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During the last fifteen years considerable research has been devoted to: 

developing multiple decision procedures for ranking and selection problems. 

These problems are concerned with ranking a subset of the k given populations 

or with selection of certain subsets from the given set of k populations; 

the particular goal of interest being defined in terms of the unknown ordered 

values of the population parameters. The parameter of interest may be the 

mean or the variance or any other explicit or implicit function of the given 

population. These procedures can be studied for their own interest and/or 

they can be regarded as alternatives to (classical) tests of homogeneity 

which are found to be unrealistic in some situations and inadequate for many 

purposes. 

Some of the significant contributions towards developing single-sample 

procedures that deal with the above type of p~oblems are due to Mosteller (1948), 

Paulson (1949, 1952). Bahadur (1950), Bahadur and Robbins (1950), Bahadur and 

Goodman (1952), Bechhofer (1954), Bechhofer and Sobel (1954), Bechhofer, Dunnett 

and Sobel (1954), Gupta (1956), Gupta and Sobel (1957, 1958, 1962), Seal (1955, 

1958), Hall (1959), Lehmann (1961) and Sobel (1963). At present we have a vast 

literature on this ty~e of problems. 

Generally, in ranking and selection problems, populations with large or 

small parameter values are of interest. The decision procedures are usually 

designed to select subsets of fixed or tandom size, such that the selected 

subset includes the t best populations; here the t best populations are 

those with the t largest parameter values {or perhaps those with the t 

smallest parameter values). In this investigation we are concerned with the 

problem of selecting subsets of specified or fixed size, from a given set of 

k populations. We are interested only in single-sample procedures that 

achieve a particular goal of interest. 
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Part I of this investigation consists of three chapters and it deals 

with the selection of subsets of specified sizes, wheres< k. The goal 

of interest, which is called Goal I, ~s the selection of a subset of size 

s which contains at least c of the t best populations. The t best popula­

tions are those with largest values for the-; parameter . :i which ,is of 

interest. Two particular cases of Goal I are of special interest. They 

are -- Goal 1: To select a subset of sizes which includes the t best 

populations, wheres~ t; Goal 2: To select a subset of sizes which 

includes any s of the t best populations, wheres< t. It should be noted 

that all the three goals coincide when c = s = t. Then the counnon goal 

is to select the t best populations without ordering, which has been 

extensively studied in relation to various populations. ~oal 2 has been 

suggested by Sobel (see the footnote in Bechhofer (1954)) in relation to 

the means of normal populations; but no detailed investigation about the 

procedures that achieve this goal is available in the literature. By 

considering the complimentary subset that is not selected, the problem 

in relation to Goal I is related to the corresponding prob- :. . . l.• 

lem where the t best populations are those with smallest parameter values. 

In .chapterrI we., .fformulatetthe.: above,.pDoblem alopgi:11hell!hnes .of 

Bechhofer (1954) and Bechhofer and Sobel (1954) and a preference zone in 

the parameter space is pre-assigned. A single-sample procedure for selecting 

the subset of interest has been proposed. The coDD110n number of observations 

needed from each population for this procedure, so as to guarantee a pre­

assigned probability of achieving the goal, is determined. In the general 

discussion the particular distributions which characterize the populations 

are not specified; we merely assume that the statistics on which the pro­

posed procedure is based are such that their distribution functions form a 

stochastically increasing family, when indexed by the parameter of interest. 
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Using this assumption we determine the common number of observations 

required per population, as a function of the underlying distributions. 

These results are applied to specific populations in Chapter II. 

Chapter III deals with some properties of the single-sample procedure 

proposed to achieve the above goal. In particular an unbiased property 

of the procedure with respect to the parameter values has been proved. 

Further, considering the class of impartial decision rules along the lines 

of Bahadur (1950), it has been shown that the proposed procedure is uni­

formly best in the class of impartial decision rules with respect to a 

particular loss function. Thisj~resu~tthas been:··proved, under. the ,assumption 

that.1ther:densitie~ of the ·stat-istios-,, ·on -which: the) decision rules( ,are I.based, 

possess 1:monotone l_ikelihood ratio property. 

Part II of this investigation deals with the problem of selecting a 

subset of fixed size, where the subset size is to be determined as a 

function of the size of the sample taken from each of the k given popula­

tions. The subset of interest is a subset which includes the t best popu­

lations. The solution to this problem is closely related to the solution 

of the problem of selecting a subset of specified size which is treated 

in part I, Here also a preference zone in the parameter space is pre­

assigned. The subset size is chosen so that the probability that it will 

contain the t best populations is not less than a pre-assigned number P* 

for all parameter points in the preference zone; an application for this 

type of problem is given. Proofs of certain monotone properties of the 

sample size needed to achieve Goal I and its particular cases are included 

and these properties are used to solve this problem. 

-3-
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Part I 

A Problem Dealing with the Select_ion of Subsets of 

Specified Size 
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_, Chapter · I 

Formulation of the Problem and the Solution 

1.1 Statement of the problem. 

We have at otir. d,.sposal :·k ~ 2 populations : Ill, ILr ~ )'. · · · · 
,.;:;:~ i iJ1 i,!~ characterized by a scalar measure e. The population JI (8) gen­

erates independent random variables x1, x2, ••• , each X having the same 

distribution function P(X ~ x) = F(xf6) say, and a set of x's which have 

been generated by II is called a sample from the population. That is, the 

k given populations JI1, IT2, ••• , Ilk are such that IT i is characterized 

by the distribution function F(xlBi)' i = 1,2, ••• ,k. We assume that the 

functional form of Fis known. We also assume that ·the values of the real 

valued parameters e1 are unknown; but it is assumed that Bi belong to a 

space e , where e is a finite or infinite interval. Let 

9[l] ~ 8[ 2] ~ ••• ~ e[k] be the ordered 8i. We assume that it is not 

known which population is associated with e[i]' i a 1,2, ••• ,k. 

Let c, sand t be integers such that max(l,s+t+l-k) ~ c ~ min(s,t); 

this implies that max(s,t) < k-1. From the given set of k populations, 

the experimenter is interested in the goal of selecting a subset of fixed 

sizes which should contain a certain subset of the t "best" populations. 

The t best populations are those t, whose parameter values are (say) the 

largest. Here we consider the following goal. 

Goal I. To select a subset of sizes which contains at least c of the 
t best populations. 

The problem is to devise a procedure with small fixed sample size which 

guarantees a pre-assigned probability of achieving the experimenter's goal. 

It should be noted (by considering the complimentary subset which is 

not selected) that the above problem in relation to Goal I is logically 

equivalent to the same problem in relation to the goal of selecting a subset 

of size (k-s) which includes at least (k-t)-(s-c) of the (k-t) populations 

whose parameter values are the smallest. In other words the solutions 

-s-
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(1.2.2) 

to 

c, 

the above problem in relation to Goal 1, for all admissible values of 

sand t (with fixed k) will provide solutions to the same problem 

in relation to Goal II - to select a subset of size s which conta,ins at 

least c of those t populations whose parameter values are the smallest. 

It should also be noted that Goal I reduces to the goal of selecting 

the t best populations (in an unordered manner) when c=s=t. We formulate 

the problem along the lines of Bechhofer (1954) and Bechhofer and Sobel 

(1954). 

1.2 Formulation of the problem. 
-t> 

Let 9 denote the vector of ordered 9-values viz., (8[l]' 8[ 2]' ••• ,0[k]) 

and let Q stand for the parameter space, which is the set of all admissible 
-t> 

vectors a. Further let d(x,y) be a continuous non-negative real-valued 

function defined for x ~y where x and y are both real, such that d(x,y)=O 

if and only if x=y. Further for fixed y, it is a strictly increasing 

function of x and for fixed x, it is a strictly decreasing function of y. 

To avoid trivialities, we also assume that d(x,y) can take on indefinitely 

large values. We shall call such a function a distance measure. Let d* 

be a specified positive number. The parameter space O is partitioned into 

a "preference zone" O(d*) defined by 

and its complement il(d*), the "indifference zone." The choice of the dis­

tance measure depends on the class of distribution functions 

':J-= (F(•IB),8 e(8)) under considera~ion in a specific example. 

In addition to specifying d*, the experimenter also specifies another 

positive number P* where P* < 1. Without loss of generality we can assume 

that P* > P(c,k,s,t) (see the remark below), where 

P(c,k,s,t) = 

-6-
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For all points 8 in the preference zone the definition of a correct 

selection (CS) is the obvious one, namely that the selected set includes 

any subset, consisting of at least c of the t best populations (i.e., 

those populations with the parameters B[k-t+l]' B[k-t+2], •••, B[k])• 

Any natural generalization of this definition of a CS in the indifference 

zone will suffice but, since we are concerned with a CS only in the pre­

ference zone, we shall not specify any particular definition of a CS in 

the indifference zone. 

After specifying d* and P*, the experimenter desires to have a fixed 

sample size procedure for which the probability of a CS satisfies the 

condition 

(1.2.3) P(csl6) ~ P* for all 9 E O(d*) • 

Remark 1.2 

If P* is smaller than the bound (l.2.2), we can satisfy the requirement 

(1.2.3) by a random selection of the subset without taking any observations, 

since the bound P(c,k,s,t) is the probability of a CS under a random selection 

of the subset. Thus to make the problem non-trivial we have set the bound 

on P*• Clearly we need c ~ 1 to have a non-trivial problem. It should also 

be noted that if c = s+t-k then P(c,k,s;t) = 1 by (l.2.2) and hence for any 

P* the requirement is again satisfied by a random selection of the subset 

without taking any observations. Hence to make the problem non-trivial we 

consider only those values of c, sand t for which c ~ s+t-k+l; that is, 

only those values for which P(c,k,s,t) < 1. 

1.3 Proposed procedure R
8

• 

Given independent random variables {Xij), j • 1,2, ••• ,n; i ~ 1,2, ••• ,k 

from the k populations Ili, let Ti• T(Xi1, ••• ,Xin), i = 1,2, ••• ,k,be 

independent random variables having density functions. Here n is some fixed 

positive integer. Let the distribution function of T1 be denoted by 

- -7-
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Gn(·f~\)• The choice of the function Twill depend upon particular cases • 

T1, T2, ••• , Tk will be statistics relevant to the estimation of e1, e
2

, ••• , 

ek respectively. The existence of statistics Ti with the desired properties 

is a basic assumption and this assumption will have to be checked in any par­

ticular case. The proposed procedure is based on these statistics Ti. 

Procedure R: s 

Let T[l] ~ T[ 2] ~ ••• ~ T[k] be the ordered Ti. The set of populations 

corresponding to T[k-s+l]' T[k-s+2], ••• , T[k] is the set to be selected. 

Once the common sample size n is determined, the procedure R is com-a 

pletely defined; our problem will be that of determining this sample size 

so that the probability requirement (1.2.3) is satisfied. It should be noted 

that the required n-value not only depends on the class of distribution 

functions G (•IB), but also on the distance measure used in defining the n 

preference zone of the parameter space. 

As to the existence of the required n-value one can argue heuristically 

as follows: if Tis a consistent estimator of 8, then the largest T-values 

will come from the populations with largest 6-values with a probability that 

tends to one as n tends to infinity. Hence the probability of a CS, under 

the procedure R, will tend to one as n tends to infinity. In some of the 
s 

particular cases considered, it is shown explicitly that this is the case. 

Remark 1.3 

In practice we do encounter situations in which two or more Ti may 

be equal, even when Tis a continuous random variable. In such cases the 

equal T-values should be ranked by using a randomized procedure which 

assigns equal probability to each possible ordering of those values. 

A brief outline of the rest of this chapter can now be given: After 

defining a stochastically increasing family of distribution functions, 

we give some known properties of such a family. We prove a new ~esult 

concerning such a family, which is used to prove a theorem on the monotone 

-a-
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(1.4.1) 
I. 

(l.4.2) 

(1.4.3) 

(1.4.4) .. 

properties of the probability of a CS under the procedure R. In proving 
s 

this theorem we make the assumptions that Ti are absolutely continuous 

random variables and that the family'§= {Gn(·IB) : e € e) of distri­

bution functions is stochastically increasing for all values of n. This 

theorem is then used to determine the required sample size. 

1.4 Stochastically increasing family of distribution functions. 

Here we give the definition of a stochastically increasing family of 

distribution functions and some examples of such families. Later we make 

some remarks concerning the choice of the statistics Ti• Let 0 be an 

interval of the real line. 

Definition: A family of distribution functions g:. = {F{• I 0) = F0 (•) 

on the real line is said to be stochastically increasing (SI) if 

0 € 0) 

0 < e'~F0, (x) ~ F0(x) for all x, with strict inequality holding for 
some x. 

The family is said to be strictly stochastically increasing if 

·. 8 < e' ~Fe• (x) < F8 (x) for all x. 

If the distribution functions of the random variables X and x' are 

Fe(•) and F8,(•), respectively, which satisfy (1.4.1) then 

P(X > x) ~ P(X' ~ x) for all x. 

In this case the variable x' is said to be stochastically larger than x. 

A set of necessary and sufficient conditions for (1.4.1) to hold for 

two given distribution functions is given in lemma 1.s.1. 

One of the simplest examples of an' SI fami_ly ".is:· a!ly:;_ lo.cation -parameter 

family, that is, a family F8 (x) such that - m < e < m and 

F8(x) = G(x-8) for all x, 

where G is some distribution function. Another example is any scale parameter 

-9-
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family having the interval (O,a) as the support, where a is allowed 

8 >:i.O.~·-;_,.F6(<J) = .. Q;.: an9: ,.· .. , '.i.:i .. · :: · , .. ' • :tt. ·. 
.. · .... 
l,. .f '• 

F 8 (x) = G ( i ) for all x , . 

where G is some distribution function. A third example is any family of 

distribution functions whose densities possess the monotone likelihood 

ratio property. 

Remarks about the choice of T. 

Whenever a sufficient statistic fore exists, which has fixed dimension­

ality for all n, then the proper choice of Tis some appropriate function 

of the sufficient statistic. The choice of T becomes a problem only when 

such a sufficient statistic~·. does not exist. We are mainly concerned with 

a property of the family of distribution functions ~ • We would like 

to choose the function T such that the induced family ~ is stochastically 

increasing for each value of n. A sufficient condition for this is that 

T possess the monotone likelihood ratio property. 

Special remark. 

There are cases of interest where the distribution function characteriz­

ing Jii involves a nuisance parameter. The results to be proved will also 

apply to such cases, provided the distribution of Ti depends only on Bi 

(not on the nuisance parameter) in addition to the properties mentioned in 

the previous paragraph. For the purpose of simplicity (with slight loss 

of generality) we have assumed that the function F involves a single 

unknown parameter e, but we also give some examples which involve nuisance 

parameters. 

1.5 Some properties of a stochastically increasing family of distribution 

functions. 

We shall need some properties of a stochastically increasing family of 

distribution functions. First we give some known results (lemmas 1.5.1 and 

-10-
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1.5.2) without proof and then we use them to prove a new result (lemma 

1.5.3). 

Lemma 1.5.1 

Let Fa and F
1 

be two cumulative distribution functions on the real 

line such that F1(x) ~ Fa(x) for all x. Then there exists two non-decreasing 

functions g0 and g1, and a random variable V, such that (a) ga(v) ~ g1(v) 

for all real v and (b) the distribution functions: of· 1the, VSt'lables i8o(V) 

and g
1

(v) are F
0 

and F
1

, respectively; the converse is also true. 

The proof is given in Lehmann (1959, P• 73). 

As a consequence of the above lemma we get the result: 

"If Fa and F
1 

are two distribution·· functions onuthe .real: liiuh .such1·thatllt 

F1(x) ~ F0 (x) for all x, then E0t(X) ~ E1t(X) for any non-decreasing 

function t." 

The proof of this result is simple; in fact it is a problem in Lehmann 

(1959, p. 112). This result can be generalized in the following manner. 

