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-------------------------

During the last fifteen years considerable research has been devoted to:
developing multiple decision procedures for ranking and selection problems,
These problems are concerned with ranking a subset of the k given populations
or with selection of certain subsets from the given set of k populations;
the particular goal of interest being defined in terms of the unknown ordered
values of the population parameters, The parameter of interest may be the
mean or the variance or any other explicit or implicit function of the given
population. These procedures can be studied for their own interest and/or
they can be regarded as alternatives to (classical) tests of homogeneity

which are found to be unrealistic in some situations and inadequate for many

purposes.

Some of the significant contributions tawards.developing single-sample
procedures that deal with the above type of problems are due to Mosteller (1948),
Paulson (1949, 1952), Bahadur (1950), Bahadur and Robbins (1950), Bahadur and
Goodman (1952), Bechhofer (1954), Bechhofer and Sobel (1954), Bechhofer, Dunnett
and Sobel (1954), Gupta (1956), Gupta and Sobel (1957, 1958, 1962), Seal (1955,
1958), Hall (1959), Lehmann (1961) and Sobel (1963). At present we have a vast
literature on this type of problems.

Generally, in raﬁking and selection problems, populations with large or
small parameter values are of interest, The decision procedures are usually
designed to select subsets of fixed or tandom size, such that the selected
subset includes the t best populations; here the t best populations are
those with the t largest parameter values (or perhaps those with the t
smailest parameter values). In this investigation we are concerned with the
problem of selecting subsets of specified or fixed size, from a given set of
k populations. We are interested only in single-sample procedures that

achieve a particular goal of interest.
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Part I of this investigation consists of three chapters and it deals
with the selection of subsets of specified size s, where s < k. The goal
of interest, which is called Goal I, is the selection of a subset of size
s which contains at least ¢ of the t best populations. The t best popula-
tions are those with largest values for the: parameter ., which is of
interest. Two particular cases of Goal I are of special interest. They
are -- Goal 1: To select a subset of size s which includes the t best
populations, where s > t; Goal 2: To select a subset of size s which
includes any s of the t best populations, where s < t. It should be noted
that all the three goals coincide when ¢ = s = t. Then the common goal
is to select the t best populations without ordering, which has been
éxtensively studied in relation to various populations. Goal 2 has been
suggested by Sobel (see the footnote in Bechhofer (1954)) in relation to
the means of normal populations; but no detailed investigation about the
procedures that achieve this goal is available in the literature. By
considering the complimentary subset that is not selected, the problem
in relation to Goal I is related to the corresponding prob- . . . '
lem where the t best populations are those with smallest parameter values.

In chapter' I we; formulatetthe: above prvoblem: alopgithellines 6f
Bechhofer (1954) and Bechhofer and Sobel (1954) and a preference zome in
the parameter space is pre-assigned. A single-sample procedure for selecting
the subset of interest has been proposed. The common number of observations
needed from each population for this procedure; so as to guarantee a pre-
assigned probability of achieving the goal, is determined. 1In the general
discussion the particular distributions which characterize the populations
are not specified; we merely assume that the statistics on which the pro-
posed procedure is based are such that their distribution functions form a

stochastically increasing family, when indexed by the parameter of interest.
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i
Using this assumption we determine the common number of observations
required per population, as a function of the underlying distributions.
These results are applied to specific populations in Chapter II.

Chapter III deals with some properties of the single-sample procedure
proposed to achieve the above goal. 1In particular an unbiased property
of the procedure with respect to the parameter values has been proved.
Further, considering the class of impartial decision rules along the lines
of Bahadur (1950), it has been shown that the proposed procedure is uni-
formly best in the class of impartial decision rules with respect to a
particular loss function. This:resultchas beenrpfovedlunder.the.assumption
that. therdensities of the statistics,. on which: the,decision rules..areibased,
possess:monotone likelihood ratio property.

Part II of this investigation deals with the problem of selecting a
subset of fixed size, where the subset size is to be determined as a
function of the size of the sample taken from each of the k given popula-
tions. The subset of interest is a subset which includes the t best popu-
lations. The solution to this problem is closely related to the solution
of the problem of selecting a subset of specified size which is treated
in part I. Here also a preference zone in the parameter space is pre-
assigned. The subset size is chosen so that the probability that it will
contain the t best Qopulations is not less than a pre-assigned number P*
for all parameter points in the preference zone; an application for this
type of problem is given. Proofs of certain monotone properties of the
sample size needed to achieve Goal I and its particular cases are included

and these properties are used to solve this problem.
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Part 1

A Problem Dealing with the Selection of Subsets of

Specified Size
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. Chapter '1

Formulation of the Problem and the Solution

1.1 Statement of the problem.

We have at oir disposal :'k 2”2 populationi :III,IIé.; G
i{%;ing;ﬁ characterized by a scalar measure 6. The population II () gen-
erates independent random variables xl, x2, eees each X having the same
distribution function P(X <Xx) = F(xle) say, and a set of X's which have
been generated by II is called a sample from the population. That is;, the
k given populations Hl’ Hz, ceey Hk are such that H 4 18 characterized
by the distribution function F(x|91), i=1,2,s005ke We assume that the
functional form of F is known. We also assume that the values of the real
valued parameters 61 are unknqwn; but it is assumed that 9; belong to a
space @ » Where 6 is a finite or infinite interval. Let
9[1] < 9[2] < eee < G[k] be the ordered 91. We assume that it is not
known which population‘is associated with G[i], 1 21,2,0005ke

Let c, s and t be integers such that max(l,s+t+l-k) < c < min(s,t);
this implies that max(s,t) < k-1. From the given‘set of k populations,
the experimenter is interested in the goal of selecting a subset of fixed
size s which should contain a certain subset of the t "best" populationms.
The t best populations are those t, whose parameter values are (say) the
largest. Here we consider the following goal.

Goal I. To select a subset of size s which contains at least ¢ of the
t best populations.

The problem is to devise a procedure with small fixed sample size which
guarantees a pre-assigned probability of achieving the experimenter's goal.

It should be noted (by comsidering the complimentary subset which is
not selected) that the above problem in relation to Goal I is logically
equivalent to the same problem in relation to the goal of selecting a subset
of size (k-s) which includes at least (k-t)-(s-c) of the (k-t) populations

whose parameter values are the smallest. In other words the solutions

-5-



(1.2.1)

(1.2.2)

to the above problem in relation to Goal I, for all admissible values of

¢, s and t (with fixed k) will provide solutions to the same problem

in relation to Goal II - to select a subset of size s which tontains at

least ¢ of those t populations whose parameter values are the smallest.
It should also be noted that Goal I reduces to the goal of selecting

the t best populations (in an unordered manner) when c=s=t., We formulate

the problem along the lines of Bechhofer (1954) and Bechhofer and Sobel

(1954) .

