+ (1-A)G. Then using the representation (ll.7) with the new 

normalizing constant we obtain 

(13.9) 
m 2TT 2TT 

~ = ~)2 J
O 

J
O 

h(~(x) - ~(y)) dFm(x) dFm(y). 

The idea of the proof is to show that TN 

an asymptotically normal term, and a term 

Let 

is the sum of a constant term, 
_.!. 

o (N 2 ). 
p 

(13.10) 
N ~ ~ 

BN = (-) 2 TN = f f h(H.._(x) - HN{y)) dF {x) dF (y). m 
O O 

--N m m 

By Taylor's formula we have for any x and any 8 

(13. ll) h(x + 8) = h(x) + fJi' (x) + ½82h"(x + 88), where O ~ 8 ~ 1 • 

If we apply this expansion to the ~-term with 

(13.12) 

we obtain 

(13.13) 

(13.14) 

(13.15) 

(13.16} 

8 = ¾(x) - H(x) - (HN{y) - H(y)) 

B = N 

C = N 

D = N 

~ = 

CN + DN + EN, where 

2TT 2TT f J h(H(x) - H(y)) dF (x) dF (y); 
0 0 m m 

2TT 2TT 
J

O 
J

O 
h' (H(x) - H(y)) (~(x) - H(x) - ~I!) + H(y)) dFm (x) dFm(y) 

2TT ~ 
½ f f h"(8(¾(x) - HN(y}) + (l-8){H(Je) - H(y)) 
I O 0 

(~(x) - H(x) - HN(y) + H(y)) 2 ijFm(x) dFm(y). 
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From the linearity of the Rieman-Stieltjes integral as a function of the 

measure (or rather: signed measure) we obtain form.ally 

(13.17) dF (x) dF (y) = d(F (x) - F(x)) d(F (y) - F(y)) + dF(x) d(F (y) - F(y)) 
m m m m m 

+ d(F (x) - F(x)) dF(y) + dF(x) dF(y). m 

We now investigate the CN-term. 

Using (13.17) we obtain 

(13.18) 

where 

(13.19) 

(13.20) 

(13.21) 

(13.22) 

CN = CNl + CN2 + CN3 + ~4 

CNl 

CN2 

CN3 

CN4 

2TT 2TT 
= J J h(H(x) - H(y)) dF(x) dF(y) = EB(X), a non-random term; 

10 0 
2rT 2TT 

= J [J h(H(x) - H(y)) dF(x)] d(F (y) - F(y)) 
0 0 m 

m 
; ! ~ [B(X.) - EB(X)], (note that h(u) = h(-u)); 

m i=l 1 

2rT 2rT 
= f J h(H(x) - H(y)) d(F (x) - F(x)) dF(y) 

0 0 m 

2TT 2TT 
= J [J h(H(x) - H(y)) dF(y)] d(F (x) - F(x)) (Fubini' s theorem), 

0 0 m 

1 m 
= - l: [B(X.) - EB(X)]; 

m • 1 J. 
l.= 

2TT 2TT 
= f f h(H(x) - H(y)) d(F (x) - F(x)) d(F (y) - F(y)) 

0 0 m m 

1 
= o (N-2 ) by Lennna A.4 of the appendix, 

p 

since o~(~,y) = h"(H(x) - H(y)) (Af(x) + (1-}i.)g(x)) (Af(y) + (1-A)g(y)) 

in this case. 

Now·we analyze the DN-term similarly. Using (13.17) again we get 

the decomposition 

(13.23) DN = DNl + DN2 + DN3 + DN4 

where DNi is obtained from CNi by replacing h(H(x) - H(y)) by 

h'(H(x) - H(y)) (~(x) - H(x) - HN(y) + H(y)) (i = 1, 2, 3, 4). 

- 82 -



- (13.24) 

... where 

(13.25) -
... 

because of 

~ 

_. 

~ 

-
._ 

... 

