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1. Summary • 

This pa.per examines a sequential testing procedure for choosing one 

of three simple hypotheses concerning the unknown mean µ of the normal 

distribution when the variance is known. The test is conducted by plotting 

S, the sum of the observations, versus n, the current sample size, n 

until the point (n,S) is contained within one of three triangular n 

regions. When this occurs, sampling is terminated and the region con-

taining (n,Sn) determines which state of nature is accepted. Although 

we shall formally view the problem as one with only three states of nature 

{µ = µ1, µ2 or µ
3

), we shall proceed with the usual understanding that the 

performance of the test procedure should be evaluated for a wider class of 

states ( -00 < µ < co) • The test is approximated by a corresponding exact 

test for the Wiener process. Formulas are derived which approximate the 

operating characteristics (o.c.) and the average sample size (ASN) for 

all values of µ. The ASN function is compared with theoretical lower 

bounds. The testing procedure is compared with a modification of a 

three hYJ;>Othesis testing procedure proposed by Sobel and Wald [ 4 ]. 

2. Introduction • 

The study of three hY:POthesis tests is a natural first step in 

expanding from two hypothesis testing to the general multihypothesis 

problem. It presents an opportunity to examine in a particular case what 



might be disguised in the general case. However, three hypothesis tests 

are of interest in their own right. The familiar two-sided testing 

problem is often more naturally treated as a three hypothesis testing 

problem. In the two-sided test, the null hypothesis that, say, e = e 
0 

.. 

is sufficiently informative but its rejection probably is not. One would 

reasonably like to know whether e < e or 
0 

e > e when e is real 
0 

valued. Also, the three hypothesis interpretation allows one to control 

more than just type I and type II errors. 

The framework of our problem is as follows. Let x1,x2, ... be a 

sequence of independent, no:nnally distributed random variables with 

unknown common mean µ and known common variance 
2 a. We desire to 

accept one of three simple hypotheses H1, H2, or H
3 

where H. 
J. 

is the 

hypothesis µ = µi, µ1 < µ2 < µ
3

• The generalization of errors of 

type I and II is expressible in terms of a 3 x 3 "error matrix" 

A= (a .. ) where a .. = P [accepting H.] for i,j=l,2,3. 
J.J J.J µi J 

We desire a testing procedure which adapts to any specified error 

matrix. Experience has indicated that this is not easily accomplished 

without randomization. The difficulty is that for reasonable test 

procedures and 
~l 

tend to be small in comparison to 

a21 respectively. This usually is an asset rather than a liability. 

In any event, the author's procedure is a non-randomized sequential pro­

cedure which allows for almost complete control of the error matrix beyond 

the stipulation that °:J..
3 

and ~l must be very close to zero. 
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-· 
A brief digression will serve to introduce the author's procedure 

and at the same time place it in proper perspective with previous 

approaches. P. Armitage [ 2 ], with his generalization of Wald 1 s 

sequential probability ratio test (SPRT) to multihypothesis testing, 

presents a procedure which can be expressed geometrically in terms of 

six lines Lij' where Lij is the straight line passing through the 

points 

for n = 0,1, ••• , and i,j = 1,2,3, i I j. The quantities Aij are 
n 

arbitrary constants exceeding unity. One simply plots S = [ X n 1 m 

versus n until one of the following occurs: 

(i) The point (n,S) n lies below lines L12 and L
13

• 

(ii) The point (n,S) lies above line L21 and below L
23

• n 

(iii) The point (n,S) lies above lines L
31 

and L
32

. n 

Accept H1, H2, or H3 respectively. 

It is frequently the case that in the right half plane line L12 

lies entirely below L
13 

and line L
32 

lies entirely above L31 • Such 

would be the case if A .. e A for some A> 1. Then, (i) and (iii) 
l.J 

above · reduce to .. 

(i') The point (n,Sn) lies below line L12• 

(iii') The point (n,Sn) lies above line L32 . 

'lbe test looks graphically as follows. 

3 
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Sn versus n is plotted until (n,Sn) is contained within one of the j 
three cross-hatched regions. 

as indicated. 