1.2 Formulation of the problem.
Let‘g denote the vector of ordered @-values viz., (9[1], 9[2], ...,O[k])
and let Q@ stand for the parameter space, which is the set of all admissible
vectors 3. Further let d(x,y) be a continuous non-negative real-valued
function defined for x >y where x and y are both real, such that d(x,y)=0
if and only if x=y. Further for fixed y, it is a strictly increasing
function of x and for fixed x, it is a strictly decreasing function of y.
To avoid trivialities, we also assume that d(x,y) can take on indefinitely
large values. We shall call such a function a distance measure. Let d*
be a specified positive number. The parameter space & is partitioned into

a "preference zone" Q(d*) defined by

%) = (6 1 d(Opy 1417 O[kee]) > )

and its complement Q(d*), the "indifference zone." The choice of the dis-
tance measure depends on the ciass of distribution functions
F= (F(*|8),6 €@) under consideration in a specific example.

In addition to specifying d¥, the experimenter also specifies another
positive number P* where P* < 1. Without loss of generality we can assume

that P* > P(c,k,s,t) (see the remark below), where

remmnr = (X7 (D)) -

i=c

-6-



Tl For all points'g in the preference zone the definition of a correct
selection (CS) is the obvious one, namely that the selected set includes
any subset, consisting of at least c of the t best populations (i.e.,
those populations with the parameters 9[k-t+1]’ e[k-t+2]’ ceey O[R]).
Any natural generalization of this definition of a CS in the indifference
zone will suffice but, since we are concerned with a CS only in the pre-
ference zone, we shall not specify any particular definition of a CS in

the indifference zone.

After specifying d* and P*, the experimenter desires to have a fixed
sample size procedure for which the probability of a CS satisfies the

condition
(1.2.3) P(cs|8) > p* for all B e Q(ax) .

Remark 1.2

If P* is smaller than the bound (1.2.2), we can satisfy the requirement
(1.2.3) by a random selection of the subset without taking any observations,
since the bound P(c,k,s,t) is the probability of a CS under a random selection
of the subset. Thus to make the problem non-trivial we have set the bound
on P*. Clearly we need ¢ > 1 to have a non-trivial problem. It should also
be noted that if ¢ = s+t-k then P(c,k,s,t) = 1 by (1.2.2) and hence for any
P* the requirement is again satisfied by a random selection of the subset
without taking any observations. Hence to make the problem non-trivial we
congsider only those values of ¢, s and t for which c > s+t-k+l; that is,

only those values for which P(c,k,s,t) < 1.

1.3 Proposed procedure Rs.
Given independent random variables {xij}, 13 1,2,000en; 1 21,2000,k

from the k populations IIi, let T, = T<x11”"’xin)’ i=1,2,.e0,k,be

i
independent random variables having density functions. Here n is some fixed

positive integer. Let the distribution function of T, be denoted by

i
-7-



Gn(-|91). The choice of the function T will depend upon particular cases.
Tl’ Tz’ coey Tk will be statistics relevant to the estimation of 91, 62, ceey

ek respectively. The existence of statistics Ti with the desired properties
is a basic assumption and this assumption will.have to be checked in any par-
ticular case. The proposed procedure is based on these statistics Ti'
Procedure Rs :

< < LN J < .
Let T[l] s T[z] < < T[k] be the ordered T The set of populations

i
corresponding to T[k-s+1]’ T[k-s+2]’ veey T[k] is the set to be selected.

Once the common sample size n is determined, the procedure R, is com-
pletely defined; our problem will be that of determining this sample size
so that the probability requirement (1.2.3) is satisfied. It should be noted
that the required n-value not only depends on the class of distribution
functions Gn(-|9), but also on the distance measure used in defining the
preference zone of the parameter space.

As to the existence of the required n-value one can argue heuristically
as follows: if T is a consistent estimator of &, then the largest T-values
will come from the populations with largest 6-values with a probability that
tends to one as n tends to infinity; Hence the probability of a CS, under
the procedure R.> will tend to one as n tends to infinity. In some of the
particular cases considered, it is shown explicitly that this is the case.
Remark 1.3

In practice we do encounter situations in which two or more T, may

i
be equal, even when T is a continuous random variable. In such cases the
equal T-values should be ranked by using a randomized procedure which
assigns equal probability to each possible ordering of those values.

A brief outline of the rest of this chapter can now be given: After
defining a stochastically increasing family of distribution functions,
we give some known properties of such a family. We prove a new result

concerning such a family, which is used to prove a theorem on the monotone

-8-



properties of the probability of a CS under the procedure Rs. In proving

this theorem we make the assumptions that T, are absolutely continuous

i
random variables and that the family 39 = [Gn(-|9) : 8 € @) of distri-
bution functions is stochastically increasing for all values of n. This

theorem is then used to determine the required sample size.

1.4 Stochastically increasing family of distribution functions.

Here we give the definition of a stochastically increasing family of
distribution functions and some examples of such families. Later we make

some remarks concerning the choice of the statistics T Let QE§ be an

i.
interval of the real line.
Definition: A family of distribution functions F = (F(:|6) =Fy(+) : 6 € @)

on the real line is said to be stochastically increasing (SI) if

(1.4.1) o< 9'::>F9.(x) < Fy(x) for all x, with strict inequality holding for
' some Xe

The family is said to be strictly stochastically increasing if
1.4.2) 6<e =Fge (x) < Fg(x) for all x.

I1f the distribution functions of the random variables X and X' are

Fe(-) and Fe'(‘)' respectively, which satisfy (l.4.1) then
(1.4.3) PX > x) SPEX' >x) for all x.

In this case the variable X' is said to be stochastically larger than X.

A set of necessary and sufficient conditions for (1l.4.1) to hold for
two given distribution functions is given in lemma 1.5.1.

One of the simplest examples of an' SI family is-any:location parameter

family, that is, a family Fe(x) such that - ®« < 8 < » and
(1.4.4) Fe(x) = G(x-8) for all x,

where G is some distribution function. Another example is any scale parameter

-9- O



family having the interval (0O,a) as the support, where a is allowed

: tordepend on "8 or it may bé infinite;,i.es,, a-:family ' Fylx) ~such’ that
6 >.1'.O.;F..AEé((.))‘ =.0¢ and: . i T ane o )

where G is some distribution function. A third example is any family of
distribution functions whose densities possess the monotone likelihood
ratio property.

Remarks about the choice of T.

Whenever a sufficient statistic for € exists, which has fixed dimension-
ality for all n, then the proper choice of T is some appropriate function
of the sufficient statistic. The choice of T becomes a problem only when
such a sufficient statistic: does not exist. We are mainly concerned with
a property of the family of distribution functions E; « We would like
to choose the function T such that the induced family S; is stochastically
increasing for each value of n. A sufficient condition for this is that
T possess the monotone likelihood ratio property.

