April, 1966

ON THE ASYMPTOTIC THEORY OF -TESTS OF INDEPENDENCE
BASED ON BIVARIATE LAYER RANKS

George G. Woodworth*

Technical Report No. 75

University of Minnesota

Minneapolis, Minnesota

*
This research was supported in part by the National Science Foundation
under Grant No. GP-3813.



Table of Contents

Section.
O. Summary.
1. Introduction (containing a summary of results).
2. A Class of Test Statistics Based on Layer Ranks.
3. Limiting Distributions and Pitman Efficiency of Tan).
L, Asymptotically Locally Most Powerful Layer-Rank Tests
Against a Certain Class of Bivariate Alternatives,
5. Asymptotically Locally Most Powerful Layer Tests.
6. Asymptotic Relative Efficiencies at Fixed Alternatives.
T. Some Remarks on the Small Sample Properties of Layer-
Rank Tests.
8. Comparison of Layer-Rank Tests with Rank Tests.
Appendix
I. I.r-convergence of Certain Functions.
II. Properties of Moment Generating and Related Functions.
III1. Probability Limit of n-%'l‘n(g).
References
Acknowledgement
List of Figures
Figure
1 Layer-ranks and layer statistics of a two-dimensional
sample of size 5.
2 Computation of the normal scores layer-rank test
statistic for a sample of size 10.
3 Graph of J(u) for the ALMP layer test against the
normal alternative,
L Bahadur efficiencies for normal alternatives.
5 Bahadur efficiencies for the altermative

Hy = FG(1+6(1-F)(1-G)).

—i-

Page

12

21

30
Lo

52
56

6l
T1
7
80
86

28

37
51

51



Table

11
II1

Iv

Vi

VII

VIII

List of Tables

Several bivariate families and their ALMP layer-rank
tests,

Values of o(c,c¥) for computing Pitman efficiencies.
Weight factors for normal scores layer-rank test.
1, and e_-values for Kendall's r for selected h-values.

nz-values for the normal likelihood-ratio test for

selected p-values.

n,-values at selected 6-values for the likelihood-ratio

test of 6 = O vs, € > O in the family
(ny = FG(1+6(1-F)(1-G)}.

ec(e)-values for the normal scores layer-rank test,

Weight function J of the ALMP layer tests against the
normal alternative,

-ii-

Page

38
39
82

83

8l

8L
85

85

~y



On The Asymptotic Theory of Tests of Independence

Based on Bivariate Layer Ranks

by George G. Woodworth

0. Summary. Let ). SR én be a sample drawn from a continuous

%1 %
bivariate population with distribution H. We define the qEE quadrant
layer-rank of -&j’ denoted by £qj,'q =1,...,4, j=1,...,n, to be

the number of points ,§i’ i=1,...,n, such that <§i -'§j is in the
(closed) qEE quadrant (see figure 1.), and the qEE quadrant LB layer
statistic, denoted by A&?)(Q),r =1l,...,0, q = 1,...,&,. to be the number
of points with q-E-11 quadrant layer ranks equal to r.(See figure 1.).

In this paper we investigate the properties of certain tests of
independence of the marginals of H based on 352 quadrant layer ranks,
hereafter called layer rank tests, paying special attention to those
based on linear combinations of 3£§ quadrant® layer statistics. We
prove asymptotic normality of the test statistics under the null and
local alternative hypotheses, derive local asymptotic efficiencies
(Pitman efficiencies) of these tests and show that in many cases an
efficient test is found among the layer rank tests, We find the optimal
(locally most powerful) number of the subclass of tests based on linear
combinations of layer statistics and that of similar subclasses., Finallyg,

we derive asymptotic efficiencies (Bahadur efficiencies)  at distant

alternatives.

*
The results will apply with obvious modifications to tests based
on LEE, 2-r—lg or hEE—quadrant layer ranks, but not to tests which mix

layer ranks from different quadrants.
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Fig. 1

A two dimensional sample of size 5,

Layer Ranks, ¢ ..
y k,qJ

¢ ] 11213 s |5

1 2 3 1 1 1

2 2 2 1 5 2

3 2 1 1 1 3

L 2 2 5 1 2

For example, 331 = 2 31nce‘§27§1
and X,-X. are in the closed third quadrant.

W] Al

Layer Statistics, A;Sq!.

o~ 1|23 |% |5
1 3 1 1 0 0
2 1 3 (0] 0 1
3 3 1 1 0 0
» 11 3fo o |1

t:_i"



w»,

1, Introduction. Tests based on layer ranks have been proposed at

various times, some (but probably not all of them) are described here.
The best known layer rank test of bivariate independence is the test
based on Kendall's T-statistic, which, as we shall see later, is a
linear function of the sum of the 352 quadrant layer ranks; tests of
trend in a univariate time series based on layer statistics(l) were
investigated by Foster and Stuart [ 7], who used the values Agkl),...,
Aﬁkh) associated with the first layer only. More recently Parent [18]
investigated sequential tests based on layer ranks for equality of two
populations(a) and for detecting the time at ﬁhich the distribution of a
sequence of independent observations changes, This paper bears little
rélation to the work of Foster and Stuart or of Parent and may be
regarded as an extension of the theory of Kendall's ! : Titest of inde-
pendence.

Although the notions of layer ranks and layer statistics are probably
not new, the first systematic investigation of the properties of layer
statistics is recent, being that of Sobel and Barndorff-Nielsen [20],
who derived the distribution of the layer statistics and similar quantities
under the assumption that the components of the sampled raﬁdom vector
are independent. We now present the results from [20] needed for this
paper; we share with [20] the assumption that the marginal distributions
of H are continuous, . .:

. SR VR S . ' o
- . ¢ . -n 008 © A . -

(1)Layer ranks in a sample from a time series are computed as in the
bivariate case by treating time as the X-component and the value of
the time series at time x as the Y-éomponent.of the two dimensional

vector X = (X,Y).

(E)A time series 1s generated by sampling alternatively from each

population, layer ranks are defined as in footnote (1).
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Let the random vector ‘§j have cbmponents (xj’Yj)’ j=1,2,...,n,
let Y[j] be the Y-component of the vector with the jEE smallest
X -component X(j); if the marginals of H are independent*, then
Y[l]""’ Y[n] are independent and identically distributed., Let %(j)
be the 3EE quadrant layer rank of (x(j)’Y[j]); clearly, L(j) is the
P t £ th 1t of
rank of Y[j] among Y[l]’ , Y[j]’ consequently, from the resu o

Dwass and Renyi, which also appears as Theorem 1.1 of Barndorff-Nielsen [Q ],

we have:
Lemma 1.1: If the marginals of H are independent, then the)z(jj;are
independent and P(&(j) =1i) = % , L=1,...,3, 3=1,...,n.

Statistics based on layer ranks have an invariance property which
we now describe: Let Ri and Si be the rank. of Xi among all the
X's and Y, among all the Y's, i = 1,...,n, It is evident that the layer
ranks depend . upon (Xl""’ Xn) through (Rl’sl)""’ (Rn,Sn)ﬂonly,
Suppose Ho(u,v) is a continuous :¢cdf’. with uniform (0,1) marginals.

Lehmann [It] defines non-parametric equivalence classes of bivariate

cdf!s. as follows:

H () = (H(x,y): H(x,y) = H (F(x),6(y)),

F and G are continuous univariate ', Qdf's}.

For example, if He(x,y) is the bivariate normal :¢df ', with zero means,
unit variances, and correlation O, then H6 is contained in the class
generated by Ho(u,v) = H9(¢-1(u), ¢-1(v)). As another example,
H(uv) 1is the class of all .. ¢df's of continuous bivariate random
vectors with independent components.

From Lehmann [ 14], Theorem 7.1, we conclude that if T 4is a statistic
based only on layer ranks, then the distribution of T is constant over

the class :H (Ho). For the sake of having a convenient term, we say

¥
I.e., H(x,y) = F(x)G(y) for some distribution functions F and G.
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that T 1is a marginal free statistic.

Now suppose that [He: 2] E@ } is a family of bivariate distributions.
If 43) is a property of a sequence of marginal free statistics
{Tn = Tn(xl""’ Xn)} which follows from the assumption that Xyseees X
is a sample from He , ene@ ,n=12,..., then'p is also true if
each HO is replaceg by a member of its non-parametric class {}{(HO),
where Ho(u,v) = He(Fél(u), Gél(v)), and FG(X) = He(x,w) and
Ge(y) = He(w,y) are the marginals of Hg.

We conclude this section with a summary of the more interesting
results of this paper; in an attempt to avoid being repetitious we use the
symbol ucc to denote the qualifying phrase 'under certain conditions",

In the next section we introduce a class of nonparametric statistics,
called layer-rank statistics, of the form: T (C) = n‘%;;lcn(ié%%-,ﬁéi),
where cn(u,v) is a function defined inside the unit square. In Section 3
the asymptotic distribution of a statistic of this type is investigated
both under the null hypothesis (independence) and under "local" alternatives.
An explicit expression for the Pitman efficiency of sequences of tests
based on layer-rank statistics (layer-rank tests) is derived (ucc) and a
table of Pitman efficiencies of various layer-rank tests against specific
alternatives is presented (TableIIl). From this expression for the
Pitman efficiency, an explicit expression for a sequence of layer-rank tests
which is asymptotically locally most powerful (ALMP) against a fixed but
arbitrary family of alternatives is derived (ucc).

In Section 5 we consider a class of tests based on linear combinations
of layer statistics (layer tests), which is a subclass of the class of
layer-rank tests described above and contains the well-known Kendall's T

test. We show that (ucc) the problem of finding the layer test having

maximum Pitman efficiency against a fixed but arbitrary family of



alternatives is equivalent to solving a certain integral equation and
the solution is explicitely obtained (ucc). As a special case it is shown
that, against a certain family of alternativeq,Kendall's T has maximum
Pitman efficiency not only among all layer tests but also among all tests.
Recalling the definition of Y[l]’ e e e s Y[n] given earlier in this
section and letting R[j] denote the rank of Y[j]’ j=1,...,n, among all
the Y's, we note in Section 8 that (ucc) the locally most powerful test
based on R[l]""’R[n] (we call such tests r;nk tests) is usually based
(3] _J

- +1’3-IT)’ where bn(u,v) is

on a statistic of the form Sn(p) = n-%.glbn(
a function defined inside the unit squg:e; a special case of this
statistic was investigated by Bhuchongkul [3 ]. We show that (ucc) for
every sequence of layer-rank tests based on statistics ang) there is a
corresponding sequence of rank tests based on Sn(pc) (and vice versa)
and that the two sequences are indistinguishable in terms of Pitman
efficiency; in other words, the Pitman efficiency of the tests based on
Tn(gg with respect to the tests based on Sn(hc) is one against any
family of alternatives (ucc). |

Although one cannot assert the superiority of rank or layer-rank
tests on the basis of Pitman efficiency, layer-rank tests have the
advantage that a more comprehensive efficiency description (Bahadur
efficiency) than that offered by Pitman efficiency can be computed for
layer-rank tests but not (at least not easily) for rank tests.
Bahadur effiéiency gives asymptotic relative efficiencies for each fixed
alternative in contrast to Pitman efficiency which measures relati?e
efficiency only for alternatives "near" the null. 1In Section 6 we derive
(ucc) explicit expressions for the Bahadur asymptotic relative efficiency,
against a fixed alternative,of a sequence of layer-rank tests with
respect to either another sequence of layer-rank tests orvthe likelihood
ratio test, In addition, Bahadur efficiencies are computed for several

layer-rank tests with respect to likelihood ratio tests against specific

alternatives (for example, see Figures 4 and 5 ).
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2.{1A ClgssroftTest Statistics Based on Layer Ranks.

- -
1

. . In:.order to-.mqt“:ivate_.__t;he class.of” = - vy Tloean e sl L7
non-parametric test statistics which we introduce below, we ask the

reader to recall the univariate two sample problem, 1In that problem

there are two populations X and Y with continuous *.CDF!s' F and G.
We take a sample Xl,..., x.m of size m from the X:-population and a
sample Yi,..., Yﬁ. of size n from the Y-population and define Rj

to be the number of observations from either population less than or

equal to Yj' Two popular tests of F = G versus F < G are the Wilcoxon

test and the Fisher-Yates test. Letting N = min, the test statistics are,

n
Wilcoxon: TN = X R,
=13

and

n
Fisher-Yates: TN = j§1 uRJIN s

where ple is the expected value of the j—tEE largest of N standard

normal random variables. Note that both of these statistics are of the form:

n
(2.1) Ty = j§1 hN(Rj/N+1) ,

in the case of the Wilcoxon statistic the weight function Wﬁ(u) is
(N+1)u and for the Fisher-Yates statistic hN(u) is a step function

given by:

(2.2) By(e) = By Lsu<d, s-1,..m

TN

Now we return to the problem of testing independence in a bivariate
distribution. Let Rl”"’ Rn and Sl""’ Sn be the ranks of the
X~ and Y-components of a bivariate sample of size n (in the order observed).
In [ 3], Bhuchongkul proposed test statistics of a form analogous to

(2.1), namely:



(2.3)

(2.4)

n
T = jil Jn(Rj/n+1) Ln(Sj/n+1), where J_ and L are

some weight functions defined on the interval (0,1); in particular, an

analogue to the Wilcoxon statistic is obtained by setting Jn(u) Ln(u) =u

Ln(u) = h_(u)

and an analogue to the Fisher-Yates statistic by setting Jn(u)

defined in (2.2).

In this section we propose an entirely different class of test statistics,
these statis;ics are related to the above in structural appearance but, as
a class, seem to have an empty intersection with the class proposed by
Buchongkul, Our statistics have a property which is distinctly advantageous
from the theoretical point of viewy, namely: they can be expressed as sums
of independent random variables under the null hypothesis (independence);
moreover, whenever a statistic of Bhuchongkul's form is asymptotically
locally most powerful* (ALMP) against some family- of alternatives,:then
there exists an ALMP statistic of the form proposed by us.

Let {cnij’ 1=isj=n, n2z 1} be a triple sequence of real

numbers and for each nz 1 let,

i-1

1 .
cn(u,v) = ¢c... , —— su <-§ , =—=——<vs % y- 1Sis jsna,

nij

Thus (@n} is a sequence of functions defined on the unit square. We use
lf and | |r to denote the space of rEE power-Lebesgue integrable

functions on the unit square and the corresponding norm; i.e.,
“1
N N = *¥
lg'r = (fflg(u,v]rdudV)r(see footnote ') and ' 1is the set of all

*
One advantage of Bhuchongkul's class of statistics is that the locally
most powerful rank test is frequently in that class but never in the class
we propose; we prove this remark in section §.
When the range of. integration is not.given, assume it to be (0,1). .

v,

L
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functions g such that '|g|r < ®w., We assume that there exists a function ¢

defined on the unit square such that
(2.5) 0< |c|2 < ® and |cn - c|2 -0 as n - w,

We denote the sequence of weight functions {c, € c2,...] by C.
AA

We are interested in statistics of the following form*:

) - o¥ g e _ -5 2
(2.6) T(§ = n jil c“’z(jy‘j = n jﬁl cn(z(j)/j+1,j/n+1)

where £ is the layer rank of (X Y defined on page 4+ ., We
(1) y ®(3) 137 pag

include the argument ¢ to indicate the dependence of the statistics on

the sequence of weight fuincfions. .

For convenience, we assume that

2. g c = 0 1sjs z 1.
(2.7) L. %01, ; jsn, n
This assumption entails no loss of generality; for, if {c& i j} satisfies
s Ly .
, - - 1
. . —— ! -d' '.=_._ ] ]
(2.5) but not (2.7), let i i = Snud, i n, 3§’ where R ﬁél cn,i,j

The new sequence satisfies (2.7), we now show that it also satisfies (2.,5).

- ! 1 ] ' g ' j-1 j = '
Let cn(v) =3 {El cnij = l‘ cn(u,v)du, “—sv<sz, andc (v) = fe'(u,v)du.

Note that f(zt'l(v)-z'(v) ?c'lv = f(f(cr'l(u,v)-c'(u,v))du)gdv =y | cr'l-c'lg - 0.

Thus, defining cn(u,v) by (2.4),we have, by the triangle inequality,
cn(u,v) = cé(u,v)#E&(v) -c'(u,v)-c'(v) inl.le-norm.

Although in this paper we develop the asymptotic theory of statistics
of the general form (2.6), we find certain special cases to be of particular

interest, these are given by (2.10.1) and (2.10.2) below.

*Compare this with (2.3).