._ 

'-' and where 

lai 
(13.26) 

-
\al (13.27) 

la 

(13.28) -
-
'-

DNl = DNll + DN12 + DN13 + DN14 

2TT 2TT 
DNll = ~Jo Jo h'(H(x) - H(y)) (Fm(x) - F(x)) dF(x) dF(y) 

AN m * * - - I: ( B (X. ) - EB (X)), 
m i=l 1 

1 m * * - E (B (X.) - E (X)) 
2Tf X 2JT 

= - f J J h'(H(u) - H(y)) dF(y) dF(u) 
0 0 0 m i=l 1 

2TT 21T 

d(F (x) - F(x)) 
m 

X 2Tf 
= - [ (F (x) - F(x)) J f h' (H( u) - H(y)) 

m O 0 
dF(y) dF(u)]::~rr 

2rr 21T 
+ f (F (x) - F(x)) J h' (H(x) ... H(y)) 

O m 0 
dF(y) dF(x) 

by partial integration (F has a density) 

2TT 21T 
= 0 + J [f h'(H(x) - H(y)) dF(y)] 

0 0 
(F (x) - F(x)) dF(x) 

m 

-1 ,-
= AN DNll by Fubinis theorem, 

DN12 = (l·AN) f f h'(H(x) - H(y)) (G (x) - G(~)) dF(x) dF(y) 
0 0 n 

( 1- "N) n * * = E (B (Y.) ~ EB (Y)), by the same argument, n j=l J 

2TT 2fT 
DN13 = - ANJ J h'(H(x) - H(y)) (F (y) - F(y)) dF(x) dF(y) 

0 0 m 

= DNll by skew-synnnetry of h'J 

21T 21T 
DN14 = - (1-AN) Jo Jo h'(H(x) - H(y)) (Gn(y) - G(y)) dF(x) dF(y) 

= DN12 by the same argument. 
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(13.29). DN2 = Jo J h'(H(x) - H(y)) (~(x) - H(x) - ~(y) + H(y)) 
0 . 

dF(x) d(F {y) - F(y)) . m 
1 

= o (N-2 ) by Lennna A.3, parts a, b, C, d. p 

21T 2TT 
(13.30) DN3 = J J h'(H(x) - H(y)) (~(x) - H(x) - HN(y) + H(y)) 

0 0 
dF(y) d(F (x) - F{x)) m 

1 

= o (N-2 ) by the same argtnnent. p 

2TT 2TT 
(13.31) DN4 = Jo J h'(H(x) - H(y)) (¾(x) - H(x) - HN(y) + H(y)) 

0 
d(F (x) - F(x)) d(F (y) - F{y)) m m 

1 

= o (N-2 ) by a straightforward extension of Lennna A.3. p 

1 

(13.32) ~ = op (N-2 ); this follows easily from Lennna A.2 by multiply~ng 

out the square and using (13.17). 

Collecting terms we get 

(13.33) B = 
N 

2 m 211.N m * * 
EB(X) + - 1: [B(X.) - EB(X)] + - 1: [B (X.) - EB (X. )] 

m i=l 1 m i=l 1 
J. 

2(1-11.N) n * * _1,. 
+--- E [B (Y.) - EB (Y)] + o (N 2

), 
n . 1 J p 

J= 

and hence by (13.10, (13.2), (13.3), and (13.4) 

(13.34) m ** ** E (B (X.) - EB (X)] 
. 1 l. l.= 

~ * . * 1 
E (B (Y.) ~ EB (Y)] + o (N-2 )]. 

j=l J p 

1 

Thus, because of t!he Central Limit Theorem, N2 (TN - 11.2 EB(X)) has 

asymptotically a normal distribution N(µ,a2 ) with µ = 0 and 

41 ** l * * ** cr2 = 4A <r cr2 (B (x)) + M a 2 B (Y)), since B (Y) and B '(x) are 

bounded random variables (and hence they have finite variances). This 

completes our proof. 
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It is interesting to see why this theorem does not give us any 

information about the asymptotic distribution of TN in the null case 

(F(·) = G(·)). In this case we get 

(13.35) B(x) 

(13.36) a*(x) 

~ 
= J h(H(x) - H(y)) dF(y) = 

0 
1 

= J h(F(x) - y) dy = const. 
0 

X 2rr 

2TT 
f h(F(x) - F(y)) dF(y) 

0 

(by periodicity of h). 

= - f f h'(H(u) - H(y)) dF(y) dF(u) 
0 0 

X -1 
= J [h(F(u) - y)];:o dF(u) = 0 (again by periodicity of h). 

0 

Hence it follows directly from the proof of Theorem 13.1 that TN 

converges in distribution to the constant 

(13.37) 
2TT 2TT 

EB(X) = f f h(F(x) - F(y)) dF(y) dF(x) 
0 0 

1 1 1 
= J f h(x - y) dx dy = J h(x) dx = o. 

0 0 0 
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14. Efficiency and Consistency of Tests based on TN. 

In this section we derive the asymptotic relative efficiency of 

tests based on sequences (TN} for testing shift alternatives. We 

then show that under quite general conditions there exist tests in this 

class whose efficiency is arbitrarily close to 1. This result is 

somewhat surprising since we are only considering tests which are 

invariant under a relatively large group of transformations. 