Special remark.

There are cases of interest where the distribution function characteriz-
ing IIi involves a nuisance parameter. The results to be proved will also

apply to such cases, provided the distribution of T, depends only on 6

i i
(not on the nuisance parameter) in addition to the properties mentioned in
the previous paragraph. For the purpose of simplicity (with slight loss
of generality) we have assumed that the function F involves a single
unknown parameter €, but we also give some examples which involve nuisance

parameters.

1.5 Some properties of a stochastically increasing family of distribution

functions.
We shall need some properties of a stochastically increasing family of

distribution functions. First we give some known results (lemmas 1.5.1 and

-10-
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1.5.2) without proof and then we use them to prove a new result (lemma

1.5.3).

Lemma 1.5.1

Let Fo and F1 be two cumulative distribution functions on the real

line such that Fl(x) < Fo(x) for all x. Then there exists two non-decreasing .
functions g, and &8s and a random variable V, such that (a) go(v) < g, (V)
for all real v and (b) the distribution fuﬁctlons:ofwthe:vériéblesEéaIV)
and gl(V) are Fo and Fl

The proof is given in Lehmann (1959, p. 73).

» respectively; the converse is also true.

As a consequence of the above lemma we get the result:

"1f F, and F, are two distribution’funétdons onuthe real: liné isuch-thatot
Fl(x) < Fo(x) for all x, then EOW(X) < Elw(x) for any non-decreasing
function V."

The proof of this result is simple; in fact it is a problem in Lehmann
(1959, p. 112). This result can be generalized in the following manner.
Lemma 1.5.2

Let F(x|9) = Fg(x) where 6 € 3, be an SI family of distribution
functions on the real line. If ¥ is any non-decreasing (non-increasing)

function of x, then E9¢(X) is a non-decreasing (non-increasing) function of

6.

Lemma 105031-

Let F(x|9) = Fe(x) where 8 € ® , be an SI family of distribution
functions on the real line. Let Xl, xz, ceey xk be independent random
variables with distribution functions F(x1|91), F(x2|92), cany F(xklek),
respectively. For any fixed 1 (1 = 1,2,.44,k), if ¥ = $(x1,x2,...,xk)
when all x, for

i 3
j # 1 are held fixed, then EW(XI,Xz,...,xk) is a non-decreasing (non-

is a non-decreasing (non-increasing) function of x

-’-
After obtaining this lemma, I learned that Alam and Rizvi (1965) have

independently derived a similar lemma.
-11-



f increasing) function of 6,.

Proof:

k
(10501) EWF(XI,XZ,...,Xk) = ﬂ iHIdF(xilei)

Tk
- \/P[\/;up(xilei)] }lidr(xj|ej).

3

Since ¥ is a non-decreasing (non-increasing) function of x, when all xj

for j # i are held fixed, from the lemma 1.5.2 it follows that

(10502) E{\V(Xl,xz,..-,xkﬂxl,xz,...,xi_l,xi+1,...,xk] = ﬁdF(xilei)

is a non-decreasing (non-increasing) function of 91. Since this holds for
each value (xl,xz,...,xi_l,xi+1,...,xk), the right hand member of (1.5.1)
and hence E¥ is a non-decreasing (non-increasing) function of 91. Since
this holds for each fixed i, the lemma follows.

This lemma is used in proving a theorem, dealing with some monotone
properties of the probability of a CS,.in the next section.

1.6 Probability of a correct selection and its infimum.

In this section we determine the infimum of the probability of a
correct selection for Goal I when the procedure Rs is used. Using this
infimum we shall determine (in the next section) the required common

sample size.

Let Y, be the statistic based on the sample from the population with

i
the parameter 6[1], i=1,2,ce05ke That is, the set (Yl, YZ’ ceey Yk) is

same as the set (T, , T, , ¢+e, T, ) where (J;» jos eeey i, ) is some per-
i 1° 72 k

i 1

mutation of (1,2,...,k). Qur procedure Rs is based on the statistics
Tj and hence it is based on the statistics Yi' We make the following
assumptions.

Assumption 1l.6.1: -The statistics Yi(i = 1,2,...,k) are absolutely continuous

-12-



random variables.

s

Assumption 1.6.2: The family of distribution functions f; = {Gn(.le) :0€Q)
is an SI family for each positive integer n.
First we shall prove the following
Lemma 1.6.1
{cs} = (B largest of (¥, . 15 Y o100 +oos ¥) ™ (8-c+1)2E largest of
(¥ys Yy oo Y )]

Proof:

{cS} = {among the s largest of (¥y5 Y5 +ees Y, ) there are at least c

of (e p1® Yioeaz **r Ni))

min(s,t)

B LJ {among the s largest of (Yl’ Y,s +ees Y ) there are

jﬁc exactly j of (Yk't+1’ Yk't+2’ ceey Yk))

nt

l {at most (S'C) of (Y1’ Y2, veey Yk'

t) are greater than the
d—tll- 1argest Of (Yk-t"'l’ Yk't‘i'z’ as ey Yk)]

{at least (k-t-s+¢) of (Yl’ Yyo vees ¥ ) are less than
th -t
the ¢ largest of (Yk"t"'l’ Yk't"'Z’ vooy Yk.) ]

= [ th st
& {c™ largest of Ve Yk-tfe’ cees V) > (s-c+l)— largest

of (Y15 Yo eovs Y )}

This completes the proof of the lemma.
From the lemma, it follows that the probability of a correct selection

->
at the parameter point 6 is given by

(1.6.1) P(c5[6) = PR 1argest of (¥, ., Y,) > (s-c+1)%E largest of

Ye-pa1? oo
(s Yo ooes [ P,

-13-



: where Y ,...,Y, is a sét of: independent: random variables such that the

distribution function of Y, is Gn(- 0[1]). i=1,2,.0.,k.

i
We shall now prove a theorem giving some monotone properties of
P(Csfg), which is a function of the ordered 6-values.
Theorem 1.6
Under the assumptions 1.6.1 and 1.6.2, the é(csl3) is a non-increasing
function of ka] @ =1,2,...5k-t) and a non-decreasing function of G[B]
@B = k-t+l, k-t+2, ..., k).
Proof:
By (1.6.1) the set of points in Rk where a CS occurs is the set
{(yl, Yy sees yk) : u < v) where u and v are, respectively, the (s-c+-1)EE
largest of (yl, Yor see» yk-t) and the cEE largest of (yk_t+1, Yg-t42® °°°?

v ). 1f ¥ is the indicator function of this set, then
-
(1.6.2) P(cs|9) = E¥(Y), Yys oees Y )e

It is easy to see that u is a non-decreasing function of xzﬂx = 1,25000,
k-t) when all yi'ﬁor i # @ are held fixed and also that v is a non-decreasing
function of ys (B = k-t+l, k-t+2, ..., k) when all Y for m # B are held
fixed. Hence V is a non-increasing function of Vo @ =1,2,000,k-t) when
all other y's are held fixed and it is a non-decreasing function of Vg
(B = k-t+l, k-t4+2, ..., k) when all other y's are held fixed. By applying
the lemma 1.5.3 to the function V¥ we obtain the desired result.