Let {in, l1sis j, jz 1} and {Lnj,.l £ jsn, nz 1} be .

double sequences of real numbers such that };1 in = 0, We set

(1) _ sis s
(2.8.1) niJ = Jj,i Ln,j ’ lsis jsn,
and
(2) _ J < £ 3§ =
(2.8.2) hij = (Jn’i - Jn’j)Ln’j " lsisg jsn,

= j
where Jnj 21 Jni/j' If we define functions J and L on (0,1) by

- -1 i -
(2.9.1) Jn(u) = Jn’J , —sugs, j=1,...,n,
and
: - 3-1 i -
(2.9.2) Ln(u) = Ln,j , — su<< j=1,...,n,

then the test statistics of the form (2.6) which correspond to (2.8.1) and

(2.8.2), call them T and T ., are:

nl n2
- ‘% n N - % z .
(2.10.1) T, = 0 jﬁl Jj’z(j) Ln,j = J§ J, ( (i )/J+1) Ln(j/n+1),
and
' n
(2.10.2) T = n-% g I g L .- n-% T J .E
n2 j:l n, (j) n,j j:l n’j n’j

-% s
n j§1 J (%( )/n+1) Ln(J/n+1) - K,

say, .. ..o D DA SN 1S SR PINS

\

e ev e

The form (2.9.1) arises guite naturally, since, fér.many families
of  distributions; .there .is an ALMP sequeiice of layer-rank tests based on

statistics of this form. The form (2.9.2) with Ln j = 1 1is interesting

’

since, as we show in Seection 5 , it is a linear combination of the layer

statistics A§(3),..., A:(3). In particular, if we set J_ i = j/n and

L_ . =1, then (2,10.2) becomes:
n,J

- 10 -



’

A EE N - /2 n "3/2 e
« (2.10) T, =03% 5 ¢, = %55 ,
n2 j=1 (3) 1sisjsn i3
where zij =1or O as Y[i] s Y[j] or Y[i] > Y[j]’ which, without the

factor n'3/2, is Kendall's T-statistic in the form given by Mann [16].

We would also like to point out that (2.8.1) and (2.8.2) have the
following practical advantage:. in order to be able to compute . -
values of a statistic of the form (2.6) one would need a table containing
the constants cnij . If such a table were prepared for all n s n,
it would in general contain about n8/6 entries, But if one used statistics
of the form (2.10.1) or (2.102) then the necessary table would contain only
about ng entries.

We have not investigated the exact distribution of statistics of the
general form Tn(g) introduced in (2.3), which is, of course, known for the
special case of Kendall's T mentioned above; however, in the next section

we derive their limiting distributions both under the null and local

alternative hypotheses.

- 11 -



3. Limiting Distributions and Pitman Efficiency of T (C). In Section 1

we pointed out that Tn(g) is a marginal free statistic, If the sample
Xy»..05%» of which Tn(g) is a function, is drawn from Ho(x,y) = F(x)G(y)
then the distribution of »En(g) is the same for any choice of F and G
(provided they are continuous); to put it briefly: Tn(g) is distribution
free under the (null) hypothesis of independence. We denote by E

0

and Ué the expectation and variance operators (operating on marginal’

free statistics) under the hypothesis of independence. Recalling (2.6)

and applying Lemma 1.1 we have, by (2.7),

y . 5201
(3.1) EO.[\‘Tn(E)-;I = Egln jil °n,&(j),j] = n j.§17121 ni,j =
and, by (2.4) and (2.5),
(3.2) BT () = 15 B, )-iilde
O‘'n n j=1 0 n,&(j),J noy-1J 4o i,
= ffci(u,v)dudv - [[c2(u,v)dudv = ld'§‘> 0.

Suppose Zn is a marginal free statistic based on a sample of size n.
Adopting a standard notation*, we let J:(ZHIHO) denote the probability
law of Zn under the hypothesis of independence.

Theorem 3.1 Under the hypothesis of independence, if (2.2) and (2.k)
hold, then &(Tn(g)) —>N(o,lc|g).

Proof: We verify the conditions of the'Lindeberg-Feller (LF):Thgorem*; For

any € > 0, since |c|2 > 0,

=T

zZz l c
J

2 2
¢S ., .2ne€
{ n,i,]J )

g (e) = = JI _ cE(u,v)dudv - o,

2
n’i’j 2512
{cn_ne }

2

since (2.5) implies that c, is uniformly integrable.'

* .
See Loéve [15] p. 201 for the ;ﬂ-notation and p. 280 for the LF theorem.

- 12 -
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We now consider alternatives to the hiypothesis of independence and
show that Tn(g) has, in the limit, a.normal distribution even if the
hypothesis of independence does not hold, provided the common distribution,
H, of 'él""’ én approaches independence in a suitable way as n —w,

For the rest of this section we shall be dealing with a fixed family
[He;-w < 6 < o} of continuous bivariate distribution functions indexed
by a real parameter. We assume, without loss of generality, that
He(x,w), the marginal cdf of X, is independent of 6. We let He(x,w) = F(x),
and we denote by Ge(ylx) the conditional cdf of Y given X = x and
assume that Ge(ylx) is absolutely continuous with density ge(ylx)
for all 6 and almost all (F) x. We assume, finally, that 6 = 0
corresponds to the hypothesis of independence and denote Go(y|x) and
go(ylx) by G(y) and g(y), respectively.

Under these assumptions, the likelihood ratio Ty = dHG/dHO is
given by: re(x,y) = ge(ylx)/g(y), almost surely (HO).

The behavioax of the distribution of Tn(g), when ‘§1,...,‘§n is
a sample from Hy and 6 -0 as n - o, depends crucially upon the

behavior of Iy as 6 - 0; and in order to obtain our results we

must make certain assumptions about this behavior. 1In fact, we assume that

(0/36)ry(x,¥9) g = s(x.¥), say
exists almost surely (HO), that
(-] 0
[, s(x,y)e(y)dy = 0 and [ s(x,y)dF(x) = o,

almost surely (HO), that for some & > O,

1
[0 1s(o,y) 520 ar(x) 1% (y)ay < =,

and finally, that

%
0 00 r (x,y)-l 2
R e s(x,
o [l (= - )" )i - o

- 13 -



Condition (3.6) is an adaptation of a similar condition of Matthes and .
Truax [17] (their (1.2)), and resembles (4.22) of Hajek [10]. Sufficient
conditions for (3.3), (3.4), (3.5) and (3.6) in special cases are developed
in Section k4,

We set Gn = an'% where a # O is fixed but arbitrary and define
Hn = He . After some preliminary remarks about notation we present
a 1emmandue to LeCam (Hajek [10] Lemma 4.2) which is our basic tool
for proving asymptotic normality, We adopt the following notations in
order to conform to those used by Héjek: ’§1,..., %n. is, as usual, a
sample drawn from a bivariate population; Pn and Qn denote, respectively,
the probability laws of the sample under the hypothesis of independence
and under the alternative hypothesis that the bivariate population has
cdf Hn’ defined above.

For any statistic 2 = Z (X;,..., X ), we denote by ;:(Zn|Pn),
E(z|P) and o3(z |Q) and E(z |q), E(z |o) and ¢3(z |Q)
the probability laws, means and variances of zn under Pn and Qn’
respectively.

Finally, setting . ren(Xj,Yj), j=1,...,m, we define the

following statistics:

(3.7) L = .Eiﬂn(rnj), (In being the natural logarthm),
J:
n %
(3.8) W= 23,31 (rps-1)s
and
n n
- a -%
(3.9) T, = Gn jil s(Xj,Yj) = an El s(Xj,Yj) .

We state without proof (see Hajek [10] Lemma k4.2):

-1| > ¢) 20 for every € >0 and

Lemma 3.1 (LeCam) If max Pn(lrnJ

1sjsn

- 14 -



2]

:3(W|Pn) - N(-%02,0%) for some 02, then
(1) if Zz —0 inP -probability, then Z -0 in Q -probability,
2
(2) W -L > %02 in P_-probability,

and
(3) if I(ZnIPn)—)Z'N(p,bz) and X(z ,L |P ) tends to the bivariate

normal with correlation coefficient p, then ;ﬁ(zn|Qn) - N(p+pbo,b3).
We now verify that the conditions of LeCam's lemma are satisfied in

our case, The first condition follows from (3.6), since

Pn(lrnj-II 2 ¢) = Pn(lrgl-ll 2 ¢) and

(Bl -1] [P 1)Z = E[|r§l-1|2|Pn] . E[|r§1+1|2|Pn]
s E[[rﬁ1-1|2|Pn] . [2E[|rﬁl-1|2j|Pn] +8) - o.
Also by (3.6) we have,
(3.10) BWyl7) = 20 [ (e} (on)-Da(nertay

- o [ ] (&% (v0-g¥)skn)ar(x)ay

= - L] (g (y]x)-g%(y))2ar(x)ay

~-=00

- - E 1L G o)D)y

- % a® [[ s3(x,y)g(y)dydF(x) = -% o2, say.

Recalling (3.8), (3.9) and the fact that Gn = an-%, we have
%

r2 (X,,Y,)-1

6, 171 S(Xl’Yl)

(3.11) 02[(Tn-Wn7|Pn] = ka%¢2 en - 5 'Pn -

O

U;;dér.Pt\,l,by (3.%) and (3.5), T is the sum of n independent and identically
distributed random variables and has mean O and finite variance
02 = a2[[s3(x,y)g(y)dydF(x) so that L(W_|P ) < N(-%0%,0%), which is the
second condition of LeCam's lemma. We now use the conclusions of Lemma 3.1
to prove the asymptotic normality of Tan) under Q.

As a preliminary to the proof of asymptotic normality we introduce
a special layer-rank statistic Tn(g:). We define

- 15 -



1 3 C oo
(3.12) * = E{[s(X — oﬁl s(Xaln,Yilj)]IPn}, 1sisj'sn,

“n,1,j R TE U=

s ,th
= < js —_— v .
where Xj|n X(j) 12jsEn, Yilj is the i largest of Y[l]’ s Y[J],

¢ < . .
and X[i]’ Y(i)’ 1=isn are defined on p.4 ; and we let

f * %D ox
.1 T (C) = N .
(3.13) .(C,) an Z °n,£(j),1
By (3.4), (2.7) is clearly satisfied by {ci ; j)3 moreover, by Lemma I.3,
H ]

(2.5) is also satisfied with q.m. limit ac*(u,v), where

L)

-
(3.14) Hluw) = sFETHW),ETHW) -5 [ s(x,67H(w)ar(x).

By CorollaryL5,Appendix I, and assumption (3.5), E[(Tn-Tn(c*))2|pn] -0.
Combining this with (3.11) and conclusion (2) of Lemma 3.1, we conclude
that Ln-wn converges in Pﬁ-probability to a constant, which, along with
conclusion (3) of Lemma 3.1, implies the following;

Corollary 3.1 If (3.4), (3.5) and (3.6) hold and if {Zn} is a sequence

of random variables such that

(1) LAz ) »>Nw,p?),
and

(2) Jz(zn,Tn(Sf)an) converges to a bivariate normal law with correlation

p, then

L(z o) - N(u+pbo,b?),
where o2 = a® [ [ s%(x,y)g(y)dydF(x).

Now consider .any sequeﬁde{:angg)]A of .layer-rank. statistics of the
form (2.6) satisfying (2.5) and (2.7) with limiting weight function

c¢(u,v). Recalling (3.14), we define
(3.15) o(e,c®) = Jle(u,v)c*(u,v)dudv,

- 16 -
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(3.16)

and we have the following theorem:
Theorem 3.2 If {Tan)] is a sequence of layer-rank statistics of the
form (2.6) satisfying (2.5) and (2.7) and if s(x,y), defined by (3.3),

satisfies (3.4), (3.5) and (3.6), then jZ(Tn€9)|Qn) —9N(a0(C,C*),|C|§).

Proof: By Theorem 3.1, Qﬁ(Tanpan) —>N(O,|c‘g) so, by Corollary 3.1

and the fact, stated in Corollary I.6, that ld*]g = l:!i s2(x,y)g(y)dydr(x),
it suffices to show that ;ﬂ(Tn(g), Tn(gf)an) is asymptotically normal with
correlation O(C’C*)/|°2“°*'2~ We prove this by showing that for

arbitrary numbers t, and ¢, ;ﬂ(tlTn(3)+t2Tn&gf)|Pn) is asymptotically
normal with zero mean and variance t12|c|g+2at1t20(c,c*)+t22a2|c*|§.

And, since tlTn(g)+t2TnQ9f) is of the form (2.6), clearly satisfies (2.7),
and, by the triangle inequality, satisfies (2.5) with limiting weight

function tlc(u,v)+t ac*(u,v), the conclusion follows at once from

2
Theorem 3.1. |}

Let us assume that o(c,c¥*) 2 O (if not, replace Cni g by -c

nij
1s1is5 3jsn). As we mentioned earlier, we are dealing with a fixed
family of bivariate distributions {He;-w < 6 < w} we propose to test
6 = O (independence) versus 6 > O on the basis of a sample of size n
by a test having rejection region of the form Tngg) 2 k, k a constant,
(To test 6 =0 vs. 6% 0 we use Tn(g) £ k.) From Theorem 3.1 it
follows that an approximate (-level test is obtained if we set

k = gam:|2, where z, is the upper 1000 percentile of the standard
normal distribution,

From Theorem 3.2 it follows that the power of the approximate

O-level test based on T _(C) against H, , 6_ = an'%, e >0, is
n'Mm Gn n

Q (T (€) 2 z lely) = 1-<D(za-ao(c,c*)/|c|2).

- 17 -



This may be stated in a more conventent form as follows: As 640, the
sample size n needed to achieve power 1-f (@ < 1-B < 1) against the

alternative SHG "is given by:

(3.17) n ~ [(zO#zB)|5|2/90(c,c*)I2,

provided o(c,c®) > 0. To prove this simply set the right side of (3.16)
equal to 1-B and note that a = Gn%.

Let TngE:) be another sequence of test statistics satisfying (2.4)
and (2.7), and let n(x®,8,6) and n'(x,8,0) be the smallest sample sizes
required by (-level tests of the form Tngg) 2z k and Tn(EL) z k,
respectively, to achieve power 1-B against Hy. From (3.17) we conclude
that

(3.18) éim [n(a,8,6)/n' (@,8,0)] = [p(c*,c™)/p(c,c¥)12,
40

where p(c,c*) = c(c,c*)/(|c|2 'c*lz), provided both p(c',c*) > 0 and
o(c,c®) > 0. The limit on the left of (3.18) is called the Pitman
asymptotic relative efficiency (Pitman ARE) of the sequence {Tn(g;)]
with respect to.the sequence {TnQE)] against the family [He;e z 0}.
The modifications when one is testing 6 = O vs. 6 < 0 are obvious and
will not be discussed,

The statistic L given by (3.7) is just the log-likelihood ratio
statistic, Applying Lemma 3.1 (3) with Y =L we conclude, by an
argument similar to the one.by which we derived (3.17), that the sample
size n required by the O-level likelihood ratio test to attain power
1- at HG is given by

(3.19) n ~ [(za+zB)/e]b*|2]2, as. 6 0.

Heré n is clearly a lower bound on the corresponding sample size for

any other test. The Pitman ARE of [Tn(g)} with respect to the likeli-

hood ratio test we shall call simply the Pitman efficiency of {gﬂ(c)]

- 18 -
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and will denote by e(C). From (3.17) and (3.19) we have
(3.20) e(¢) = [e(e,e®)I?

-l

We want to emphasize the fact that e(%) depends upon the family of
distributions {Ha;-m < 6 < »} . through c¥.

An immediate consequence of (3.20) is the fact that the sequence
{Tn(gf)] defined by (3.12) has Pitman efficiency one when used as a test
of 6=0vs. §>0 in the family (Hy -» < 6 <w}. We shall call any

sequence of test statistics having this property asymptotically locally

most powerful (ALMP) against (H,;6 = O}, Specific examples of ALMP

sequences of statistics are given in the next two sections; Table II
page 39 summarizes various Pitman ARE values.

The main reason for using layer-rank tests is, presumably, that the
family {He;-w < 6 < w} of bivariate distributions, of which the distri-
bution of the sample is a member, is in fact unknown. Thus, the above,
despite its theoretical value, doesn't give a practical way of selecting
the appropriate test statistic; nevertheless, one may be willing to assume
that the distribution is at least approximated by some member of a specific
family, the bivariate normal, say, and use the layer-rank test which is
ALMP against that family.

So far we have considered testing one sided alternatives only; in
testing 06 = 0 versus @ + 0 one might use a rejection region of the

form Tn(g) 2 k, or sk,,where k, sk, are constants. The power of

2 1 2
this test against the alternative He, @ = an-%, approachés

(3.21) o((k,-a0(c,c™))/hep,) + 1-0((ky-a0(e,c™))/hel).

Since (3.21) attains its min. :at a'=(k1+k2)/20(c,c*), the above test
will be biased for sufficiently large n if k, ;é'-k2 (possibly even

when k. = -ke); therefore, a necessary condition that it be unbiased

1

is that k, = =k

1 o |c|2, the test will be approximately

1f k2 = Zy/n

-19 -



level @, We do not know what optimal properties, if any, this test has.

*
Note that p(c,c ) is the limit of the correlation, under HO’
between Tn(g) and Tn(gf), the ALMP statistic. Thus (3.20) resembles
(2.9) of Van Eeden [21] but the conditions that she requires are diff-

erent from those we require.