The hypothesis to be accepted is determined 

Armitage has shown that his test is closed (for 

and the elements of the error matrix satisfy 

(2.1) 

and 

-1 _j_ 
a

1
. J. < A . . for i r j , 

= J1 

4 

-co < µ <co) 
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(2.2) o: .. ~ 1 - A .• ~ 
-1 

l.l. - j i J l. 

Unfortunately, (2.1) and (2.2) may not be close to equality. I.e., we 

understate our confidence in choosing the correct hypothesis and under­

state our protection against the various types of mistakes. Looked at 

from a different point of view, we probably can satisfy or improve upon 

the desired error matrix with fewer observations. 

We will use the same procedure as the special Armitage procedure 

shown in Figure I. The essential difference is one of viewpoint. Whereas 

Armitage's analysis leads to (2.1) and (2.2) we are concerned with 

obtaining more accurate control of the error matrix. The geometry of 

Figure I may be summarized by six "geometrical parameters" r1, r 2, 51, 

52, X, and T where rl and r2 are the intercepts of Ll2 and L32' 

51 is the slope of Ll2 and L21' 52 is the slope of L23 and L32' 

and (T,X) are the coordinates of the point P. 

Our primary concern in section four will be with finding good 

approximations to the probability of accepting H1, H2, and H3 as 

functions of µ and the six geometrical parameters. These probabilities 

can be approximated by passing from the discrete normal process 

S - N(µn,a2n) for n = 0,1, ••• to the continuous Wiener process 
n 

X(t) - N(µt,a
2
t), t ~ o. The corresponding test procedure is to 

graph X(t) versus t until (t,X(t)) is on the boundary of one of 

the cross-hatched regions in Figure I. (Note that X(t) is almost 

surely continuous.) 

5 



This latter procedure is an example of what the author [ 3] has 

called boundary tests. His paper finds implicit methods for computing 

the o.c. functions, the average sample time (AST) and other moments of 

the sampling time. However, we shall derive our results directly from 

methods developed by T.W. Anderson [l]. It is a pleasant fact that 

these approximate o.c. functions are quite good even for small sample 

sizes. 

As a basis of comparison, it is informative to consider a modifica­

tion of a three hypothesis, composite test suggested by Sobel and Wald 

[ 4], one adapted to our three states of nature problem. We explain 

this modification by referring again to Figure I: 

Plot (n,Sn) for n = 0,1, .•• and define I\ and n2 as 

follows. 

Let I\ be the smallest positive integer n for which the point 

(n,Sn) is simultaneously above or below lines L12 and 121 • Define 

n2 similarly with respect to lines 1
23 

and 1
32

• 

(a) Accept Hl if nl 2:n2 and (n
1
,s ) is below line 112· nl 

(b) Accept H3 if n2 2: ~ and (n2,sn) is above line L32• 
2 

(c) Accept . H2 otherwise • 

For reasons,of mathematical convenience, they insist that 

(2.3) (See Figure I.) 

Since the stopping time N = max(~,n2 ) depends on both ~ and n2, 

the stopping rule and acceptance rule do not depend completely on the 

sufficient statistic (N,SN). Nevertheless this modified procedure 
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represents a reasonable ad hoc procedure which exhibits easy execution 

and some degree of mathematical tractabilityo 

3. Results of numerical investigations. 

Beyond this :point we shall have occasion to refer to a "symmetric 

case", namely: 

(i) µ2 = (µl + µ3)/2 = o. 

(ii) aij = a(4-i),(4-j) for i,j = 1,2,3. 

Otherwise, we are in the "general case"o It seems appropriate in the 

symmetric case to use a "symmetric procedure", namely: 

(iii) r 2 = -r1 = Y• 

(iv) o2 = -o1 = 5. 