This theorem represents a valuable tool in obtaining the infimum of
P(CS'E). It forms one of the key results of this investigation.
Remark 1.6

When the assumption 1.6.1 is not satisfied, we transform the
statistics of discrete type into statistics of continuous type. Section
2.8 deals with such a transformation.

From the theorem it follows that for any subset ® of the parameter space?T\

-14-



whiel has tne siruciure of an ordercd subset..of a cartesian product of k
identical scets (%

(1.6.3) inf P(CS|®) = inf P(CcS|P)

-p

6 ew Be m(e,eo)

where m(G,GO) is that set of pointslg € w, for which

(146:4) Bp1y =051 =+ =01 = % (say), Olk-e41] = Oli-ea2] = 00 = Opi) = O (5a)-

o are arbitrary values such that 6 > 90 and both belong to @ .

A configuration of the parameters 91, 92, coey ek for which (1.6.4) holds

Here 6 and ©

is, sometimes, called a generalized least favorable (GLF) configuration.

The P(CS|3) for the GLF configuration (1.6.4) is given by

(1.6.5) P(6,6,) = f U(xleo)dv(x|9) = f[l-V(xIG)] dU(xIGO) ,

where U(-IGO) is the c.d.f. of the (s-c+1)§£ largest of (k-t) independent
random variables, each having the c.d.f. Gn(°|90) and V(-|6) is the c.d.f.

of the cEB largest of t'independent random variables, each having the

c.dofo Gn("e)o That 18

8=C
(1.6.6) U(x|6,) = Z (k&“ ) c';""a(xleo)[1-cn(x|60)]°‘ = 1le_(x]8y); ', s-ctl]
a=0

and
t-c
1.6.7)  v(x|o) = z (;)cﬁmle)u-cncxle)]t‘“ = 1le (x[6); t-ctl,cl,
o=0

where
X
(1.6.8) c' = k-t-stc and I(x;p,a) = L (p») = [B(psa)] ™" f Pl 1-t) 3 Lae.
0

Since Gn(xleo) is a non-increasing function of 8. for each x, from

0

(1.6.6) it follows that U(xleo) is a non-increasing function of 90 for

-15-



;: each x. Thus P(G,GO) is a non-increasing function of 90 for fixed 6.

Infimum of P(cslﬁ) over the entire parameter space {

From (1.6.3) and (1.6.5) we have

(1.6.9) _inf P(cs|®) = inf P(6,6,)-
B en ((6,6,) ;eee@,e>90]

Since P(G,Go) is a non-increasing function of 90 for fixed 6 we have

(1.6.10) ng P(cs|8) = inf P(6,6)
B e 6e®

‘inf f 1lc_(x|9); c',s-c+1ldilG_(x]|6); t-c+l,c]
0 e@® . n n

1
= Jf Iy(c’,s-c+1)d1y(t-c+1,c) = J(c,k,8,t) (say).
0

Lemma 1.6.2
J(cyks8,t) = P(csk,s8,t); where P(c,k,8,t) is defined by (1.2.2).
Proof:

By expressing I(y;c',s8-c+l) as a finite series, we have

8~-C 1
(1.6.11) J(c,k,8,t) = Z (t_c)f‘(c_m s‘_‘;'_‘D f g8 15y 831y
j=0 0
8
- z t! (k-t)! . (k-s-c+i)!(st+e-1-1)!
(t-c) Y (c-1)7 ~ (s-1)« (k-t-s+i)s k.
i=c
( > Z (s+c-i- ><k-s c+i>

i=¢c

()Z( ()
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Let X denote the number of red balls in a random sample of size s chosen,
without replacement, from an urn containing k ﬁalls of which t are red.
Also let Y denote the number of balls needed to be drawn without replace-
ment from the above urn so as to include exactly c red balls in the sample.

Now it is easy to see that

(106012) P(c’kgsgt) = P(X 2 C) = P(Y S 8)

£ () ren
"L TH

& k ) * k-1l
-3 (/)

The lemma follows from (1.6.11) and (1.6.12).

Using the lemma, from (1.6.10) we obtain

(1.6.13) inf P(CS|®) = P(c,k,8,t).
Teq

AN

Infimum of P(Cslab over the preference zone Q(d*) [See (1.2.1)]

From (1.6.3) and (1.6.5), for any distance measure d we have

(1.6.14) inf P(cS|B) = inf P(6,6.),
Ge q(ax) ((9,8p) : 6,8,€©,d(6,6,) > d¥) 0

From the monotone properties of the distance measure d (see section 1.2)

and of the function P(G,GO). it follows that for fixed ©

(1.6.15) inf P(6,6,) = P(6,6') =Q(8,n) (say),
) ENCICATS) > a*

where 8' is that function of © determined by d(6,6') = d*. Hence
(1.6.16) inf P(CS|®) = inf Q(O,n).
Be Q(ax) 0@

-17-



:_; Using (1.6.6) and (1.6.7) in the first expression for P(6,6') (see 1.6.5)
H A
we obtain
= (1.6.17) Q(6,n)
u; s-c 1
-t k -t~ a ' a t- c c=-
x| 6 - -
ol
(- -}
= Jr I[Gn(x|9°); c',s-c+1]dI[Gn(x|9); t-c+l,c].
e =00
o Using the second expression for P(6,6') .in:(1.6.5) we obtain
el (1.6018) Q(G,n)

(k-t). t- a c'-1 "\F1o v\18-¢C
- = Gy D Z ( )fc x|6)1-c <x|9>1 6. "t (x|e"HI1-6_(x|6")]1% ae_(x|6")

- = ‘/h{I-I[Gn(xIG); t-c+1,c]}dI[Gn(x|9'); c'ys-c+l].

=00

The infimum of Q(6,n) over admissible values of 6 is not easy to
- obtain in general. In each particular case we need special analysis to

obtain this infimum. But when 6 happens to be either a location parameter

-
or a scale parameter for the family of distribution functionssg » this

u; infimum can be obtained "automatically,” i.e., without any further analysis
by adopting a suitable definition of the distance measure. In each of the

bt other particular cases considered in chapter II we determine this infimum
explicitly.

g}
1.7 Determination of the required sample size.