- 20 =
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4. Asymptotically Locally Most Powerful Layer-Rank Tests for a Certain

Class of Bivariate Distributions. Suppose F(x) and G(y) are contin-

uous;ﬁnivariate cdf's, We propose a family of bivariate distributions
[He(x,y), o < 6 < o0} specified as follows: the marginal '¢df of X

is F and the conditional ¢df of Y given X = x, for fixed 0, is:

(k.1) G(a(6)y - 6b(x)),

where a(6) and b(x) are any real functions. To put it.another way, .
if. Y(8) denotes the Y-component of the random vector (X,Y) with cdf

HG’ then

(k.2) Y(6) = < [6:(b(x)+-£)/a(6),

where X and ¢ are independent random variables with cdf's F and
G, respectively., X 1is, of course, observable but ¢ is not, As an
example, let F be notmal,N(0,1), b(x) = x; . G(y) = o(y), and
a(6) = (1+92)%, then the bivariate distribution specified by (4.1) or
(4.2) is normal with zero means, unit variances, and correlation
coefficient 6(1+92)~%.

In this section we derive an ALMP sequence of layer-rank tests of
6 =0 vs, 6>0 wunder certain conditions on the functions F, G, a,
and b. First we shall state these conditions: we assume that G has
5

density g, that g is positive on (-w,o), that g* and g are absofﬁtely

continuous*, and that g satisfies ngek's condition- [10]:

[ (8'(3)/e(9)? e(x)y < .

If a(@) 1is non-constant we assume that g also satisfies:

* ]

I.e., g and g are indefinite integrals of their derivatiwes.
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(4.4) L y2le' ()/8(¥)]? g(y)dy < o.
Our conditions on b(x) are simply that there is a & > O such that
) , P
(4.5) Lw [b(x)|3 ¥ 28:dF(x) <o and I; b(x)dF(x) = 0 (see footnote);
and, finally, we require that a(0) > O and a'(0) = 0. We assume,
without loss of generality, th;t a(0) = 1.
Note that the likelihood ratio re(x,y) = dHe(x,y)/dHO(x,y) is
a(0)g(a(6)y - 6b(x))/g(y). Thus
(4.6) s(x,y) = (3/30)r (x,y)| oo = -b(x)g' (¥)/8(y),
so that, if the conditions of Theorem 3.2 are met, then an ALMP sequence
of layer-rank tests is, according to the remarks in the paragraph following

(3.20), obtained from (3.12) by setting:

fl

j-1
E[J(Uilj)]{E[b(Xj|n)] - ’E%T' oE1 E[b(xaln)]]

= 75,1 bn,g e S

*
“n,1,]
o1 -1 th .
where J(u) = -g'(G¢” "(u))/g(6¢™ " (u)), Ui|j is the i— largest of j

independent uniform (0,1) random variables and X is the j-'-:-E largest

iln
of a sample of size n from a univariate population with cdf F. The
test statistic is, of course,
(.7) T (C*) = n¥ ; J, L.

n =1 ()
where &(j) is the layer rank defined on p. 4 and the q.m. limit c¥,
given by (3.14), is

Fl(v)

(4.8) e*(u,v) = J(@)[b(FH(V)) - == [ b(x)aF(x)].
The Pitman ARE of any other sequence of layer-rank statistics with
respect to the sequence (4.7) is obtained by inserting (4.8) into
formula (3.20)
The following lemma, which parallels H;jek's [10] treatment of
the univariate caseystates that the conditions of Theorem 3.2 are

satisfied in this bivariate case,

¥ This assumption causes no loss of generality; for, by the first para-
graph of p.5 ,we may make the transformation Y' = Y - 6[b(x)dF(%))a(0).
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Lemma 4,1:: If the conditions on g stated in the sentence containing
(4.3) hold, if either (4.4) holds or a(f) = 1, and if the conditions on
a and b stated in the sentence containing (L4.5) hold, then (3.k4), (3.5)
and (3.6) hold for s(x,y) given by (L4.6).
Proof: (3.5) is a trivial consequence of (L.3) and (k.5).

Since O = (d/dz) f f b(x)g(y+z)dde(x), (3 4) will be shown to hold
if we can show that (d/dz) f g(y+z)dy| 220 = f g'(y)dy. Now,

o y+z

[, (f g'(w)dw/z)dy

= ﬁ: (g(y+z)-g(y))/z dy

LI}

j;!; (8'(w)1

(y’y+z](w)/z)dw dy,

where IA(y) is the indicator of the set A, Letting A® denodte

Lebesgue measure on the plane and applying the Fubini theorem* we have

LL (e o 10y, (07208 3200,
e L e ®I1y, @/ r2wy) = L |8 ()]
s 1 (8'(w)/e())? g(w)awl <.oo.,

(y y+z](w) is AZ-integrable, Therefore, applying the
? © y+z

o
Fubini theorem once more, we have O = L”(f g'(w)dw/z)dy = [ g'(w)aw,

so that g'(w)I

which immediately implies the desired result.
Finally, to prove (3.6), note that since the difference quotient
(re%(x,y)-l)/e --[b(x)g'(y)/g(y)]/2 pointwise as 6 —» 0, it suffices,

by the Lr-convergence theorem**, to show that

o0 o0

Ling o [ (rg%(x,9)-1)/0)2(3)aydR(x) = [ [ 62(x,y)g(y)dydr(x)/b.

-00

*, V4
Loéve [15] p. 136 Theorem B.

Loeve [L5] P. 163 Theorem C. Note: the form of this theorem found in
the first aﬁd ‘second editions is not suitable.
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(4.9)

Now;

UL L ((2,5(x,9)-1)/6)28(y) dyar (x) I¥

L t=%(6)g¥(a(0)y-6b(x))-5(y)1/6)2 ayar(x)1®

\(a¥(6)-1)761" [ [ s(y)ayar(x)I¥

A

+1a(0) [f (¥(y)-g%(a(6)y))Paydr(x)7% -

+{a(8) [ { (e%(a(0)y-6b(x))-g(a(0)y))dydr(x)T¥ ).

The first term of (4.9) approaches a'(0)/2a(0) = 0. Consider the

second term, if a(6) = 1 it is zero, otherwise we have:

(a(6)/62) [(8%(3)-e%(a(6)y))%ay

-

|

" max(y,a(6)y)
(a(0)/62) [( [
= min(y,a(0)y)

(g' (2)/2g%(2))dz)2dy

Lo ma(y,a(e)y)
(a(®a@:1]/e) [Tyl T " (g (2)/28¥(z))e ey

min(y,a(0)y)

o max(z,z/a(0))
(a(6)|a(8)-1] /he2) f(g'(z)/g%(2))2 [ ly| dydz

o min(z,z/a(8))

(@(8)[2(0)-1] |z -1]/862) [ 22(5' (2)/8(2))28(2)dz > o,

00
by the assumption that [ 2z2(g'(z)/g(z))3g(z)dz < w.
-0 .

Now consider the last term of (4.9): for the sake of clarity we

assume 6 >0 and b(x) >0 (if 6 <0 or b(x) S O the proof goes

through with obvious modifications.); for fixed x, we have:

[+

-00

[ (%(y-0(x))-g¥(y))2dy 62 - .1

o I-O0(x) |
= [ob' b(x) . fy (g|(z)/2g%(z))2dz dy/e '
[ y-6b(x)

= [, v2(x)(g'(2)/8(2))? g(z)da/( )

- 24



Integrating with dF(g) ahd combining the result with (4.9), we have:
Linsup [f((ry*(x,y)-1)(6)25(y)dydr (x)
6-0
s [Js%(x,y)g(y)dydF(x)/h.

By Fatou's lemma, the reverse inequality holds for lim inf and the Lemma
is proved.
‘We present below: two examples illustrating:.the results of

this section..
' () ’.:'(‘ )

N

SOy oy (L)
Example 4.1 Recall the specification (4.2) of the bivariate distribution

H We assume that X and £ are both normally distributed with zero

90
means and unit variances (if not*let Y1(9) = Y(6)/a(t), X = X/a(X),
bl(x) = b(x0(X))/o(t), and £, = t/o(t).) 1If b(x) is linear, then
He(x,y) is bivariate normal; as a slight generalization, we assume

b(x) is a pEl—1 degree polynomial, in fact, we assume that
P
(4.11)  b(x) = kzl kak(x),

where Hk(x) = (-l)k([dk/dthm(x))/w(x) is the K Hermite polynomial,
Since (4.3), (4.4), 7 . ' and (4,3) are satisfied we can construct
an ALMP sequence of layer-rank tests of the form (4.8), in fact, since

g is the standard normal density, the statistics are given by ((4.7) with

(k.12) Jj,i = By|5e 1sis jsn
and
(4.13) L . = ® b (BH (X, ) - zl B, (X 1 )
13 O L e A TR o a|a’)?

where “ilj is the mean of the LEE largest of j standard normal

¥I.e., if the variances are not one.
- 25 -



(b.14)

random variables and len is the jEE largest of n standard normal

random variables. The limiting weight function c*(u,v) (see (4.8)) is

-1, P -1 1“’-1(")
07 (u) Z b {H,(0 (V) -z [, H (x)e(x)dx)
o-2w) 2 b B0 M) = e(uvib), sa
= u k "k v = ’VM’ Yo
k=1

where H:(x) = Hk(x) +*Hk-1(x)(¢(x)/¢(x)) k=1,2,..., p% ;- .. and

' , . *
b= (bb,qa,...,bp). It is pleasant to note that the functions Hk’

k=1,2,..., are orthogonal with respect to ¢(x), as we now demonstrate:

Lo et)ax = [ 1, (08, (x)o(x)dx

o[ [ (B ()H, (%) + B (x)H, (%)) '((T dx
+ fw H o (x)H, .(x) 2% (x) dx
‘o k-1 k'-1 2( )

- Ko - LG (B (0 1 (007()) gl ax

o0
0 (x) _ 1
+ Lw Hk_l(x)Hk,_l(x) 2( y dx = k'sk,k',
. 1 L)
where ak,k' is the Kroneker . Thus, if b = (bI 2,...,bp), then,

recalling (4.1k4),

-

(k.15) ffc(u,vgk)c(u,v;kc)dudv = k!'b, b',

k-l k'k’

We use this result as follows: Suppose we assume the model of this
example with b(x) given by (4.11) to-be the true specification of HG
and employ the ALMP layer-rank test for 6 = O vs 6 > 0, namely (L.7)

with J, and L ; given by (4.12) and. (4.13)., If this model is not
. o H N .

j,i
correct and ‘in fact b(k) 1is given'by (4.11) but with coefficients
(bl,b',...,b ) then (3 20) implies that the ARE of the test we are using

compared to the ALMP test corresponding to the true spec1f1cat10n is:

- 26 -
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(Z‘.kb )2/(Zkb)(2kb'2)
k=1 =1 =1

We have tabulated in TableIIlIthe constants Ln j? 1= j=sns 20,
given by (4.13) for the special case b(x) = x, which gives the ALMP
layer-rank test of  :6:= O vs..6 > O (positive corrélation) in the bivariate

normal distribution. We call this the Normal Scores Layer-Rank Test;

if Tn(g) is the test statistic, ther, 'by *(4;15) “and the remarks following
Theorert' 3:2;, .” an approximate’. - O-level test has rejection region

Tn(gg 2 Zy In Figure 2 we illustrate the use of Table I by computing
the Normal Scores Layer-Rank Test statistic for a sample of size 10.
Example 4.2 Let X be a positive random variable with distribution F
and let G be an absolutley continuous 7¢df '. with density g where
g(y) = 0 (y = 0),g(y) > O {y > 0). Suppose the conditional 'cdf . of Y
given X = x is G(Y/Xe). From the remarks at the end of Section 1 we
conclude that the properties of statistics based on layer ranks are -
unchanged if we make the transformation Y' = ¢n(Y). But the conditional
gdf. . of Y' given X = x is G(exp(y'-64n(x))), which is in the form
(4.1) given above.but with G(y) replaced by G(exp(y)).

We can now specialize the results of this section to obtain an ALMP

layer-rank test of 6 = O vs 6 > 0, in fact if

I(uw) = -1-g'(6"H(u)) -6 Hu)/e(6c T (w))
and
¥ 1 1@
c'nij = EJ(Ui'j){E&n(len) -T]T-T z n( |j)}

then the sequence of tests based on Tnggf) is ALMP. . against 6 >0
and has limiting weight function

F-l

v)
e*(u,v) = J(uw) ea(FH(v)) %g ¢n(x)dF(x))

provided the following conditions are met:
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Figure 2

Computation of the Normal Scores Layer-Rank

Test Statistic for a Sample of Size 10.

. *3 ol |t Bl L1,
~1 -.221 -3.238 196 1 0 ——l
2 -2.454 2,044 12,04k 2 .56419 .53739
3 .089 1.183 589 |. 2 0 61399
L .931 -1.741 -3.202 1 -1.02938 68963
5 .361 2.649 -3.238 1 -1.16296 .T77031
6 -.559 | -3.202 1.183 | 5 64176 .86159
7 -4.816 196 2.649 T 1.35218 .97108
8 .784 Lol Lol Y -.15251 1.11266
9 2.576 -. 764 =li7hls ] 3 -.57197 1.31887
10 -1.232 .589 h' -6 | 4 -.37576 1.70972
-1.15535
TS0 = ;gluz(j)lj Lio,j/Jia_

= -1,155/3.162 = .

~.365 -

The .|, values are from Sarhan and Greenberg [ 19] Table 10B.1l
ifj |

and the 1L¥

10,j

values are from Table I of this paper.
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1 o
Jo B(w)au = [ (l4yg'(y)/e(y))%s(v)dy < o

and
1

fo [&n(x)l2+8 dF(x) < w, for some & > O‘and#L: &n(x)éF(x) = 0.

We remark that the transformation Y' = &¢n(Y) was made in order to
apply the results of this section and need not be made to compute the
test statistic since it is invariant under this transformation.

As a more specific example suppose G(y) = l-e™ so that, given
X and 6, Y 1is exponential with scale parameter Xe; G(y/xe) is a
possible model for the conditional distribution of the lifetime Y of
an object when the lifetime depends stochastically on an additional
observable random variable X, If (L4.7) is satisfied, then an ALMP
sequence of layer-rank tests for testing 6 =0 vs 6> 0 is {Tn(sw],

defined in (2.3) with

c* ( 5 L 1) {E¢n(X,| ) - — U E¢n(X, ))
s = -7 - n\a, - 7 n
nij B=1 j=-p+1 Jln -1 o3 aln
and the limiting weight function is

% -1 LE)

c*(u,v) = -(1+tn(l-u)){en(F "(v) - 3 &) n(x)dF(x)}.

¥But see the footnote on p.22.
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5. Asymptotically Locally Most Powerful Layer Tests, In Section 0

we defined the (3Eé quadrant) layer statistics (43,..., A§5, d? being
the number of sample points with layer rank r., A layer test &f:

@ =0vs 6> 0 in the bivariate family {ue;e 2 0} 1is a test which
rejects for large values of a statistic of the form

)
TnQQg) = n rilAn Jn,r - K

whereJ’-.:[Jn r;1 £ r £ n} 1is a double sequence of real numbers and Kn
had ’

is selected so that Eo[Tng(g)] = 0.
Since

n
T . (J) = n'% z z J -K. = n J K.
n2 ‘mw r=1 {j:z(.)=r} n,r n j=1 n,%(j) - n}
J

TnEQg) is a layer-rank statistic of the form (2.10.2),:with L ;= 1, and
H]
j
i E J ..
] j-q D1

As usual, we define a step function on (0,1)

- -1 3
(5.1) Jn(u) = Jn’j, —su<s, 1

fIA
[
A
?

We require that there exist a function J(u) on (0,1) such:that for

1
r
some & > O, letting ﬂg“r = folg(u)ldu, we have
(5.2) NIl,,g <o and §J -, - O

The asymptotic theory of layer-rank tests (in particular Tng(gp)
developed in Section 3 was based on bivariate "limiting weight functions"

c(u,v). 1In the present case, Lemma I:7.7 (Appendix I) and (5.2) imply that
A
c(u,v) = J(uv) - 5 IO J(w)dw.

Therefore if the family * (Hg;6 2 0} satisfies (3.3), (3.4), (3.5) and

(3.6), then (3.20) implies that the Pitman ARE, eggg, of TngQg) with

¥We assume this family to be fixed but arbitrary and that 6 = O
cor.'csponds to the hypothesis of independence.
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respect to an ALMP sequence of tests is:

\fff J(uv)c*(u,v)dudv]a

(5.3) e(&? v
"c*ig [ [J(uv)-'% foJ(w)dw]zdudv

?

ﬁfovide&t*ff J(uv)e®(u,v)dudv > 0, where c*(u,v) is given by (3.1;).