Again let h( •) be symmetric with respect to O, periodic with 

period 1 and such that J1h(x) dx = O. Furthermore we assume that 
0 

h"(·) and f'(•) exist and are continuous. In this section we restrict 

our attention to test statistics of the form 

(14.1) 
N N 

T l E E h(i - 1) zizj, 
N = N i=l j=l N 

since more general test statistics of the form (11.2) have the same 

limiting distribution by the results of Section 12, ~. 

We use Bahadur's concept of efficiency again and thus we have to 

check Assumptions 1-4 of Section 3. Since h"(•) exists we know from 

Section 12 that (3.1) is satisfied. It follows from Theorem 13.1 that 

(3.3) is satisfied with b1(N) = N and 

(14.2) 

where 

21T 21T 
= A2 J f h(H8(x) - H8(y)) dF(y) dF(x), 

0 0 

He ( x) = AF(x) + ( 1- A) G ( x) 
X 

and G(x) = J f(t-8)dt = F(x-8) - F(-8). 
0 

In the following lennna we will show that Assumption 2 is satisfied 

·with t 1 = 1. We have seen in Section 9 that the test with highest 

efficacy has an asymptotically normal distribution, so that it satisfies 

13.1) with a2 = 1, t - 2· 2 - ' it also satisfies (3.3) with 
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Hence the relation (3~,4) holds, and all we have to show is that (3.2) 

holds for the distribution corresponding to (12.40). 

Lennna 14.1 :. If f( •) > 0 has a continuous derivative the distribution 

function corresponding to the characteristic function (12.40) satisfies 

(3.2) with 

all k. 

t = 1 and provided that for 

Proof: This result follows immediately from a theorem obtained by 

Box (1954). In his Theorem 2.4 he shows that for a finite weighted sum 

of independent x
2

2 -variables the distribution function G(x) can be 

expressed in the form 

(14.3) 
K 

1 - G(x) ; P( t d Y-2 > x) = 
k=l k '"'2 

where a (K) are given explicitely. From the explicit representation 
k 

it follows easily that the ~k(K) converge as K -t co, provided that 
00 

t ldkl < ~. From (14.3) it is obvious that the tail of G(x) goes to 
k=l 

1 at a rate which corresponds to the "slowest" part on the r.h.s., i.e., 

-2 log (1 - G(x)) :-: ma: d (1 + o(l)). Since dk -t O as k-. co we 
k 

have max dk = max dk for K large enough. Since in (12.40) the 
lSk~K l~k<Q:i 

weights are A(l-A) dk, we obtain 

( 14. 4-) -2 log (1 - F(x)) = A(l-A)xmax d (1 + o(l)), 
k 

i.e., (3.2) is satisfied with t ::: 1 and a = 1 
A(l-A) max dk • 

In order to compute the efficacy of any test based on a sequence 
d2 

[TN} we first have to find ~ c(e)I , where c(e) is given by 
e~o 

(14.2). First we obtain 

.! dC(8) 
A.2 d8 

2TT 2TT 
= J f h'(H8(x) - H8(y)) (l-A)(-f(x-8) + f(-8) 

0 0 
+ f(y-8) - f(-8)) f (x) f (y) dx dy, 
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and hence in particular 

2rT 2TT 
= (1-A) J J h'(F(x) - F(y)) (f(y) - f(x)) 

0 0 
f(x) f(y) dx dy 

= o. 

f2 d:~~8) I = (1->..)2 l" lrrh"{F{x) - F{y)) (f(y) - f(x) )2 
8=0 0 0 

f(x) f(y) dx dy 

2TT 2TT 
+ 2(1-A) f f h' (F(x) - F(y))(f' (x)-f{:(y):)~.(*)£:(y)> 

0 0 dx dy 

= I+ II, say. 

It is easy to see that II= 0 by integrating with respect to y and 

using the periodicity of f and h. Upon substituting u = F(x) and 

integrating by parts we obtain 

I = {l-A)2 f2Tf[h'{u - F{y)) {f(F-1{u)) - f{y)) 2 ]:~ dF{y) 
0 

2TT 1 '( -1( )) 
- 2(1-A) 2 J _:.J h'(u - F(y)) (f(F-1(u)) - f(y)) fF-l u du:dF(y) 

0 . 0 f (F (u)) 

= III+ IV, say. 