Lemma 1.5.2 

. Let F(xl 6) = F6 (x) where e e 9, be an SI family of distribution 

functions on the real line. If Vis any non-decreasing (non-increasing) 

function of x, then E6t(X) is a non-decreasing (non-increasing) function of 

e. 
t Lemma 1.5.3 

Let F(xlB) = F8 (x) where 8 E 0, be an SI family of distribution 

functions on the real line. Let x1, x2, ••• ,~be independent random 

variables with distribution functions F(x11e1), F(x2 le2), ••• , F(~lek)' 

respectively. For any fixed i (i = 1,2, ••• ,k), if t = t(x1,x2, ••• ,~) 

is a non-decreasing (non-increasing) function of xi when all xj for 

j ~ i are held fixed, then Et(X1,x2, ••• ,~) is a non-decreasing (non-

T 
After obtaining this lemma, I learned that Alam and Rizvi (1965) have 

independently derived a similar lemma. 

-11-
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increasing) function of e1 • 

Proof: 

k 

(1.5.1) E't(X1 ,x2, ... •Xie> = f'v IT dF(x1 I El 1) J~ i=l 

(1.5.2) 

k 

= f [ jtdF(x1161) l jU/F(xjl9j). 

j/ri 

Since tis a non-decreasing (non-increasing) function of x1 when all xj 

for j ~ i are held fixed, from the lemma 1.5.2. it follows that 

is a non-decreasing (non-increasing) function of ei. Since this holds for 

each value (x1,x2, ••• ,xi_1,x1+1, ••• ,1ic), the right hand member of (1.5.1) 

and hence Et is a non-decreasing (non-increasing) function of ei. Since 

this holds for each fixed i, the lemma follows. 

This lemma is used in proving a theorem, dealing with some monotone 

properties of the propabilfty of· a CS·,:·.: in the next section. 

1.6 Probability of a correct selection and its infimum. 

In this section we determine the infimum of the probability of a 

correct selection for Goal I when the procedure R is used. Using this 
s 

infimum we shall determine (in the next section) the required common 

sample size. 

Let Yi be the statistic based on the sample from the population with 

the parameter e[i]' i = 1,2, ••• ,k. That is, the set (Y1, Y2, ••• , Yk) is 

same as the set (Tj
1

, Tj
2

, ••• , Tjk) where (j1, j 2, ••• , jk) is some per­

mutation of (1,2, ••• ,k). Our procedure R is based on the statistics 
s 

Tj and hence it is based on the statistics Yi. We make the following 

assumptions. 

Assumption 1.6.1: ·The statistics Yi(i m 1,2, ••• ,k) are absolutely continuous 

-12-



random variables. 

Assumption 1.6.2: The family of distribution functions'§= {Gn(·f9) 

is; an SI family for each positive integer n. 

First we shall prove the following 

Lemma 1.6.1 

e € 81 

{CS)= {c
th 

largest of (Yk-t+l' Yk-t+2 ' ••• , Yk) > (s-c+l)~ largest of 

(Yl' Y2, •••, yk-t)). 

Proof: 

{cs)~ {among the s largest of (Y1, Y2, ••• , Yk) there are at least c 

of (Yk-t+l' yk-t+2' •••, Yk)) 

min(s, t) 

= u (among the s largest of (Y1, Y2, ••• , Yk) there are 

exactly j of (Yk-t+l' Yk-t+2, •••, Yk)) 

:::: 

j=c 

{at most (s-~) of (Y1 , Y2, ••• , Yk-t) are greater than the 

~
th 

largest of (Yk-t+l' Yk-t+2 ' ••• , Yk)} 

{at least (k-t-s+¢) of (Y1, Y2, ••• , Yk-t) are less than 

the c
th 

largest of (Yk-t+l' Yk-t+2, ••• , Yk)) 

,_ 
( . .t.' 

' ; ; ~: I • 

j i 'l"' ~ i: ')J ,. -~-•• 
.t 

.. ·: .. 
.. 
... , I,. 

th > st = {c- ~argest of (Yk-t+l' Yk-t+2, ••• , Yk) (s-c+l)- largest 

of (Yl, Y2, •••, yk-t)). . 

This completes the proof of the lemma. 

From the lemma, it follows that the probability of a correct selection 
... 

at the parameter point 9 is given by 

I-+ th , st 
(1.6.1) P(CS 9) = P[c-- largest of (Yk-t+l' Yk-t+l' ••• , Yk), (s-c+l)- largest of 

(Yl, Y2, ••• , yk-t)], 

-13-
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where Y
1

, ••• , Yk is a .. set,·of: irtdependen,t.;: random variables such that the 
Iii 

distribution function of Yi is Gu(·IO[i])' i = 1,2, ••• ,k. 

We shall now prove a theorem giving some monotone properties of 

P(csfB), which is a function of the ordered a-values. 

Theorem 1.6 

Under the assumptions 1.6.1 and 1.6.2, the P(csfB) is a non-increasing 

function of e[a] (a= 1,2, ••• ,k-t) and a no~-decreasing function of a[~] 

(~ = k-t+l, k-t+2, ••• , k). 

Proof: 

By (1.6.1) the set of points in Rk where a CS occurs is the set 

((y1, y
2

, ••• , yk) : u < v) where u and v are, respectively, the (s-c+l)!! 

th 
largest of (y1, y2, ••• , yk-t) and the c- largest of (yk-t+l' yk-t+2' ••• , 

yk). If Vis the indicator function of this set, then 

... 
(1.6.2) P(cslB) = EV(Yl, Y2, ••• , Yk). 

It is easy to see that u is a non-decreasing function of Ya(a = 1,2, ••• , 

k-t) when all y1 ·£or i ~ a are held fixed !and also that vis a non-decreasing 

function of y~ (~ = k-t+l, k-t+2, ••• , k) when all ym form~~ are held 

fixed. Hence tis a non-increasing function of Ya (a= 1,2, ••• ,k-t) when 

all other y's are held fixed and it is a non-decreasing function of y~ 

(~ = k-t+l, k-t+2, ••• , k) when all other y's are held fixed. By applying 

the lemma 1.5.3 to the function V we obtain the desired result. 

This theorem represents a valuable tool in obtaining the infimum of 

P(cslB). It forms one of the key results of this investigation. 

Remark 1.6 

When the assumption 1.6.1 is not satisfied, we transform the 

statistics of discrete type into statistics of continuous type. Section 

2.8 deals with such a transformation. 

From the theorem it follows that for any subset co of the parameter a.pace -0\\ 
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' . 
' • wh•t•eh has i.:nc cc:i:uc i.:urc o[ an ordered subset .. of a cartesian product of k 

iclcmtical scta 0· 
(1. 6.3) inf P(csle') = inf P(csle') 

e e CJ.) ee (J.)(9,00) 

where W(~,90) is that set of points 0 € W, for which 

(1.6.4) 9[l] = 0( 2) = ••• = 0[k-t) = 00 (say), e[k-t+l] = e[k-t+2] = .•. = e[k] = e (say). 

(1. 6. 5) 

Here 0 and 9
0 

are arbitrary values such that 9 ~ 0
0 

and both belong to 9. 
A configuration of the parameters e1, 02, ••• , 0k for which (1.6.4) holds 

is, sometimes, called a generalized least favorable (GLF) configuration. 

The P(csl'e) for the GLF configuration (1.6.4) is given by 

00 00 

P(9,90) = J U(xl90)dV(xl9) ,. J [l-V(xl9)] du (xl90) 

-oo -oo 

t 
st where U(• 0

0
) is the c.d.f. of the (s-c+l)- largest of (k-t) independent 

random variables, each having the c.d.f. Gn(·f9
0

) and V(•fB) is the c.d.f. 

th I 

of the c- largest oft independent random variables, each having the 

c.d.f. G (•10). That is n 

s-c 

(1.6.6) U(xl9
0

) = I ( k~t) G~-t-a(xl9
0

)[1-Gn(xl9
0
)]a = l[Gn(xl9

0
); c' ,s-c+l] 

a=O 

(1.6. 7) 

and 

where 

t-c 

V(xl 9) = I ( ~) G~(xl 9)(1-Gn (xi 9)] t-a = l[Gn (xi 9); t-c+l,c], 

a=O 

0 

Since Gn(xlB0) is a non-increasing function of e
0 

for each x, from 

(1.6.6) it follows that U(xl90) is a non-increasing function of 9
0 

for 

-15-



. . 
' each x. Thus P(9,90) is a non-increasing function of 0

0 
for fixed 9. 

Infimum of P(CslB) over the entire parameter space n 

From (1.6.3) and (1.6.5) we have 

(1.6. 9) 

Since P(9,80) is a non-increasing function of 90 for fixed 9 we have 

(1.6.10) -:tin£ P(CSIB) = inf P(9,9) 
tJ Ell 8 E 9 

co 

= dnf j I[G (xi 8); c', s-c+l]dI[G (xi 9); t-c+l, c] 
e ee n n 

-co 

1 

=] I (c 8 ,s-c+l)dI (t-c+l,c) = J(c,k,s,t) (say). 
y y 

0 

Lemma 1.6.2 

J(c,k,s,t) = P(c,k,s,t), where P(c,k,s,t) is defined by (l.2.2). 

Proof: 

By expressing I(y;cg,s-c+l) as a finite series, we have 

(1.6.11) J(c,k,s,t) 

1 
t! ( k-t ) J k-s+j s-j-1 

(t-c) ! (c-1) ! s-c-j Y (l-y) dy 
0 

__ ..,t_! __ • P5•t)! I • 

(t-c) ! (c-1) ! (s-i). (k-t-s+i). 
(k-s-c+i)!~s+c-i-1)! 

k. 
i=c 
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,; . .. 
Let X denote the number of red balls in a random sample of sizes chosen, 

without replacement, from an urn containing k balls of which tare red. 

Also let Y denote the number of balls needed to be drawn without replace­

ment from the above urn so as to include exactly c red balls in the sample. 

Now it is easy to see that 

(1.6.12) P(c,k,s,t) = P(X ~ c) = P(Y ~ s) 

t-c+l 
• k-i+l 

i=c 

= I C!=~ ) c ::! ) I c : > 
i=c 

The lemma follows from (1.6.11) and (1.6.12). 

(1.6.13) 

Using the lemma, from (1.6.10) we obtain 

-:tin£ P(CSf0) = P(c,k,s,t). 
f:i E Q 

Infimum of P(csl0) over the preference zo~e il(d*) ·[See (1.2.l)l 

From (1.6.3) and (1.6.5), for any distance measured we have 

(1.6.14) inf P (CS I 0) = 
6 E il(d*) 

From the monotone properties of the distance measured (see section 1.2) 

and of the function P(B,8
O
), it follows that for fixed e 

(1.6.15)_ -, 

where e' is that function of e determined by d(B,0') = d*• Hence 

(1.6.16) inf P(cslB) = inf Q(B,n). 
'ee '2(d*) ee (3) 
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Using (1.6.6) and (1.6.7) in the first expression for P(B,B') (see 1.6.5) 

we obtain 

(1.6.17) Q(B,n) 

00 

=f I[G (xfB'); c',s-c+l]dI[G (xfB); t-c+l,c]. n n 
-oo 

Using the second expression for P(B,6°) .. in·.{l:.:Eb·.15) we obtain 

(1.6. 18) Q ce, n) 

t-c oo 

= (s-£~!~~Ll) ! I (~)! G~(xl 0)(1-Gn (xi 0)] t-aG: '-l (xi 0' )[1-Gn (xi 0' )] 8-cdGn (xi 0') 

CX=O -oo 

00 

= r{l-I[G (xlB); t-c+l,c])dI[G (xfB'); c',s-c+l]. 
, n n 
-oo 

The infimum of Q(B,n) over admissible values of e is not easy to 

obtain in general. In each particular case we need special analysis to 

obtain this infimum. But when 9 happens to be either a location parameter 

or a scale parameter for the family of distribution functions§ ., this 

infimum can be obtained "automatically," i.e., without any further analysis 

by adopting a suitable definition of the distance measure. In each of the 

other particular cases considered in chapter II we determine this infimum 

explicitly. 

1.7 Determination of the required sample size. 

The required sample size is the smallest value of n for which 

, .. · .. 
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. 
• (i.7.1): ·· iaf P(csre),= inf Q(&,n); > P*,·!_ 

~ ~ Fen ( d*) e € 9 : -

where Q(&,n) is given by (l.6.1:7) or (1.6.18). Let us denote the infimum 

of Q(8 11 n) by H(n;cil*)·~, If :H:, is a non-decreasing function of n 0 then the 

required sample size is the smallest integer not less than the solution of 

the equation 

In such a case the required sample size is unique. Further if the limit 

of H(n), as n ... ~, is one then a solution for (1.7.2) exists for any 

specified P* < 1. 

Remarks on the need and definit:ioo of the preference zone· 

Now we can answer the question - why we restrict our attention to the 

preference zone in writing the probability requirement (1.2.3)? 

If there were no such restriction, then the sample size necessary is 

the smallest integer value of n for which 

We have shown that the infimum of the P(CSfB) over g is P(c,k,s,t), which 

is the lower bound for P* regardless of the sample size. Thus without the 

restriction to the preference zone, we cannot achieve our goal however 

large our sample may be. 

The choice of the preference zone is equivalent to the choice of the 

d-functiono This choice is governed by the behavior of P(B,8°) as a 

function of Ba B[k-t+l] and 8° = B[k-t]• The behavior of P(B,B') depends 

on the form of G (•IB)o It should be noted that in some problems, it is n 

sufficient to define the preference zone through one restriction such as 

d(B[k-t+l]' 0[k-t]) ~ d*11 whereas in other problems it maynbe:desi;t1abie to 

-19-
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. . 
• 

• 

(1.7.6) 

(1.7.8) 

introduce more than one restriction. One such example is the problem 

where e is the mean of a Poisson population (Sobel 1963). 

The particular definition of the distance measure given in any specific 

case enables us to determine explicitly the infimum of P(B,B'). In some 

cases obtaining this infimum may not be a simple matter and may even have 

to be obtained by pumetical methods. One such example is the problem where 

e is the probability of success for a Bernoulli variable; this problem, 

for the case c = s = t = 1, is considered by Sobel and Huyett (1957). 

We shall now see how the equation (l.7.1) simplifies in the cases 

when e is either a location or a scale parameter for the family§ • 

case (i) B is a location parameter for the family'§ 

In this case we have that for all x 

G (xlB) = G (x-B), where G (x) = G (xlo). 
n n n n 

Using (1.6.7) and (1.6.8) in (1.6.6) and transforming the variable of 

integration, we. ·.have 

co 

=.! I[G (x+a); k-t-s+c,s-c+l]dl[G (x); t-c+l,c] 
n n 

-co 

where d = e-e O. 'S'ince . P ti {-d},. depends·: on: e ,:eb:.. only. through -d, ~e. -define 

the:·'.~riat,ur·al'':-.d·ist·an.~e measure for·.:.s,ucfi,;a pioblent as · :·.: 1 • •. 

d(a,b) = a-b. 

It is easy to see that 

... inf p (CS le) C inf pn (d) = Ph ca*) = 1\ (n; d*); (say). 
e eO(d*) ~d*· 

Hence the equation (l.7.1) reduces to 

8i, (n;d*) ~- ;P*, 
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' . • where 8i, ~ .. :, can be expressed in any one of the following equivalent forms. 

00 

=J I[G (x+d*); c' • s-c+l]dI[G (x); t-c+l,c] n n 
-oo 

00 

111f (1-I[G (x-d*); t-c+l,c] )dI[G (x); c 1 ,s-c+l]. n n 
-oo 

Case {ii) 9 is a scale parameter for the family:§ 

In this case we have that for all x 

(1.7.10) 

By transforming the variable of integration we obtain 

00 

(1. 7 .11) P(B,90) = P n (ii1) -= J I[Gn (xd]_); k-t-s+c, s-c+l]dI[Gn (x); t-c+l,c] 

0 

where di= 9/9
0

• Here we define the distance measure as 

(1.7.12) d(a,b) = a/b. 