_; The required sample size is the smallest value of n for which

P B
("]



k)

-

‘4(1.7.1):% inf P(CS|®).= inf Q(8,R)i> Bk, .

e (d¥*) e

where Q(6,n) is given by (1.6.17) or (1.6.18). Let us denote the infimum
of Q(6;n) by H(n;d*)irIfjH) is a non~-decreasing function of n, then the
required sample size is the smallest integer not less than the solution of

the equation

(1.7.2) H(nyd?) = Proiray o oo,

In such a case the required sample size is unique. Further if the limit
of H(n), as n -+ », is one then a solution for (1.7.2) exists for any
specified P#* < 1.

Remarks on the need and definition of the preference zone -

Now we can answer the question - why we restrict our attention to the
preference zone in writing the probability requirement (1.2.3)?
If there were no such restriction, then the sample size necessary is

the smallest integer value of n for which

(1.7.3) _éi.nf P(CS|) > p*.

€9

We have shown that the infimum of the P(cslﬁ) over Q is P(c,k,8,t), which
is the lower bound for P* regardless of the sample size. Thus without the
restriction to the preference zone, we cannot achieve our goal however
large our sample may be.

The choice of the preference zone is equivalent to the choice of the
d-function. This choice is governed by the behavior of P(9,6°) as a
and 8' = 6

function of 6 = 6 The behavior of P(6,6') depends

(k-t+1] [k-t]®
on the form of Gn('|9)o It should be noted that in some problems, it is
sufficient to define the preference zone through one restriction such as

d(e[k—t+l]’ e[k-t])‘z d*, whereas in other problems it mayube:desirable to
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: introduce more than one restriction. One such example is the problem
where 6 is the mean of a Poisson population (Sobel 1963).

The particular definition of the distance measure given in any specific
case enables us to determine explicitly the infimum of P(O,é'). In some
cases obtaining this infimum may not be a simple matter and may even have
to be obtained by numetrical methods. One such example is the problem where
8 is the probability of success for a Bernoulli variable; this problem,
for the case ¢ = 8 =t = 1, is considered by Sobel and Huyett (1957).

We shall now see how the equation (l1.7.1) simplifies in the cases
when 0 is either a location or a scale parameter for the family fg .

Case (1) © is a location parameter for the fam11y§3

In this case we have that for all x
(1e7.4) Gn(xle) G, (x-6), where G_(x) = Gn(x|0).

Using (1.6.7) and (L.6.8) in (1.6.6) and transforming the variable of

integration, we.:have

-]

(1.7.5) P(6,0.) = Ph((d) =[ I[Gn(x+d); k-t-s+c,s-c+1]dI[Gn(x); t-c+l,c]

where d = 9-90. Since .Pn(d)n dependsrdnre;ebl only. through d, weé .define

the “datural': distande measure for:-sucli.a problem as - : .10
(10706) A d(a,b) = a=-b.
It is easy to see that

1.7.7) L inf P(CS|P) = inf P (d) = P_@%) = H (njd¥): (say).
¢ 6 €Q(d*) dzda* ™ n g

Hence the equation (1.7.1) reduces to

(1.7.8) HL(n;d*) z p¥,

-20-
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where H.L ... can be expressed in any one of the following equivalent forms.

(1.7.9)

) s§~C [ ]
Hy (n;d¥) = (t_c'):g(c_l)ﬁ.Z (“&t) f G:-t-a(x«i*)[1-Gn(x+d*)]aG:-c(x)[l-Gn(x)]c'ldcn(x),
a=0 -

==fI[Gn(X+d*); c',s-c+1]dI[Gn(x); t-c+l,c]

=00

. t-c g |
) ]
Srev Z(;) f Gz(x—d*) [1"Gn (x-d%)] t-aG: . )l 1'Gn ()] s_chn )

= (s-c)t(c'-1).
O=0 -0

nf{l-I[Gn(x-d*); t-c-i-l,c] ]dI[Gn(x); c',8-c+l].

Case (11) © is a scale parameter for the family ﬁ

In this case we have that for all x
x
(1.7.10) Gn(xl 6) =G, ( 5) » vhere G_(x) = Gn(x|1) and G_(0) = 0.
By transforming the variable of integration we obtain
o0
(1.7.11) P(G,GO) = Pn('d‘l) =fI[Gn(x'di); k-t-s+c,s—c+1]dI[Gn(x); t-c+l,c]
0
where dl = 9/90. Here we define the distance measure as
(1.7.12) d(a,b) = a/b.

Now it is easy to see

107013 if Pcs-é =if P di = P d* = H ;d* .
( ) Be :(d*)( 19 a{;_d* o(dy) = B (%) = H (n;d%) (say)

Hence the equation (1.7-1)' reduces to
(1.7.14) Hg(n3d¥) z.p¥.

=21~
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We can obtain the various (equivalent) expressions for HS' " from those
of HL’~‘ by changing x+d* to xd*, x-d* to x/d* and changing the lower

limit of integration from -« to 0. That is

(1.7.15)Hg(m3d%)e = c) T }:(% €>‘/\ Ko ray [1-6 (xa) 1% ¢ (o) [1-6_ ()1 P ()

=L/\I[Gn(xd*); c',s-c+1]dIIGn(x); t-c+l,c]
0

<s-£‘§"é?='-n.2 ()f @) o < one 2017746, ()

=u[‘{1-I[Gn (ﬁ% 3 t-c+1,c]}dI[Gn(x); c',s8-c+l]. -
0

In the sequel we shall write HL(n), Hs(n) for HL(n;d*), Hs(n;d*).
1.8 An approximation to the solution of the equation (1.7.2).

We now make the following assumptions:

(1) inf Q(6,n) = Q(6,,m),
€@

(ii) The inverse function G;l exists. That is, given any y such that
0 <y <1, there exists a unique x such that Gn(xle) = y. We shall
denote such an x-value by G;I(YIG).

Now from (1.6.17)

(1.8.1) H(n) = inf Q(6,n) = Q(6, ,n)
e 1

% 1
b/‘1[c (xle ), c',s-ctlldrle (x|9 ), t-ctl,c] =‘/~b(y)dI[Y; t-c+l,cl,
-00 0

where b(y) and\ﬁi;gre?defineé by
(1.8.2) , b(y) = Ifa(y,n); ¢',s-c+l] and d(q_,e') = d¥,

‘i « The function a(y,n)cisigivéd by-thé relation

(1.8.3) a(y:h) = G [G (y[e )]e ] 2w vedi

e 4

‘1‘ RER A 4
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We can regard H(n) as the expectation ot the function b(Y) of the random
variable Y which has the beta distribution with parameters t-c+l1l and c.

Replacing Y by EY in b(Y), we obtain the approximation

t-C+1) .