~ Using petiodicity of h' and of f we see that III= O. If we now define 

-
-
-
-
--
-
-

(14r~f;};::,;.,,; p(u) = ·f o F-1(u), we obtain easily 

IV = 

= 

= 

1 1 l 
2(1-A) 2 J [ Jh'(u-v) f(F- (v) dv] p(u} du 

0 0 
1 1 1 · 

2(1-A} 2 J [-(h(u-v} f(F- 1(v}})I + J h(u-v} p(v)] p(u) du 
0 0 0 
1 1 

2(1-A) 2 J J h(u-v) p(u} p(v) du dv. 
0 0 

Hence we get finally 

(14.6) d
2

C&8)1 = 2(1->..)2 >._2 J1 J1
h(u-v) p{u) p{v) du dv. 

d9 8=0 0 0 
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Bahadur efficiency of sequences The value of d:~£8) I shows 
8=0 

how fast the probability goes to infinity as N -m, for alternatives 

close to zero. If we use Fourier-series expansions for h(•) and for 

p(•), i.e., 

(14.7) h(x) = i dk e21Tikx, 
- Q) 

(14.8) = 
ao 
~ 2TTikx 
L, pk e , 

-ao 
1 

then the convolution g(v) = J h(u-v) p(u) du has Fourier coefficients 
0 

gk = dkpk. Hence the integral in (14.6) (which in L2[0,l] is the 
CD 

inner product of g(•) and p(•)) is equal to E dk fpkf 2• 
-ao 

Since we want to have this term as large as possible (in order to 

obtain high efficiency), we will from now on assume that dk ~ 0 for 

all k. 

The "slope" s(8) of the sequence (TN} is defined by s(8) = a(C(G))t. 

: 1 4 Since in our present case t = 1 and a= A(l-A) max dk by Lemma 1 .1, 

we obtain 

s(e) 
1 2TT 21T 

= A(l-A) max dk .J J h(H9(x) - He(y)) dF(y) dF(x). 
0 0 

Using (14.6) we compute the efficacy of (TN} as 

(14.10) - 1 d2 I - A2(1~A)2 1 1 
eff (TN) - 2 d&2 s(8) &=O - max dk Atl-A) J

0 
~ h(u-v) p(u) p(v) du dv. 

Since the efficacy of the "best" parametric test is equal to 

(14.11) 

by Section 9, we obtain the efficiency 
Ll 

(14.12) 
ttct"fo h(u-v) p(u) p(v) du dv e (TN, best testjf) = . ...._ _____________ .• , 

max dk Inf (f) 
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Consistency of sequences {TN}: Using Lemma 3.1 we immediately get the 

following result: 

Lemma 14.2: Let dk ~ 0 and pk be defined by (14.7) and (14.8) 
CID 

respectively. If t dk fpkf 2 > 0, there exists a neighborhood U 
k=-m 

of 0 such that for 8 e U, 8 ~ 0~ the sequence of tests {TN~ cN,~} 

is consistent •. 

Proof: dC(8) I We have seen above that de = 0 
8=0 

and that 

(14.13) d2c(:)J = 2A2(1-A)2 ; d fpk12 > O. 
d8 8=0 k=-= k 

Hence there exists a neighborhood U of O such that 8 e U, 8 ~ 0 

implies C(8) > O. Hence for this neighborhood u, the slope is > O 

and by Lennna 3.1 we obtain the desired result. 

Hilbert space interpretation of efficiency term: As in the one-sample 

case it is convenient to interpret the efficiency (14.12) as a relationship 

between elements of L
2

[0,1], the space of square integrable complex 

functions on [0,1]. First we note that 

(14.14) 

Furthermore it is well-known that the relation r(•) - s(•) defined by 

1 
(14.15) s(x) = J h(x-y) r(y) dy 

0 

is a compact linear operator from L2 into 

The sequence { 2TTikx e , k = 0, ± 1, ±2, ... 
normal system in L

2
[0,1]. We now show that 

L2. 

} 

.it 

istic functions (or eigenvectors)_ of H. Let 

(14.16) 
CID 

h(x) = t dk e2ITikx, 
- CID 
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then 