If J(t) is absolutely continuous O < t <1 and lim tJ(t) = 0

t—0
= lim (1-t)J(t), then
t—=1
(5.4) [13(uv) - % I J(w)dw]" dudv
= [f 1 [3(t)-J(v) + 1 fva'(w)dw]edtdv = -f[l fva'(w)dw]2
tsy ¥ Vo Vo
- 2ff < [3(t)-3(v) 13" (£)dtdv
tsv
= -2/ ['.f-%z wlwéJ'(wl)J'(wg)dvdwldwe
wléweév
.= 2f] tin(v)J3'(v)I'(t)dvdt
tsv |
= 2f£ J'(u)J'(v)u(v-leﬁn(v))dudv = [ 3'(u)3"(v)K(u,v)dudv,
where
u(v-1-¢n(v)) usv
K(u,v) = _ ‘
K(v,u) uz v

is a symmetric positive definite kernel®,

Moreover, if 1lim tJ(t)c*(é,v)'—éo for almost all v, then
t—=0

*
In fact it is the limit of the covariance kernel of the stochastic process
2 (t) =n gl AT oce<,
n r=1 "n
*it is also necessary to assume that neither ¢ nor J is zero almost surely.
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/I ;1, J(t)c*(é,v)dtdv
tsv

(5.5) JI 3(uv)e*(u,v)dudv

v
= I Eae) [ *(E, v)dwdtav
tévv t v

11 1 xw
fJ'(t)[ft j;l ¢ (-\;,v)dvdw]dt

J 3" (u)y(u)du,

where

1 1

(5.6) v = f [ € vaver, o<uc<.

By combining (5.3), (5.4), and (5.5), we obtain another expression

for the Pitman ARE of TnE(J)’

(Mg = L3 r(wau]®

(5.7)
I3 (0)3' (v)KR(u,v)dudv

The sequence of layer tests based on the statistics {TngQg)} will

be ALMP among all layer tests if the derivative of its J-function (see 5.2)

maximize$ the right side of (5.7) and [J'(u)y(u)du > O. This sequence
is in general not ALMP among all tests.

We now derive the J-function whose derivative maximizes the right
side of (5.7). On the space of real-valued functions defined on (0,1)

we introduce an inner product

(rporp)e = vy (u)r (vIR(u,v)dudy,

and a norm

(il )®

il

(Yl ’Yl)K'
Define y by (5.6); if there is a 1* such that

(5.8) r(u) = JyY*(v)R(v,u)dv,

-32 -
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then (5.7) becomes

‘2
(3',7%)
oF g

(5.9) DR = |r—]

T ¥ maximizes e(J). sSince we also

from which it is clear that J' =
require that 0 < [J'(u)y(u)du = [[I'(u)y*(v)K(u,v)dudv, the correct
solution is J' = r*. Thus, the problem reduces to solving the integral

equation (5.8) or, in view of the remarks just above, to solving

(5.10) r(u) = [3I'(V)R(v,u)dv = (u-l-&n(u))fb vJ'(v)dv

1
+u [ﬁ (v-1-tn(v))J'(v)dv.

By taking the first two derivatives of (5.10) and solving the reéulting

system of equationé for J‘, one can easily verify that the solution of

(5.10) 1is:
' I o ) N i €)) v(¢);
(5.11) I'e) = n{u uén®(u) ¥ u?enZ(u) ’
tihere, y is given by (5.6). Hence,
(5120 s - D)
- ~ {n(u U w2en®(w) ‘

1f '“J"2+5 <o for some d > 0, then we can construct a sequence
of layer test statistics [Tne(g)} which is ALMP among all layer tests.
We do this by finding a double sequence {Jn plET s n} such that I
. H

defined by (5.1), converges in 2+8E1-1 moment to J. By an obvious

generalization of Hajek [9 ] Lemma 6.1 one such choice is

(5.13) To,e = BIULL),

where Urln is the nEE largest of n wuniform (0,1) random variables;

another possibility is simply

(5.14) J = J(—=).
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= r
Lemma 5.1 Let Jn’r = J(E:T) and ||Jﬂ2+8.< . If J is continuous ,

on (0,1) and there is a number ug, 0 <u < %, such that |J| 1is
non-increasing on (O,uo] and non-decreasing on [l-uo,l), then

“J -J“ - Oo
n "2+% l-¢

Proof: For any e <uy it is clear that J; |Jn(u)-J(u)|2+5du -0,

Consider
€ [nel+1
243 1 1 r 245
fb'Jn(u)l du = - ril.lJ(;;T |
el %
s ?)nIJ(u)|2+6du + fO|J(u)|2+8du

€
- fle(u)|2+8du;

Since the latter can be made arbitrarily small and a similar result
holds for the upper tail, the Lemma is proved.

Let {Tn2(£)} be a sequence of layer test statistics using the
weights given by (5.13) or (5.14) with J given by (5.12). Since

J' = v*, (5.8) and (5.9) imply that the Pitman efficiency of (T () is

(5% g (wr(e)au

.1 e(J) = '
(5.15) (52 'c*li [[ (%G, v))3dudv

Example 5.1 Kendall's T and related statistics.

Consider the following family of bivariate cdf's:

£ 0= i%, mz 1},

gl

(5.16) (HyBg(x,y) = F(x)6(y) (1+6(1-F"(x)) (1-¢™(y)), -

The marginals of Hy are F and G and since the properties of any
layer-rank statistic are marginal free we can work with the following

family#¥: {Hezﬁe(x,y) = xy(1+6(1-x™) (1-y™)).0 < x, y < 1, —-i £ 6s l;, mz 1}.
!

For this family s(x,y) = (1-(m+1)x™)(1-(m+1)y™) (see (3.3)); consequently,

*Since we are concerned with testing 6=0 versus 6>0 the negative values of
6 are immaterial, 3L



the optimal limiting weight function is ¢’ (u,v) =(-v +(m+1)(uv)™)m

(see (3.1%)). Also,(5.6) becomes
y(w) = u(l-u™+m™len(u),

so that J', given by (5.10), becomes
J'(u) = mz(m+1)um-1 ,

and, except for am arbitrary constant,
J(u) = m(m+1)u™.

In view of the remarks in the paragraph containing (5.3) and (5.1L4)
and Lemma 5,1 either of the following will give sequence of layer. tests

which is ALMP among all layer tests:

(r+m-1)(r+m-2)...r

(5.17) . Jn,r = EJ(Urln) = m(m+1) (n+m)(n+m-1).,.(n+1)
or
r r ™
(5.18) Jor = () = m(ml)(=7)
The Pitman efficiency .of:alayeri:test:’ - using either of the above

weights is given by (5.15) and is:

(m+1)fum'l[u(l-um)+mum+1%n(u)]du

e(J‘) = = 1,

ff(vm%(m+1)(uv)m)2dudv

Thus the ALMP layer test for testing € = O vs 6 > O in the family (5.16)
is in fact ALMP among all tests,

In particular if m =1 in (5.16) then (5.17) and (5.18) reduce to

L L
Seel . (n+l)n® no C
o em— —e - = = &
n,r o+l and 2 (Tn(:‘y) Kn) jil %a j§1 (i)’ which is

essentially Kendall's T-statistic (see (2.11)). Thus Kendall's t-statistic
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is ALMP for testing 6 =0 vs 6> 0 in the family"

{HG;HG(X’Y) = F(x)6(y)(1+6(1-F(x))(1-G(y))). We remark that there are
other families against which T is ALMP, for example, a family of the
type considered in Section 4 with Ge(y|x) = (l-e"(y—ax))'1 < <y <w,

0<x<1l, and F(x) =x, 0<x<1,

Example 5.2 The ALMP layer tesé against the bivariate normal alternative.
Let He(x,y) be a bisnormal cdf with correlation 9(1+62)'%
(see Section 4). From.(3.14); c*(u,v) = Q—l(u)[Q-l(v) +-319;;£¥ll 1,
where ¢ and ¢@ are the standard normal cdf and density, respectively.
Leaving out the details of its derivation from (5.6) and (5.11), we claim
that the optimal J:ifunction:is’ givencbye:...ix:
11 oo™ (w)-we ™ (w) o(o™ ()]
(5.19) Ju) = [ [ dwdv

v w(vin(v) )3

1 [p(0™H(v))+vo L (v) 107 ()

- dv .

u V2

%) J(u) is tabulated in TableVIIL and is also presented in graphical

\

form in Figure 3. If one defines Jn,r’ r=1,...,n, by (5.14) then
the layer test statistic Tn2(£? defiped by (5.2) can be computed
either from the graph of J or from Table VIII,

We have computed the Pitman efficiency of this test and found it
to be approximately .955. It has been conjectured that this number is
% = .95493 but we. have made no progress in proving or disproving the
conjecture.

Tables I” and II. on pages 38 and 39 summarize the examples discussed

~in this and the preceding section.

¥
The reader should compare this with the fact that the Wdlcoxon statistic
is ALMP in the univariate two sample problem for testing F = G against
G = F(1-6(1-F)), 6> 0.
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was obtain

Kendall's

ed from (4.13) by means of Lemma I.1.

T (see example 5.1). (5) ler';

HE(x) = B () + B (02

is the jE-h largest of a sample of size n from F.

-.38..

i S A DS DA S TS S IS SRS SR SR TS TGS T S TS T
. TableIl : Several bivariate families and their ALMP layer-rank tests.
‘ﬁame of Member of family corresponding ALMP Layer-rank test statistic Tn(g_*) = Q.m. limit c¢*(u,v)
family to parameter value 6, % (see(2.5)).
Z‘.cn& .,wherec;fijis:
j 1 ’ ( )’J sty
(1)_ (2) (3) -1
n(g) Gg(y|x)' ™= o(a(0)y -6 z O Hk(x)) ui“f Z‘ub E[Hk(Zjln)]} 0" (u){élb H (077 (v)))
Fe(x>“> o(x), a(6) = (1 + 62
Nn(1) Bivariate normal with correlation [ j£1 45-1( )[0-1( ) (p(d)-l(v))]
| ° i T e T B 5 Vo B o] u v) - S
j

Um) H (x, ( ) c* 147 J 4" z I, a with_ al(m + 1)(uv)® - vm]

O F G [146(1-F% (1)) (1-6%(z))] | T el oy

n, g» 15150, given bya(5717) .ar)(5.18)

U The above with m = 1. ne-tl - Jiﬁfl) () 2uv - v
8E)  fo (5] = explya®), y0e) = () | (5 1k -UsLn(x, -k E tnly )1 | <01+ tat - w1

)’| = exply » Fglx) = F(x B=13"3+1 - n jl -:.m% n 0‘| - n(l - u 1)

[ea(E"}(v) - 2 tn(x)dF(x)
i
€& The above with F(x) = =, Osxsr, z 1+1 . (6 -[1 + &n(1 - u))
r >0, fixed. r p=13-B

(1) Ge(ylx) = Py(Y = yl X = %), Fe(x) = PG(X s x), and He(x,y) = pe(x sx, YSy). (2) Hk(x) is the k™2 Hermite
polynomial. (3) zi]j ie the 1P largest of j standard normal random variables and Byl is its mean. This expression

(4) This statistic is essentially

(6) By Lemma I.1,




N { € € € 4 € ] { {
Table IIl:values of o(c,c¥) for computing Pitman efficiencies® }
TR L) " Um) W gE e
mk') S bkbkk'
M(1) | b12 1
(um-!-llml-l)(mn' 2
U(n') ~ (u )2 e
fn . P © m-1 m'+1{m'+1 mm +1)2
T LB LT E  (x)9F (x)dx)
[P] ’ ' 2
1 k (2k) 1 1
U(1) 7 120 boer1 (%) — =~ .31831 _(.m%? 5
2(¥) 4ot PZ(¥) 4070 iy .
(L T 4y L8N a1 | (2 @i | .
gKF) p 1 1 - fOF(x)%n(x)dF(x) , &)tna(x)dF(x)
() {LE by HR (07 () enE (v)av] [ 07X w) (™ (v))av| [F () ta()ar ()] * (0
? 920y 491 o
E X [‘[oo 6_(%? YJ foo Cpg‘ :Y) ‘w i ;l __1— 1 fooe . )z ( dF( '
SE? e 90320 ™l o) o o n(F(x))n(x)dF(x)| 1

[élbk IZHk-l(x) %‘?% dx]

H

*
This table contains values of g(c,c”) (see (315)); c is the q.m. limit (see (314 )) corresponding to the ALMP layer-rank

test against the family of alternatives named in the row heading (see Table
the ALMP layer-rank test against the family of alternatives named in the column heading.

The Pitman efficiency (p(c,c¥))?2

wores layer-rank test is (3)

(g(c,c*))®

= 9(c,c)o(c¥,c¥)
T (gf) is ALMP is easily computed from this table.

- 39 -

of T (C) with respect to T (C*\ agn’ -

) and c*
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6. Asymptotic Relative Efficiencies at Fixed Alternatives., Suppose there -

are two sequences of test statistics TT,::{Tni, nz1l), i=1,2, for
testing 6 = 0 vs 6> 0 in the family {He;e 2 0} of bivariate cdf's
(we assume that the tests reject for large values of T 4> 1= 1,2).

Assuming the tests are consistent, we define ni(e,a,B), i=1,2, to

be the smallest sample size required by a level « test in:@ﬁeoaeq@?%ce T,

to achieve power 1-f against the alternative HG' We may call the ratio
na(e,a,ﬁ)/nl(e,a,ﬁ) the exact relative efficiency” of T). with respect
to T?“’ Since this exact efficiency is in general difficult te:-evaluate

various asymptotic-relative efficieneies; each giving > some idea of the
n2 (9 sg’ﬁ )

behavior of this ratioqhave been proposed.** Pitman's ARE (1lim
’ prop ( n,(8,4,8) )

6-0

is usually a number independent of & and P and gives information about

the exact efficiency only for 6 near 0. Another ARE, which we call
Ea
Bahadur (exact) ARE, is defined as:

0,(0,0,)

limm—’m, 9>0, O<B<1’91’B fixed:
-0 1 .

provided the limit exists. Bahadur ARE seems particularly appropriate
for signifiqance testing in which one is interested in as large a signifi-
cance (1-0) as possible while maintaining reasonable power.

In this section we derive the Bahadur ARE of ca~ layer-rank test
with respect to another.layer-rank test or the likelihood ratio test.

For fixed B 1let us denote the Bahadur efficiency of {Tnl] with

respect to (T by e(G,Tl,Te). We shall show that in the case of

n2]
layer-rank or likelihood ratio tests e(G,Tl,TQ) doesn't ‘depend on B

. (prowvided 0 <B < 1), Our derivation of e(G,Tl,TE) for these tests

* ,
See Hodges and Lehmann [1l] for a discussion of this notion.

**By Bahadur [ 1], Hodges and Lghmann[11] and Chernoff [4], to mention a few.

***fut see.GIeser [8 ], who uses the term slightly differently,

L d

.
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3

is-sidmblar ~tothat ~ 6f Klotz [13] and is based on Theorem 1 of Féller:[5 ];

we prove:-heglow the version of Feller's-theorein needed .forsthi§ paper, since

the~ariginal :version! is proved in great: genevaliiy“and is hard to apply here,
Consider the statistic Tngg) defined by (2.6), where (2.5) and

(2.7) hold. Letting c, = ¢ and recalling (2.4), we define the following

0

functions for n = 0,1,2,..., and real h,

(6.2) v, (W) = [fexplhe (u,v)ldutv,
n
fcn(u,v)exp[hcn(u,v)]du
(6.3) ag (B) = a
n fexp[hcn(u,v)]du

dv, 1i=2,3,

Jle_(u,v iEX ‘he_(u,v)]du
(6.4) u((:i)(h) =f le_(u,v)| "exp(he (u,v)]

[exp(he_(u,v)]du

and

(6.5) m (h) = fflcn(u,v)|3exp[hcn(u,v)]dudv.

We assume that in addition to (2.5) the following holds:

(6.6) lcn-c|3 - 0,
or, equiﬁalently*, that m, (0) - mc(O). We denote by I(g) the
n
h-interval®** on which mc(h) is finite and m, (k) —9u%(h).

n
Theorem 6.1 (Feller) For any x > 0 if there is an h_ in the interior

of 1(3) such that pc(hx) = x, then:for:any sequénce X, ox
lim & Ln[P(n%T (c) 2 nx_|H,)] = xh_-f tn[fexp(h c(u,v))duldv
e D n'w - n0 X %g) ’ !

where P(-|H) denotes the prob. measure corresponding to an infinite

sequence of observations from a population with cdf H,

*
By the Lr convergence theorem and the fact that c, ¢ a.s.

*%
See Appendix II.
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Proof: n%T (¢) = Z c ] is a sum of bounded, independent
— T iyl

fsndom v5£iabiés uhder Hoa'thi& ﬁaqt is crucial to the argument, We let

i
% exp(he

£,5(h) = Elexp(he, , 1 = % Zl nij)

’ (j))J

and define, for arbitrary heI(g), an(h),..., Zniﬁh) to be independent

random variables such that, for each pair j,n with j =

P(z_.(h) = ) = exp(hc“ij) 1sisjsn
nj - cnij - '—ET?;;(ET_ ’ =r=J=n
By Lemma II. 1, if
n
Sn(h) = J‘:1znj(h),
then
n
(6.7) It (9) 2 eyl = (TT £y, (WL 7 exp(-ha)am(s,(h) 5 2)].
j= nx

n

Let us first find an asymptotic expression for the second factor

on the right of (6.7). It is easy to see that

(6.8) E Sn(h)/n = K, (h),

and 2

(2) ars (u,v)exp[hc (u,v)]du |
(6.9) 02(s,(W)/n = pg-l(n) - [ < .