Now it is easy to see 

inf P(CSIB) = inf p (di) cs p (d*) C Hs(n";d*} .(say). 
BE O(d*) ~~* n 1 h 

Hence the equation (1.7~1)' reduces to 
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. . . 
We can obtain the various (equivalent) expressions for HS·· from those 

j 

of I\._, by changing x+d* to xd*, x-d* to x/d* and changing the lower 

limit of integration from -oo too. That is 

s-c 00 

(l.7.15)H,;(\l;d*)= ~; ( l) 1 \(k-t)JGk-t-ex(xd*)[l-G(xd*)]exGt-c(x)[l-G (x)]c-ldG (x) ~ (t-c. c- • L\ ex n n n n 
ex=O 0 

00 

c J I[Gn(xd*); c' ,s-c+l]di[Gn(x); t-c+l,c] 

0 

(k-t) • t X X C - S•C ' tI-c G Jjoo ~ X G )~t-CX ' 1 = (s-c}!(c'-1)! ex Gn d* 1-Gn d* Gn. (x)[l-Gn(x)] dGn(x) 
ex=O 0 

CIO "'J {1-I[Gn (c1'!.) t-c+l,c]}dl[Gn (x); c', s-c+l]. · 

0 

In the sequel we shall write ~(n), H8(n) for HL(n;d*), H8(n;d*). 

1.8 An approximation to the solution of the equation (1.7.2). 

We now make the following assumptions: 

(i) inf Q(0,n) = Q(0r,n), 
0 E (9 · 

(ii) -1 The inverse function G exists. That is, given any y such that n 

0 < y < 1, there exists a unique x such that G (xlB) = Y• We shall n 

denote such an x-value by G-1 (yf6). n 

Now from (1.6.17) ,· ,, 

(1.8.1) H(n) = inf Q(0,n) = Q(0
1 

,n) 
0e9 

CIO 1 

= J I[Gn(xl,e{); c' ,s-c+l]dl[Gn(xl9
1
); t-c+l,c] a J b(y)dl[y; t-c+l,c], 

-co O 

(1.8.2) j.~(y) = I[a(y,n); c' ,s-c+l] and d(0
1 

,B{) = d*. 

',i.. .. The function 'a(y,~)d.s!;givei\ by··the relation 

,·r J: :· ·i 



'> 

~ 

--

.. . i We can regard H(n) as the expectation ot the function b(Y) of the random 

variable Y which has the beta distribution with parameters t-c+l and c. 

Replacing Y by EY in b(Y), we obtain the approximation 

(1.8.4) H(n;d*) F::::J b(EY) = b(t-c+l) 
t+l . 

Thus an approximation to the solution of (1.7.2) is the solution of 

(l.8.5) ( t-c+l ) 
a t+l ,n = a* 

' 

where a* is determined by the relation 

(1.8.b) I (k-t-s+c,s-c+l) 
a* 

= P*. 

1.9 Particular cases of goal I which are of special interest. 

Two particular cases of goal r,corresponding to c = t whens~ t and 

c = s whens~ t,are of special interest. These are the following goals. 

Goal 1: 

Goal 2: 

Selection of 
wheres~ t. 

Selection of 
populations, 

a subset of sizes which includes the t best populations, 

a subset of sizes which includes any s of the t best 
where s ~ t. 

It should be noted that these two goals coincide whens= t. Then the common goal 

is the selection of the t best populations (without ordering). The solution 

to the (basic) problem in relation to goal 1 is used to obtain a solution to 

another problem, which is considered in part II of this investigation. The 

solutions to the problems, when the above goals are of interest, have been 

mentioned earlier by the author in an abstract (1965). 

We shall now give the final results for these particular cases since 

we will be using them later. 

Goal 1: 

Here the lower bound for p* is (k-t)/(k). Selection of a subset which 
s-t s 

includes the t best populations (those with parameter values e e 
[k-t+l]' [ k-t+2]' 

.•. , e[k]) is a correct selection. Now the sample size needed to achieve this 

goal, when the procedure R is used, is the smallest value of n for which 
s 
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~ P* 

where 

(1.9.2) = 

(1.9.3) 

( 1.9. 5) 

00 

= f {1-I[G {xl~);l,t]) dl[G {xlB');k-s,s-t+l]. 
-00 n n 

Here B'-., as a function of e, is determined by d(Bs,8°) = d*. 

Goal 2: 

In this case the lower bound to P* is (t)/(k). ·s-electing 
s s 

any subset of sizes of the t best populations constitutes a correct 

selection. The sample size necessary is the smaUest value of n for which .. 

where 

inf ~ ( e, n) ~ P* 
Be9) 

00 

= f I[G {xje');k-t,l] dI[G {xlB);t-s+l,s]. 
-00 n n 

Here a,so ·e' is de-t~rmined by the relation d(B,e') = d*. 

It is easy to see that Goal I is less "stringent" than both ' .. : .. 

Goal- 1 _and Goal 2. : • So one expects that,for fixed c,k, t,P* and d*, the 

sample size necessary to achieve Goal I will be smaller than the sample 

size necessary to achieve Goal 1 (if·s ~ :t) or-Goal 2 (ifs~ t). 

We now prove a general result from which this result follows immediately. 

Let n{c,s) denote the sample size necessary to achieve Goal I. 

Theorem 1.9.1 

For fixed k,t,s,P*,d* and for any distance measure 

n{c+l,s) ~ n{c,s), 

provided c+l ~ min {s,t)~ i.e., provided Goal I is meanin3ful with c 

replaced by c + 1. 
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' . . ~ Proo£ 

In order to prove the theorem, it is sufficient to prove that, for 

fixed (but arbitrary) values of n and e, the Q function satisfies the inequality 

(1.9.6) Q(c,s) ~ Q(c+l,s). 

Here Q(c,s) is the function Q(0,n) which is the P(CSIBJ at the GLF 

conf :i.r,uration. 

= 8[k-t] = e';e[k-t+l] = 8[k-t+2J = 

where d(0,0') = d*. 

Let Y1 , Y2 , ••• , Yk-t be independent random variables each with the 

c.d.f. Gn(.10') and Yk-t+l,Yk-t+2 , ••• , Yk be independent random variables 

each with the c.d.f. G (.le). Further let the two sets of variables be 
n 

independent of each other. Then 

i_, (1.9.8) Q(c,s) == Q(0,n) 

= P[c
th 

largest of (Yk-t+1 , ... ,Yk) > (s-c+l).!! largest of (Y1 , ... ,Yk-t~]. 

It is easy to see that 

(1.9.9) [ (c+l)~ largest of (Yk-t+l·, ..•• ,Yk) > (s-c) 
th 

largest of (Y1 , ... ,Yk-t)] 

Hence, from (1.9.9) and (l.9.8), we obtaiu 

Q(c+l,s) ~ Q(c,s). 

This completes the proof of the theorem. 

From (1.9.6), since c ~ t ~ s for Goal 1 and c ~ s ~ t for Goal 2 

we obtain 

( 1.9.10) ~ 1 ( 0 , n) · = Q ( t , s ) ~ Q~ c , s ) when s > t , 
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... 
• 

~ and 

... (f.9.11) when s ~ t. 

Thus from (1.9.10) and (1.9.11), we have the following . 

Corollary 1. 9. 1 

For fixed c,k,t,P*,d* and for any distance measure 

(i) n(c,s) ~ n1(s) 

(ii)n(c,s) ~ n2 (s) 

where ni(s) is the sample size necessary to achieve Goal i (i = 1,2)u .. 

Some more ~esults of this type will be proved in part II of this 

investigation. 

1.10 A sufficient condition for the existence of :th~ .requi.red .. sample size. 

We know that the required common sample size is the smallest value of. 

n for which 

{1.10.1) inf Q(B,nJ: ~ P*, 
Be@ 

(1.10.2) 

(1.10.3) 

where Q(B,n-) is P.(¢s(B) at the GLF configuration given by:(1.9~7):~ 

The solution of the above equation exists provided the left side of (1.10.1) 

tends to 1 as n ~ oo. We shall now find a sufficient condition for the same. 

We make the assumption that the infinrum of Q(B,n) is its value at e
1

• Then 

(1.10.1) will reduce to 

Now 

Q( el ,nf 

= P[c!!! largest of (Yk-t+l' ... , Yk) > (s-c+l)!! largest of (Y1 ;~· •• ,Yk-t)] 

where Y1, ••• ,Yk-t are independent random variables each with the c~d-.f~ 

Gn (·I e
11

) and Yk-t+l' ••• ,Yk are independent random variables each with .. : 
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-

< • . \ the·: :c.d.:f •. :. Gn (•I e1). The two sets of variables are independent sets. 

(1.10.5) 

(1.10.6) 

(1. 10. 7) 

(1.10.8) 

(1.10.9) 

Here e1 is determined by the :relation ~( e
1

, e1_) = d*:L From ( i .10. iJ') \ we have 

= P [ :[U . (Yi < Y.}] ,J J 

It is easy to see that 

i = k-t+l, ••• ,k] 
j = 1,2, ••• ,k-t 

Hence a sufficient condition for the existence of the required sample si;e is 

·.· i:. , ,:X\ :-: .•. I .·~ . 

It may be interesting to find a sufficient condition for (1.10.6) 

to be true. One such condition is given below. Now 

P[Yk < Y1] = P[Z < -a], 

where Z = 
(Yk-Yl) - E(Yk-Yl) 

and a = 
E(Yk-Yl) 

Jvar(Yk-Y 1) 

Since e1 > Bi, we have Gn(·IB1 } ~ Gn(·IBi) :) E(Yk) i;; E(Y1). Thus 

a is non-negative. Now by Chebyschev's inequality we have from (1.10.7), 

Thus 

lim _!_ 
a 2 n~oo 

= P[Z <-a]~ P[lzl > a] ~ ~. 
a 

= o q lim P [Yic < Y 1 l = o. 
n~ 

i.e. :A~suffici~n~ condition for (1.10.6) to be true is 

. 
\ . 
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. ., (1. 10.10) 
. µ2( 01) + µ2( 0i) 

lim 
n-+l00 [i,Ll ( 01) - µ1 ( 01.) ]2 

= 0 

where µ1(0) and µ
2

(0j are the mean and variance of the distribution with 

c. d. f. G ( • I 0) • n 

-28-



... • 

-'· 

w 

2 .1 Summary. 

Chapter II 

Applications to Specific Distribution~ 

In this chapter we consider the problem in relation to various specific 

families of distributions such as Normal, Gamma, Rectangular, Cauchy, and 

Poisson. That is, assuming that the distributions (which characterize the 

populations) belong to a specific fafuily we obtain the equation, whose 

solution gives the required sample size. For the case of normal distribu­

tions two tables giving the values of l(= d*.Jn /u) have been prepared and 

are given at the end. From these values one can obtain the required sample 

size. For the cases in which the statistics (on which the procedure is 

ba~ed) are asymptotically normal, we give an approximation to the infimum 

of PCS. This approximation has been used to obtain an approximation to the 

required sample size. In the first seven sections we consider continuous 

distributions. In the last section we consider the problem in relation 

to Poisson populations. 

2.2 Normal populations with unknown means and common known variance. 

Here we assume that the populations under consideration are normal 

so that 

(2.2.1) 

(x-9)/u 

F(xl9) = ~[(x-9)/cr] = J t(y)dy 

(2.2.2) 

-co 

where 4'(•) and~(•) are respectively, the density and the distribution 

·functions of the standard normal distribution. We further assume that the 

variances are all equal and • .. the common value u2 is known~ We ·base our 

·procedure on sample means, i.e., 

n 

Ti=~ I xij 
j-=l 

(i = 1,2, ••• ,k). 

Now, for each 1· (i = 1,2, ••• ,k) we have 
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s... 
~ @.2.3) Gn(xl0i) = P[Ti ~ x] = W[(x-0i).Jn /a]. 
• 

It is easy to see that e is a pure location parameter for G (•10) and 
n 

we use the distance measure defin~d by 

(2.2.4) d(x,y) = x - Y• 

In this case ~(n), as defined by (1.7.9), reduces to 

00 

(2,2,5) H(A) " 8i_ (n) = J;c~(x+l.); c 1 , s-c+l]dI[~(x); t-c+l, cl 

where 

-00 

1 • J da(u,A); c 1 , s-c+l]dI[u; t-c+l,cl, 

0 

(2.2. 6) -1 - I a(u,1) = f(t (u)+A],A = (d*Jn)/a and c = k-t-s+c. 

(2.2. 7) 

(2.2.8) 

(2.2.9) 

-1 
Here t (•) is the inverse function corresponding to th~ function W(•). 

As n increases l increases, so that H(A) increases with n. Further we have 

1 

~ H(A) • J 11 (c', s-c+l)diu (t-c+l, c) "' 1, 

0 

Thus the required sample size is the smallest integer greater than or 

equal to 

no= (Nr/d*)2, 

where A is the root of the equation 

H(1) = P*• 

Since ~(A)-,. 1 as n-,. oo, the solution of (2.2.9) exists for any P* < 1 

and it is unique since His an increasing function Ao 

An approximation to the solution of the equation (2.2.9). 

An approximation to the solution of the equation (2.2.9) can be 
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. 
> obtained from the results of section 1.8. In this case the approximation 

is 

(2.2.10) -1( ) -1 ~ = ~ a* - ~ 1 
{t-c+l) 
\ t+l 

where a* is given by the equation 

(2.2.11) 

Now we prove a result, which will be used to show that ~l is smaller 

than the solution of the equation (2.2.9) in some cases. 

Lemma 2.2.l 

For each value of~ and for c' = 1, 

(2.2.12) H(>-.) < I[a ( t;:~l ,>-.) c' ,s-c+l]. 

Proof: 

The required result can be viewed as 

(2.2.13) EI[a(U,~); l,s-c+l] < I[a(EU,~); 1,s-c+l], 

where U is a beta random variable with the parameters t-c+l and c. To 

prove (2.2.13), it is sufficient to show that, for fixed but arbitrary 

value of~, b(u) = I[a(u,~); 1,s-c+l] is a strictly concave function of u 

on (0, 1). To show that b{u) is a concave function on .(0, 1), it is sufficient 

d2 b(u) · 
to show that ------- is negative on (0,1). Let us denote a(u,~) by a(u). 

du2 

On differentiating b(u) we obtain 

(2 .2. l!i-) 

and 

(2.2.15) 

db(u) 
du 

= 

= ·( k-t) ! [ l ( ) ] s -c 
( ) 

t -a U s-c . 

(k-t)! 
Xs-c)! 

[c 1-a( u)} s-c 

Further we have 
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• 
and 

(2.2.17) 

Also for 0 < u < 1 we have 0 < a(u) < 1 and this implies that 

(2 .2 .18) (s-c)(l-a( u)} s-c-l ( d:i u)) 
2 

::; O, since s ::'. c. 

Using (2.2.17) and (2.2.18) in (2.2.15), we obtain 

(2.2.19) <o, for O < u < 1. 

This completes the proof of the lemma. 

From the lemma, whenever c' = 1, we have 

(2.2.20) ( ) 
(

t-c+l ) H :>,..1 <. l[a t+l ,:>,..1 ; 1,s-c+l] = P*. 

Since H(:>,..) is an increasing function of:>,.., from (2.2.20) it follows that 

the solution of (2.2.9) is larger than :>,.. 1 , when c' = 1. 

Recently in his thesis, Milton (1965) gave a table of the values of 

H(:>,..). In his notation the equation (2.2.9) becomes 

(2.2.21) P(c;s,k-t,t,:>,..) = P*. 

That table gives the values of P(c;s,k-t,t,:>,..} to 6 decimals, for 

1 ::5 t ::5 k-t ~ 7 and· t = 1, k-t = 8(1)12; s = l(l)[(k-t)/2), c = l(l)t; 

and~= 0(•2)1,1.5,2,3. Using suitable interpolation one can get the 

solution of (2.2.21). 