(14. rr) s(x) J
.1h( ) 2Tfimyd r-

1 
C:, d 2Trik{x-y) 2Tfimy d 

= x-y e y = J " k e e y 
0 .o k=-o::, 

= 
C:, d r1 2ITikx 2Tfi(m-k)y d _ d 2ITimx 
" k J_ e e y - m e 

k=-co 0 

(the interchangeability of integration and summation is a well-known 

fact in Fourier analysis, it also follows from general Hilbert-space 

theory)• This result shows that the functions 
2Tfimx . e are eigenvectors 

of the operator H and that the Fourier coefficients d are the 
m 

corresponding eigenvalues. For compact operators in Hilbert spaces we 

have the relation 

(14.18) 11 H 11 = max I dk I , 
k 

where dk are the eigenvalues. Since we assume dk ~ 0, real, we obtain 

(1~.19) IIHII = max dk. 
k 

· 1 1 
Finally the integral J £ h(u-v) p(u) p(v) du dv can now be written in 

0 0 
the form 

(14.20) 
1 1 J ( J h(u-v) p(u) du) p(v) dv = 

0 0 
(Hp, p)L • 

2 

Hence we obtain the following expression for the efficiency from (14.12), 

(14.14), (14.19) and (14.20): 

(14.21) fHp l) e (TN, best testlf) = IIH I f Pll2 • 

Maximization of the efficiency: It follows from our definition of efficiency 

and also from general Hilbert space theory that (Hp, p) s ( fH(I I fp( f 2 We 

want to find out how clo·se we can get to equality by a suitable choice of 

H (for given p). W.l.o.g. we may assume that I IHI ( = 1. It is immediat·e 

that equality is achieved if and only if Hp= p. If we express this 

condition by means of Fourier coefficients, we obtain 
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(14.22) dkpk = Pk, k = ±1, ±2, ••• ,max dk = 1. 

(For k = 0 the relation is always satisfied.) From this re~ation we 

get the following 

Theorem 14.1: If p(•) has a finite Fourier expansion, then there 

exists an efficient test sequence among the class (14.1). It is given by 

~ d 21Tikx 
~ k e ' 

k=-co 
h(x) = dk = 1 if pkp-k #;: o, 0 otherwise. If p ( •) 

k;l:O 
has an infinite Fourier-expansion, an efficient test sequence of the form 

(14.1) does not exist, but for every e > 0 there is a test sequence with 

efficiency > 1-e. 

~: The first part of the Theorem follows directly from (14.22). 

For the second part we would have to take an infinite number of d's 
k 

equal to 1 in order to satisfy (14.22). But then the Fourier series 

(14.7) cannot converge. However if we take d0 = O, dk = 1 for 

k = ±1, ±2, ••• ,±K, then by (14.21) the efficiency of the te~t sequence 

based on the corresponding h is 

(14.23) e (TNjbest test; f) 
K I= 

= r: 1Pkl 2 r: IPkl
2

, 
k=-K k=-= 

and this term approches 1 as K ~=-

Remark: It follows from Theorem 12.8 that under the hypothesis the 

test statistic TN/[2A(l-A)] corresponding to h(•) of Theorem 14.1 

has an asymptotic xK2 -distribution (with K d.f.), where K is the 

number of elements dk for which dk = 1. 
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15. An Example Studied by Wheeler and Watson. 

We give one illustrative example for a test sttatist!c of the form (11.1): 

S. Wheeler and G. S. Watson (1964) proposed a non-parametric test for 

equality of two circular distributions which can be described as follows: 

Place the two samples on the circle, change the angles between "successive" 

observations in such a way that all are eRual (~ f), compute the length 

R of the vector resultant of the "adjusted" X-observations and reject the 

Null hypothesis of equality if R is too large. 

If points on the circle are considered as unit vectors on tqe complex 

plane, then the statistic R2 is defined as follows: 

m m .... --.. ---· m m 
R2 = E exp {2ITiR./NJ ( E exp (2TTi~/N}) 

J=l J k=l 
= t ~ exp (2ITi(R.-~)/NJ 

J=l k=l J 

m m R. - ~ 
= E E cos 2TT( 1 N ) 

j=l k=l 
(since R2 is re~l), 

where the ranks R. (j ~ 1, 2, ••• ,m) ~re defined by choosing an arbitrary 
J 

cut-off point and an arbitrary direction on the circle. aence R2/N is of 

the form (11.2) with hix) = cos 2rrx, ij::: 1, 2, •••• 

For the calculation of the efficiency of this test ip the case of 

the v. Mises distribution we use (14.12). Here 

Hence 

dl = d_l = ½, dk = 0 for k ~ .±1; 

Inf (f) = k I1(k)./I0(k) from (A.10); 

p(u) f' -1 
= f o F (u) ~ ~k sin F- 1(u); 

h(u-v) c cos 21T (u-v) = cos 21T Q cos 21T v + sin 2lT u sin 21T v. 