(1.8.4) H(n;d¥) = b(EY) = b(=g7

Thus an approximation to the solution of (1.7.2) is the solution of

t-c+1
(1'8'5) a(t—ﬂ_"sn) = a*’
where a* is determined by the relation

(1.8.6) 1 *(k-t-s+c,s-c+1) = p¥,
a

1.9 Particular cases of goal I which are of special interest,

Two particular cases of goal I,corresponding to ¢ = t when s 2 t and
c = s when s £ tyare of special interest. These are the following goals.

Goal 1: Selection of a subset of size s which includes the t best populations,
where s 2z t.

Goal 2: Selection of a subset of size s which includes any s of the t best
populations, where s £ €.

It should be noted that these two goals coincide when s = t. Then the common goal
is the selection of the t best populations (without ordering). The solution
to the (basic) problem in relation to goal 1 is used to obtain a solution to
another problem, which is considered in part II of this investigation. The |
solutions to the problems, when the above goals are of interest, have been
mentioned earlier by the author in an abstract (1965).

We shall now give the final results for these particular cases since
we will be using them later.
Goal 1:

Here the lower bound for P¥ is (S:E)/(r). Selection of a subset which
includes the t best populations (those with parameter values e[k-t+1]’ e[k-t+2]’
vens G[k]) is a correct selection. Now the sample size needed to achieve this

goal, when the procedure Rs is used, is the smallest value of n for which
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:511‘9:1) ég% Ql(esn>‘ 2 P¥
where

(1.9.2) Q(6,n) = (11:::) [:[1-cn(x|e)]°[1-Gn(x|9')]S'td[c;:'s(xw')]

[: {1-I[Gn(x|9);1,t]] dI[Gn(xle');k-s,s-t+1].

Here 6', as a function of 6, is determined by d(6,0') = d*.

Goal 2:
In this case the lower bound to P¥ is (:)/(E). ‘8electing
any subset of size s of the t best populations constitutes a correct

selection. The sample size necessary is the smallest value of n for which .

(1.9.3) ggf@ Q,(6,m) = P+

_where

(L.94)  Q(0,m);

]

t! 0 k-t , t-s s-1
sre=yT Lo Cu(xl67)6 (x| O) 16 (x]0)1° ac (x]0),

[: I[Gn(xle');k-t,ll dI[Gn(XIG);t-s+1,s].

Here a}so 6' is determined by the relation d(6,8') = d*.

It is easy to see that Goal I is less '"stringent" than both « .
Goal 1 and Goal 2. . So one expects that,for fixed c,k,t,P* and d¥,the
sample size necessary to achieve Goal I will be smaller than the sample
size necessary to achieve Goal 1 (if s 2:'t) or Goal 2 (if s s t), -
We now prove a general result from which this result follows immediately.
Let n(c,s) denote the sample size necessary to achieve Goal I.

Theorem 1.9.1

For fixed k,t,s,P¥,d¥ and for any distance measure

(1.9.5) n(c+l,s) 2 n(c,s),

provided c+l = min (s,t), i.e., provided Goal I is meaningful with ¢

replaced by c¢ + 1.
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s Proof

In order to prove the theorem, it is sufficient to prove that, for

fixed (but arbitrary) values of n and 6, the Q function satisfies the inequality

(1.9.6) Q(c,s) 2 Q(c+l,s).

Here Q(c,s) is the function Q(6,n) which is the P(Cslgv at the GLF

configuration,

8';0 iee =6, =0,

(191 8113 = 021 = -+ = Oce] = ©"50e1] = Ofierse) =

(k]

where d(6,0') = dx,

Let Yl’ YE’ seey Y be independent random variables each with the

k-t

.+s Y be independent random variables

k

0). Further let the two sets of variables be

) 1
c.d.f. Gn(-le ) and Yk-t+1,Yk~t+2’

each with the c.d.f. Gn(.

independent of each other. Then

Q(8,n)

P[c-EB largest of (Y

(1.9.8) Q(c,s)

li

coY, ) > (s-cr1)2E largest of (Yl,...,Yk_tQ].

k-g+l’” k)

It is easy to see that

(1.9.9) [(c+1)2E largest of ( Yk) > (s-c)E-lrl largest of (Yl""’Yk-t)]

Ypt17e 00

Tf}[ogk largest of (Y LY ) > s-c+l)~s--E largest of (Y.,...,Y 1.
‘ T k 1 k-t

k-t+1°°°

Hence, from (1.9.9) and (1.9.8), we obtain

Q(c+l,s) = Q(c,s).

This completes the proof of the theorem.
From (1.9.6), since c s t £ s for Goal 1 and ¢ S s s t for Goal 2

we obtain

(1.9.10)  ;(8,n) = Q(t,s) < Q{c,s) when s > ¢,
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< and

(1.9.11) Q2(6,n9 = Q(s,s) = Qc,s) whens s t.

Thus from (1.9.10) and (1.9.11), we have the following .

Corollary 1.9.1

For fixed c,k,t,P¥,d¥* and for any distance measure
(1) n(e,s)

(ii)n(c,s)

nl(s) S

A

A

ng(s)
where ni(s) is the sample size necessary to achieve Goal i (i = 1,2)...

Some more results of this type will be proved in part II of this
investigation,

1.10 A sufficient condition for the existence of the .required sample size.

We know that the required common sample size is the smallest value of -
n for which
(1.10.1) inf Q(8,ny = P,
Oe@

where Q(6,n) is P(@S[g) at the GLF configuration given by (1.9.7).
The solution of the above equation exists provided the left side of (1.10.1)

tends to 1 as n o, We shall now find a sufficient condition for the same.

We make the assumption that the infimum of Q(6,ny is its value at 91. Then
(1.10.1) will reduce to
(1.10.2) Q(el,n-); 2z P¥ ,
Now
(1.10.3) Q(ela“7:
= P[t:-EE largest of (Yk-t+1""’Yk) > (s-c+1)££ largest of (Yl,?..,Yk_t)]

z P[min(Yk 1,...,Yk) > nax(Yl,..-,Yk_t)]:

-t+

where Yl""’Y are independent random variables each with the cadif.

k-t

Gn(-|6i) and Y are independent random variables each with "

ket+1%°° 20k
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. . S the . c.dif.: Gn(.|61); The two sets of variables are independent sets.