Sample size determination for goals 1 and 2 

As these two goals ar~ of special interest we give the equations that 

determine the sample sizes necessary to achieve these goals. It may be noted 

that there is a relationship between the sample sizes necessary to achieve 

these two goals. 
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\ ·~- Goal 1 

The sample size necessary to achieve this goal is the smallest integer 

greater than or equal to 

(2.2.22) 

where A is the solution of the equation 

(2.2.23) 

Here H
1

(A) is the value ot H(A) as given by (2.2.5), when c = t. That is 

00 

(2.2.24) a1(>-.) = J I[tl>(x+>-.);k-s,s-t+l] dI[tl>(x);l,t] 

-00 

,. 1CO 

~ J {1-I[ tl>(x->-.); 1, t])dI[ tl>(x) ;k-s ,s-t+l] 

00 

= (k-t)! J t( )[ ( )]k-s-1 s-t() () ( s -t) ! ( k-s-1) ~ t X+A 1-~ x t x cp x dx. 
-00 

In obtaining the last expression from the second one we used the relations 

cp(x) = cp(-x), t(x) = 1 - t(-x) and I (p,q) = 1 - r1 (q,p}. This problem for 
X -X 

the special case k = 3, t = 1 ands= 2 was considered earlier by the author 

and the result was mentioned in an abstract (1964). 

Goal 2 

Here the sample size necessary to achieve this goal is the smallest 

integer greater than or equal to 

(2.2.25) 

where A is the solution of the equation 

(2.2.26) 

Here H2(A) is the value of H(A) (as given by 2.2.5) when c = s. That is 
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00 
; ,, 
~c2. 2. 21> H

2 
(A) m Jrr(fl(x+A) ;k-t, l]dI[lfl(x) ;t-s+l, s] 

-co 00 

0 f! , jtk-t(x+l)(l-4>(x)]s-l4,t-s(x) t(x)dx. 
(s-1). (t-s). 

This goal was suggested by Sobel (see the footnote on page 22 of Bechhofer 

1954) but no details were given. 

Relationship between the sample sizes necessary to achieve the goals 1 and 2. 

Comparing the third expression for u1 and the second expression for 

u
2

, it is easy to see that equivalent expressions for H2 can be obtained from 

the equivalent expressions for H1 by changing s to k-s and t to k-t. Thus 

if l
1

(s,t) and l 2 (s,t) are, respectively, the solutions of the equations 

(2.2.23) and (2.2.26), then 

(2. 2. 28) 

If n10(s,t) and n20 (s,t) are respectively, the sample sizes necessary to 

achieve the goals 1 and 2, then 

(2.2.29) 

where 

(2.2.30) 

Further from (2.2.28), (2.2.29) and (2.2.30), we obtain 

(2.2.31) 

Thus for a given set of k and P* values, a table of 11-v~lues alone, con­

sidering all admissible sand t combinations, will provide solutions to the 

equation (2.2.26)• 

Table 1 

Table 1 gives the values of 11 for some values of k,s,t and P*. These 
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• \ values are obtained in the following manner: 

From the third expression for H
1
{A), we obtain 

00 

= (s~t~~(~~~ -~) ! J 4)t(x+>..1 )[ U(x) ]k-s-l[ l-{l-4)(x) )]s-t~ (x)dx 

-00 

s-t 00 

= ( k-t) ~ '~ \ ( s - t) ( ) j f t ( ) [ ( ) ] k-s -1+ j ( ) 
(s-t) !(k-s-l) ! L j -1 t x+A-1 1-t x 4' x dx 

j=0 -00 

s-t 
( k-t) ! ·· , ( s-t) ( ) j 1 I 

= (s-t)!(k~s-1): L j -1 k-s+j P(A-1 k-s+j,k-s+t+j), (say). 
j=0 

The function P(xlr,k) has been tabulated by Teichroew (1955) at x-values 

increasing by .01. Using these tables H1(A-1) has been calculated over 

suitable range of A-1-values. The A- 1-values corresponding to given P* 

values have been obtained by linear interpolation. This table gives the 

~1-values fort= l(l)k-2, s = t+l(l)k-1, k = 3(1)5 and P* = .9995, .999, 

.995, .99(.0l).95, .gu, .80. This table incidentally gives A-2 -values 

for some combinations of k,t,s, in view of the relation (2.2.28). 

Remark on accuracy of A-1-values 

For a particular combination of k, s, t and P* let ~ll be the A- 1-

value from table 1, truncated aftet two decimals (without rounding the 

second decimal) and A- 12 = A.ll + .01. Then the required A- 1-value satisfies 

the inequality 

A.11 < A.l < A.lg ' 

so that 

where 

( i = 1,2) • 

If we take n
12 

for n
1

, an upper bound on the error is 

(Xf2 - A-f1)(a/d*) 2 = .0l(2A-11 + .0l)(a/d*)2
• 
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Table 2 

This table gives ~-values which provide solutions to sample size 

determination problem in relation to Goal I. From table D of Milton (1965), 

these values have been obtained by linear interpolation. The table gives 

the values for c = 1, t = s = 2, k = 4(1)6 and c = 1, t = 2, s = 3, k = 6 

and P* = .9995, .999, .995, .99(.01).95, .90, .80. 

An illustration 

Suppose we have 4 populations. Let P* = 0.99. We want to select 

two populations which includes the best. From table 1, fork= 4, t = 1 

s = 2 and P* = .99 we have 

1 

(.ni d*)/a = 2.809. 

Now if d* = a, then n1 = 7.890. That is, we need 8 observations from each 

population to achieve our goal when the procedure Rs is used. 

Suppose we are interested in choosing any two of the three best. From 

the relation (2.2.8), it follows that we need 8 observations from each 

population. 

If we are interested in choosing two which include at least one of the 

two best, from Table 2 

no= (1.52) 2 = 2.3104. 

That is, we need 3 observations from each population to achieve this goal. 

Some remarks concerning different variance models 

So far in our discussion we have assumed that the variances of the k 

normal populations are equal and the common variance value is known. The 

natural question is how to deal with the cases where this assumption is not 

satisfied. Now we indicate some methods of dealing with such cases. 

Case L 

Let 

decide to 

means are 

Variances known and unequal 

af be the variance 
of ni' i = 1,2,:.:.~,k. 

choose the sample sizes n. so that the 
l. 

equal (or approximately equal). Using 
-36-
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variances of the sample 

this intuitive idea we can 
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;- •, proceed as follows: obtain the ~-value with assumption of common variance., 

in accordance with the goal of interest. Then ni (i = 1,2, ••• ,k) is chosen 

as the integer greater than or equal to It can be shown such a 

choice of ni will ensure that the P(CS I e:) is not less than P*. 

The question as to how to solve the problem with common n under different 

variances, is not treated here. 

Case 2. Variances are equal and the common value is unknown 

Here we redefine our distance measure as 

(2.2.33) d(a,b) = (a - b)/cr 

(2.2.34) 

where cr2 is the common unknown variance. With this modification the enitre 

discussion can be carried over so that the sample size needed is the smallest 

integer greater than or equal to 

no= (~/d*)2 p 

where ~ is the solution of (2.2.9) or (2.2.23) or (2.2.2b) according as 

the goal of interest is Goal I or Goal 1 or Goal 2. 

lf one insists on the distance measure (2.2.4) instead of (2.2.33), 

then this solution does not hold. Then it will be necessary to consider a 

two-stage or sequential procedure to provide a solution to the problem. 

2.3 _ Examples in which the statistics Ti: have gamma distribution. 

This section deals with the examples in which the statistics used have 

gamma distribution with unknown scale parameter and known shape parameter. 

Definition: A variable Xis said to have the gamma distribution r(a,~) 

with parameters a and~, if the probability density of Xis given by 

for x > O, 
for x ~ O. 

Here a and~ are positive constants;~ is the scale parameter and a is 

called the shape parameter. The distribution r(a,~) is sometimes referred 

to as a Type III distribution. The class of distributions {r(a,~): ~ > 0) 
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.) - ~ for a fixed a, is an SI family. We shall denote the c.d.f. of the distri-

(i) Normal populations with unknown variances 

Let ITi be characterized by the normal distribution with mean µi and 

var.iance 8 i ( i = 1 P 2 I) ••• , k) • Here 8' s are unknown a~d µ.' s may be known or 

unknown. We assume that Goal II is of interest. We shall use statistics 

Til or T12 where 

(2. 3. 2) 
n 2 

Til a E (Xij - µi) » 
j=l 

(2.3. 3) 

(2.3.4) 

according as the means are known or unknown. The statistic T11 is sufficient 

for .a1 when ~i is known, whereas Ti2 is a function of the sufficient statistic 

n ~ 2 
(j~l ~+~~ j!l Xij) when µi is unknown. Further Tim is distributed as 

BiX~~i!;, where v1 cs n/2 and v
2 

cs (n~l)/2; i.e. 9 the distribution of Tim 
m 

is r(vm,28i). Thus here 

when the statistics Tim are used. When the means are unknown this example 

is the one in which nuisance parameters are present. Since 8 is the scale 

~arameter for the family:§ , we use the distance measure defined by 

d(x,y) cs x/y. 

Here the selected subset is the set of populations which correspond 

to the s smallest T-values. As mentioned in section 1.1, we know that the 

sample size necessary to achieve Goal II for given values of c,k 9 s,t,P* 

and d* is same as the sample size necessary to achieve Goal I with ~he,~ · 

parameters c' = (k-t)-(s-c)p kp k-s, k-t, P* and d*. That is, the sample 

size necessary is v
0 

or v0+1 according as the means are known or unknown, 

where v
0 

is the smallest (integer) value of v for which 
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Here HS (v) is the value of H

5
(n) as given by (l.7.15) where c,s,t and 

Gn(•) are to be replaced, respectively$) by c'p k-s, k-t and Gv{·)· In 

other words 

00 

(2. 3. 6) H11
(v) = fr[G (xd*);c,t-c+l]dI[G (x);s-c+l,c 0

], 
S \ V V 

(2.3.8) 

0 

where Gv(·) = G(•lv ,2) when the statistics T. (m 0 1,2) are used. If m 1m 

H11 (v) is a non-decreasing function of v, we can replace the inequality in s 
(2.3.5) by an equality. 

This problem for the case c = s =twas considered by Bechhofer and 

Sobel (1954). 

(ii) Life testing with (negative) exponential distributions 

Suppose we have a random sample of n1 items from IT1 which are put on 

a life test (i = 1,2, ••• ,k). Let the life distribution of items from R 
be the (negative)exponential distribution with the probability density 

for Ai< x < oo 

for Ai~ x 

Here Bi> 0 and Ai~ Q. Suppose we stop testing the items from R 
after obtaining the first r( > 1) failures. On the basis of this infor­

mation the experimenter is interested in achieving Goal r. 

Let the r ordered failure times of the items from R be 

Xil < xi2 < ••• < Xir (i = 1,2, ••• ,k). We use the statistics Til 

or Ti2 according as Ai's are known or unknown. I Ai s are nuisance para-

meters when they are unknown. The statistics are defined as 

r 

{Til = 
I: (Xij - Ai)+ (ni - r)(Xir - Ai) , 

j=l 

r 

Ti2 m E (Xij - Xil) + (ni - r)(Xir - Xu) • 
j=l 
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Epstein and Sobel (1954) proved that the distribution of Tia is r(v

0
,e

1
)p 

where v1 =rand v
2 

= r-1. The problem here is the determination of r, 

so as to achieve Goal 1. 

(iii) Double exponential distributions (Laplace distributions) 

Let us assume that the population ITi is characterized by the double 

exponential distribution with the probability density 

n 
We use the statistics Ti O j:l lxijl; Ti is sufficient for Bi(i = 1.2,.,,,k}, 

Further Ti has the distribution t,(n,0i). Here also Goal I is of interest. 

(iv) Gamma distributions with unknown scale parameters and couunon known a 

In some experimental sit~ations one is sampling from gamma populations 

with unknown scale parameter and connnon known a. The scale parameters are 

of interest. For example such a thing arises when one is observing life 

distributions of structures. It has been shown by Birnbaum and Saunders 

(1958), that the life length of certain structures under a particular load 

pattern follows a gamma distribution with known a and unknown scale parameter. 

Then for each i, Xij has the distribution r·(a, e 1)(j O 1, 2, ••• ,n). We 
n 

use the statistics Ti == j:l Xij, where mi vhaa;1the i dtstr!llbutlion, ··t(JjlO~ e 1) 

(i = 1,2, ••• ,k). Here again Goal I is of interest. 

In each of the cases (ii) through (iv), the statistics Ti have gamma 

distributions and the parameters of interest are the scale parameters. We 

have to find v
0

, the smallest (positive integer) value of v for which 

(2.3.10) H (v) ), P*, s -

Here H
8

(v) is a
8

(n) as given by (1.7.15), where Gn(·) is to be replaced 

by G(•lv,l). Now the required r-value in case (ii) is v
0 

or v0+1 according 

as A's are known or unknown. In case (iii) the required sample size is 

v
0 

and in case (iv) the required sample size is I.~]+ 1 
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the integral part of x) • 

Again it may be pointed out that when H
8

(v) is a non-decreasing 

function of v, we can replace the inequality in (2.3.10) by an equality. 

We now show that the sufficient condition for the existence of the 

solution of (2.3.10), as found in section 1.10, is satisfied here. We 

give the proof of this in relation to cases (ii) through (iv). Since 

the proof is true for all values of c,s,t for given k,P* and d*, a similar 

result holds for the case (i). 

Using the notation of section 1.10, we have to show that 

(2.3.11) as v-+ co. 

Since y1 and Yk are independent random variables with the distributions 

r(v,l) and r(v,d*) we have 

Now 

E(Yk - Y1) = v(d* - 1), 

Var (Yk - Y1) = var Yk + Var Y1 = v(d*
2 + 1); 

Var(Yk-Yl) 
'j2 

{E(Yk-Yl)} 

= V(d*2
+1) 

v
2

(d*-1) 2 
.... o, as v-+ 00. 

This implies that (2.3.11) is true, which implies that 

Thus the solution of (2.3.10) exists for any P* < 1. 

When c = s = t = 1, we have 
CD 

Hs(V) = J G~-
1

(xd*) dGV(x), 

0 

where Gv(·) is the c.d.f. of r(v,l) •. Tables prepared by Gupta (1963) 

can be used to find v values for given values of k,P* and d*. 

Large sample approximation to the infimum of the PCS 

Now we consider an approximation to the infimum of the PCS assuming 

-41-



I -
-

~ ·> that the sample size n is sufficiently large (in case (iiO we assume that 

'~ r is large). It is known that the family of distributions r(a,~) satisfy 

the addition theorem for independent random variables, namely 

where* stands for convolution. Thus in each of the above four~cases, Ti 

can be viewed as a sum of independent and identically distributed random 

variables each having gamma distribution. By lemma 5e.l of Rao(1952), 

it follows that Zi = b(v)[logeTi/{a(v)et}] is asymptotically distributed 

as a standard normal variable. Here a(v) and b(v) are suitable functions 

of v. 

Expressing the PCS in terms of the variables Z., and using their 
l. 

asymptotic distributions we obtain 

00 

(2.3.12) inf PI :::::: J I[ <l>(x+A.) ;c 1 ,s-c+l] dI[ <l>(x); t-c+l ,c], 

where 

A.= b(v) log d*, 
e 

and PI is the PCS for Goal I. Also we have 

00 

H!1 (v):::::: f I[<l>(x+A.};c,t-c+l] dI[<l>(x);s-c+l,c'] 

-00 

00 

= f I[~(x+A);c',s-c+l] dI[~(x);t-c+l,c], 
-00 

In obtaining the second expression from the first, we used the well known 

results <l>(x) = 1-'1>(-x) and I (p,q) = 1-11 (q,p). 
X -X 

Thus an approximation to the solution of (2.3.5) and also to the solu-

tion of (2.3.10) is the smallest integer greater than 

VO= b-l[A.(c,k,s,t)/loged*], 

where b-
1
(·) is the inverse to b(•) and A.(c,k,s,t) is given by 

00 

f I[~(x+A);c',s-c+l] dI[~(x);t-c+l,c] = P*, 
-00 

These Ao-values can be obtained from tables 1 and 2. Approximating v
0 

by 
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[v~] + 1, one can obtain an approximation to the required sample size 

(the r-value in case (ii)). 