1 1 
f f h(u-v) p(u) p(v) du dv 
0 0 

1 
= (-k J cos 

0 

1 
21T u sin F- 1(u) du] 2 + [-k j sin 21T u sin F- 1(u) du] 2 

0 

1 1 
= k2 (J: sin 2IT u sin F- (u) 

0 
,. 93 -
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We thus get the efficiency expression 

(15.1) e(Wheeler-WatsonJ best test;v. Mises distribution) = 

1 
2k [ J~ sin 2TT u sin F-

1(u) du] 2 

I 1(k)/I0(k) 

In the limiting case k - 0 we get F-
1(u) - 2rru, and hence by the 

dominated convergence theorem 

1 1 
. -1 . 2 1 J° sin 2TT u sin F ( u) du - J' sin 2TT u du = 2 • 
0 0 

By (A.12) and (A.11) 

I 1(k) ~ ~ 
2' 

I0(k) 1. as 

As k - 0 we thus obtain 

(15.2) lim e(w-wf best test iv· Mises distr.) = 
k - 0 

k - o. 

2k • 1/4 
k/2 = 1. 

This shows that for values of k which are close to O the Wheeler

Watson statistic will have a high efficiency in the case of av. Mises 

distribution • 
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IV. APPENDIX 

ct. Some Properties' of the v. Mises Distribution. 

The v. Mises distribution is defined by the density 

(A.1) = C(k) ek cos (x-8) for 0 S: X < 2fT (k ~ o, o s: e < 211) 

where C(k) is a suitable normalizing constant. We first evaluate c(k). 

It is a well-known fact [see e.g. F. Bowman (1958), p. 89] that the 

function ik sin x 
e (as a function of x) has a Fourier expansion with 

the Bessel functions as "constants." More specifically, 

CIQ 

(A.2) ik sin x 
e = I: J (k) inx 

e for real x, 

where 

n 
n=-00 

k is an arbitrary complex number and J (k) n is the Bessel 

function of order n. The convergence is uniform with respect to x. 

Using this fact we obtain 

(A.3) C(kr
1 2rr k 

COS X dx 2TT k sin (x + Tr/2) dx = J e = J e 
0 0 
21T 00 

J (~) ein(x + Tr/2) = J I: dx 
n l. 

0 n=-co 
CIQ 

J21TJ (~) ein(x + TT/2) = I: dx 
n=-00 0 n l. 

k 
= JO(i) 2Tr 

where in general we define 

I (k) = i-nJ (ik). 
n n 

I (k) is real for real k. It is called Bessel function of purely 
n 

imaginary argument. 

At various places we need the expectations of cos X, sin X, cos 2 X, 

sin2 X, where X has the v. Mises distribution. We now derive these 

expectations. We indicate the value of 8 by writing Ee for expectation. 
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(A.Li) E0 sin X = o, by symmetry. 

2rr k COS X 
2rr 

(A. 5) E0 cos X = C(k) f cos x e dx = C(k) f at ek cos X dx 
0 0 

2rr 27TIO' (k) I 1(k) 
= C(k) ik J ek cos X dx = =-

0 2TrI0(k) r0(k) 

The last step follows from the relation J
0

1 (k) = -J
1

(k) (F. Bowman 

(1958), p. 93], hence 10
1 (k) = :k J 0(ik) = - i J 1 (ik) = I 1 (k) • 

(A.6) 

Using this result we get more generally 

Ea sin X = C(k) J2TTsin x ek cos (x-e) dx 
0 
2rr 

= C(k) J (sin X COS 8 + COS X sin 8) ek COS X dx 
0 

= cos 8 EO sin X +sine E0 cos X 

= sin 8 E
0 

cos X • 

By a similar argument we obtain 

(A.7) Ee cos x = cos e Eo cos x. 

(A.8) E
0 

sin2 X 
2rr 

2 ( ) o2 J k COS X = 1 - EO cos x = 1 - Ck ok2 e dx 
0 

d2 dll(k) 
= 1 - C(k) dk2 (2TT I 0 (k)) = 1 - 2TT C(k) -~ 

. dJ 1 ( ik) 1 f • 

= 1 + 2rr1. c(k) rll, = 1 -
10

(k) J 1 (1.k) 

l . J 1 (ik) r1 (k) 
= 1 - - (k) (Jo(i.k) - ·k ) = 

0 i k I (k) 
0 

Here we used the general relation 

nJ (k) 
n 
k 

J f (k) 
n 

- J ( - n-1 k) -

(F. Bowman (1958), p. 93]. 
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~Since, in the case of the v. Mises distribution, we have 

(A.9) Inf (f) = EO k2 sin2 X 

we obtain immediately 

( A.10) Inf (f) 

Finally we state a few results about I
0

(k), I(k) for k close to 

zero and k close to + co. 