Py Lemma II.2 (ii), the first term on the right side of (6, 9))conv~rges

to u ( )(h) uniformly on’ cp&pgéb subsets of i(M) Usgng ggguments
":'/a v
similar to those in the proof of Lemma IT. 2 one caan easily prove that

a similar result holds for the second term on the right side of (6.9). Thus,
Y - Ly
=z ) \.>, .o N et L ().

OZ(Sn(h))/n - pgz)(h) _g/a fc(?,V)exp[hc(u,v)]du:} 2 dv
fexplhc(u,v) Jdu

e L v Loltes w2(h)y osdy, 2 puoedl T UL, Lo e

and. the ‘cofivérgence~is uniform onidompaet.sﬁbsetsuofulgg)?f 1€,

AW

'."'...",(" \\,\' . '( : s 3y
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o}

<

is clear that o2(h) > O unless c is degenerate®. Also, since

1
(6.10) -

S Mo

. Elsn(h)-nuc (h)l3 s 8u£3)(h) - 8u£3)(h),

uniformly on cdmpact subsets of I(vg\), by Lemma IL2.¢ it follows from
the continuity of p£3)(h) that the quantity on the left of (6.10) is

uniformly bounded on any cdmpact subset of I(C). Combining this with (6.9
e

and (6.8), we conclude from the normal approximation theorem®* that
z-np_ (h)
: n
= =
(6.11) P(Sn(h) = Z} 0] \W + Rn(z),

)

where Rn(z) = a(n-%), uniformly in h on any compactsubset of I(% .

It is clear that u_ (h) is continuous on I(SA), n=0,1,....
n

Since; by Lemma ﬁ:ﬁl—,, T (h) —>uc(h) uniformly on any compactsubsei of
n
1(C), and since X DX, it is easy to see that for large enough n there
Faga

is an h e I(’S}u) such that ucn(hn) =x and h -h.

Since (6.7) holds for any h € 1(9) we may set h="h_ , and the

second factor of (6.7), in view of (6.11) becomes,

) 3-nx o0
(6.12) [ exp(-hz)do _%_n + [ exp(-h_z)dR (z)
nx n“c(h_) nx n n
n n n
1 % 3 PPN

=z [ exp[-h_ (z+nx )]cp(r) dz + R¥(R)'  say.

(n a(hn)) 0 n n n O(hn) n'® Y

Integrating by parts, we obtain
R¥(h ) = -Rn(z)exp(-hnzn:xn + m{ R_(z)exp(-h_z)dz.
n

Since X X > 0, we can assume nx_ >0,

*
¢ 1is degenerate if c(u,v) is a function of v only (hence = 0).

**Lobve [15] p. 288. - 43 -



(6.11) fwexp(-hnz)dP(Sn(hn) < 2)

Thus,

IR:(hn)I = a(n-%)exp(-nhnxn)
and (6.12), the second factor of (6.7), becomes
exp(-nh_x )[fmexp(-n%h o(h )z)p(z)dz + G(n-%)]
nn 0 n n

1-¢(n%hno(hn))

9(a*h_o(h_))

= exp(—nhnxn)[' T + G(H-%{] .

qa(h) given by (6.9) is clearly continuous on 1(9) thus o(hn) —9o(hx) > 0.
By Lemma II.h pc(h) is strictly increasing. Since uc(hx) =x>0= pc(O),
it follows that hy > 0. Thus, by the Feller-Laplace expansion of Mill's

ratio,
1-0(nh_o(h_)) 23

?(nh _o(h_))

Combining this with (6.13) we have, finally,

exp( -nhnxn) O(n-%) .

nx
n

Thus,

1
Sl

-1 eafp_(a®1 () = nx)] £E (h)+hx +1in(e™)
n n n'w ~ n j=1 nj' n nn n

hx - [ tn[ exp(hncn(u,v))du]dv + &(1)

- xh_ - / %n[fexp(hxc(u,v))du]dv,

by Lemma II.5, and the Lemma is proved.

Suppose there is a finite constant nc(O) such that
—%T (c) = L g c -7 (6) in H,-probability (see Appendix III
n n.n) I e oP

for a discussion of this point); Let us select kn so that the test

which rejects HO in favor of Hg when Tn(g) 2 kn has power 1-B;
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i.e., P{Tnggpzkn|He} = 1-B. Since n-%Tn(g) —>nc(e) in Hg-probability
n¥[n (6)+ (D).

anHO} denote the type I error of this test,

I}

it is easy to see that kn

v

Letting O = P{Tn(g)
we obtain from Theorem 6.1,

Corollary 6.1 If there is an h ¢ I(g) such that

(6.15) . (hg) = n (6),
then

(6.16) - % %n(ai) - henc(e) - [ tn[fexp(hc(u,v))duldv,

where uc(h) is given by (6.3).

Letting ec(e) denote the right side of (6.16), we obtain the
following asymptotic (@ — 0, 6, B fixed) expression for the sample size
n(6,0,8) required by the Q-level test of the form Tn(&) 2 k to attain

power 1-B at the alternative Hy:

(6.17) n(0,0,8) ~ X .

[}
Thus, the Bahadur ARE of {Tn(gi)}with respect to {Tngge)} given by (6.1)

is simply
e, (9
(6.18) e(8,(z_(¢,)), (1 (C,))) = ool

Now let us consider the likelihood ratio test or, equivalently,
" the test which rejects for large values of
n

L = n-% Tz, ,
)»} j=1 j

where zj = zn(re(xj,Yj)), j=1,...,0, (Xl,Yl),..., (Xn,Yn) is a

sample either from H. or H

5 , and 1, = dHe/dHO is the likelihood ratio.

e
Let

(5.19) nZ(G) = ffzdue.
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n
1f nz(e) is finite (hence exists), then n~ Tz, qc(e)

in H -probability*. Thus, if the test Ln 2 kn has power 1-B at

e
Hy, then k = n%(nz(9)+0(1)) and the type I error O is given by:

@ = P[T 2 knlnol.

Let 1I(Z) denote the interval of real numbers h on which
ff|z|3exp(hz)dH0 < ». Using the methods of this section, it is easy to

show that if there is an h, 1in the interior of I(Z) such that

0
[[zexp(h z)dH
(6.20) n,(8) = °’ 0
ffexp(hOZ)dHO
then
(6.21) - % ta(a) - hyn,(8)-talffexp(n,z)dn,].

But since 2 = ¢n(ry(x,y)) and rg = dig/dH,, (6.20) cah be put in the

form: h0
[fen(zg)(rg) “an,

ffﬁn(re)redﬁo = =
ff(re) OdHo

Thus, hy =1 is a solution of (6.20) and (6.21) becomes:
1 tn(a) - 1,(9)
n n ARG

where nZ(Q) is given by (6.19). We conclude that the sample size
required by the a-level likelihood ratio test to attain power 1-8
against He has the following asymptotic expression as O =0 with

6, B fixed:
in{@)

~
n mz

Consequently, the Bahadur efficiency of Tn(g) with respect to the

“I.e.,, the probability-measure corresponding to an infinite sequence of

observations from a population with cdf HG'
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likelihood ratio statistic is given by:

(6.22) o) = 5
z
where
(6.23) n,(8) = ffzane = ffrezn(re)dn9

and gc(e)ﬁs the right side of (6.16).

Example 6.1. Kendall's T.

1f we set N 2(i-iiigll)/(n+1), 1sis2 jsn, then Tn(ge
given by (2.6) is essentially Kendall's T-statistic., Moreover, cn(u,v)
defined by (2.4) converges to c(u,v) = 2(uv - %), uniformly on any set
of the form 0 susl, vysvsl (vo > 0). Also, since |cn(u,v)| s 3,
m, (h) —>mc(h) <« for all real h (see (6.5)) so that I(C) = (“o,»)
(s:e the sentence just before Theorem 6.1). Thus, by Corollafy 111.2,

for any continuous bivariate cdf HG’

F,(x)

(6.24) i (6) - Jf(Hy(x,y) - JaHg(x,y) = n.(6), say,

in Hg-probability, where Fe(x) = Hy(x,0). Thus, the condition stated
in the last paragraph of p.4l is satisfied. If we let (Xl,Yl) and

(XQ,YQ) be independent bivariate random variables with c¢df H,, then

e’
nT(e) can be put in the form:

(6.25) 1,(6) = PIX; sX, and Y, 5 Y |H) - f.

The right side of (6.16), call it eT(G), becomes

h h
(6.26) e (6) = hn(6)-(1- % Iy 592—1 - 11:h ) +% - ‘“(E#l)’

where h 1is the solution of:-
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h
1 1 1 tdt
. 9 = - om— - —— — o

By combining (6.26) and (6.27), we can put (6.26) in the form:

h
(6.28) e (8) = 2hn (8) + 2 + tn(SH).

We have tabulated (Table IV) the right sides of (6.27) and (6.28)
as functions of h; the use of this table is:’illustrated below.
Now consider two specific families of alternatives.

a) A family against which Kendall's T is ALMP: the family given by

(5.16) with m= 1. It is interesting to compute the Bahadur efficiency
(6.22) of Kendall's T with respect to the likelihood ratio statistic
at fixed values of 6 in this family. The quantity nz(e) is, in this

case, given by

1
I.l tn(1+6w) (1+6w) tn( |w| )dw.

Ol =

(6.29) n,(8) = -

For the cdf He(x,y) = F(x)6(y)[1+6(1-F(x))(1-G(y))] (6.25) becomes;

6
T]'r(e) - 18-
e (6)
B ans of Tables: IV ,VI : compute values of the ratio . For
y means o0 v,V we p w

example,in”Table IV 'w'find at 1,(6) = .01385: that 67(9) ; .003k459:

so that 8 = 18.nT(9) = 249k, We find in Table VI that at € = ,2Lgh"
nz(e) = ,003468*, thus the Bahadur efficiency of T with respect ot the
likelihood ratio statistic at 6 = .249 in the specified family is
approximately (.003459)/(.003468) = .997. (see Figure 5 ).

b) The bivariate normal family with correlation p.= e(L f~9?)7%:

1,(6) (6.23) is, in this case, - % n(162).

Since, in this case, (6.25) becomes:

(6.30) 1, (6) = z arctan (9),

¥Which we have not indicated in the table,
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we can, using-Tdble&: IV .andV,.compute values of the Bahadur efficiency of
T compared to the likelihood ratio statistic against normal alternatives

for specific values of the parameter . 6 (see figure 4 ),

Exauple 6.2, The Normal Scores Layer-Rank Test.

In Example 4,1 we derived a layer-rank which is ALMP against the

bivariate wormal alternative. The test statistic ‘is

(c) 5 3 *
T = . L
n W n j:]_ue'(j)'l j n,i,
where
j-1
. - . ji>1
N Hiln - 3-1 i=1 Hiln .
L . =
n,j
0 j=1

and .. 1 =51i2 jsn 1is the expected value of the LEE largest of j
"] 3

standard normal random variables. The q.m. limit of cn(u,v), given by

(4.8), is
"Ly 0-Yv) + BLOTHV)
c(u,v) = & (u)[o (v) + " ].
since %) ry |x| as x - -» and is bounded on any set of the

8

form x 2 Xy > -» , we have, for any r 2 O,

ff|c(u,v)|rdudv = [i:yr¢(y)dy][£:(x+ %%;%)rm(x)dx] < w,
and for any h (-0 < h < »)

[fexp(b|e(u,v)|)dudv = [:fwexp(hly(X+ %%%%)l)@(y)¢(X)dydx < w.

=00

Thus, by the Schwarz inequality, the set A of Lemma II.6 is (-wo,»);
consequently I(C) = (-w,»).

We shall be dealing with two families of alternatives (see parts a)

- kg -



and b) of the previous example) and conjecture* that for a bivariate cdf «

He in either of these families

. Hy(x,y) -1
o™t (6) > JIo Ty (07 H () + RO AEEID) yan (xiy) -

= nc(e)’ say,
in He-probability.

Letting L(x) = x +4%%§% , we see that the right side of (6.16) is

e.(8) = Bgn (8) - [ tnl] exp(hgyL(x))o(y)dylo(x)dx

Cc

0
henc(e) - % h% Iw L3(x) (x)dx = henc(a) - % he'

Moreover, since h, satisfies (6.15), we have

JF” [:yL(X)exp(heyL(X))¢(Y)dy

n(6) = - @ (x)dx
- [ exp(hy(yL(x))o(y)dy
- by [ P)e()dx = by .
Thus,
e (6) = 3(n, ().

We have computed Bahadur efficiencies of this statistic with respect
to the likelihood ratio statistic for the two families of alternatives
considered in Example 6.1 (see Figures 4 and 5 ); the reader will find
in Tables IV, V, VI, and VII values of ec(e) and qz(e),for both of the

above statistics and both of the above families of distributions, from

which the Bahadur efficiencies in Figures 4 and 5 were computed.

*
See Appendix III,
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7. Some Remarks on the Small Sample Properties of Layer-Rank Tests. <

Consider a family ?{ = {He:-w < 0 < w} of continuous bivariate
distributions, where Ho(x,y) = F(x)G(y). Let Ge(ylx) be the conditional
cdf of Y given X = x. We say that Y 1is stochastically increasing
(decreasing) in X for fixed 6 if Ge(y|x) is non-increasing (non-
decreasing) in x.

Lemma 7.1 If Tn(g) is a test statistic of the form (2.3), if

c for all i€ 1i', 1S j=n, and if Y is stochastically

<
nij - Sni'j
increasing or decreasing in X as 6> 0 or 6 <0, then the test
T (C) 2 k 1is unbiased.

I "mn

Proof: 1In view of the marginal free nature of Tn(g) we can assume

without loss of generality that the marginal of X is independent of 0.

Recall the definitions of Y[i]’ X(i), b(i), i=1,...,n, and let

* —
y(i), X(i)’ %(i)’ i=1,...,n, denote realizations of these random

variables. Let V Vn be independent uniform (0,1) random variables

1772

independent of X X . We define on (0,1), for fixed € and x,

170>

(7.1) YQ(V§X) = inf[ine(Y|x) = v},

ye(v;x) is strictly increasing in v for fixed x and 6 and is

non-decreasing in x for fixed 6 > 0 and v, by the assumption that

Y is stochastically increasing in X for 6 > 0. Note that yo(v;x) = yo(v)

is independent of x.

Clearly, the random vectors (X(i)’ ye(Vi;X(i))), i=1,...,n,
have the same distribution as (x(i)’Y[i]) when the sample is taken from
Hg. Thus, knowing 0, for each realization (vl,..., v X(q)seres x(n))

one. can construct the corresponding realization

(Y[]_]’-‘-a Y[n];x(l)"--’ x(n)) = (YQ(vl;x(l)):"',YQ(vn;x(n));x(l):'ﬂ’x(n))'

‘Now consider &?j)(e), the corresponding realization of the layer-

rank &(j)i letting z(x) = 1(0) as x 2 (<) 0, we have

-5 -

€ )



¢

(7.2)

ROICIEIEACHETNY
- £ strglvgmpy) - velvyngy)
2 iél 2(yg(vyix(gy) - v9(vysx(4y))
- iél 2yo(vy) - 9o(vy)

but the latter is &?(O), the corresponding realization of %(j) when
® = 0. The conditional probabilities of the two tealizations z?j)(e)

and z?j)(o) given x x are the same since they depend only on

1""’
the V's and not on 6. To summarize, if we condition on the X-values,
then for each realization 5?(0) of L(j)’ j=1,...,n when 6 =0
there corresponds an equiprobable realization %?(9) j=1,...,n when

@ > 0 and moreover &;(O) < %;(6), j=1l,...,n. Since TnQ%) is non-

decreasing in z(j) for each j this immediately implies that, for any k,
PO{TH(VCA) 2 k|x1,..., X ). s Pe[Tn(‘% z klxl,..., x ),

and, since the distribution of Ryseeos ﬁn is independent of &, this
implies that

PO{Tn(g) z k) = Petrn(”g‘) z K}.

The reverse inequality is proved similarly when 6 < 0 and the Lemma
is proved.

Suppose that for each 6 there is a strictly indreasing function
m(y;6) on the range of Y. Since layer-rank statistics are marginal
free® we can define a new family of bivariate distributions call it QZ(m)
by setting Y' = m(Y;6) for each 6 and the distributional properties of

any layer-rank statistic will be unchanged.

*
See Section 1.
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(7.3)

We prove below that under certain conditions a layer-rank test is -
not only unbiased but also has a monotone power functionj first, however
it is necessary to introduce a certain property of families of distributioms.

Consider a family H = {He:-m < 0 < w} of bivariate distributions.

Defining ye(v;x) by (7.1), we say that K satisfies condition (7.3)

if for x, = x

1 and any v, and v

2 1 2

(i) ye(ve;xg) - ye(vl;xl) is either negative or non-decreasing in 6,

and

(ii) the marginal distribution of X doesn't depend on 6.

Corollary 7.1 Let H = {Hez-w < 8@ < »} be a family of bivariate

distributions. If there is a family’ {m(.;6))} of transformations of Y-
as described above such that the transformed family Jf{(m) satisfies
condition (7.3) and if Tn(g) satisfies the conditions of Lemma 7.1
then the test Tn(8) has a monotone non-decreasing power function.