2.4 Uniform distributions. 

In this section we consider the problem in relation to two types of 

uniform distributions viz., (a) those involving one parameter, (b) those 

involving two parameters. It may be noted that these distributions are non­

r·egular. In this respect these special cases differ from those considered 

so far. 

(a) One-parameter uniform distributions 

Here we assume that the population 14, is characterized by the uniform 

distribution over the interval (O,Bi), i = 1,2, ••• ,k. We base our procedure 

on the statistics Ti where Ti= jx Xij• It may be noted these statistics 

are sufficient for e1,e2, ••• ,ek. The density function of Ti is 

· [nyn-l/e~ for o < y < ei 
(2. 4 .1) gn (y I e i) = o 

otherwise. 

(2.4.2) 

If Gn(·fBi) is the distribution function of Ti, then the class of distribu­

tion functions '5 • {Gn(·IB);B > O) is a scale parameter family such that 

G (e f,B) = 0. Hence it is an SI family. Since B is a scale parameter for n 

the family ~ , we define the di.stance measure as 

d(x,y) = x/y. 

Here the infimum of the PCS is H8(n). The value of H
8

(n) can be 

obtained from (1.7.15) by taking G (y) to be the distribution function n 

corresponding to the density gn(yfl) (which is given by 2.4.1). Denoting 

n n 
y by u and (d*) by d*, from (1.7.15) we have n 

1 

(2.4.3) HS(n) • J {l-1[ ( :*) ;t-c+l,c)ldl[u;c',s-c+l] • 
0 n 

Since d* > 1, d~ increases with n. So 1-1 [( d:) ;t-c+l,c] 
. n 
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(2.4.4) 

increases with n for each u. Hence H8(n) is an increasing function of n. 

Thus the required sample size is the smallest integer greater than or equal 

to the solution of the equation 

f~ {1-I[(~*);t-c+l,c]} dI[u;c' ,s-c+l] = P*. 
n 

Also since d~> 1, lim :* = 0, so that 
n~-100 n 

(2.4.5) lim H5 (n) = J~ diu(c',s-c+l) = 1. 
n~oo 

Thus the solution of (2.4.4) and hence the required sample size exists for 

any specified P* < 1. It is unique since H8(n) is an increasing function 

of n. 

This problem with c = s = t has been considered by Barr and Rizvi(l964). 

(b) Two-parameter uniform distributions 

I.JJ.J Now we assume that Ili is characterized by the uniform distribution 

(2.4.6) 

-

over (µi, µi + Bi) (i = 1,2, .•• ,k). We consider the following different cases. 

Case (iJ µ's are equal with the common value known or unknown and the 

populations are ranked according to B-values 

Whether the common µ-value is known or unknown, we can express the PCS 

in terms of Ui = Ti - µ, where the statistics Ti are defined as in (a). 

Then the problem reduces to the one-parameter case considered above. 

Case (ii) B-values are equal and the populations are ranked according to 

µ-values 

Whether the common B-values is known or unknown we use the minimum of 

the sample as our statistic. The probability density function of 
y-µ 

t i (1-(,-!)]n-l 
gn(ylµ,:,0) = {o 

otherwise. 

If G (·lµ.,e) is the distribution function of Ti, then the family 
n 1 

~ = {Gn(·lµ,B) : - oo < µ< + oo} is a location parameter family for fixed 

e. Hence it is an SI family. We take the distance measure given by 
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(2.4. 7) 

(2.2.4), when e is known. In the case of known B-value, we make a scale 

transformation on the statistics Ti and use the statistics Zi = T1/e, so 

that the new location parameters are ti= µi/B and we can define the pre­

ference zone in relation to the new parameters. If the B-value is unknown 

we express the PCS in terms of the random variables z1 and assume 

d(x,y) x-y 
= 8 

With this modification we can solve the problem. This type of modification 

in the definition of the distance measure has been suggested in case of normal 

populations with unknown common variance, which are ranked according to means. 

Let 8 stand for (d*/B) or d* according as Bis known or unknown. Setting 

G (•) = G (•fO~l) (the distribution function corresponding tog (•fO,l) of 
n n n 

(2.4.6)) in the second expression of (1.7.9), we obtain for 8 < 1. 

1-8 

(2,4,8) 8i_ (n) "'J I[l-(1-y-l>)n;c', s-c+l]dI[l-(1.:y)n; t-c+l,c] 

0 

(2.4.9) 

and for 

11i.<n) 

1 

+ J dI[l-(1-y)n;t-c+l,c], 

1-8 

8 > 1 

1 

.. J 
0 

1 

dI[l-(l~y)n; t-i:+l, c] .. J dI[u;t-c+l,c] .. 1 · 

0 

The required sample size is the smallest integer value of n for which 

(2.4.10) I\ (n) ~ P*• 

It is evident that we have to consider only those values of d* for which 

8 < 1, to have a non-trivial problem. 

Now we shall show that Bx,(n) tends to one as n .. ~. It is sufficient 

to show that (see section 1.10) 

(2.4.11) as n-+ ~. 
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We shall show that (1.10.10) is satisfied here. Now 

2n 
= _., O, as n _., oo. 

This implies that (2.4.11) is true. Hence the required sample size exists 

for any specified P* < 1. 

Case (iii) ·ij-values are unknown and the populations are ranked according to 

6-values 

Here we use the statistics Ti= max Xij - min Xij• The distribution of 
j. j 

Ti is independent of µi. The probability density of Ti is 

(2.4.12) 
{ 

n(n-1) 
= ei 

0 

(1 - i-> 
i 

for O < y < e 
i 

· otherwise. 

If Gn(·IBi) is the c.d.f. of Ti, then the family~ = {Gn(·IB);B > O) is 

a scale parameter family with G (OfB) = O; hence it is an SI family. Here n 

we take the ratio as the distance measure (see (2.3.4)). 

Now the required sample size is the smallest integer value of n for which 

(2.4.13) 

Replacing G {•) by I {n-1,2), £~om (l.7.15) we have n y 

(2.4.14) H
8

(n) 

a J\-I[Ii. (n-l,2);t-c+l,c] 

0 d* 

We shall now show that 

dl[I (n-1,2);c',s-c+l]. 
y 

(2.4.15) lim H
8

(n) = 1. 
n-+ao 

By the sufficient condition derived in section 1.10, we have to show that 

, as n _., co. 

Here Y
1 

and (Yk/d*) are independent and each has the beta distribution with 

the parameters n - 1 and 2. We show that the sufficient condition for (2.4~15) 
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to hold, namely, (1.10.10) is true here. Hene 

• 
= d*µ1(1) and µ2(d*) = (li*) 2 µ2(1). 

BO= d* and 8' = 1, 
0 

(2.4.16) Thus 
~2(d*)+µ2( 1) l+d*2 µ21 1) 

= 

(2.5.1) 

[µ'(d*)-µ'(1)) 2 (d*-1)2 [µ'(1)] 2 
1 1 1 

Since G (xll) = I (n-1,2), we have n X 

n-1 
= 

2{n-1) 

Now the right side expression of (2.4.16) becomes 

l+d*2 

(d*-1) 2 

2(n-1) 

{n+1)2 (n+2) 

which implies that 

lim 
n~ 00 

n+l 2 
(--

1
) ~ 0 as n ~ oo, 

n-

~ 1, as n ~ oo. 

This means the required sample size exists for any specified P* < 1. 

2.5 Normal populations with common known variance and ranked according to 

the absolute values of the means 

Here we assume that ITi· .is characterized by the normal distribution with 

meanµ. and variance a2 , which is known. The parameters 6. of interest 
i i 

are defined by 

i=l,2, ••• ,k. 

The problem for the case c = s = t has been considered by Rizvi {1963). 

We use the absolute values of the sample means as our statistics. 

That is, Ti = fxi I , i = 1,2, ••• ,k. It has been shown by Rizvi ( 1963), 

that the probability density of T. has a strict monotone likelihood 
i 

ratio. For convenience we assume that the common variance a2 is unity. 

the probability density of T1 is 
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• 
(2.5.2) 

for x > 0 

for X ~ 0, 

and its distribution function is 

for x > 0 

for x ~ o. 

Here t and• stand for the cod.£. and p.d.f. of the standard normal distribu-

tion. 

Here 0 is neither a pure scale parameter nor a pure location parameter 

for the family'§. We d~fine our distance measure as the difference (see 

(2.2.4)). Denoting k - t - s + c by c 9 we have 

GO 

(2.5.4) Q(0,n) = JI[G (xl0-d*);c 0 ,s-c+l] dI[G (xlB);t-c+l,c]. n n 

1 O 1 

Denoting n2e and n2d*, respectively by a and f3, we obtain 

GO 

(2.5.5) Q(<l,13) = Q(B,n) = A J I[G(xla-13) ;c', s-c+l] Gt-c (xla) [1-G(xla) ]c-lg(xla)dx 

0 

= A J(Q,f3) say, 

. where 

(2.5.6) G(xl0) = ~(x-0) - ~(-x-0), g(xl0) = t(x-0) + t(x+e), 

A= t!/[(c-l)!(t-c)!]. 

Now we have to find the infimum of Q over the possible values of 0, or 

equivalently over possible values of a, for fixed value of f3. Both 0 and 

B-d* belong to (9 = [0,GO). Hence B varies over [d*,GO). In other words CX 

varies over [~,00). The following result helps us to find the required infimum. 

It is to be noted that here we need the second stage minimization in 

obtaining the infimum of the PCSo In the previous examples this is not the 

case. In this respect this example differs.from the previous ones. 
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~ Lemma 2.5.1 

J(a,~) is an increasing function of a, for fixed~­

Proof: 

Substituting for g(xla) and splitting the integral into two integrals 

we obtain 

(2.5.7) J(a,~) = ,io I[G(xla-B);c' ,s-c+l)]Gt-c(xla)[l-G(xla)]c-lcp(x-a)dx 

00 

+ I
0 

I[G(xla-~);c' ,s-c+l)]Gt-c(xla)[l-G(xla)]c-l~(x-i-O!)dx. 

By substituting u for x - a in the first integral and u for x + a in the 

second integral, we obtain 

00 

(2.5.8) J(ai~) = J I(G(ufala-:3);c' ,s-c+l)]Gt-c(.u-+ala)[l-G(u-taja)t-1cp(u)du 
-a 

00 

+ I I[G(u-ala-~);c' ,s-c+l,]Gt-c(u-ala)[l-G(u-aja)]c-lcp(u)du. 
a 

Using the relationship between t and G(•l0) and denoting (k-t)t/[(s-c}!(c'-1)!] 

by B, from (2.5.8) we obtain on differentiation 

oo t-c-1 
= 2(t-c) I I[G{u-+a:ja-~);c' ,s-c+l]G (u-tala)[l-G(u+ala)]c-lcp{u+8l)cp~u)du 

-a 
oo t-c . 

- 2(c-1) I I(G(u+ala-~);c' ,s-c+l]G (u+ala)[l-G(u-+a:la)]c-~cp(u+8:X)cp{u)du 
-a 

oo c'-1 t-c 
+ 2B I G {u-t-0:la-~)[l-G(u-+a:la-~)]s-cG (u-1:ala)[l-G(u-t-0:la)]c-lcp(u+ro-~)cp~u)du 

-a 
oo t-c-1 

- 2(t-c) Ia I[G(u-ala-~);c' ,s-c+l]G (u-ala)(l-G(u-ala)]c-lcp(u-2:X)cp(u)du 

oo t-c :- : c-2 
+ 2{c~l) J I[G(u-ala-~);c' ,s-c+l]G (u-ala)[l-G(u-alQ}] cp(u-2:A!)cp(u)du 

a 
oo c'-1 t-c 

1 - 2B fa G (u-o:la-~)[1-G(u-ala-~))s-cG {u-o:la)[l-G(u-o:la)]c- cp(u-2l+f3)cp(u)du. 

By substituting x for u + a in the first three integrals and x for 

u - a in the second three integrals of (2.5.9), it is easily seen that the 



--
·, 

'first and fourth integrals add to zeroo Further the second and fifth integrals 

also add to zero. Hence we have 

00 c'-1 s-c t-c c-1 
= 2B fp G (xlo:-~)(1-G(xlo:-~)] G {xlo:)(1-G(xlo:)] 

Since - x ~ x and o: - ~ < o:, using the monotone likelihood ratio property 

of cp(xje) *~(x-e) we have, for y > 0 and~> O, 

cp( - x - o: + ~) cp(x - o:) > cp( - x - o:) cp(x - o: + ~), 

i.e., cp(x + o: - ~) cp(x - o:) > cp(x + a_) cp(x - o: + ~). 

Hence, from (2.5.10), it follows that d,]'~,~) is positive for fixed value 

of~. In other words J(o:,~) is an increasing function of o:, for fixed~-

Thus, by the lemma 2.5.1, we have 

(2.5.11) inf 
o:~ ~ 

Q(o:,~) = A inf 
~ ~ 

J(o:,~) = A J(~,~) = H(n), say. 

Hence the required sample size is the smallest integer value of n for which 

(2.5.12) H(n) ~ P*, 

where H(n) = Q(~,~) and can be obtained from (2.5.5). 

We shall now show that H(n) is an increasing function of n and 

it tends to one as n tends to infinity • 

. Lcuuna 2. 5. 2 

H(n) is an increasing function of n. 

Proof: 

From (2.5.5) we obtain 

00 

(2.5.13) H(n) = J
O 

I(G{~l:o);c' ,s-c+l} dl(G{xj~);t-c+l,c] 

00 

~ = f
0 

{l-I[G(xl~);t-c+l,c]} dI[G{xlo)-;c' ,s-c+l]. 
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~ It is sufficient to show that for each x 

' D(x,13} is an increasing function 

• of n where 

(2.5 .. 14) 0-f ' A) -\~,..,. . -- 1 - I[G(xl13);t··c+l,c]. 

Now, using {2 .. 5.6), we obtain 

(2 .. 5.15) oD(x.,(3) 
of3. 

t-c 
= -AG (xl13)[1-G(xl13)]c-l[- cp(x-~) + cp(x+f3)) 

t-c 
= A G (xi 13 )[ 1-G(xl 13) f-l (cp(x-13) - cp(x+f3.)) .. 

Since x > 0 and 13 > 0, it is easy to see that 

cp(x - 13) > cp(x +13), 

and hence oD(x,13) 
ol3 is positive. Thus Dis an increasing function of 13 

(i.ea, an increasing function of n). This completes the proof of the lennna. 

It is easy to see that for each x > O, 

lim D(x,13) = 1 - lim I[G(xl13);t-c+l,c] = 1, 
n""' 00 n""' 00 

since lim G(xl13) = o. Thus 
n~oo 

00 1 
lim H(n) == I

0 
dI(G(xlo);c' ,s-c+l] = Io dI [c' ,s-c+l] ;.-:;:~ 1. 

n~00 y: 

Thus the required sample size is the smallest integer greater than or 

equal to 

(2., 5o 16) no= (13/d*) 2 

where 13 is the solution of the equation 

00 

_. (2.5.17) / 0 I[l-G(xl13);c,t~c+l] dIG(xlo);c' ,s-c+l] = P*. 

When c = s = t, this equation reduced to (3.13) of Rizvi (1963) .. The existence 

and uniqueness of the solution of (2.5.17), follows from the lemma 2.5.2 

When the connnon variance is a2 , it is easily seen that the sample size 

is the smallest integer greater than or equal to 
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where~ is the solution of (2.5.17). 

The remarks of section 2.2 concerning the solution to the problem under 

different variance models are also applicable to this case. 

2.6 Cauchy populations 

Now we consider the problem in relation to two types of Cauchy distri­

butions namely (i) those involving a single parameter, (ii) those involving 

two parameters. 

(i) One parameter Cauchy distributions 

Here we assume that the distribution function which characterizes ni 

is given by 

(2.6.1) F(xl0.) 
1. 

= 
1 1 
2 + =w arc tan (x-0.), 

1 

so that the corresponding probability density is 

(2.6.2) f(xl 0.) 
1. 

= 
1 
7r 

1 

l+(x-0. )2 
1. 