(A.11) I 0 (k) = 1 + k2 + 
4 o(k4) for k - O. 

(A.12) I 1 (k) 
k 

o(k3 ) = -+ 
2 

for k - O. 

k 
(A.13) I

0
(k) . e 

2TTk 
as k - + co. 

k 
I 1 (k) . e 

2TTk 
as k - + co. 

s. Definitions and Results about Measures and Weak Convergence of Measures 

on Separable Hilbert Spaces. 

In this section we present a few definitions and results on convergence 

of measures on Hilbert spaces. Most of the results follow directly from 

the definitions or can be found in Y. V. Prokhorov (1956). 

We always assume that the Hilbert space H is real and separable. 

Let be the a-fjeld of subsets of H generated by the class of 

continuous linear functionals on H (i.e., the minimal a-field with 

respect to which all elements of the dual space are measurable), then 

(H, ·· ) is a measurable space. Any countably additive nonnegative set 

function m( •) defined on ,·· is called a measure on H. 

We assume that m(H) < =· 
Definition: A sequence of measures (µ,N} converges weakly to a 

measure µ, ( in symbols: weakly ) if µN µ, , 
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' (A.i4) __. J f(x) dJ.!(x) 
H 

for all bounded continuous functions f on H. 

This type of convergence is usually called "convergence in distribution" 

if H is finite-dimensional. 

Convergence in distribution on finite dimensional spaces can be 

metrized. The so-called Levy-metric has the property that convergence 

of measures in this metric is equivalent to convergence in distribution. 

A similar metric has been defined by Prokhorov for the class of finite 

measures on (H, ). Convergence in this metric is the same as weak 

convergence. With this metric the class M(H) of finite measures on 

(H, ) becomes a complete separable metric space. 

Lemma A. l: 

set F H. 

weakly 
µN . µ, implies lim µN(F) ~ µ(F) 

N 
for any closed 

Of great interest is the characterization of the compact subsets of 

M(H), i.e., sets which can be covered by a finite e-net for every € > O. 

Theorem A.1: A set M' M(H) is compact if and only if 

(1) sup µ(H) < ~ and 
µe:M' 

(2) for any e: > 0 there exists a compact 

µ(H - K) ~ e: for every µ e: M'. e: 

K 
e: 

H such that 

A useful sufficient condition for compact subsets M' is given by 

the following theorem. Since H is separable there exists a countable 

complete orthonormal set 

has been chosen and define 

~ 

{e.} of vectors. We assume that such a system 
1 

(A.15) = I: (x,e )2 • 

i=N i 

Then we can state this 
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' Theorem A. 2: A set of measures M' - M(H) for ,.,h ich 

(1) sup µ,(H) < oo and 
µ,eM' 

(2) lim sup J rN2 (x) dµ,(x) = O, 
N - oo µ~M' H 

is compact. 

A powerful tool for analyzing convergence in distribution of measures 

on finite dimensional spaces is the characteristic function. A corresponding 

transformation can be defined on Hilbert spaces. 

Definition: The function x(·,µ) defined for any bounded linear 

functional f on H by the equation 

(A.16) x(f,~) = J ei(f,x) dµ,(x) 
H 

is called characteristic functional of the measure ~- Here (· ,·) is 

the inner product on H. 

Since µ, is finite it is obvious that the integral exists. The 

name characteristic functional is justified by the fact that a measure 

is uniquely determined by its characteristic functional. 

A characteristic functional is continuous in £. 

By the definition of weak convergence we have, of course, 

every f f: H. 

The converse ( ) ( ) . weakly 
[x f ,µ,N -. x f , continuous] ::._. µ,N µ, is 

unfortunately not true for infinite-dimensional Hilbert spaces (and the 

usual topology on H). We have however the weaker 

Theorem A.3: If [µN' N ~ 1, 2, ••• } is compact and x(f,µN) --• x(f) 

for every f ~ H, then for some µ e M(H) 

weakly 
µN µ and x( f) x(f ,µ,). 
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y, Higher Order Random Terms. 

For the lemmas of this subsection we make the following assumptions: 

X,Y arc bounded random variables with continuous c.d.f. F(•), G(•), 

respectively. For convenience we assume F(O);.: G(O) = 0, F(2H) = G(2TT) = 1. 

Fm(·), Gm(·) are the empirical c.d.f.'s of independent samples of X's 

._ and Y's of sizes m and n, respectively. As N = m + n - ~, 

AN = w - A with O <A< 1. 
"-

._ 

.; 

_, 

'-

lat' 

-
-
'-

-
~ 

.. 