Proof: Let 6, <6, and in the proof of Lemma 7.1 change (7.2) to:

i}

J
Hp) = E 207y
A
= {il z(yee(vj;x(j)) - yez(vi;x(i)))

J
iil Z(Yel(V ,X( )) - yG (v ’x(i)))

v

= {358

The difficulty of verifying condition (7.3) makes this Corollary
rather impractical in its present form; nevertheless, we are able to
apply it to families of the form (4.2). In fact, if we set Y' = a(6)Y,
then ye(v;x) becomes G—l(v) + 6b(x)/a(6) and condition (7.3) reduces
to the requirement that b(x) and 6/a(6) be non-decreasing in x and

0, respectively. Thus in particular the power function of any test

-S4 -
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Tn(EQ 2 k such that Ly s Cat'§? isi', 15 jsn, has a monotone
power function against the normal alternative, since in that case we can
select b(x) = ¢-1(x) and 6/a(9) = G/JI:EEZ B

Note that since Ge(ye(v;x)lx) = v, we have
(Blae)ye(v;x) = -((B/BG)Ge(y|x))/g6(y|x), where y = ye(v;x). Thus a
sufficient condition for (7.3) (i) is

(a/ae)GG(yllxl) (a/ae)Ge(YEIXQ)

(7.h) gs(yllxl) - ge(YQIXQ)

, when x_ s X5 Yy S Yo-

We remark, finally, that if a layer-rank statistic satisfies the
conditions of Corollary 7.1 for some bivariate family and if it has
non-zero Pitman efficiency (3.20), then it follows from (3.16) and Corollary

7.1 that Tngag is consistent against any 6 > O in that family.
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8. Comparison of Layer-Rank Tests with Rank Tests. . <

In this section, as in Section 3, we will be dealing with a family
of bivariate cdf's {Hy:-w < 6 < ) and we shall assume that (3.3), (3.k4),
(3.5) and (3.6) hold for this family. We shaw first that the locally
most powerful (LMP) rank test statistic is in a class of statistics
proposed by Hoeffding [12] of which .thosestudied by Bhuchongkul [3] form
a-subclass. _,

Let R = (R[l]""’ R[n]) be the ordinary (mot layer) ranks of
Y[l]""’ Y[n] (see p. 4 for a definition of the Y[j])' If r= (rl,...,rn)

is a permutation of (1,2,...,n) and if r, =i, i=1,...,n, then,
i

using notations introduced on p.13 , we have

it

(8.1) pe(R =r) EG[PG(Y[GI] £ ...8 Y[an]|x(1)<,..., x(n))]

= n! f f f f TT e(x sy )g(yi)dyidF(x )

-4 y1 Sy i=1
e(le ’ Y l )]>

where X?‘n is the jE-l'-l largest of a sample X?,..., Xg from F(x) and

0] 0-

YO is the jEE largest of a sample Yis..., Y from G(y) and the

iln
O| O| . o' Ol
X“'s and Y 's are independent (the X 's and Y 's should not be confused
with the sample (Xl’Yl)""’ (Xn’Yn)’ drawn:.£rom alpopulétiohfwith.cdflqeﬂ
o2 \ A o FRY IR e e Y
from which thguranks.R[llr»..,R[n]_%re computed, )
The LMP rank test rejects for values x of Ji‘ giving large values of

(0/06)P4(R = £)|e~0' Thus, the following lemma implies that any test

which rejects for large values of

Dy %
(8.2) sn(,b,) = n jz E[s(XJ jl )]

In
is LMP.(the notation Sn(b*) is explained below ), where s is given by (3.3).
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Lemma 8.1 If (3.4), (3.5) and (3.6) hold, then {8/89]P9g§ = 5)|9=o =

1 n
n! JE [s(len In)]

' . 0 0]
Proof: For compactness of notation we let r, = re(x. , ¥ ).
zroot ; jln rj|n

From (8.1) we obtain

P, (R=r)-1/n!
(8.3) nt SE

)

n n T
5 2 %
E[ || .-11/6 = E[( Hr -1)2 + 2( ] rZ%.-1)]/0
j=1r9J j=1 % j=1 ¢

n % n % l
= OE[Z )]+2E[2( r)(
1(1];I’1rj J= 1:|:-[-1 o3

Consider the first term in the last member of (8.3)

6EE (] o ><f§§1f>32
E r
=1 i=j+1 %
%
n r;.-1
£ nb ‘g E( T-r rei) E(—g%“)z
J= i=j+l
©w T (x,y)-l '
< n(a!)e z [ [ ()" g(y)dydr(x)

- 0 as 6 -0, by (3.6). (Bear in mind that n is fixed.)

Now consider the second term in the last member of (8.3)

-
n n n LT ¥
2 = (] 11, 91)( SZ ) E[(11:T1r91) (%31 0¥y |n)1 + 4(0),

(do not confuse r, with r,,),
j 93

where
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| % SEX.p Y. 1)
n rs.-1 N J|n<"r. n
la@)]” = u £ Er( T] e (S—) - ———4 3
j=1 i=j+1
5
o ] | L PO S PR P
= X E E -
n Z [i=j+1r91 (( . ) >
0w X
s wa(a)? L], (G - S ey(y)avan(e)

- 0 as 6 -0.

Since the limit as © — 0 of the first member of (8.3) is
n!{B/BG]Pe(R=r)|9=O, the Lemma is proved.

We define the function b*(u,v) in the unit square as follows:
% =1 -1
(8.4) b (u,v) = s(F "(u),67(v)).

Conditions (3.4) and (3.5) imply that b*(u,v) is square integrable and
that [b¥(u,v)du = [b¥(u,v)dv = O.

Let us consider a more general situation in which we are given an
arbitrary square integrable function b(u,v) for which [b(u,v)du =

Jo(u,v)dv = 0. We define

(8.5) by,i,g = EIB(Ug 0051000

where Ui]n is the 1P largest of n uniform (0,1) random variables

ul,..., Un’ len

and the U's and V's are independent.

We define the rank statistic Sn(b) as follows:

- g

(-6 Falbd = 0T E Py

Note that if we define a bivariate step function:

]2

is the jEE largest of n uniform (0,1) random variables



~

then

W

R.
n-% g ;bn( [i] 1),

. J
(8.7) Sn(b) =1 n+l ’ n+l

Lemma 8.6 states that Sn(b*), given by (8.5) and (8.6) with b* given
by (8.4), is the LMP rank statistic for testing 6 = O vs 6 > 0 in the
family (H,:0 2 O). We shall show that Sn(b*) is also ALMP and find
an expression for the Pitman ARE of one such statistic with respect to
another by which we will compare them with layer-rank statistics.

For any square integrable functions ~b1 and b2’ defined on the
unit square, we let (as in Section 3) p(bl’bQ) = ffbl(u,v)bE(u,v)dudv.
Recalling the definition of Pn and Qn given on p.14 we have
Lemma 8.2 1If s, defined by (3.3), satisfies (3.4) .,  (3.6) and :.
(3.5) with3= 0> and if b 1is a square integrable function on the unit
square such that [b(u,v)du = [b(u,v)dv = 0, then

(1) L(s (B)|p ) - N(O,103) and (-

~

(2)  J(s (b)|a,) - N(ap(b,b™)4bE3 D742, Ib13).

Proof: To prove (1) we introduce two statistics:

Su(®) = 07 j:lbn(G(Y[j}):n—i‘i ),
and
-3 I
Sne(b) = n jilbn(G(Y[j])’ F(X(j))).
We remark that under P G(Y[j]) = Uj’ j=1,...,n, are independent
uniform (0;1) random variables as are F(Xj) = Vj’ j= 1,...;n and the

-]

[i)

a4
n+l n+1)]

U's and V's are independent. Since Eo[bn(Uj’ E%T)] = EO[bn( =0,

we have by Hajek [ 9] Lemma 2.1,
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2
(8.8) Eo[S,(b) - 5 ;(b)] )

, . |
-1z 3 [i] i yee
T J§ EolPy (Uj v U Cors v R
s l g 2 max bniJ 1 g b2 ‘]%

" j=1 1sisn nE n i=1 n,1,j
s 23/2 [12 g max b2i ]%[ - g g b2 ]%
j=1 1sisn M7 0% 421 j=1 MHLLJ

An examination of the proof of Ha’tjek [ 9] Lemma 6.1 will convince
the reader that bn(u,v) - b(u,v) in q.m. and this implies the uniform

integrability of bn. Thus

1 n n 5 > >
(8.9) 2 il jzl b2 4,5 = ffbn(u,v)dudv —9|b|2 < w
and
(8.10) 1 % max b2, ., = [f b2(u,v)dudv - O,
n® j=1 154sp ©1d 4 W
n
PR Ll n" ("I‘:y-). .'];“.” . i \ “ 1)
since A_ = U {(u,v Azlig v< - J) s ug =2 1(y)-1 b |= max |b_..]|}
noog=1 n nj n»i(J) 3" igisn ™I

is a set whose Lebesgue measure approaches zero as n — . From (8.8),
(8.9) and (8.10) we conclude that EO[Sn(b)-snl(b)]2 -0.

Also

(8.11) Eyls, 1(b)-8 ,(b)]Z

EO{EO( [Snl(b)-SnE(b) ]alx(l) 3eees X(n))}

™Mo

1
n

I

i
Z, BollIog(u, Fhp)-b (u,m(x )12

0

Eo{f[bn(u, —=)-b (u v )]Zdu}

n+l

where Ri is the rank of V1 = F(Xl) among Vlf"" V.. By Hajek [ 9]
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Lemma 2.1 the last term of (8.11) is smaller than

3/2 j 5..1 1 i y1%
2 I[[1§?§n'b“(u’ )i RS =) 1%du

s 2322 [ wax b2(u, do)aul¥ ([/62(u,v)auav)® S o,
1sjsn

Combining this with the previous result, we conclude that

Eo[Sn(b)-Sne(b)]g - 0. Since

L}

-3 I
Sne(b) n jélbn(G(Y[j])’ F(X(j)))

-3 n
o b (6(7), F(x))

J

is a sum of independent and identically distributed random variables,
(1) is proved.

.To prove part (2) we introduce
s (b -% £ b F(X,.,)) = % E b(G(
n3(®) =m0 yp)s PR (5)) =™ 2 b(E(Ey), FXy)).

It is clear that EO[Sn3(b)—Sn2(b))2 - 0. Note that T  defined in
(3.9) is . aSn3(b*); therefore, by Lemma 3.1 part (2) and (3.11), we
may substitute aSn3(b*) for L in Lemma 3.1 part (3).

It is clear that ;E(SnB(b), aSn3(b*)an) is asymptotically normal
with correlation ffb(u,v)b*(u,v)dudv/lblé |b*|2 = p(b,b"). Therefore,
by Lemma 3.1 part (3) with L~ replaced by sn3(b*), ji(sn3(b)|qn) -
N(ap(b,b*)|b|2§b*|2, #b02), and part (1) of this lemma follows from this
combined with Lemma 3.1 part (1) and the fact that EO[Sn3(b)-Sn(b)]2 -0,

We conclude from Lemma (8.2) by arguments similar to those used in
Section 4 that Bn(b*) is ALMP and that the Pitman ARE of any two
Bhuchongkul statistics Sn(bl) and Sn(b2)’ say, is

p(by,b%)

(8.12) e(Sn(bl), Sn(bg)) = o6 5%)



where b* is defined by (8.4). Thus the ARE of Sn(b) compared to

the layer-rank statistic Tngg) defined in Section 2, is

(8.13) e(s,(b), T,(g)) = XD

where c* is given by (3.1k4).

\4
It is easy to see that c*(u,v) = b¥(u,v) - % fO b*(u,w)dw; thus

. 1 _
(8.1k4) [fe(u,v)eX(u,v)dudv = [[[c(u,v) - fv Eﬁszﬂl aw1b®(u,v)dudv.
Also
112 = ff[b*(u,v)]zdudv -2ff [ % b(u,v)dwdvdu
wsv

A
+ ff[; fO b(u,w)dw]®dudv,

and since,

A/
ff[; fO b(u,w)dw]3dudv

of[ [ [ 12 b(u,wl)b(u,w2)dvdwldw2du

v
w1<w2<v
: 1

= off [ e b(U,wl)b(u,wa)dwldwadu
w1<w2 2

- fffb(U,wl)b(u,we)dwldwedu
= 2ff [ % b(u,v)b(u,w)dwdvdu,
w=v

we have

(8.15) ¥, = 1,

1
Combining (8.14) and (8.15) and letting bc(u,v) = c(u,v) - fv Eﬁ%&ﬂl dw
we have

(8.16) p(e,c™) = o(bg,b%).

Since |c|2 < o implies lbc’e <w and ffe(u,v)du = ffe(u,v)dv = O

implies ffbc(u,v)du = ffbc(u,v)dv = 0, the rank statisti.. Sn(bc)

satisfies the conditions of Lemma 8.2. Thus, by (8.16) the ARE of
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&

. . p(b_,b*) *
Sn(bc) with respect to Tncﬁo.ls ETECTE*T =1 for any b", We emphasize
that this is true for any family of bivariate distributions satisfying
(3.3), (3.4), (3.5), and (3.6). 1In other words, the statistics Tn(C)
and Sn(bc) are indistinguishable in terms of Pitman ARE.

Some ALMP layer-rank tests and their equivalent ALMP rank tests

are listed below; pi'j is the mean .of the iEE largest of j normal r.v.

Payer-Rank Test Rank Test
Kendall's T: Spearman's p (Rank Correlation):
1 (g) =032z E - 3 s (b) = n 5’2J>: Rpgp - B)
Normal Scores: Normal Scores:

- n * -
Tnﬁg) =n 1/2J§1ui(j)|J n,j Sn(bc) =n V2 g 2 p‘R[J]|n jln

1 n

g T Ml T TN
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Appendix I 'L_r-Convergence of Certain Functions,

In this section we denote by b(u,v) a square integrable function

whose domain is the unit square and which satisfies
(1.1) [ b(u,v)du = oO.

We make the following definitions:

v
(1.2) b(u,v) = (fo b(u,w)dw) /v,
_ i-1 i -1 j
;1 jz-l E[b(U V] -1 i 3l o0 Bt
_ j-1 =1 ilj’ Otln ’ j - j> n " " mn’ "n
(I.4) bn(u,v) =
0 v < 1
~ n

where U is the P largest of j independent uniform (0,1) random

i] 3
variables, Vj]n is the J-El-} largest of n 1independent uniform (0,1)
random variables (Vl,.. o Vn) and the U's and V's are independent,

Lemma I.1 If b 1is square integrable and satisfies (I.1) and if

B = E[® s 4is 5= B = b
bn’i’j = E[b(Uin iln )], 1=is jsn, then bn(u,v) bn’i’j,
Lﬂgu(i’liév(_i.

h] h] n n

Proof: By Feller [6] p. 163 (10.9), we have for j <1

1 =1
_ b
E 51 oy "Y1 570

s 1
an J-1 a1 -1 n-Q
-— X E[b(U,.,v)]v l-v dv
oy ( l)fo [b( il 4 )] (1-v)

j-1 -
n. ' L j-2 n-j
(j_l)f(ﬁ-j)g {) E[b(Uilj’v)] fv wl ™S (1-w)" " Jawdv
1 1 1 ¥ i-1 iy
(j_Ir)lE(n_j)wo {) v {) E[b(U i| ; V) ]dv wo T (lew) Cdw
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Lemma I.3 (1) If b(u,v) el

= E[B(Ui|j,vj|n)].

For j = 1, since U1|1 = Uy, E[b(Ulll,Vlln] = 0; therefore, the lemma

is proved,

Lemma I.2 If b is continuous a.e. then bn - b a.e. and Fn -b a.e.

i-1 i j-1 i
. - It < : Ik 4
Proof: bn(u,v) E[b(Ui‘j,Vj|n)] where - Su < 3 and — sv<z%

or, equivalently, i = [ju]+l and j = [nv]+l. For fixed (u,v) let
ﬁn(x,y;u,v) denote the joint density of (Uilj’vjln)' It is easy to see
that, for any e > O, Bn(x,y;u,v) aproaches zero uniformly in (x,y) for
|x-u| > €, 1y-v[ > e¢. From this and the integrability of b it follows
that bn(u,v) = ffb(x,y)Bn(x,y;u,v)dxdy - b(u,v).

Note that b is clearly a.e. continuous and that

v

Ii= 4) b(u,w)dw]3dudv

[

JI1B(u,v) | dudv

<

1V,
s fJ 5 {le(u,w)]dw dudv
= [] %n(%)‘b(u,w)ldwdu
s [ %ne(w)dw]% [[/b2(u,w)dwdu] < .

Thus, by Lemma II.l an argument identical to that used for bn implies
that b - a.s. l
n
The reader will recall that we use § , and ’ l'r to denote the
space of nEE integrable functions defined in the unit square and the norm
of the space.

then nbn-b§2 -0, and { (2) if there is

1
V)|e(1+s)dv)115

2,
a &>0 such that [(f]|b(u, du < w, then !Bn;ElQ - 0.

Proof: (1) By Lemma I.2 and the L_-convergence theorem®, it suffices to

*Loéve [15] p. 163.
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show that |bn|2 -—>|b|2. By Fatou's lemma*, lim inf 'bnl2 é.b'a.