It is known that there does not exist a sufficient statistic of fixed­

dimensions for the location parameter 0 of Cauchy distribution (Koopman, 

1936). Also it is known that the sample median is a consistent estimator 

of 0. We base our procedure on the statistics T., where T. is the median 
l. 1. 

of sample from IIi• For convenience, we assume that the common sample size 

is odd so that n = 2m + 1 (say). 

We now show that the class of distribution functions of the sample median 

T, indexed by 0, is an SI family. In fact we prove a slightly more general result. 

Lennna 2.6.l 

Let U be the rE.h order statistic in a random sample of size n from r 

the distribution function F(xl e), where {F(xl 0); 0 e <13>) is an SI familyo 

The class of distribution functions of U, when indexed by 0, is an SI r 

family. 
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·, 
-s- Proof: 

The distribution function of U is r 

n 
(2.6.3) H(xl e) = E (~) ~(xje)(l-F(xlB)]n-j 

J j=r 

= I[F(xle);r,n-r+l]. 

Since:: . for each x, F is a non--increasing function of e, so is the function H. 

In other words H(•le) constitutes an SI family of distribution functionso 

Here F(xle) as defined by (2.6.1) is a location parameter family and·-­

hence it constitutes an SI family. Thus the distribution functions of the 

median T of a sample from F(xle) constitute an SI family. Now the c.d.£. of Tis 

(2.6.4) G(xle) = I[F(xlB); m + 1, m + 1), 

and its probability density function is 

(2.6.5) 

Lemma 2.6.2 

The densities g(xle) do not possess monotone likelihood ratio in x. 

Proof: 

Differentiating g(xlB) with respect to x, we obtain after some simplification 

Now differentiating both sides of (2.6.6) with respect to 8, we obtain after 

some simplification 

(2.6.7) 1 og(xle) 
g(xle) ox 

[0g~~le) + 2rr(x-0)g(xl0)f(xl0)] 