(v) X = 0 • 

In any event, symmetric procedures and "general procedures" must 

reasonably satisfy the obvious constraints: 

(vi) r1 < 0 < y2 • (vii) o1 < o2 • 

(viii) T > 0 • · (ix) Y1 +51 T < X < r2+02T • 

A. Ability to satisfy error matrix requirements. 

Usually, one desires the correct decision probabilities oi1,~2 

and °:,3 to be substantially larger than .50 In such situations·we 

can only find procedures of the author's type (of the Sobel-Wald type 

also) which make C\
3 

and °:;l nearly zeroo We indicate this briefly 
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by a. - + .L3 - 0 and °:31 = o+. Then, of course, °:1..2 = (1-°:J..1)- and 

~ 2 = (1-a,
3
)-. It becomes apparent that in the general case we have 

at most four "degrees of freedom" in choosing an error matrix which 

can be satisfied. In the symmetric case the number is two. Thus, for 

instance, in the symmetric case we may desire to control °:J..l and ~ 2 • 

Indirectly we are controlling ~l' ~ 3, and °:33 and virtually controlling 

°:J..2, °:J..3, a,1, and ~ 2 • Numerical investigations have shown that we 

have great flexibility within our restricted degrees of freedom. For 

example, if we insist that °J..i = °:33 = .95 we may find symmetric proce­

dures which allow ~ 2 to range from about .5 to very nearly unity. 

Similar flexibility exists in the general case using general procedures. 

The wide degree of latitude that one has is exemplified by the extensive 

set of tables compiled by the author [ 3]. The modified Sobel-Wald 

procedure restricts ones choice of error matrix to a considerably 

greater degree. This is due to restriction (2.3). Nevertheless, there 

still remains considerable latitude within their class of procedures. 

B. Quasi-optimality. 

In the general case we have, using general procedures, six geometrical 

parameters with which to "fit" four degrees of freedom in the error matrix. 

Actually one can typically fix o1 and o2, say, and make a fit with the 

remaining four geometrical parameters. A natural question to ask is 

whether there is some best way of fixing o1 and 

of µ, what values of o1 and o2 will minimize 

o2 . For a given value 

E (T)? (E (T) denotes 
µ µ 

the expected sampling time for the Wiener process with drift parameterµ.) 

8 

• I ( 
r .. 

I i .. 
I I u 

I 

-.J 

~ 

~ 

I / ... 
~ 

flllill 

--

---
. I I ,· 
~ 

... 
I I 

I ; .. 
..., 

I 

w 

--
,, ,' 

w 

~ 



; -· 
_, 

-
wt 

'-' 

-
._ 

-
-
-
~ 

-
... 

'-

,_ 

.. 
_, 

~ 

-

The question is nearly answered forµ= µ1, µ2 and µ3: Let 61 = (~+µ2)/2 

and 62 := (µ 2+µ 3)/2. That is, E (-r) is nearly simultaneously minimized µ 

for µ = µ1, µ2, and µ3 with the same pair of 6's. The evidence if only 

of a numerical nature and does not appear to be a theoretical facto (See 

[ 3].) The explanation of this phenomenon (called quasi-optimality) 

seems closely related to the fact that in the two states of nature problem, 

with µ = µ1 and µ2, say, Wald's SPRT, when viewed geometrically, says 

to use slope 6 = (µ1+µ2)/2 for the two parallel stopping lines. For 

fixed errors of typesI and II, this slope minimizes Eµ(N) forµ=~ 

and µ2 simultaneously. (See Wald and Wolfowitz (5 ].) Quasi-optimality 

appears to hold for the Sobel-Wald modified procedures also. 