On the other hand, using Jensen's inequality, we have,

1 41 3
b = = = £ (E[b(u,,,,v, 2
L 2] i=1( [b( i 3 Jln)])
<1 sl g E[b®(U, .,V )] = §b)3
R R R ij3>"3[a’t T B2 ¢
Since
- 1 v
- [J(B(u,v))3dudv s [f = fO b2 (u,w)dwdudv
LS 1
s ff(%)1+8[f0 lb(u,w)le-"28 aw]**® quav < w,

part (2) follows from Lemma I.1 by an identical argument.

Ll
Remark: It is clear that the condition f[f[b(u,v)|2+esdéﬁl+5du<

o0

can be replaced by a weaker condition:

(1.5) 'IBIQ < w.

*Ibid. p. 125, B.
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Let U Un and V

1’00-,

variables. Suppose Vg = Va s ...s8V it is clear that U_ ,...,
1

3>
2 an Q‘1
are independent uniform (0,1) random variables and are independent of

the V's, Let V_, =V,
Olj Jln

of UOL’”"Ua and let t() be the rank of UOt among Ua,...,Ua.

1 i J j 1

We define the statistics

(1.6) z = n" Zb(U v) - % >I:1 b(U | ),

*
(r.7) E[ann] =

j=1 j=1 J

and, recalling (I.4) and (I.3),

g, .
(-) K
n j+il %l) 1.

Lemma I.4, Under the conditions of Lemma I.3(2), if

Jo(u,v)du = [b(u,v)dv = O, then E(Zn-Zi)z - 0.

Proof: It is clear that EZ = O, thus EZn2 = [/b2(u,v)dudv. Letting
¢ (u v) 23 b,n(u,v)-?zn(u,v) and noting that L«(j) depends only on

Ua seees Ua., we have
1 j

.':Jln—-

n o j , (j) j
El 12_:. G[b( -In): ‘/ (J+1 ’m)]’

From Lemma 1,1 and the fact that Ua =U we obtain

' i?
j (j)IJ

o> (U ), e (), oy
OLJ.’ In’? " a3 1
J L i i
= 3 I, BBy V00 ey )
I N S BSFLYE S B
j jo1 M3+l 0 ntl A j+l 2 n+1

Letting {' be the rank of Uai among Ual,..., Uai,
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y?+++» V, be independent uniform {031} random

U

s j=1,...,n, let Uilj be the it—h largest

i

(04
n

we have, for i < j,



: [ (J)
(1.9) o [B(y, i’Vi|n)’ A ﬁ(_]+1 ’ n+1)]
- L 5 £ EbU Vo )0 a6 (e, 1)
TG Yy e'] 32 in’ " T VTRT 0 T
% I
j ‘ Ve | =2
(J 1) E Eb(U lj’viln)“;: e/ 1° n+1)
. ; .
1 ‘. v(_d J
+ [3 &§=1Eb(ULbIJ iln)][J 1 &_1\-_46 /(E_T ’ EIT)

1 i i i j
- A —_— (; .. — —
3(3-1) iilbn(j"'l ’ Hﬁ)\ : cn)(j+1 ’ n+1)’

1 J
ince = X Eb(U .,V = El/b \') d = 0.
sinc k P ( &'IJ’ Jln) [f (u’ j|n) u]

Inserting (I.9) and (I.8)) into (I.7), we obtain,

Blzz'] = Lz 3 [ (1, 42
nn  n i=1 \.:'—c ) J+1 > +l

i=1

=

ff[(bn(u ,v)-'i;n(u,v) 12dudv - [[[b(u,v)-B(u,v)]3dudv,
by Lemma I.2,.
Finally,

E(z2)2 = JI[b_(u,v)5_(u,v)12dudv - [[[b(u,v)-5(u,v)]Pdudv.

Thus,
*y2
E(z -Z))

- [[{b(u,v)]2dudv - [[[b(u,v)-B(u,v)]2dudv

= 2f[6(u,v)B(u,v)dudv - [[[B(u,v)]Pdudv = O,
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since

JI(B(u,v)1Bdudv = 2ff [ J 25 B{u,w, ) b(u,w,)dw, dw_ dudv
O<vr, <w..<v V 1 2777172
172
. 1
= gff [ (= -1)b(u,w,)b(u,w.)dw.dw.du
O<w < <1 2 1 277717

= eff[% {: b(u,w)dw]b(u,v)dudv

= 2ff B(u,v)b(u,v)dudv. I

Suppose that (xl’Yl)”"’ (xn’Yn) is a sample from a bivariate

population with continuous CDF F(x)G(y), where G has density g.

It is well known that if we set U, = G(Yj), vV, = F(Xj), ij=1,...,n,

j j

then the U's and V's are independent uniform (0,1) random variables,

If s(x,y) is a function satisfying (3.4) and (3.5), then the function

b(u,v)

= s(F—l(v),G_l(u)) satisfies the conditions of Lemma I.l, from

which we obtain the following:

Corollary I.5 Let T  and Tn(gf) be given by (3.9) and (3.13),

respectively, If s(x,y) satisfies (3.4) and (3.5), then E[Tn-Tn(gf)]a -0,

Corollary I.6 If b 1is square integrable and if [b(u,v)du = [b(u,v)dv =

then {b{, = lb#E'Q..

Let us define Jn(u) by (2.9.1) and cﬁe)(u,v) by (2.4) with c(2)

n;i,]

given by (2.8.2) and L g = 1.

8> 0,

Proof.
that c;(u,v), given by (2.4) with c

ti =
Letting vy

Lemma I.7 TIf there is an a.s. continuous function J such that, for some

| (2)_ .(2)
g spop < ® and N, - J"2+26 - 0, then 'cn -c '2 -0,

where c(e)(u,v) = J(uv) - %fg J(w)dw,

In view of the remarks following (2.7), it suffices to prove

n,i,j " Jn,i’ approaches J(uv) in q.m.

j o] . .
% = l—;—, it is clear from (2.9.1) that cé(u,v): Jn(uvn).
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Thus,
Ic; - J(uv)n2
= [ff(Jn(uvn) - Tq(uv))zdudv]%
s [[I(3(uv ) - Jwv_ ))2dudv ) %+ (3t ) - 3(uv))2]®
= Rnl + Rn2, say.
Now, v
Ry = Ugm b (3 (0)-3(w))%duen)®

1 1

- 1
TR L TAERO R Ol Sl

A

1
_1(J)1+$]AE N i

and, for any € > O,

P
]

o = UGy )-3(uv))2auav]®

A

€ %
[fof(J(uvn)-J(uv))adudv]

1 Va

s 1 2 Jy (3(w)-3(u L))2dudv?

= Roop * Ryops 88y

Since

fIA

fe [52(uv_)dudv]® fe [ 32 (uv) dudv]®
0ol [wo J%(uv_)du v]® + [ o JJ (uv)dudv]

1 1 g
€ S
v I+8dv]25 ¥ [f o 4 Il -

1A

can be made arbitrarily small by selecting € small enough and since

2)%" [f f(J(u)-J(u—))a‘dudvfE z%

’

n22‘ C'

v
and : . 1? — 1 uniformly in vz ¢ >0 it follows from the a.s.

continuity and square integrability of J that Rn22 -0 for any

€ > 0, and the lemma is proved.
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Appendix II Properties of Moment Generating and Related Functions.

Let F Fn be the cdf's of independent random variables

10
Xy>.+.5 X . We denote by fi(h) = Eexp(hxi) = fexp(hx)dFi(x), i=1,...,n,
the moment generating function of Xi. For each h such that

fl(h),..., fn(h) are finite we define zi(h), i=1,...,n, to be

independent random variables such that

exp(hz .
dP(Zi(h) £z) = -f-i—‘(’—h-r)- dP(X; = z), i=1,...,n.

n
Lemma II.1 If S (h) = £ Z,(h), then
— n i=1 1

n n (-] ) :
P[Z X, 2x] = r[fi(h) [ exp(-hz)dp(s (h) s z).
i=1 1 i:l
0 ' n
Proof: J exp(-hz)dP(S (h) sz) = [ ... [ = exp(-hz, )ap(z,(h) s z,)
—— X n i i i
: zl+...+zn;x i=1

T L1, .. 1 Tree ).
1y = ... dP(X, s )
i=1 fiﬁ{-7 zZ.+. i zi

..+2 2% i=
1 n

We next prove various properties of the functions wc My ,pglz i=2,3,
n n n
and m_ , n=0,1,..., defined by (6.2)-(6.5),

n

Lemma II.2 If I(sg = [h:mc-(h) —émc(h)], then (i) if I(SQ is non-
n

empty it is an interval containing the origin,

ad o p(l)—a pgl), i=12,3, uniformly in h

(1) v, =¥, . ¢

n n
on any compact subset, A, of I(g).
{
(iii) wc’ Koo and uéi), i = 1,2, are uniformly bounded in h on A,

Proof: From Jensen's inequality and (2.4) we obtain

(1I1.1) fexp(hqn(u,v))du z 1.

Suppose h, ¢ I{%), h) 2 0, and let O s h = h), then, again from

Jensen's inequality, we have for any mz O, i = 0,...,3,
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[ ] [|cn(u,v)|iexp(hcn(u,v))/fexp(hcn(w,v))dw]dudv

{|cn|zm}
i
s I [Icn(u,v)|3exp(hcn(u,v))/fexp(hcn(w,v))dw]dudv 3
{lcnjém}
1
s [ J |cn(u,v)|3exp(hcn(u,v))dudv 3
[Icnlém]
i
s I [ |e (u,v)|3dudv + [ [ Je (u,v)|3exp(h1(u,v)dudv
{lcnlam} n c, zm) n

which, by (2.2), (6.6) and the assumption that h, e I(G), implies® that
wc s Ko uél), i=2,3 and m: are uniformly integrable uniformly in
n n n

n
h, 0= hs hl’ a similar result being true if h

implies® (i), (ii) and (iii). §

1 £ 0. Clearly, this
In order to prove the monotonicity of uc(h) we require the following
result:
Lemma II{3 Let X :be a real random variable with distribution- F. and
finite mean, u. If g(x) is a non-decreasing, a.e. Finite function on
the lie, theh o(X;8(X))'2/0} ()
This result is so obvious that one)must:classify it as statistical
folklore; nevertﬁelé;g, tﬁe(o;iﬁfpgdbf;o% whicﬂ ;e'éré aware is the

following, which is due to Sobel [22]:

Proof: Let EX = u; < u <o and g non-decreasing imply that |g(p)| < =.

a(X,g(X))

I (x-0)g(x)8F (x)

") <)
= [ (xw)g(x)dF(x) + [ (x-u)g(x)dF(x)

"
(@
L

v

U B
gu) L () dF(x) + g() [ (x)ar(x)

We are now ready to prove the strict monotonicity of p(h).

*See Lodve {is],.p;?163} L_-convergence Theorem.
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Lemma IT.k p (h) is strictly increasing inside Ig%) provided ¢

; *
is non-degenerate’.

Proof: We show that pc(h) has a positive derivation inside I(g).

Suppose h, >0, h; e IQ&), for tixed h and any 8 such that

0= h< htd = hl’ if we define, for each v, the density function
f(u;v) = exp(hc(u,v)/fexp(hc(w,v))dw, then, suppressing the arguments

of ¢, we have

(no(b+8) - p_(h))/8

fehcdu (ecs-l)
= * [ e 22— F(u,v)du
feih+6$cdu S
ecB 1
- Jef(u,v)du [ 8‘ f(u,v)du| av.

From the inequality Iex-1| s |x|(ex+1) we have, for r = 0,1,
¢’ (exp(ed)-1)/6£(u,v) |c|2(exp(c(h+d)) + exp(hc)) = 2|c|2(l+exp(h1c)).

Thus, by the dominated convergence theorem, if r = 1 or 2,

r+1

fe¥(u,v) (exp(8e(u,v))-1)/8£(u;v)du - fe¢™ *(u,v)E(u;v)du, as & -0,

and, similarly, [exp((h+8)c(u,v))du = fexp(hc(u,v))du, as & — 0.
Therefore, the integrand in (II.2) converges to
[e2(u,v)f(u;v)du - (fe(u,v)E(u;v)du)®, as & —=0.

Applying (II.1), the inequality |e*-1] = |x|(e*+1), and Lemma II.3
with X = ¢(U,v) where, for each fixed v, U is a random variable with
density f£(u;v), we conclude that the integrand in (II.1) is bounded by
2f|c(u,v)|2(exp((h+8)c{u,v)) + exp(hc(u,v)))du
s hf|c(u,v)|2(1+exp(h1c(u,v)))du < o, Therefore, by the dominated conver-
gence theorem,

(

AY

¥
c(u,v) is degenerate if it is a function of v only.
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(d/dn)u(h) = [[[eB(u,v)£(u;v)du - (fe(u,v)E(u;v)du)2]dv, v

which is positive for non-degenerate c,
Lemma II.5

f%n(fexp(hcn(u,v))du)dv - [tn(fexp(hc(u,v))du)dv,

uniformly on compact subsefs of I(g?.

Proof: Suppose O >h,, h, e I¥. We show that %n(fexp(hcn(u,v))du)
is uniférmly integrable uniformly in h, for 0 5 h s h). Recall (II.1)
and let

(11.3) An(M) = {v:fexp(hcn(u,v))du 2z m)

0 s i &n(fexp(hcn(u,v))du)dv

s [ dv{en(f J exp(hcn(u,v))dudv) - tn(f dv)}
An(m) An(m) An(m)
Since exp(hcn) s 1+exp(h1cn) and An(uo C {v:fexp(hlcn(u,v))du z m-1}),
if follows from the uniform integrability of fexp(hlcn(u,v))du that

[ exp(hcn(u,v))dudv
A _(m)

n
can be made arbitrarily small uniformly in h and n by selecting m

large enough. Therefore, the last term in (II.3) is bounded by

"
J

- dv in(f dv),
An(m) An(m)

from which we obtain the desired result, |

Suppose b(u,v) 1is a function defined and square integrable on
the unit square such that [b(u,v)du = O and that c (u,v) = bn(u,v)JBn(u,v),
where b and Bn are defined in (I.3) and (I.4). Letting (- ) -

c(u,v) = b(u,v)-b(u,v), b being defined by (I.2), we have:

- Th -
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Lemma II.6 If A= {h:ff]c(u,v)l3exp(h|c(u,v)l)dudv <}, then ACI(g).

Proof: I(¢) is the set on which

(11.4) If]e_(u,v)] 3exp(he_(u,v))dudv — [f|e(u,v)| dexp(he(u,v))dudv.
Since by Lemma Ii‘.l(‘.cn(u,‘v)k.% c(u,v) a.s., if

(11.5) I] Je_(u,v)|3exp(hle_(u,v)|)dudv = [f]e(u,v)| Jexp(hle(u,v)|)dudy,

then [cn|3exp(h|cn|) is uniformly integrable*. But this clearly implies
the uniform integrability of |cn|3eXp(hcn) which, in turn, inplies (II.L).
Thus it is sufficient to show that (II.5) is true for every h in A.

By Fatou's lemma we have for any h,
lim inf fflcn(u,v)|3exp(h|cn(u,v)|)dudv
z fflc(u,v)l3exp(h|c(u,v)|dudv.

On the other hand, applying Lemma I.1,

(11.6) fflcn(u,v)l3exp(h|cn(u,v)|)dudv
1 o1
“ 3 B3 el eetleg)
-1zl |ECe(U,) ..V, ) 1|3 exp(nlEle(u, .,V 1])
=n 53 5 il 3|n P il3*"j|n
s 1 £ L z E|c(U, . )|3exp(hE|c(U 0.
noy=1J i-1 il 3’ Jln Jln
1 n 1 3
s = = = I E[|e(u, .
nogo1d i [e€ i3’ Jln)I exP(h":(UiIJ”VjIn”)]’

*Lodve {15] p. 163 C.
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by Lemma IT.3 (with X = |c(Ui|j;Vj|n)|3 and g(x) = exp(hx)). Since
the last term of (II.6) equals fflc(u,v)]3 exp(h|c(u,v)]|)dudv, the

lemma is proved,
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(111.1)

(111.2)

. . - -%
Appendix III Probability Limit of n T‘(C).

Let X, X5s0ees X0 ‘%J (Xj’Yj)’ j=1,...,n, be a sample from

and let Hn(x,y) be the empirical cdf corresponding to the sample;
i.e., an(x,y) is the number of sample points to the left of and below
the point (x,y). Fn(x) = Hn(x,m) is the empirical cdf of the X-coordinate

of the sample points. Clearly Hn(x is the (3Eé quadrant) layer-rank

wj)

of Xj and Fn(xj) is the rank of Xj among X , Xn; thus, recalling

1,0--
the definition of. %(j) (p. 5), we have:

?