+ g(xlB) f(xlB) [mf(xlB) + mf(xlB) + 2Jr], 
F2 (xl8) (1-F(xl0)) 2 

(2.6.8) i.e., g(xle) 
02

~~~e) - og~~le) og~~le) = 2rr(x-B)g(xlB)f(xlB) og~~IB) 

+ g2 (xl0)f(xl0) {mf(xlB) + mf(xj0) + 2Tr). 

f 2 (xl0) (1-F(xl8)]2 
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' A necessary and sufficient condition for g(xl·B) to possess monotone 

likelihood ratio in x (Lehmann 1959, p. 111, problem 6) is that 

~ 0 for all x and Bo 

Using (2.6.6) and (20608) this condition reduces to that for all x and 0 

+ g2 (xl0) f(xl0) {mf(xl0) + 
F2 {xl0) 

1-F(xj 0) - 2rr(x- 9)} 

mf(xl 0) 
(1-F(xl 0) ]2 

+ 27T} ~ o. 

Thus it is necessary and sufficient that for all values of u = x - 0 

(2.6 .11) g2{u) f 2(u) h{u) ~ O, 

where h(u) 2rru{F(µ) -
m 21Tu} + 

m m 2rr2(l+u2) - 1-F(u) - + + 
p2(u) (1-F(u) ]2 

{2Tru[l-2F u + 
1 

+ 
1 } + 21T2(1-u2 ). = m ] F u (1-F u p2(u) [1-F{u)]2 

In order to prove the lemma it is sufficient to exhibit at least one value 

of u for which (2.6.ll) is not true. Let u = /3 so that arc tan J3 = } 

and F(./3) = ~: Now h(./3) = m{(-lr~"5) + 26. ~ ) - 4ir2 

36 

= ~~m {26 - 2c;- } - 47r2 < o. 

This completes the proof of the lemma. 

In all the previous examples, the distribution.lfunction of T is not 

only SI, but it is also true that the density of T has the monotone likelihood 

ratio. Here the density of T does not possess the monotone likelihood 

ratio property although the distribution function of Tis stochasticallj~' 

increasing. Hence this example is different from the others considered so far. 

Since 0 is the location parameter for G(•l0), we define the distance measure 

as the difference {see (2.2.4)). Let mO be the smallest integer value of m 

for which 
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' . 
" ~2 ... 6.12) 

where HL is given by {l.7.9) in which Gn(.) is co be taken as G(·[O) of 

(2.6.4). The required sample size is 2mO + 1. 

Now we shall prove that the limit of HL(m) as m -)oo is 1, so that the 

·)· 

required m-va lue exists for any P · ·< l. (It would be interesting to show 

that a
1

(m) is a non-decreasing function of m.) In view of the discussion 

in section 1.10 it is sufficient (in the notation of that section) to show that 

(2.6.13) lim P[Yk < Y1 ] 0. 
~oc, 

Here Y 
1 

and Yk are mectians in samples of size 2m + 1 from F( · I 0) and F( ·Id*) 

respectively. We know that if Y is the median of a random sample ot size n, 
n 

from the one-dimensional distribution with c.d.f. F(xlB) and p.d.f. f(xlB), then 

L -, N(0,1), 

,;-1here t is the population median. . I 6 :.,Cramer 1946, p. :3 9). Now the median of 

the distribution F(·l0) as defined (2.6.1; is B. Thus 

(2.6.14) p [Yk < y 1] P[ 
2 I 2mt-1 (Yk - d·X· + d*') < 2 

l2m+l Yl] = 7r 7r 

P[ 
2 

J2m+l ·•· V ] ·-· u -+· - d" < say. m 7r m 

Here U and V are independent sequences of random variables, each having 
m m 

standard normal as the limiting distribution. Now given E > O, arbitrarily 

small and fixed, we can find a number a such that 

(2.6.15) 1 - ~(a//2) ~ f. 

When m is sufficiently large, we have 

(2.6.16) a ' 
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• 
.._. so that 

(2.6 .17) 0 ~ P [ V - U > _g ~ d*] ~ P [ V - U > a]. m m 7r m· m 

Thus 

(2.6.18) 0 ~ lim 
m--+oo 

P[V - U > 2 
J2.mt-1 m m 7r 

lim 
lIHoo 

P[V - U > a] 
m m 

= P[V - U > a] = 1 - t(a/ /2) ~ e. 

Since::'(2.:6.18) is true for every e > O, we have 

(2.6.19) lim P [ V - U > 2 J 2nri-l d*] = 0. m m 7r m --+oo 

From (2.6.19) and (2.6.14) we obtain (2.6.13) •. 
--+ 

An approximation to the infimum of P(csle) 

Using the limiting distribution of the sample median (as stated above) we 
--+ 

will~_obtain an approximation to the infimum·of P(CSI 8). Here the infimum is 
--+ 

~~(m) which is the PCS at the point 0 for which 

9(1] = ••• = 9[k-t] = o; 9[k-t+l] = 9[k-t+2] = ••• = 9[k] = d*. 

Thus, denoting 2d* J 2m+ 1 /7r by >,. ~ we have 

00 

(2.6.20) ~(m) ~ f It(x+>,.)(c',s-c+l) dit{x)(t-c+l,c). 
-00 

Now an approximation to m0 is the smallest integer greater than 

. 
(2.6.21) mb = ((~!*)2 

- l]/2, 

where>,. is the solution of (2.2.9). The numerical value ofAfor certain 

values of c, k, s, t and P* can be-obtained from the tables 1 and 2. 

{b) Two parameter Cauchy populations with connnon scale parameter 

Let the distribution function characterizing ITi be 

) ( I ) 1 1 cx:Xi) . (2.6.22 . F x ai ,(3 = 2 + 7r arc tan .., ., 
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~ •. so that the corresponding probability density is 
• 

(2.6.23) f(xlo:.,f3) 
l. 

= 

The experimenter is interested in the location parameters. In the earlier 

discussion we have assumed that scale parameters are all equal and that the 

common value is one; we now relax this assumption. Here we consider the 

following two cases. If the coounon scale parameter value is known, by 

ma.king an appropriate scale transformation on the statistics we can reduce 

the problem to the one discussed earlier. 

Suppose the common scale parameter f3 is unknown. By defining the 

preference zone in a slightly different manner we can solve the problem in 

the same way as we have done in au-:earlier ;section, say for example in 

section 2.2. We define here the distance measure as 

(2.6.24) d(x,y) = (x-y)/f3. 

Again the required sample is n - 2mO+1, where rnO is the smallest integer for 

which (2.6.12) is true. 

2.7 Laplace distributions with common scale parameter. 

Suppose that the distribution characterizing the population TI
1 

is 

the Laplace distribution with the probability density 

f{xl 0 i ,f3/ = 
, 
I 

where f3 is known or unknown. The experimenter is interested in the location 

parameters. We use the sample median as our statistic; this is the maximum 

likelihood estimate of 0 •• We assume that we take an odd number of obser-
1. 

vations from each of the k given populations. The class of distribution 

functions of the sample median, indexed by 0, is an SI family since e 

is a pure location parameter for the Laplace distribution. 
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Now the determination of the required sample size can be carried out 

exactly in the same way as we did in the case of the Cauchy distributions 

in the previous section. 

2.8 Some remarks in relation to applications to discrete distributions. 

The examples, so far considered, have the common feature that F(x)B) 

is the c.d.f. of an absolutely continuous distribution. In the next section 

we consider the problem assuming that ITi is the Poisson population with 

parameter E\ (i = 1,2, ••• ,k). In::tnis·;section we make some general remarks 

relating to ranking and selection problems dealing with discrete distributions. 

Since the distribution characterizing ITi is a discrete ctistribution, so 

will be the distribution of the statistic T .• In view of this fact in 
]. 

writing the probability of a CS for the goal of interest under the procedure 

R, we have to take into consideration the possibility of multiple ties in 
s 

certain places. This results in cl~y and cumbersome expressions for the 

PCS. For these reasons, following Sobel {1963), we introduce a statistic T1 
with a continuous distribution corresponding to each discrete-valued statistic 

1!r; this::.transforms the problem.. into· one dealing with continuous statistics 

and we can use the solution to the problem, which has been obtained in Chapter I. 
' . 

Let X be a discrete~valued random variable. We shall · 

assume ; ... ··. that X takes on non-negative integer values. Let the probability 

func_tion of X be given by 

(2.8.1) P(X = x) = f(xf0), x = 0, 1, 2, ••• 

Cor~esponding to the distribution of X, we define a continuous distribution 

with the probability density defined by 

(2.8.2) 
'., { f((y]IB 

g(yl Bf = 
0 

for O ~ y < 00 

otherwise, 

where [y] is the largest integer~ y. It is easily seen that the corresponding 

(cumulative) distribution function is 
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• [y]-1 
G(y(9) = ~ f(jj9) + {y-[y] f{[y]j9). 

j=O 

Let Y denote a random variable having the distribution defined 

by the probability density g(·IB) given by (2.8.2) and let U = U(O,10 

denote a random variable with uniform distribution on (0,1) and is independent 

of the random variable X. 

Lennna 2.8.1 

The relation between the random variables X and Y is given by 

Y = X + U , 

where U = U[O,l]. 

Proof: 

[y]-1 
(2.8.4) P(X+U ~ y) = ~ P(X+U ~ yjX = j)P(X = j) + P(X+U ~ YIX = [y])P(X = [y]) 

j=O 

[y ]-1 
= ~ P(u ~ y - j )f(j I e) + P(u ~ y - [y])f{[y]l e) 

j=O 

[y]-1 
= I: f(j I e) + (y - [y]) £([y]I e) , 

j=O 

for j ~ (y] - 1 ~ y - 1 =) y - j ~ 1 ~ P(U ~ y - j) = 1 and since 

y - [y] ~ 1 we have P(U ~ y - (y]) = y - (y]. 

i.e., P(X + U ~ y) = G(ylB) = P(Y ~ y). 

Lennna 2.8.2 

If f(xle) has monotone likelihood ratio in x, then g(ylB) has monotone 

likelihood ratio in y. 

Proof: 

Let xi= [yi] {i = 1,2); then y1 ~ y2 ~xi~ x2 . Since f has m.l.r 

property, for e
1 
~ e

2 
and y

1 
~ y2 we have x

1 
~ x2 and 

(2.8.5) g(y11e1 ) g(y21e2 ) = £(x1 1e1 ) f(x21e2 ) 

~ f(x1 je2) f(x2 je1 ) = g(y11e2 ) g(y2(e1). 
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(2.8.p) 

(2.8.7) 

This proves the lemma • 

The above lennna shows that the m.1.r. property is preserved when we 

transform the discrete distributions into absolutely continuous distributions 

in the manner described above. Now we will show that if the discrete distri­

butions is an SI family, (without possessing m.1.ro property) the transformation 

into absolutely continuous distributions preserve this property also. 

Lemma 2.8.3 

Let d be an SI family of distributions defined by probability mass 

functions f(x I e) where ee 9. Then the class-~ of the corresponding absolute7y 

continuous distributions defined by (2.8.2), is also an SI family. 

Proof: 

By the definition of an SI family we have 

for all x e R and e
1 

< e2 , where F(·IB1 ) is tl:e c.d.f. of the distribution 

defined by the probability mass function f(•IBi) (i = 1,2). 

Let X. be the random variables associated with the distribution defined 
1. 

by F(•je.) (i = 1,2). Then the random variables associated with the corres-
1. 

ponding continuous distributions defined by G( 0 le1) and G(-182 ) are x1 + u
1 

and x2 + u2 , where Ui is a uniform random variable on (O,l)•which is indepen­

dent of Xi (i = 1,2). Thus 

G(yl el) = P(Xl + ul ~ y) = P(Xl ~ y - Ul) 

1 
= J0 F(y - ul~1)du, 

1 
~ f F(y - uje2 )du, from (2.8.6) 

0 

aence the lemma. 
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2o9 Poisson populationso 

Here we assume that rri is characterized by the Poisson distribution 

with parameter ei. (i ~ 1,2:, o o D ,k) o It has been pointed out by Sobel (1963) 

that in the case of the goal of choosing the 'best' population, the solution 

based only on the parameter differences or only on the parameter ratios does 

not existo He obtained a soluti.on based on the simultaneous consideration of 

differences and rat:ioso Here also the same is trueo Thus following Sobel (1963), 

we define the preference: zone f;,{d·*~r*) as 

, \ 
Ut.d*,r*1 

. ...:., 
(0:B. 1 - e[k-t] ~ d* and Lk~,t+l~ 

Here r*( > 1) and d*~ > 0) are specified numbers o 

We use the statistics T. where 
1. 

n 
~ X ij' j= 1 

It is well known that T. is distributed as a Poisson variable with the 
l. 

parameter n0 i -~ 'llr:l ( i = 1 9 :2 :> o o o ,k) o 

In view of the remarks of section 208, after computing the statistics T. 
1 

from the random samples, we transform them into observations on the variables 

Y. by adding to each T, a random observation from the uniform distribution 
1 1. 

over [O, l] o 

of Y. is 
1. 

We apply the procedure R to Y. 'so 
s ]. 

g(ylv.) 
1. 

Here the probability density 

for O < y < oo 

otherwiseo 

We shall denote the codoL of Yi by G(ylvi)o Let us note the fact that the 

distribution G( 0 jv) forms an SI family, when indexed by 'ljr. Now theorem 10601 

is applicableo So in finding the infimum of the PGS over G(d*~r*); it ia 

sufficient to confine our attention to the points in the GLF configuration 

~ 
and find the infimum of the PCS over such pointso The points e, which are 

in GLF configuration, are those points for which 
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'"~ ,f .., 

(2o9o4) 
{ 0[1] = 0[2] = ••• = 0[k-t] = 01 

(say) 

• e[k-t+l] = e[k-t+2] = o OD = e[k] ::: e (say) o 

Let 'Ir' = nB', w = ne, and let the PCS _at the··GLF configuration be 

denoted by I(t,t')o This corresponds to P(e,e0) of the discussion in section 

L6. Now 

( C I <=> 1) ! ( S -C) ! I ("',"' I ) 

(k-t)! -

where 

J(a;"',"'') 

We denote the entire sum on the right side of (2.9o5) by J(t,t'). Now we 

have to find the infimum of I(t,"''), equivalently the infiqrum of J(t,v') 

over the pairs {w,v') where 

Remark 

Here is another example where we need minimization of the PCS at GLF 

configurationo It may be noted that e is neither a location parameter nor a 

scale parameter for the distribution G( 0 jne). 

Now we give some known results concerning g(·lv) and G(·I"') which are 

used in proving a theorem which in turn used to obtain the infinrum of J(t,"'')o 

We know that G(·lt) is given by 

where 

Now 

[Yl=l 
~ f(j(w) + (y - [yJ) f([yJlw), 

j=O 

:"' [g(yl~)] -· g(y - lit) - g(ylt) = g(ylt) { [~] - 1} I) 
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' . . 

:W [G(ylt)] = (y - [y] - 1) g(y - lit) - (y - [y]) g(ylt) 

= g(y)t) ((y - [y] - 1) [~] - (y - [y])} 0 

Further 

( 2 0 9 .12) t:,. G ( y I "') -- G( y I"') - G ( y - 1 I "') = - :"' [ G ( y I "') L 

Theorem 2.9.1 

For k ~ 2, letting '\jr = at' + b where t' > 0, a ~ 1 and b ~ O we have 

d { ~ 0 
(2.9.13) dt' [J(t,w')J ~ 

0 

if a ~ 1 and b = 0 

if a = 1 and b ~ 0 

case 1 

case 2. 

The strict inequality holds when a> 1 in case 1 and when b > O in case 2. 

Proof: 

Let D(t') stand for the derivative of J with respect tot'. Then 

t-c t d 
D(t') = ~ (a) d'''' [J(a;at' + b,t')]. ~o If 

Now 

(2.9.15) d~' ·[J(a;aw' + b,t')] = 

- aa I~ Ga- 1{xlt)[l-G(xlt)]t-aGc'-1cxlt')[l-G(xlt')]s-cg{xlw')[t:,.G(xlw)]dx 

+ a(t-a)f~ Ga{xlt)[l-G(xlt)]t-a-lGc
0

-l(xjt')[l-G(xjt')]s-cg{xjt')[t:,.G{xlt)]clx 

00 ' 2 - (c'~l) Io Ga(xlt)[l-G(xlw)]t-aGc - (xlt')[l-G(xlw')]s-cg(xlt')[t:,.G(xlt')]clx 

+ (s-c) f~ Ga(xlt)[l-G(xlt)]t-aGcv-l(xlt')[l-G(xlt')] 8 -c-lg(xlt')[t:,.G(xlt')]dx 

Denoting the last integral on the right side of (2.9.15) by 1
4 

we have 

Integration by parts gives 
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' . 
.. .... 

Using (2o9o17) in (2.9.15), we obtain, after cancellation 

d 
(2.9018) dv' J(a;av' + b,"1') 

g(xlv)g(xlv'){(a~l)(x-[x]) + [~~ (x-[x]-l)}dx 

· [x]b g(xlv)g(xlv')((a-l)(x-[x]) + w- (x-[x]-l)}dx 0 

Since x ~ [x] > x - 1, it follows that for a~ 1 and b = O the 

integrals of (2o9o18) are non-negative and that for a= 1 and b ~ O the 

integrals are non~positiveo To prove strict positiveness or negativeness of 

the integrals we first note the fact that v' > 0 so that '\jr > Oo Further 

both the densities are non -degenerate. Since x - {x} = O only at integers 

and [x] = 0 only for O ~ x < 1, it follows that for a> 1 and b ~ 0 

the term (a-l)(x-[x]) is strictly positive and that for b > O and a= 1 

(x]b (x - [x] - 1) < o. 

Hence 

d { ~ 0 for a~ 1 and b = 0 
J(a;a'ljr' + b,v') d,Jru 

~ 0 for a= 1 and b ~ 0 si 
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< ··~ ... -

(2.9.20) 

(2.9.22) 

and 
> 0 for 1 and b=O d { 

a> 

d'IJr' J(a;aw' + b,'.jr') 
<O for a= 1 and b > o. 

From (2.9.14) the required result follows. 

From the second part of the theorem, we can find the pair .{'\Jr,V') satisfying 

(2.9.7) for which J(t,v') is minimum. In other words we can find the pair (e,e') 

such that 

e I e' ~ r* and e - e' ~ d* , 

for which P(CSIGLF) is minimum and hence we can find the required sample size. 

We can rewrite (2.9.5) as 

I('\Jr,t') = 

Let us note the fact that the region (2.9.19) is such that by decreasing 

e (withe• fixed) we can change at least one of the inequalities in (2.9.19) 

to an equality. By the monotone (decreasing) nature of G and the form of the 

integral I, as given in (2.9.20), it is easy to see that any such decrease in 

e will not increase I. Hence we can restrict our attention to points 

8 = (e,e') on at least one of the two lines L1 , L2 given by 

e1e• = r* 

B-8'::: d* 

(r* > 1)» 

(o* > o). 

By the second part of the theorem 2.9.1, I is strictly increasing in 0' 

on L1 and it is strictly decreasing in 0' on L2• Hence I is minimum at 

the point where the two lines meet, i.e., at 

0' :: 
0 

d* 
r*-1' 

r*d* 
r*.,.1 ° 

Thus denoting nfP and ne~ by ,ir0, and w~ we have 
! 
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Hence the required sample size is the smallest· in'teger~value 6f n;for which 

(209.23) i.e., 

Whens= t = c = 1, our goal reduces to the goal ·of selceting the 'best' 

population which is considered by Sobel (1963). 

We shall now: show·:that 

From the discussion in section 1.10, it is sufficient to show that 

var Yk + var Y1 

(EYk - EY1)2 

Here E(Yl) C Vo+¾, 

and Var(Yl) c Vo + {2 , 
Thus 

-+ o, 

Var Yk + Var Y1 

(E(Yk .. Yl)l2 
= 

v0 + v0 + (1/6) 

<, - w') 2 
0 0 

as n -+ 00. 

= 
e0 + e• 

0 + 
n( eO - e I )2 

0 

1 

Hence (2.9.25) is true which implies (2.9.24). In other words the required 

sample size exists for any P* < 1. 
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.. . .. Chapter III 

Some Properties of the Procedure Rs 

In this chapter we prove some properties of the procedure R. For 
s 

convenience, in this discussion we assume that the labels on the popu-

lations are such that the parameter associated with rri is ei where 

el ~ e2 ~ ••• ~ ek. 

0 0 0 , a ,.·oti ;l ~ k:i.iatid; f3~::be:d.iriteger·s such that s s+ 

(3. 1.l.:) < a < k , 
s 

· (3.1.2) 

for some i where 2 ~ i S s+l.Let I be the set of integers 1,2, ••• ,k and 

J be the set I - {o:1 , ••• ,o:i-l'~~o:i, ••• ,o:s). Further let P(a1 ,o:2 , ••• ,o:s) 

denote the probability of selecting the populations I1 , I1 , ... , 
1 2 I1 under the procedure Rs· Since the procedure Rs is based on the 

s 
statistics Ti, the probabilities of interest are functions of the distribution 

fuabtiQnS~ G~(·f01). In this discussion the sample size n is some fixed 

{ppsitive) integer and so we drop the subscript n of G (•10). The results 
n 

to be proved are based on one of the following assumptions. 

Assumption 3. 1.1: The family :§ = {Gn ( • f 0) : e € 8 } is a stochastically 

increasing family for each value of n. 

Assumption 3.1.1': The family'§ is a strictly stochastically increasing 

family for each value of n. 

Lemma 3.Ll 

Under the assumption 3.1.1 we have 

If the assumption 3.1.1' holds and eA < e , the inequality in (3,1.2) is ..., o:. 
a strict inequality. 

Proof: 

First we consider the case s-< k-1. 
·· u I· 
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"' Let U = max T and H(u) be its c.d.f. Using assumption 3.1.1, 
CT.EJ a 

(3.1.3) 13 < ai =) 0
13 

~ ea.=) G(ul 0
13

) ~ G(ul ea.) for all real u, 
1 1 

Further 

-) 1 - G(ule
13

) ~ 1 - G(ul0 ) for all real u. 
ai 

(3.1.4) P(al, ••• ,ai-l'ai,ai+l' ..• ,as) 

= P[ min .. Ta > max(T
13 

,U)] 
l~m§is m 

00 s 

= JH(u)G(ul0f3)d[l - II (1 - G\ul0o: ))] 
111= 1 m 

-oo 

00 S ;,; J H < u) G < u I e 0:. )d[ 1 _ n c 1 _ G cu I e 0: ) n by c 3 • 1. 3) 
-00 1. m=l m 

-00 S 

= 1 - I [1 - IT 
m=l -00 

(1 - G(ul0a )}]d[H(u)G(ulea_)] 
m 1. 

00 s 

= j IT (1 - G(ul0o: ))d[H(u)G(ul0o:_)] 
-00 m=l m 1. 

00 s ;.; J' [ IT {1 - G(uleo: )))(1 - G(ule
13

))d[H(u)G(ul0o:.)J by (3.l.3) 
-«> m=l m 1. 

~i 

= P(a1,···,ai-l'13,ai+1'···,as). 

Whens= k-1, the proof is similar to the above with H(u) replaced by 1 and 

hence omitted. If 0
13 

< 0 and if the assumption 3.l.l' holds, then the inequal-
ai 

ities in (3.1.3) will be strict inequalities and consequently we get a strict 