C. Comparing the ASN with a theoretical lower bound. 

In this subsection we are concerned with comparing the ASN for one 

of our procedures which satisfy certain error constraints with a 

theoretical lower bound to the ASN for all possible procedures satisfying 

those constraints. The author (3] has found two different theoretical 

lower bounds which will not be discussed here • 

Example 1: Problem: µ1 = -.1, µ2 = 0, µ3 = .2 

Constraints: '\i = ~ 2 = ~ 3 = .95, ~l = °23 = .025 

µ -.2 -.1 -.05 0 .1 .2 .3 

ASN for author's quasi-optimal. test 242.5 661.8 1072 574.5 287.9 168.5 90.9 

First lower bound for the ASN 87.6 661.4 787.3 561.0 196.8 165.4 48.2 

Second lower bound for the ASN 104.o 335.0 883.3 335_.o 220.8 83.8 43.0 

9 



-

Clearly the author's test does very well when µ = µ1 , µ2, or µ3. Since 

the lower bounds are not actually·attainable, it is impossible to say how 

much we can improve upon the test for other values ofµ. Actually, the 

entries in the first row are based on the Wiener approximation so the 

true entries are larger than those given. It is the author's judgment 

that this difference is slight. (See the next subsection on the Monte 

Carlo study.) It is typical for the ASN to look good forµ= µ1 and µ3 
but sometimes its goodness is not certain at µ = µ2 • 

Example 2: Problem: µ1 = -.1, µ2 = 0, µ
3 

= .1 

Constraints: °:J..l = ~ 2 = a,3 = .95, ~l = 1/60, a23 = 2/60 

µ -.2 -.1 -.05 0 .05 .1 .2 

ASN for author's quasi-optimal test 269.5 741.2 1167 803.3 972.7 609.8 223.3 

First lower bound for the ASN 96.3 738.4 852.0 572.4 738.2 606.9 

Second lower bound for the ASN 109.3 353.8 94o.o 353.6 867.5 318.5 

D. Small sample size results. 

T. W. Anderson [l] raises the question of how inaccurate are the 0.C. 

functions and the ASN function for the discrete normal process if, in fact, 

they are computed (exactly) for the approximating Wiener process. Presum­

ably the discrepancy should be most pronounced for small expected sample 

sizes. The following example shows that the situation is not serious. 
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Example 3: Problem: µ1 = -1, µ2 = 0, µ
3 

= 1. 

Intended constraints (using Wiener process): <\i = a22 = ~
3 

= .98, 

~ = °23 = .01. 

µ -1 -o5 0 

Predicted Pµ[accepting H1] for author's test 0980 .443 .01 

Actual Pµ[accepting ~] for author's test .989 ~452 .006 

Predicted Pµ[accepting H2] for author's test .020 .557 .980 

Actual Pµ [accepting H2] for author's test .011 .548 .988 

Predicted Pµ [accepting!½_] for Sobel-Wald test .980 .460 .01 

Actual Pµ [accepting H1] for Sobel-Wald test .988 .464 .006 

Predicted Pµ [accepting H2] for Sobel-Wald test .020 .54o .980 

Actual P [accepting H2] for Sobel-Wald test .012. .536 .988 µ 

The "actual" entries are each based on 10,000 Monte Carol experi­

ments. Note that the actual tests are conservative in that they increase 

the probabilities of making the correct decision when one of the hypothesis 

is true. 

As one would predict, the actual values of the ASN are somewhat 

larger than the predicted values. This discrepancy is small when one 

of the three hypotheses holds. The situation is more serious atµ= -.5, 

an intermediate value. Since the analysis developed by Sobel and Wald 

does not yield a precise ASN but only an upper and lower bound1 the 
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comparison for their test is less precise. 

µ -1=µ1 --5 0=µ-2 . 

Predicted ASN for the author's test 8.8 17.1 10.8 

Actual ASN for author's test 10.4 22.2 12.5 

Predicted upper bound for ASN for Sobel-Wald test 9.2 19.7 12.0 

Predicted lower bound for ASN for Sobel-Wald test 8.8 17.9 7.6 

Actual ASN for Sobel-Wald test 10.4 23.7 13.2 

It seems intuitively reasonable that the increased "cost" in the 

ASN should be compensated for by improved o.c. functions, as we have 

seen. Nevertheless, it should be pointed out that a particularly bad 

ad-hoc procedure can do just the opposite. For instance,interchange 

the acceptance rules for H1 and H2 • 

4. Computing the 0 .• C. functions. 

The probability of accepting H
1 

is approximately equal to the 

probability of the Wiener process X(t) ~ N(µt,cr2t) making contact 

with L12 before any other part of the boundary. Then 

(4.1) Pµ[accepting H1 ] 

where 
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(4.2) Pµl = Pµ[X(t) contacts L12 before L32 and before time T], 

( 4. 3) P µo.(x:) = P µ [X( t) contacts neither L12 nor L32 before time 

TIX(T) = x] , 

(4.4) Qµ(x) = Pµ[X(t) contacts L12 before L21 after time T!X(T) = x], 

and 1l(x I a, b) is the normal density with mean a and variance b. 