Here 6] is determified by the relation a(él,e;) = d*;. From (1.10.3)) we have

(1.10.)4') l-Q(el,n) é 1 - P[min(Yk_t+1,...,Yk) > mx(Ylgoo',Yk-t)]
- - n i = k t ’ll.’k
=1-Pl s B >Yd e,k
= P[Hj (¥, <Yj]]
s = P[Y <Y] = t(k-t) P[Yk<Y1].
i,j
It is easy to see that
(1.10.5) lim P[Yk<Y1] = 0 = lim 1-Q(91,n') = 0 = lim Q(Gl,n)- = 1.
N~y n—ow n—>co

Hence a sufficient condition for the existence of the required sample size is
(1.10.6) lim P[Yk < YI] = 0.
n—o

EGIEE ST o
It may be interesting to find a sufficient condition for (1.10.6)

to be true. One such condition is given below. Now

(1.10.7) PlY, <Y;] = P(z < -a],
(Y ) - E(Y, -Y.) E(Y, -Y,)
where Z = k 1 and a = k 1

JVar(Yk-Yls JVar(Yk-Yi)

we have Gn(.|el) s Gn(olel') = E(Yk) 2 E(Yl). Thus

.

]
Since 61 > 91,

a is non-negative. Now by Chebyschev's inequality we have from (1.10.7),

(1.10.8) P[Yk<Y1] = P[z< -a] sP[|z| >a] = -;15 .
Thus A
(1.10.9) 1im —12- = 0= lim P['fk < Yl] = 0,
n—c a n—oo

i.e. ‘A /sufficient condition for (1.10.6) to be true is

»
\
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& ©° i . 1

. I

3

3 (6,) + uy(8!)
(1.10.10) lim 2271 T HatT
e T (@) - w(OD P

It
@]

where p.i(e) and p.e(ej are the mean and variance of the distribution with

c.d.f. 6 _(.|0).
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Chapter II

Applications to Specific Distributiong

2.1 Summary.

In this chapter we consider the problem in relation to various specific
families of distributions such as Normal, Gamma, Rectangular, Cauchy, and
Poisson. That is, assuming that the distributions (which characterize the
populations) belong to a specific family we obtain the equation, whose
solution gives the required sample size. For the case of normal distribu-
tions two tables giving the values of A(= d*/n /o) have been prepared and
are given at the end. From these values one can obtain the required sample
size. For the cases in which the statistics (on which the procedure is
based) are asymptotically normal, we give an approximation to the infimum
of PCS. This approximation has been used to obtain an approximation to the
required sample size. In the first seven sections we consider continuous
distributions. In the last section we consider the problem in relation
to Poisson populations. i

2.2 Normal populations with unknown means and common known variance.

Here we assume that the populations under consideration are normal

so that
(x-9) /o

(2.2.1) F(x|6) = o[ (x-0)/c] = ¢ (y)dy

(2.2.2)

where ¢(+) and ®(+) are respectively, the density and the distribution
-functions of the standard normal distribution. We further assume that the
varfances are all equal and ‘the common value tJ'2 is known. We;iase our

procedure on sample means, i.e.,

T, =T Z Xy, =L2,e00).
j=1

Now, for each i (1 = 1,2,...,k) we have

-29-



*s

P

Py

F @2 g6 = Bl Sl = ol -0,) Ja ol

It is easy to see that O is a pure location parameter for Gn('le) and

we use the distance measure defined by
(20204) d(x’y) =X -Y.

In this case HL(n), as defined by (1.7.9), reduces to

[

(2.2.5) HQ) = H, (n) =~/mi[°(x+h); ¢',8-cHl]dI[®(x); t-c+l,c]

1
a‘/pI[a(u,l); c',s-ctl]ldIfu; t-c+l,cl,
0

where

(2.2.6) a(u,\) = °[®-1(u)+l],l = (d* /n)/o and ¢' = k-t-s+c.

Here °-1(°) is the inverse function corresponding to the function @(-).

As n increases M increases, so that H(A) increases with n. Further we have
1
(2.2.7) 1lim H(}) =L/\11(C',s-c+1)d1 (t-c+l,c) = 1.
u
)
0
Thus the requifed sample size is the smallest integer greater than or

equal to
(2.2.8) :no = (o/ar)?,

where M is the root of the equation
(2.2.9) HQ\) = P*.

Since H(A) * 1 as n * », the solution of (2.2.9) exists for any P* <1
and it is unique since H is an increasing function A,

An approximation to the solution of the equation (2.2.9).

An approximation to the solution of the equation (2.2.9) can be
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:3 abtained from the results of section 1.8. 1In this case the approximation
is

1 t~c+1

-1 -
(2.2.10) Ny =0 (a%) - & 1| >

where a¥* is given by the equation
(2.2.11) Ia*(c',s-c+l) = P¥,

Now we prove a result, which will be used to show that Kl is smaller

than the solution of the equation (2.2.9) in some cases.

Lemma 2.2,1

For each value of A and for ¢' = 1,

t-c+1

—-E:i— . C',S—C+1].

(2.2.12) H(A) < I[a

Proof:

The required result can be viewed as
(2.2.13) El[a(U,\); 1,s-c+1] < I[a(EU,N); 1,s-c+l],

where U is a beta random variable with the parameters t-c+l and c. To

prove (2.2.13), it is sufficient to show that, for fixed but arbitrary

value of A, b(u) = I[a(u,\); 1l,s-c+l] is a strictly concave function of u
on (0,1). To show that b(u) is a concave function on (0,1), it is sufficient
to show that b(u) is negative on (0,1). Let us denote a(u,\) by a(u).

du®
On differentiating b(u) we obtain

CIERTHRRE I L A
and

(2.2.15) d::g‘) S L [{1-a<u)}s'° S%“—) (s-¢) (1-a(u))®~e"t [ dalu) 2]

Further we have
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&

and

(2.2.17) iaii—“—) = -[>\.¢[¢-1(u)+%.]]/[¢{¢—1(u)}]2 <0, foro0<u<1,
du

Also for 0 <u < 1 we have 0 < a(u) < 1 and this implies that

2
(2.2.18) (s-c)[l-a(u)}s-c'1 E%éﬂl > 0, since s > c.

Using (2.2.17) and (2.2.18) in (2.2.15), we obtain

2
(2.2.19) ) <6, foro<u<i.
du®

This completes the proof of the lemma.

From the lemma, whenever ¢' = 1, we have
(2.2.20) H(xl) < I[a t_;%l | s 1,s-c+1] = P*,

Since H(\) is an increasing function of A, from (2.2.20) it follows that
the solution of (2.2.9) is larger than N> when c' =1,
Recently in his thesis, Milton (1965) gave a table of the values of

H(A). 1In his notation the equation (2.2.9) becomes
(2.2.21)  P(c;s,k-t,t,\) = P*,

That table gives the values of P(c;s,k-t,t,\) to 6 decimals, for
1<t<k-tXTand t=1, k-t = 8(1)12; s = 1(1)[(k-t)/2], c = 1(1)¢t;
and A = 0(*2)1,1.5,2,3. Using suitable interpolation one can get the
solution of (2.2.21).