.. 
'-

.. 

Le mm a A.2: Let h(x,y) be a bounded measurable function defined on 

the square O ~ X ~ 2TT, 0 ~ y ~ 2Tf, then 

2IT 2TT 
(a) J J h(x,y) (F (x) - F(x)) 2 dF(x) dF(y) = 

0 0 m 

2TT 2TT 

( 
- 1 

op N 2). 

(b) f J h(x,y) (F (x) - F(x)) (G (x) - G(x)) dF(x) dF(y) 
0 0 m n 

2TT 2TT 
(c) f f h(x,y) (F (x) - F(x)) (G (y) - G(y))dF(x) dF(y) 

0 0 m n 

2TT 2IT 
(d) f f h(x,y) (F (x) - F(x)) (r (y) - F(y)) dF(x) dF(y) 

0 0 m m 

= ( - 1 op N 2). 

1 

= op (N-2"). 

= ( - 1 op N 2). 

Proof: It is obvious that all the integrals exist. We prove part (a). 

The proofs (b), ( c), and ( d) follow the same pattern. 
1 

By a theorem of Kolmogorov (see e.g. M. Fisz, p. 394] N2 sup l~m(x) - F(x)j 
X 

converges in distribution to some (finite) limit as N - ~. Hence 
1 

N4 sup jFm(x) - F(x)j - 0 in distribution and thus in probability. 
X 
Let e > O be given and let jh(x,y)j ~ K. There exists Ne such 

that for the sets 

1 
M e,N = {w: sup N"l+ jF (x) - F(x)j > .§. } 

m K 
X 

we have 

P(M N) < e for all N~N. 
e, € 
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~ C 
On the complement M N we have 

€' 

1 21T 21T 
jN2 J f h(x,y) (F (x) - F(x)) 2 dF(x) dF(y)j 

0 0 m 

21T 21T 
s; J J K 

0 0 

1 21T 21T 

e K dF(x) dF(y) = e. 

Hence P{jN2 J J h(x,y) (F (x) - F(x)) 2 dF(x) dF(y)f > e} < s for N ~ N~· 
0 0 m ~ 

This completes our proof. 

Lennna A.3: Let h(x,y) be a bounded continuous function on the 

square O ~ x:;; 21T, 0 ~ y ~ 21T, with a continuous partial derivative 

oh~= hl (x,y), then 

21T 21T 
(a) J J h(x,y) (G (x) - G(x)) d(F (x) - F(x)) dF(y) 

0 0 n m 

21T 21T 
(b) J J h(x,y) (rm(x) - F(x)) d(Fm(x) - F(x)) dF(y) 

0 0 

2TT 2TT 
(c) J f h(x,y) (G (y) - G(y)) d(F (x) - F(x)) dF(y) 

0 0 n m 

2TT 21T 
(d) J J h(x,y) (F (y) - F(y)) d(F (x) - F(x)) dF(y) 

0 0 ·. m m 

= 
( _1 

op N 2). 

= ( - 1 op N 2). 

= 
( _1 

op N 2). 

= ( - 1 op N 2). 

Proof: It is again obvious that all the integrals exist. Parts (a) 

and (b) have been proven by Chernoff and Savage (1958, p. 986-989) under 

considerably weaker assumptions (their c
2

N-term and c1N-term, respectively). 

We prove part (c): Integrating the inner integral by parts we obtain 

21T 21T 
f f h(x,y) (G (y) - G(y)) d(~ (x) - F(x)) dF(y) = 

0 0 n m 

21T 0'JT J (Gn(y) - G(y)) [h(x,y) (Fm(x) - F(x))J; dF(y) 
0 

2TT 2TT - f f (G (y) - G(y)) (F (x) - F(x)) h1(x,y) dx dF(y). 
0 0 n m 

- 101 -



-

-

r 
~ince the first term of the last line is O, the result is obtained 

by the argument that was used in proving Lemma A.2, part (c). 

Part (d) can be obtained by a similar kind of reasoning. 

Lennna A.4: Let h(x,y), ( ) a2h(x,y) 11 12 x,y = oyox 

exii:::: .::...id be continuous, then 

2TT 2TT 
J f h(x,y) d(F (x) - F(x)) d(F (y) - F(y)) 

0 0 m m 

_.1 
= o (N 2 ). 

p 

Proof: By carrying out one partial integration with respect to 

x and one partial integration with respect to y, the result can be 

obtained by the reasoning used to prove Lemma A.2, part (d). 
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