We shall set a2 
= 1. There is really no loss in generality since 

the case a2 f 1 may be recovered by appropriate scaling of the geome­

trical parameters. (See section 6.) 

Computing P~1: Using Anderson's [l) theorem 4.3, it is easy to show 

that 

(4.5) 
co -2 [ (r+l),,1 -rr2 ] [ (r+l) ( o1-µ)-r(o2-µ)] (- (o1-µ)T-2rr 2+(2r+l}r1) 

P 1 =[e ~ 
µ r=O /T 

2 2 

+ e 
-2[r y1 (o1-µ)+r r 2(o2-µ)-r(r+l)r1 (o2-µ)-r(r-l)r 2(o1-µ)] 

• ~(·+(o1-µ)T-2ry 2+(2r+l)rJ 

fr 
2 2 -2[(r+l) r1 (o1-µ)+(r+l) r 2 (o2-µ)-r(r+l)r1 (o2-µ)-(r+l)(r+2)r 2 (81-µ)] 

-e 

• ~{-(a1-µ)T-2;1)r 2+(2r+1)r1) 

-2[rr1-(r+1)y2 ] [r(o1-µ)-(r+l) (o2-µ)] (+(o1-µ)T-2(r+l)r 2+(2t+l)r1 i 
-e ~ ---------- , . (rE 
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where 

( 4.6) 

Jx 1 -u2/2du. -e ~(x) = _.,. ,/2rc 

In the case of symmetric procedures, namely, when 

r2 = -r1 = r, 02 = -51 = 5, and x = o, 

(4.5) simplifies to 

Pµl = [ ( h( (-vµ 5 ) ((6-1-µ)T-(4r+l)r) 
r=O l_ 2r+l) 1 ,r • ~ -----/T 

+ h-2r (yµ,yB) · [ 1-~( (B+µ)~ 4r+l)rl] 

- h2(r+l) (yµ,yB) • ~ l (B+µ )~~ 4r+3)2: l 
-h-(2r+l){rµ,rB) • [1-~((B+µJ;(4r+3)r)J}, 

where 

hs(u,v) = e-2us-2vs2 

Further simplification yields 

(4.7) Pµl = [ (-l)s+¾s(rµ,yB)~((5+µ)T-(2s-l)rl + f (-l)shs(rµ,rB). 
s=-~ fr s=-~ 
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Computing 

we have 

P (x): 
µ 

\ . ... ~ •. : 

For (the only case we need)} 

1 ( !_ - l . ,' . : } ,;_ ~ ·, .. ; 

,: \ 

(4.8) P (x) = 
JtO 

I :,~; \, 

J.( 
',I.!;.._ ... ., 

.J 
·lr - .· ,. 2 ' .. \ 1_00 { e -(2/T) [r {yl (yl +51 T-x)+y2( r2+62T-x) }-r(r-1),,1 ( r2+62T-x)-r(r+lh2( ?'1 +51 T-J 

~ C~ :_ : ·{ :, ~: :; i· . I :· : _- • ._-: .-. ~ ~·-._;-; f i~:.: < , , ·. . (: .f r ._ f· ._,- j· , .. ~:. •. 

-e,.. ( 2/~) [ryi. ( r-1 )y 2 Hr ( r i-J:l\T~ x) ~ ( r -1:) (y2',io2:r-x,)-]} · 
,._··; __ ,;_·~-.,.·,:: :- ·.1_.·,~ ... J .. 1·1._( .... : ...... ~ \.:, ... .':·,· ._,;, ,:.). 

:· .• . ~ 

.. }f 
J. -

Thie:;fQU.ows ~f':r.om:_~er~o~';s .theorem:4.2 _anq. ·st.r~ightforward algebra.,. , , 
"···-·'":t . - ._.. 