- - "1 n a j) j
Q) = 0 2 ent . wh)
4 n nH _(X.,Y,) nF (X.)
= n 1 Z ¢ n 3_J n_J

_,1 n'oF_(X,)+1 ’ n+l
j=1 n'"j

n nfFy
= ffdn(nFn+1 > n+l )dHn ’

Let Pe denote the probability measure induced by an infinite
sequence of observations from HG' It seems evident, in view of the
Glivenko-Cantelli Lemma, that the only reasonable P

of n'%T (c) is:
n'm

e-probability limit

He
nc(e) = ffc('F"Q' sFe)dHea

where Fe(x) = He(x,m); nevertheless, we were not able to find very
satisfactory sufficient conditions that this be the case and are forced

to offer the following somewhat impractical result:

Lemma III.1 1If

nF nH nF

I‘H .
(1) [lle (Gt oF_+1 a1 ) - ot 1 * W1 1)1, - o0

in probability as n -,
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L3

nH _(X,) noF (X;) Hg(Xy)
n'\"1 n'"1 =l ! : “
(ii) Eelc(gfgrizj;— vy ) - C(fg(gzy s Fe(x1))| - 0, asn 2w, ~
and( ... "

(iii) 1if the right side of (III.2) is finite, then n'%Tn(g) —>nc(9)

in Re-probability.

Ry Hg(X;:¥5)
Proof: (i) and (ii) imply that n;..%'r;i'(‘”c‘:‘).a— °(_F—(x—)— FG(X )) = o0,
IR ST :1" 6(x Y, ) .
in Pg-probability. Since n _1 (—_frTi_j_ G(Xj)) is the average

of n independent and identically distributed random variables with
finite mean, qc(e), the result follows from the weak law of large numbers. |

- o2, ),
The simplest way to satisfy (i) is to set Chij = c(j+1 s 5 R

however, in several important applicationms, in particular Kendall's r-

statistic, we have a sequence C: such that suplcn(u,v)l sm<ow for
n,v

all n and cn(u,v) - c(u,v) uniformly in u and v on any set of the

form v 2 v > 0. In this case, for any v > 0,

Hleylary » 23 ) - (a2 » mep ) am
°n oF _+1 ° n+l /T oF +1 ° n+l n

£ sup Ic (u,v)-c(u,v)| + m [ dF - mv,, almost surely (Pg).

VZVO { O]

Consequently, condition (i) of Lemma (III.1) holds.
Because of the boundedness of ¢, (iii) holds, and we now show that
if ¢ 1is continuous on the unit square, then (ii) holds. Let Hn-l

denote the empirical cdf of the sample

X X , then an(Xl,Yl) = (n-1)un_1(x1,Yl) + 1,

“2,v¢o,“n

Since sule 1(x,y)-H ,y)l =0 almost surely (Pe) and c¢ 1is uniformly
X,y

"
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o

ol (X),Yy)  oF (X)) Ho(X)¥y)
continuous, it follows that c(nFn(}-(p+1 s =7 -c —TZKRIT—— , Fe(x1))
converges to zero on any set of the form {F(xl) 2 vo], vy > O.

Therefore (ii) holds. To summarize, we have:

Corollary (I11.2) If sup v|cn(u,v)|4§ m<ow, n=0,1,..., and
I

c —¢ uniformly on any set of the form (v 2 VO], Yo

n—%’rn(ﬁ) - nc(e), given by (III.2), in Pg-probability.

- 79 -

> 0, then



[1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

References.

Bahadur, R. R, (1960), "Simultaneous comparison of the optimum

and sign tests of a normal mean.'" Contributions to Probability

and Statistics; Essays in Honor of Harold Hotélling 79-89,

Stanford University Press.

Barndorff-Nielsen, 0. (1963), "On the behavior of extreme order
statistics," Ann. Math. Statist,, %ﬁ 992-1002.

Bhuchongkul, S. (1964), "A class of nonparametric tests for indepen-
dence in bivariate populations," Ann, Math. Statist,, 35 138-149,
e

Chernoff, H. (1952), "A measure of asymptotic efficiency for tests
of a hypothesis based on the sum of observations," Ann. Math,

Statist., 23 1493-507.
—————— MWW

Feller, W. (1943), "Generalization of a probability limit of Cramér,"
Trans. Amer. Math. Soc.,g& 361-372.

Feller, W. (1957), An Introduction to Probability Theory and its

Applications, Vol. I., John Wiley and Sons.

Foster, F, G. and Stuart, A, (1954), "Distribution-free tests in
time-series based on the breaking of records," J. Roy. Statist.
Soc., B %é 1-13.

Gleser, Leon J. (1964), "On a measure of test efficiency proposed
by R. R, Bahadur," Ann. Math, Statist. 35 1537-154k4,
[

Héjek, J. (1961), "Some extensions of the Wald-Wolfowitz-Noether
theorem,” Ann. Math., Statist., 32 506-593.
mh

[10] Héjek, J. (1962), "Asymptotically nost powerful rank-order tests,"

Ann, Math, Statist,, 33 1124-1147,
i

[11] Hodges, J. L. and Lehmann, E, L, (1956), "The efficiency of some

nonparametric competitors of the t-test,” Ann. Math. Statist.

27 32hk-335.
Nope

[12] Hoeffding, W. (1951), "A combinatorial central limit theorem,"

Ann. Math, Statist.‘gg 558-566.

[13] Klotz, J. (1965), "Alternative efficiencies for signed rank tests,"

Ann., Math, Statist. éﬁ 1759-1766.

- 80 -

‘o



(14]

[15]
(16]

(17]
(18]
[19]

[20]

[e1]

[22]

Lehmann, E, L, (1953), "The power of rank tests," Ann. Math.
Statist., 24 23-43.
T YW

Loéve, M. (1963), Probability Theory (Third Ed.) D. Van Nostrand Co.

Mann, H. B. (1945), "Non-parametric tests against trend," Econometrica,
13 245-259,
Vi

Matthes, T. K. and Truax, D. R, (1965), "Optimal invariant rank tests
for the k-sample problem," Ann., Math. Statist., 36 1207-1222,
W

Parent, E. A. (1965), Sequential Ranking Procedures, Stanford University
Technical Report No. 80.

Sarhan, A. E. and Greenberg, B. G. (1962), Contributions to Order

Statistics, John Wiley and Somns.

Sobel, M. and Barndorff-Nielsen, O, (1966), "On the distribution of
the number of admissible points in a vector random sample,” To

appear in Teor. Veroyatnost. i Primenin.

van Eeden, C. (1963), "The relation between Pitman's asymptotic
relative efficiency of two tests and the correlation coefficient

between their test statistics," Ann. Math. Statist., 34 1442-1451,
e

Sobel, M.,Private communication,

- 81 -



Table ITI Weight Factors_ For Normal.Sg¢ores Layer-Rank Test

* N * ¥* *
" ] anj J Ln’j " ] Ln’j Lnsj__
21 2| 1.12833 2| .s2h52 |1 15] 2| 47797 .60616:};
3| .59534 3| .54k23 64814
3] 2 84628 4| .66375 41 .59263 .69086
3| 1.25942 51 .73490 5| .64591 .73526
6| .81281 6| .69712 .T78429
LI 2 .73237 7] .90223 7] -7509% 83297
3 .96020 8] 1.01043 8| .80896 .88863
41 1.37250 9| 1.15099 9| .87314 .95093
10 | 1.35618 10 | .94612 1.02243
51 2 66794 11 | 1.74508 11 | 1.03191 1.10699
3 .82898 12 |1,13728 1.21126
4| 1.04767 2| .51350 13 | 1.27532 1,34811
5] 1.45370 3| .5796k 1] 1.h774T 1.54856
4| 64243 15 | 1.85164 1.92709
6| 2 .62545 5| .70641
3 75290 6| .79l 16| 2| .48125 L6ls5h
L .9050k 71 .85084 3| .53510 51276
5| 1.11899 81 .93895 L | ,58383 55543
6| 1.52065 9 | 1.04617 51| .63103 .59582
10 | 1.18592 6| .67862 .63556
71 2 .59481 11 | 1.39023 71 .72798 67570
3 . 70206 12 | 1. 77734 8| .7TT714 .TLT707
b .82075 9] .83747 .T60U45
5 .96826 2| .50391 10 | .90088 .80668
61 1.17928 3| .56620 11 | .97326 85674
71 1.57754 L | .o62LY5 12 |1.05857 .91187
5| .68348 13 |1.16352 .97378
8| 2 .57138 6| .Th410 14 {1.30112 1.04494
3 .66509 71 .81060 15 | 1.50265 1.12921
L 76370 8.1 7.88533 |l 16 |1.88372 1.23318
5 87780 91 .97246 1.36969
6| 1.02255 1.07893 || 17| 2| .47516 1.56961
71 1.23152 1.21802 3| .52690 1.94695
81 1.62697 1.42154 4| .57335
1.80699 51 .61793 45988
9| 2 .55271 6| 66247 50659
3 63668 49548 71 .70820 54769
L .72190 .55451 81 .75623 58637
5 .81595 60904 91 .80769 62418
6| ..92729 66297 .86394 66211
71 1.07018 .T1865 .9267h .70093
8| 1.27763 .77801 .99863 .Th129
9| 1.67064 84319 1.08355 .82288
.91693 1.18812 .829k9
10} 2 53739 1.00332 1.32533 87904
3 .61399 1.10918 1.52629 .93376
b .68963 1.24771 1.90606 .99533
5 .77031 1.45051 1.06620
6 .86159 1.83uh41}] 18 L6962 1.15021
7 .97108 .51950 1.25392
8| 1.11266 .56379 1,39013
9( 1.31887 ) 1.58955
10| 1.70972 g 1.96576
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TaBle

v

1. and e_ values for Kendall's T for selected*h-values

1,(6) e, (6) n,(8) e (8)  n(6)  el(6)
.0o1389% .0}, 3472 .05223% .05000 . 1400 4109
.0o2778% .031389 .05471 .05496 L1448 L4553
.055553 .035552 .05716% .06011 JAh73% | L6l
.0,8326% .051248 .05958 .065k4k .1502 L4866
.01109 .002217 .06552 .07952 .1551 .5269
.01385% 053459 .07013 .09151 . 1600 . 5697
.01523 054182 .0T350% .1009 .1615% .5837
.01661% 004973 .07461 L1041 .1651 .6180
.01935 .0,6756 .08004 . 1205 .1700 L6679
.02208% .058805 .08321* .1307 1749 7222
.023ky* 009927 .08528 .1376 .1783*% L7621
.02480 .01112 .09032 .1554 .1801 .7830
.02750% .01368 .09325% .1663 .1852 .82
.03019 .01651 .09516 .1736 .1901 .9195
.03153% .01801 . 1007 .1961 .1950 .9954
.03286% .01958 .1025% .2037 .2000 1,082
.03552 .02290 .1051 .2152 .2041% | 1,160
.03684* .02L6k4 .1102 .2384 .2050 1.179
.03946 .02832 L1126% .2501 .2185% | 1.511
.0LOT76* .03024 .1150 .2619 .2307* | 1.978
.OL206%* .03222 .1202 2894 .2338% | 2.149
. Ol 6l .03634 .1231% .3052 .2361% | 2.295
.OL720% .04069 .1252 L3171 2h02% | 2,638
.OLBLE* .0k29h .1305 . 3486 .2h29% | 2,965
.04973 .Ok52N .1348. . 3760

tsee (6.27) and (6.28) for definitions of 1, and e .
the h-value to give ., values in the range .005-.045 in steps of approxi-

mately .005.

* .-
These values are included because they occur either in Table V or Table VI.
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We have selected




Table V ’
qz-values for the normal likelihood-ratio test* for selected® p-values.

p= tan~(6) P = tan~1(6)
o(1+62)7% | — ,(8) || e(1+02) % | —r- n,(6)
.05229 .0,8326 .051369 .T990 L1473 .5086
.09556 .01523 054587 .8000 —_— .5108
.1000 .0,5025 .8493 .1615 .6388
. 1468 .023hY .01089 .9000 —_— .8304
.1968 .03153 .01976 .9003 .1783 .8320
.2000 .02041 .9100 _— .880L
.2533 .0Lk076 .03317 .9200 —_— .9367
.2998 .ok8L6 .0k708 .9300 —_— 1.001
.3000 .0LT716 .9400 _— 1.075
.3515 .05716 .06593 .9500 — 1.16k4
.4000 .08718 .9587 2041 1.258
1001 .06552 .08723 .9600 — 1.273
4518 .07350 L1142 .9700 S 1.41k
.4993 .08321 .43k .9800 _— 1.614
. 5000 L1438 .9805 .2185 1.626
.5529 .09325 . 1826 .99 —_— 1.959
.6000 2231 .9926 .2307 2.110
.6004 .1025 _.2235 .9948 .2338 2.286
.6499 .1126 .2701 .9950 —_— 2,30L
.6986 L1231 .3348 .9961 .2361 2.436
. 7000 —_— . 3367 .9981 .2402 2,785
. T4k .1349 4123 .9990 2429 3,116

*Séé éf\!aﬂlple."...6'..‘:|.;k.‘i'(':ﬁ‘))j.ﬁ". L

.

ihe,p-values.with entriesﬁih the second column were in fact computed by
means of (6.30) from qT(G).values in a larger version of TablelV and correspond

to nT(G) values in TablelV; the p-values without entries in the second cdlumn

are ,1(.1) .9(.01) .99 and .995.

_ Table VI
nz(e)-values* at selected®™ 6-values for the likelihood ratio test of

6=0 vs. 6 > 0 in the family (Hy = FG(1+6(1-F)(1-G)), 0 s 6 s 1},

0 6/18 n,(0) g_] 0 6/18 n_(6)
.05000 02778 .031389 5435 .03019 .01672
.09996 4005553 .035554 .5916 .03286 .01988
.1000 035559 .6000 .02047
.1499 .008326 051249 .6631 .03684 .0251h
.1997 .01109 052221 . 7000 .02812
.2000 .0,2228 .7103 .03946 .02898
L2409k .01385 053468 .T5T1 .0k206 03310
.2989 .01661 .0o4991 .8000 .03715
.3000 .05,5028 .8035 .Olh6h .03750
.3483 .01935 .026799 .8495 04720 .0kp17
-3975 .02208 .0,8863 .8951 .04973 .Ok71h
1000 058977 9000 RoTyif (0
Lok .02480 .01121 .9hko2 .05223 0521
4951 .02750 .01383 .9848 05471 .06800
. 5000 01411 1.000 .06000

See (6.29) ..~ (', .
**
The O-values with entries in the second column correspond to qT(O)-

values in TablelV; the 6-values without entries in the second column are
.1(.1) 1.0.
- 8 -



Table  VII.

ec(e)-vélﬁes;for the normal-scotres :layera-rank test, : .

. A. Against the normal B. Against the alternative
alternative Zith correlation He - FG(1+9(1-F)(1-G))
p=9(1+62)-
ec(e) = ec(G) =
o %(n (6))2 6 5(n_(0))?
.1 055020 .1 .035067
.2 .02033 .2 .052028
.3 04671 .3 054570
o .08569 A .0,8140
.5 .1399 .5 .01275
.6 2141 .6 .01842
.7 . 3172 T .02517
.8 4696 .8 .03303
-9 .7361 .9 .04203
.91 LTT67 1.0 .06000
.92 L8221
.93 .8735
.94 .9328
.95 1.003
.96 1.009
.97 1.198
.98 1.352
.99 1.615
.995 1.877
Table VIII
Weight function J of the ALMP layer test against the normal alternative*.
.001 .002 .003 .00k .005 .006 .007 .008 .009 .010
.00 |-4.131 -3.955 -3.846 -3.764 -3.698 -3.642 -3.593 -3.550 -3.510 -3.4Th
.00 .01 .02 .03 .0k .05 .06 .07 .08 .09
0} - » -3.47h -3.,202 -3.025 -2.887 -2.771 -2.670 -2.579 -2.496 -2.419
.1 ]-2.346 -2.278 -2.213 -2.151 -2.091 -2.033 -1.977 -1.922 -1.869 -1.817
.2 |-1.766 -1.716 -1.666 -1.618 -1,570 -1.523 -1.476 -1.429 -1.383 -1.338
.3 [-1.292 -1.247 -1.202 -1.157 -1,112 -1.067 -1.023 -.9780 -.9333 -.8885
b ]-.8436 -.7985 -.7533 -.7079 -.6623 -.6164 -,5702 -.5237 -.4769 -.L296
.5 {-.3820 -.3338 -.2851 -.2360 -.1862 -.1359 -.0849 -.0332 ..0193 .0726
6} 1268 ,1818 .2379 .2950 .3532 .k126 4733 .5353 .5988 .6639
1 .7307 .7993  .8698  .9ke5 1,017 1.09% 1.175 1.258  1.344h  1.L43h
.81 1.528 1.626 1.729 1.837 1.952 2.073 =2.202 2.340 2.488 2.649
.9 | 2.8+ 3,017 3.23% 3.478 3.759 4.090 L4.b96 5.019 5.757 7.023
.000 .002 .00k .006 .008 .010 .012 .01k .016 .018
.97 | 5.019 5,145 5,280 5.425 5,583 5.757 5.949 6.165 6.408 6.690
.000 .001 .002 .003 .004 .005 .006 .007 .008 .009
.99] 7.023  T.217 T.432 7.676 T7.959 8.293 8.702 9.229 9.972 11.231

¥
See Example 5.2.
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