inequality in the final result. This completes the proof of the lemma. 

Remark 3. 1. 1 

If a 1 ~ 2 and 1 ~ ~ < a
1

, by a reasoning similar to the above we have 

P(a1 , a 2 , ••• ,as)~ P(13, a 2 , ••• , as). 

Let a 1 , a 2 , .•• , as and 13 1 ,132 , .•• , 13
8 

be two subsets of I such that 
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' .. 

e' 

_j 

' 

... 
~ . < as , '3 1 < f3 2 < . . . < f3 s and a i ?; f3 i, i = 1, 2, .•• , s , 

with a.> f3. for at least one value ot i. Then the subset of populations 
l. l. 

n, , n~ , ... , i is said to be inferior to the subset of populations 
1 2~ s 

11-· ' Ila ' · : · ' Ila .llC\ 2 s 
Now a repeated application of the lemma gives us 

the following 

Theorem 3.l.l 

Under the assumption 3.1.1 

(3.1.5) 

Remark 3 .1. 2 

If ea.> ef3. for at least one i and if the assumption 3.1.1' holds then 
l. l. 

strict inequality holds in (3.1.5). 

Thus the probability of selecting any subset (0 of s populations 

is not less than the probability of selecting any subset of sizes, which 

is inferior to ~ . In this sense, the procedure R possesses the property 
s 

of multivariate unbiasedness. 

Let q(a) denote the probability of including the population lJa 

in the selected subset under the procedure Rs. As a direct consequence 

of the above theorem we get the following property of unbiasedness. 

Corollary 3 .1.1 

Under the assumption 3.1.1 

( 3 .1. 6) q(a) ~ q(f3) for a< f3. 

We now give an independent proof of this result. 

Proof: 

Let q(a,j3) denote the probability of including Ila and excluding 
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~ .. 

~ in the selected subset under the procedure R
8

• Further let V be 

st the random variable corresponding to the (s-1)- largest of 

T (r = 1,2, ••• ,k; r ~ a,f3) and H(v) be its c.d.f. Now 
r 

(3o 1. 7) q (a) - q (f3) = q ca,~) - q (a,f3) 

(3.1.8) 

a P[T < V < T] - P[T < V < TA] f3 a a .., 

00 00 

., J G(vl0fl)[l-G(vl0a)]dH(v) -J G(vl 0a)[l-G(vl 0fl) ]dH(v) 

-oo -oo 

00 

., J [G(vl 0fl) - G(vl 0a) ]dH(v), 

-oo 

Since a< f3, we have 

-
Hence q(a) - q(f3) <:o. 

Remark 3.1.2 

Also if ea~ ef3 and if the assumption 3.1.1 1 is satisfied, then 

strict inequality holds in (3.1.8) and hence in the result (3.1.6). 

l ', 

3.2 An optimal property. 

In this section we prove that the procedure R is the uniformly 
s 

best decision rule among the impartial decision rules for the loss 

function 
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(3.2.1) W=c-T\, 

where T} denote the number of populations from the set of the t 'best' 

populations, that are included in the selected subset of sizes. 

Before proving this result we specify our assumptions and define 

some.terms which will be used later. 

We assume that a random sample of size n is available from each 

of the k given populations. That is, we are given independent random 

variables {Xij), i = 1,2, ••• ,k;j = 1,2, ••• ,n, from the k populations 

~ • Let 

where T1, T
2

, ··~, Tk is an independent'set, and T1 has the probability 

de~sity· g(_· f E\) = gi (•) such that el S e2 -S ••• S ek. Further we assume 

tha~ the densities g(•fB) possess monotone likelihood ratio property. 

Let ~Ill_< T( 2] < ~ •• < T[k] be the ordered T/s· 

Following Bahadur (1950) we now define a class of decision rules 

which shall be called the class of non-randomized impartial decision rules. 

This cla~s of decision rules are based on the statistics {Ti) and it is 

denoted by D(T). 

Definition 3.2.1. A variable Y is said to be an indicator variable corres­

ponding to the event E if Y = 1 when E happens and·Y = 0 otherwise. 

·»efinition 3.2.2. A decision rule 8 = 8({Ti)) is said to be an impartial 

non-randomized deci~ion_rule if·8 defines non-negative random variables 

Aj(T[l]' T[2], ••• , T[k]),j = 1,2, ••• ,k (depending only on the ordered T
1
's) 

such that 1. is the indicator variable corresponding to the event that the popu-
J k 

lation which gave T[j] is selected under the decision rule 8 and E Aj = s. 
. . j=l 

(In other words the impartial dec"ision rules are those rules which are 
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• ~. invariant with respect to relabeling of the populations.) 

Let Aij be the event (Ti= T[j]} and aij be the indicator variable 

corresponding to the event Aijo · Since Ti's have a joint distribution which 

is absolutely continuous, the sets A .. are well defined with probability 
k iJ k 

one. Further we have E aiJ. = 1 for every j and E a .. = 1 for every i, 
i=l j=l iJ 

with probability one. 

We now give, without proof, a lemma due to Bahadur (1950) which will 

be used subsequently. 

Lemma 3.2.1 

For any non-negative random variable A= A(T[l]' T[2 ], ••• , T[k]) and 

any p,q,m = 1,2, ••• ,k with p ~ q, we have 

k 
E E(Aa. ) ~ 

i=m ip 

k 
E E(Aai ). 

i=m q 

A direct consequence of this lemma is the following result. 

Corollary 3.2.1 

Under the assumptions of lemma 3.2.1, we have 

(3.2.4) 
m 
E E(Aai ) ~ 

i=l p 

(3.2.6) 

In the sequel we further assume that the parameter space n is defined by 

n = 

Let b be any monotone non-decreasing function of B so that 

bi= b(Bi), i = 1,2, ••• ,k. For i < j, we have bi~ bj, since Bi~ Bj. 

Any decision rule 8eD(T) defines a vector random variable 

A(8) = [A
1
(8),~

2
(8), ••• ,Ak(8)] and this vector in turn defines another 

vector random variable p(8) = [p1(8),p2(8), ••. ,pk(8)] where 

k 
E A.(8)ai., 
j=l J J 

i = 1,2, ••• ,k. 

Here pi(8) can be interpreted as an indicator variable corresponding to the 
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event that the population rri is selected under the decision rule 8. It 
k 

is easy to see that E p1(8) = s. For any 8€D(T), let us define 
i=l 

p(8l0J 

Theorem 3.2.1 

For every 1€n 

and 

= 

= 

sup p(8f 0), 
8€D(T) 

inf p(8l BJ, 
8€D(T) 

where 80 and 5
0 

are those decision rules belonging to D(T) which correspond 

to the 11.-vectors (0,0, .•• ,0,1, .•• ,1) and (1,1, ... ,1,0, .•• ,0). 

Proof: 

Now for any 8€D(T) 
~ 

and for any BEU , we have 

p(ol °6) 
k 

bipi (0) I u1 (3.2.8) = E[ E 
i=l 

k k k 
= E[ E b. { E 11. .(8)a

1 
.) 11) = E b . E [ 11. . ( 8) a i . I 1]. 

i=l l. •. · 1 J J . . 1 l. J J 
]= l., J= 

~ bk and we write 

(3.2.9) Ci~ 0, i = 1,2, ... ,k. 

Let 11.(8) be such that 11.. (8) = ••. = ~. (8) = 1, where jl < ... < j • 
Jl JS S 

Further let the other components of 11.(8) be zero. Let us note that 

"°k-s+l(o
0

) = ••. = "°k(o
0

) = 1 and the remaining components of 11.(8°) are 

zero. Also ~1(80 ) = .•. = "°s(80 ) = 1 and the remaining components of 

11.(80 ) are zero. Now 

(3.2.10) for a= 1,2, .•• ,s, 

with at least one of the inequalities being strict. It is easily seen that 
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I ..,. 

. . ~ 

• k k 

• E , 1E{ A. .(8)ai .) = 
i,j=l .. J J 

E ( b 1+c 1+,_ • • • +c 
1
. ) E {A. J. ( 8) a i J.) 

i;j=l 

k s k 
~ bl s + E : E [ E E { a i k _vv) ] c 

m::1 CT=l i=m , -s'T\.A, m 

k 0 
= E b . E {A. • ( 8 ) a • . ) • 

i,j=l l. J l.J 

In obtaining the inequality we made use of (3.2.10) and the lemma 3.2.1. 

(3.2.11) 
-I> 

for all Ben. 

turther by a similar argument we have 

E b.E{A. .(8
0
)ai .) ~ E b.E{A. .(8)a .. ) • 

l. J J l. J l.J 

(3.2.12) i.e., p(slt} ~ p(80lej for all lf~n . 

(3.2.13) 

(3.2.14) 

From {3 .2:,-11) 
-:, 

and (3.2.12) we obtain, for every Ben 

SU~ ~(810) c p(6Ql0J, 
8e:DtTJ 

inf ~(slej = p(8
0

lff> • 
8e:D{TJ 

The class of decision rules D(T) consists of k s = ( ) members and let 
s 

us denote them by 81,62 , ... ,6s. Let D*(T)::>D(T) be the class of impartial 

decision rules based on T = (T1,T2 , ••• Tk) such that any typical member 

6* of D*(T) can be represented by a vector withs components viz., 

(~1,~2 , ••• ,~s); here ~o: is the probability of choosing the non-randomized 
s 

decision rule 80:eD(T) and E ~O: = 1. Now it is easy to see that for any 
O'.=l 

'Uen and for any 6*eD*(T) from (3.2.11) and (3.2.12) 

and 
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Hence for any fen 

(3.2.15) sup p(8*l0J 
8*eD*(T) 

= 

((3.2.16) inf p(8*l0J 
8*ED*(T) 

= 

Let us consider the problem of choosing a subset of sizes from a set 

of k given populations. We confine our attention to the class of impartial 

decision rules D*(T) defined above. The problem is to:find the uniformly 

best decision rule in the class D*(T) when the loss function is defined to be 

(3.2.17) W = C - 11, 

where 11 is the number of populations, from the set of the t best out 

of k given populations, that enter into the selected subset. Here the t 
·, 

best populations are those with the parameters 0k-t+l'ek-t+2 , ••• ,\ .• Let 

us define the b-function as follows: 

(3.2 .1~) b(0i) = { 
0

1 for i = lt:-t+l, k~-t+2, ••• , k 

otherwise. 

Then for any 8*ell*(T), using the definition (3.2.18) of b-function, 

(3.2.19) 
k 

= E{ E b
1
p. (8*)} 

i=l l. 
= p (8*). 

By the previous discussion we have, for any "den and for any 8*eD*(T), 

(3.2.20) = 

so that 

(3.2.21) int EW(B*l'U) = EW(a0 rej. 
8*eD*(T) 

Hence 80 is the uniformly best decision rule in the class D*(T) with 

respect to the loss function (3.2.17). 
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Part II 

A Problem Dealing with the Selec~ion of Subsets 

Where the Subset Size is a Function of the 

Common Sample Size 
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Chapter IV 

Selection of Subsets of Fixed Size Depending on the Sample Size ... 

4.1 Introduction. 

In part I we considered the problem of selecting a subset, of specified 

sizes, from a given set of k populations. There specifying the subset 

size ·s, we have solved the problem of sample size determination so that the 

PCS under the procedure R meets certain requirement. Here we consider a 
s 

related problem where the sample size is fixed in advance and the subset 

sizes is to be determined in relation to the common sample size. 

4.2 Statement of the problem. 

The problem can be stated as follows: "Samples of size n* are available 

from each of k given populations. The experimenter is interested in choosing 

a subset of fixed sizes (the value of s to be determined) which contains 

the t best of the k given populations. He desires to have a procedure 

which will tell him how large a subset and which subset he has to choose so 

that the probability of a correct selection (i.e., the subset selected by the 

procedure contains the t best populations) is· not less than a preassigned 

number P*, for all parameter points in the preference zone". 

4.3 Solution to the problem •. 

Here the preference zone of the parameter space is same as the one 

given by (1.2.1). We propose the procedure R of section 1.3, where the 
s 

.subset sizes is suitably chosen so as to satisfy the probability require­

ment (1.2.3). The choice of s, the subset size, is to be made as follows: 

When the procedure Rs is used, let n1(s) = n(slk,t,P*,d*) be the minimum 

sample size necessary to achieve Goal 1. From a tabular solution to the 

sample size determination problem in relation to Goal 1, we know values of 

n
1
(s) for given values of k,t,d*,P* and various s valueso From such a table 

we can find an integers (with t ~ s ~ k) such that the given sample size n* 

satisfies the relation 
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this value of sis the required subset size when one is using the procedure R. 
s 

In giving the above solution we have tacitly assumed that, for given 

values k,t,d* and P* 

Later in this chapter we prove this result. 

The above problem may arise in several ways of which one is the situation 

considered in the following section. 

4.4 Relaxation of the goal of choosing the t best of k given populations. 

Suppose an experimenter is interested in the goal of selecting the t 

best of k given populations (those with the largest parameter values) in 

the framework of Bechhofer (1954) with fixed t,k,d*,P* and a distance measure. 

It may happen either due to economic reasons or because the observations were 

already taken, that the procedure R withs= t requires too many observations 
s 

for him. Then he may be willing to relax his goal. In other words he may 

be willing to change his goal to another goal, which he can achieve with 

lesser sample size. It is possible to think of several different ways of 

relaxing the goal. 

One way is to relax the goal to that of Goal 1, namely, to choose a subset 

of sizes which includes the t best. Then the above formulation of the 

problem (wheres >.:t·:is t:o·be determined as•a:function.·:~f:-n*, ·t, k~ d·f)and p*) is 

appropriate; here n* is to be interpreted as the largest sample size that 

the experimenter can obtain or the size of the sample he has already obtained. 

As pointed out by Sobel (see the footnote on page 22 of Bechhofer 1954) 

the experimenter may choose a second method of relaxing his goal, namely to 

choose a subset of sizes and assert that they form a subset of the t best 

populations (i.e., Goal 2). Then a formulation wlth .. s .<i:tt, :.s·imilar-..:to the above 
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~ ~.. on~ ~ is appropriate; Here again we determine s as a function of n*,t,k,d* 

and P*o n* has the same interpretation as before. 

(4.4.1) 

(4.4.2) 

A third method of relaxation is to choose Goal I viz., selecting a subset 

of sizes and asserting that the selected subset includes at least c of 

t he t best. Here we have to find: a·. pair.· ( c, s) such that n{c,s) ~ n*, 

n(c,s-1) > n* and n(c+l,s) > n*; n~ has ~he: same interpretation as before and 

n(c,s) is the minimum sample size necessary to achieve Goal I under R. 
s 

In all these situations a particular form of the above formulation of 

the problem is appropriate. Which method of relaxation is the best among 

the several possibilities depends on various factors and this p~oblem.is: 

not treated here. 

In the above discussion we have implicitly assumed that each one of the 

sample sizes necessary to achieve Goal I, Goal 1 and Goal 2 is smaller than 

the sample size necessary to achieve the goal of selecting the t best. We 

now prove the relationships between the sample sizes necessary to achieve·the 

various goals that are related to the goal of choosing the t best. 

In the sequel we use the notation of section 1.9. 

Theorem 4.4.1 

For given k,t,P*,d*- and the distance measure d{x,y), 

n(c,s-1) ~ n(c,s) ~ n(c-1,s-1) ~ n(c-1,s), 

where max (1,s+l+t-k) ~ c-1 and c ~ min (s-1,t). 

Proof: 

As in case of theorem 1.9.1, here also it is sufficient to prove that 

for fixed (but arbitrary) values of n and e 

q(c,s-1) ~ Q(c,s) ~ Q(c-1,s-1) ~ Q(c-1,s) , 

where 

(4.4.3) Q(c,s) 

=P[c!!! largest of (Yk-t+1 , ••• ,Yk) > (s-c+l~ largest of (Y1 , ••• ,Yk-t)]. 
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It is easy to see that 

.. (4.4.4) [c th 1 f ( ) ( )th 1 f ( )] argest o Yk-t+1 , •.• ,Yk > s-c - argest o Y1 , ••• ,Yk-t 

~ [(c-1)~ largest of (Yk-t+1 , ••• ,Yk) > (s-c+l)~ largest of (Y1 , ••• ,Yk-t)] 

From (4.4.3) and (4.4.4) we obtain (4.4.2). This completes the proof of the 

theorem. 

When c ~ min (s-1,t}, we have 

(4.4.5) n(c,s-1) ~ n(c,s). 

Setting c = t ~ s - 1 in (4.4.5) and noting the fact, n{t,s) = n1(s) when 

s ~ t we obtain 

(4.4.6) 

Also when c - 1 ~ max(s+t+l-k, 1), we have 

(4.4.7) n(c,s) ~ n(c - 1,s - 1). 

Setting c = s ~tin (4.4.7) and noting the fact that n(s,s) = n2(s) when 

s ~ t, we obtain 

(4.4.8) 

The results (4.4.6) and (4.4.8) will now be stated as one result. 

Corollary 4.4.1 

For given k,t,P*,d* and the distance measure d(x,y), 

(4.4.9) if s - 1 ~ t, 

and 

ifs~ t. 
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As a particular case of the corollary we have 

(4.4.10) n
1
(t) ~ n

1
(s) 

and 

(4.4.11) 

(4.4.12) 

(4.4.13) 

(4.4.14) 

n1(t) = n2(t) ~ n2(s) for s < t. 

It may be interesting to relate n2(s2) and n1(s 1) where s
2 

< t < s
1

• 

This is being done in the next theoremo 

Theorem 4o4.2 

For given k,t,P*,d* and the distance measure d(x,y) 

where s2 < t < s 
1 

o 

Proof: 

Again it is sufficient to show that for fixed (but arbitrary) values of 

n and e 

Let U(•), W(•), U(·) and w(·) be the c.d.fo 1
S of the minimum of 

(Yk-t+1 , ••• ,Yk), (s 1-t+l~ largest of (Y1, ••• ,Yk-t), s2
th 

largest of 

(Yk-t+1, ••• ,Yk) and the largest of (Y1, •.• ,Yk-t~ respecfively. Now we have 

()() 

Q(t,s 1) = £ex, (1 - U(x) ]dW(x). 

Further 

= u(x) • 
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"t ... Also 

(4.4.16) 

~ P[ largest of (Y1, ••• ,Yk-t~ ~ x] = W(x). 

Thus from (4.4.13), (4.4.14) and (4.4.15), we obtain 

00 

Q(t,s1) ~ £
00 

[1 -U(x)]dW(x) 

00 00 

= f W(x)dU(x) 
- 00 

~ [ 
00 

w(x)du(x) = Q(s2 ,s2). 

This completes the proof of the theorem. 

Thus combining all the results proved so far, we have, for fixed k,t,P*,d* 

and the distance measure d(x,y) 

where c ~ s2 < t < s 1 • 

An example which deals with normal populations 

An experimenter is interested in choosing 2 best out of 5 ~ormal popula­

tions. He specifies that d* = r; and P* = .999. 

From the table I of Bechhofer (1954), one obtains that the experimenter 

needs 26 observations from each population to achieve his goal. If he can 

afford only 25 observations per population, he can relax his goal to that of 

selecting the best. (We used again ta.ble I of Bechhofer to arrive at the 

figure 25.) Using table 1 one can obtain that if he can only afford 16 

observations per population 1 he can relax his goal to Goal 1 withs= 3. 

From the same table one obtainsj that if he has only 15 observations per 

population he can relax his goal to Goal 2 withs= 1. From table 2 one 

obtains, that the experimenter needs 9 observations per population to relax 

his goal to Goal I withs= 2 and c = 1. 
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-t Table 1 - A values for Goal 1 and Goal 2 

Goal 1 k,= 3 k-= 4 k = 4 k:·= 4 k = 5 
(s > t) t = 1, s = 2 t = 1, s = 2 t = 1, s = 3 t = 2, s = 3 t = 1, s = 2 

P* 

.9995 3.639 3.965 3.185 3.878 4.156 

.999 3.387 3. 723 2.944 3.638 3.920 

.995 2.738 3.102 2.321 3.022 3.313 

.99 2.422 2.809 2.020 2.724 3.019 

.98 2.076 2.472 1.689 2.412 2.698 

.97 1.856 2.264 1.479 2 .198 2.495 

.96 1.690 2.107 1.323 2.045 2.343 

.95 1.556 1.980 1.191 1.920 2.219 

.90 1.092 1.542 0.747 1.494 1.793 

.80 0.528 1.013 0.206 0.980 1.278 

· Goal 2,: k = 3 k=4 k =--~4· k = 4 k = 4 
(s < t) t = 2, s = 1 t = 3, s = 2 t = 3, s = 1 t = 2, s = 1 t = 4, s = 3 

I 

Goal 1 k = 5 k,::: 5 k = 5 k ==-=5 k = 5 
(s > t) t = 1, s = 3 t = 1, s = 4 t = 2, s = 3 t = 2, s = 4 t = 3, s = 4 

P* 

.9995 3.542 2.916 4.194 3.413 4.012 

.999 3.295 2.673 3.963 3.184 3.777 

.995 2.699 2.066 3.375 2.598 3.180 

.99 2.410 1.781 3.096 2.314 2.893 

.98 2.093 1.448 2.787 2.006 2.581 

.97 1.892 1.243 2.594 1.812 2.384 

.96 1.741 1.088 2.449 1.666 2.236 

.95 1.619 0.962 2.332 1.547 2 .117 

.90 1.196 0.506 1.932 1. 141 1.707 

.80 0.685 * 1.453 0.652 1.215 

Goal 2 k = 5 k = 5 k = 5 k =·=:5 ' . k = 5 
(s < 't) t = 4, s = 2 t = 4, s =· 1 t = 3, s = f t = 3, s = 1 t = 2, s = 1 

+These are the solutions of the equation (2.2.23). 

* indicates the corresponding P* value is not of interest for these goals. 
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Table 2 - ~ valuelfor Goal I 

k = 4, t = 2 k = 5, t = 2 k =, 6 ,'. t .=:·-:2 k = 6, t = 2 
P* 

s = 2, C = 1 s = 2, C = 1 s =··,2, C -=~-=l s = 3, C = 1 

.9995 2.85 2.97 3.00 2.75 

.999 2.66 2.89 2.96 2.49 

.995 1.85 2.30 2.61 1.78 

.99 1.52 1.92 2.18 1.48 

.98 1.27 1.63 1.86 1.26 

.97 1.03 1.44 1.68 1.04 

.96 .88 1.32 1.50 .90 

.95 .76 1.21 1.42 .79 

.90 .36 .79 1.04 .44 

.Bo * .:-32 .59 * 

fThese are the solutions of the equation (2.2.9). 

* indicates the corresponding P* value is not of interest.for this goal. 
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