Notice that P does not actually depend on µo Tnis is because the µo 

conditional process X(t) given X(T) is independent of µ for 

0 < t < T. 

Computing 5+(x): Applying Anderson's theorem 4ol, 

( -2(X-x)(8 -µ) )(' -2(X-r -5 T)(61-µ) )-1 e 1 -1 e 1 1 -1 

For symmetric procedures, 
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(4.11) ~(x) = t (e-2x(5+µ'.~l)(e2(r+5T)(5+µ)_1)-l 

-y+BT 

for µ /: -o 

for µ = -5 

We are now in a position to evaluate the probability of accepting 

H1 using (4.1). The author has frequently found it convenient to 

evaluate the integral numerically for application purposes.!/ Hovever, 

it is possible to evaluate the integral formally. This is a straight-

forward but extremely tedious job. We shall be content with simply 

$tating the result for synnnetric procedures. The algebraic details may 

be found in the author's thesis [ 3 ] • 

y Considerable computing time may be saved by formally evaluating a 
representative integration of an expression which can be identified 
with a typical summand. Thus, the concept of "modular programming" 
can be used to avoid very complicated algebraic expressions. 
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(4.12) Pµ[accepting J\]; 

e2(,-+0T)(O-tµ) (e2(,-+0T)(O+µ) -l)-1 [ (-l) s+¾
6 

(,-µ,,-O) 0 ( 2( y+8T2+µT-2s"l 

s=..oo /T 
00 

( µT-2s7 l +(e2(,-+0T).(6+µ) -l)-1 J_ .. (-1) 6 h
6 

(,-µ,,-0) 0 ./T 

0 

+ I 
S=-00 

( -1 )8h ( yµ, ?' 8) 
s 

For µ = -6, 

(4.13) Pµ[accepting H1]; 

for µ =I- -8 • 

{ 

00 

1 s+l r+oT L (-1) [oT+2sr]h
6
(-1 o, 1 o) 

s=l 

00 

+ l (-1)
6 [5'!42sr]h (-yo,yo) ~ ( 0

T+
2szl 

s=-oo s /T 

JT 00 2 } 
+ J.~- s~-oo (-l)s hs(-rO,,-O)e-(OT+2s,-) /2T 

The probability of accepting H3 may be found in an analogous way. 

Then the probability of accepting H2 may be found by subtraction. 
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5. Computing the ASN. 

The average sample size E (N) is approximately equal to the 
µ 

average time required by the approximating Wiener process to contact 

one of the four boundary lines of figure I. Let T be the sample time 

for the Wiener process. Then 

(5.1) 

where 

(5.2) El= lT P [T > t]dt = JTJ y2+o2t P [-r > tlX(t)=x] lt(xlµt,it)dxdt 
µ O µ 0 y l +61 t µ 

and 

(5. 3) F (x) = (xi P [i- > t IT > T,X(T)=x]dt . 
µ J,r µ 

P (x) and 1t(x I µT, cr2T) have been defined previously in section 4. µo 
2 Again, for convenience, we set a = lo 

Computing E 
1

: E 1 may be computed from the double integral of (5.2). _____ µ_ µ 

It will be observed that P [1 > TIX(T)=x] = P (x) which was previously µ µo 

evaluated. Identifying t with T in (4.8) and (4.9),we immediately 

get P [-r > tlX(t)=x]. For symmetric procedures, the double integral 
µ 

evaluates as 
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-· 
00 

E = T L 
µ1 s=-00 

1 ~ ( ) s ( ) ( ) ,,,., ( y+( 8+{TµT)T-2sr) + o+µ L -1 r-2sr hs yµ,ro ~ 
s=-oo 

1 0 
+- t" 5+µ L 

00 

(-l)s+l(r-2sy)h (yµ,yo) + ~1 I (-l)s+l(r+2sr)h (yµ,yo) o 

s u-µ s=O s s=-oo 

Computing F (x): F (x) can be interpreted as an expectation, namely, ---------µ___ µ 

E (T-TJT > T, X(T)=x). Thus we are faced with the problem of computing µ 

the expected time for a Wiener process to contact one of two parallel 

lines. It follows ( See [ 3 ] , equation ( 2. 4. 40).), for 

F (x) = 
µ 

For y +o T < x < X, 
1 1 - -

[ 
2(r1 +51 T-x) (o1-µ).· ] ( ][ 2(X-x) (51-µ) J 

[X-x] e -1 - r +o T-x e -1 1 1 
F (x) =----------------------------
µ [ 2(X-x)(o1-µ) 2(r1+o1T-x)(o1-µ)] 

[B
1

-µ] e - e . 

We shall simply state the results of formal evaluation of (5el) for 

symmetric procedures: 
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(5.4) Eµ(N) ~ - t:~T Pµ[accepting H1 ] - ~~~T Pµ[accepting H3] + 8~~ 

1 1 
00 

s+l + [-
8 

+ -
8 

] \ (-1) (-µT+2sy)h (yµ,16) 
+µ -µ f:o s 

00 

1 1 , 
+ [- + -] L 8+µ 8-µ 

(-1) 8 (-µT+2sr)h
8

(yµ,y6)~(-µT+2sr) 

~ s=-oo 

+ [ ....!._ + ....!._] /I_ 
8+µ 8-µ j 2,r 

00 

r (-l)shs{yµ,y5)e-{-µT+2sy)2/2T 
s=-oo 

It is not clear why the acceptance probabilities should fit so 

nicely into the right hand side of (5.4). It should be recalled that· 

a similar thing happens with Wald's SPRT. There, the explanation is 

' I • I ! 
~ ... 

I I 

-... 
\ : 

I I .... 

i 

~ 

I ' 
I I 

' -' 
I I 

I I __, 

\ ; 
~ 

i... 

i ! 
..; 

I I 
~ 

I 

, I 
quite clear. _. 

6. Normalization. 

Let X*(t*) ~ N(µ*t*,a*
2
t*) be an arbitrary Wiener process and 

suppose that we have three simple hypotheses Hi, H~, and H3 where 

Ht is the hypothesis that µ* = 111 for i = 1,2,3 and µi < µ~ < µ3. 
We may normalize the problem with the following transformation: 

µ*-µ* 
(6.1) X(t) = 2 1 

[X*(t*)-µ~*] 
*2 2 a 

2 
(µ*-µ*) 

(6.2) t = 2 1 t* 
a*2 
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µ*-µ~ 
.(6. 3) µ = µ*-µ* 

2 1 

Then 

(6. 4) X(t) - N(µt,t), 

and testing H~: µ* = µ~, for i = 1,2,3, is equivalent to testing 
l. l. 

H.: µ=µ.,for i = 1,2,3, where 
1 J. 

(6.5) µl = -1, µ2 = 0, and 
µ;-µ~ 

µ3 = µ~-~ 

There is a one to one correspondence between the geometrical 

parameters r1,r2,o1,o2, T, and X for the normalized problem and the 

geometrical parameters of the unnormalized problem: 

(6.6) * a*2 r. = -- . i µ*-µ* r1- , 1 = 1 2 2 1 ' • 

(6.7) Bf= (µ~-µf)Bi + µ~, i = 1,2 o 

(6.8) 

(6.9) 

*2 a T T* = ~ 2 
(µ*-µi) 

2 *2 
µ* a 

2 T • 
2 X* = - .. ~ (µ~-µi) 

Using, these transformed geometrical parameters, we find that 

(6.10) P* [accepting Ht]= P [accepting Hi], for i=l,2,3, 
µ* l. µ 

where P* and P are the corresponding probability measures. 
µ* µ 
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Finally if f and t* are the two sampling times for the normalized 

and unnormalized problems, we have 

(6 .• 11) E* ( 'T*) 
µ* 

- ( µ *-µ *) 2 Eµ ( -r ) ' 
2 1 

where E* and E are the two expectation operators. 
µ* µ 

The author [ 3 ] has constructed extensive tables for the normalized 

problem which extend to the unnormalized problem by using (6.5) through 

(6.11). 
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