Sample size determination for goals 1 and 2

As these two goals are of special interest we give the equations that
determine the sample sizes necessary to achieve these goals., It may be noted
that there is a relationship between the sample sizes necessary to achieve

these two goals.
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L Goal 1

The sample size necessary to achieve this goal is the smallest integer

greater than or equal to
(2.2.22) n = (No/d¥)2,

where A is the solution of the equation
(2.2.23) Hl(k) = P¥,

Here Hl(x) is the value of H(A) as given by (2.2.5), when c = t, That is

(2.2.24) Hl(x) =\/p1[¢(x+K);k-s,s-t+l] di[o(x);1,t]

-00

=k]p{1-I[¢(x-k);l,t]]dl[¢(x);k-s,s-t+1]

[+ ]

(s-cglffﬁﬁ.n: f 0% () [1-0(x) 1 0%~ (x)p(x) ax.

-0

In obtaining the last expression from the second one we used the relations

o(x) = o(-x), ®(x)

the special case k

1 - &(-x) and Ix(p,q) =1 - Il_x(q,p). This problem for

3, t=1and s = 2 was considered earlier by the author
and the result was mentioned in an abstract (1964).

Goal 2

Here the sample size necessary to achieve this goal is the smallest

integer greater than or equal to
(2.2.25) n, = (Ao /d*)2,

where A is the solution of the equation
(2.2.26) He(h) = P¥,

Here He(k) is the value of H(A) (as given by 2.2.5) when ¢ = s. That is
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. e(5.2.27) H, (M) nu/Mi[¢(x+A);k-t,1]d1[¢(x);t-s+l,s]

= T Ee! f oF ) [1-00 1% 10 P (1) o (mpa.

-00

This goal was suggested by Sobel (see the footnote on page 22 of Bechhofer

1954) but no details were given.

Relationship between the sample sizes necessary to achieve the goals 1 and 2.

Comparing the third expression for Hl and the second expression for
Hz, it is easy to see that equivalent expressions for HZ can be obtained from
the equivalent expressions for Hl by changing s to k-s and t to k-t. Thus
if Xl(s,t) and lz(s,t) are, respectively, the solutions of the equations

(2.2.23) and (2.2.26), then
(202028) )\2(3’ t) = 11 (k‘s,k't)o

If nlo(s,t) and nzo(s,t) are respectively, the sample sizes necessary to

achieve the goals 1 and 2, then
(2.2.29) ‘ni(s,t) < nio(s,t) < ni(s,t) +1,

where
(2.2.30)  n,(sst) = (A (s,t)0/d%)%, 1 = 1,2,

Further from (2.2.28), (2.2.29) and (2.2.30), we obtain
(2.2.31)  n, (k-s,k-t) < n,(sst) < n, (k-s,k-t) + L.

Thus for a given set of k and P* values, a table of ll-values alone, con-
sidering all admissible s and t combinations, will provide solutions to the

equation (2.2.26).

Table 1

Table 1 gives the values of ll for some values of k,s,t and P*., These
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N values are obtained in the following manner:

From the third expression for Hl(h), we obtain

(2.2.32) Hl(hl)

0

- ey f 0% (xih ) [1-0(x) 157521 (1-0(x) 1 1% (x) ax

- = tgkik);'l) j;' ¢ -ty (1) jf 0 (i) [1-006) TE5 20 ()

St

e tgk(; s Hjj E: 3 t)( )J k- s+J PO"llk -s+j,k-s+t+j), (say).
j=0

The function P(x|r,k) has been tabulated by Teichroew (1955) at x-values
increasing by .0l. Using these tables Hl(xl) has been calculated over
suitable range of kl-values. The xl-values corresponding to given P¥
values have been obtained by linear interpolation. This table gives the
A,-values for t = 1(1)k-2, s = t+1(1)k-1, k = 3(1)5 and P* = .9995, .999,

1

.995, .99(.01).95, .9u, .80. This table incidentally gives xz-values

for some combinations of k,t,s, in view of the relation (2.2.28).

Remark on accuracy of Kl-values

For a particular combination of k, s, t and P¥ let Kll be the hl-
value from table 1, truncated after two decimals (without rounding the
second decimal) and x12 = xll + .01l. Then the required hl—value satisfies
the inequality

Kll < hl < Kl? s
so that
n11 < n1 < n12 R
where
n; = 14 o/d%)2 (i =1,2).

If we take n,, for n,, an upper bound on the error is

12
(xf2 - xfl)(c/d*)z = .01(2x11 + .01)(o/d%)2,
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Table 2

This table gives A-values which provide solutions to sample size
determination problem in relation to Goal I, From table D of Milton (1965),
these values have been obtained by linear interpolation. The table gives
the values for c = 1, t = s =2, k=4(1l)6andec =1, t=2,s =3, k=26
and P¥ = .9995, .999, .995, .99(.01).95, .90, .80.

An illustration

Suppose we have 4 populations. Let P¥ = 0,99, We want to select
two populations which includes the best. From table 1, for k=14, t =1

8 = 2 and P¥

Qp

Now if d* = 0, then n, = 7.800. That is, we need 8 observations from each

.99 we have

= Ol =

d¥)/o = 2.809.

population to achieve our goal when the procedure Rs is used,

Suppose we are interested in choosing any two of the three best, From
the relation (2.2.8), it follows that we need 8 observations from each
population.

If we are interested in choosing two which include at least one of the
two best, from Table 2

n, = (1.52)2 = 2,310k,
That is, we need 3 observations from each population to achieve this goal.

Some remarks concerning different variance models

So far in our discussion we have assumed that the variances of the k
normal populations are equal and the common variance value is known. The
natural question is how to deal with the cases where this assumption is not
satisfied, Now we indicate some methods of dealing with such cases.

Case 1, Variances known and unequal

Let o? be the variance of.”i, i=1,2,..0,k. Intuitively one might

decide to choose the sample sizes n, so that the variances of the sample

means are equal (or approximately equal). Using this intuitive idea we can
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proceed as follows: obtain the A-value with assumption of common variance. ,
in accordance with the goal of interest. Then n, (i =1,2,...,k) is chosen
as the integer greater than or equal to (kci/d*)z. It can be shown such a
choice of n, will ensure that the P(CS| 3) is not less than P¥*,

The question as to how to solve the problem with common n under different

variances, is not treated here.

Case 2. Variances are equal and the common value is unknown

Here we redefine our distance measure as
(2.2.33) d(a,b) = (a-b)lo ,

where 02 is the common unknown variance. With this modification the enitre
discussion can be carried over so that the sample size needed is the smallest
integer greater than or equal to

(2.2.34) ng = (n/d%)2 ,

where A 1is the solution of (2.2.9) or (2.2.23) or (2.2.26) according as
the goal of interest is Goal I or Goal 1 or Goal 2.

If one insists on the distance measure (2.,2.4) instead of (2.2,33),
then this solution does not hold. Then it will be necessary to consider a
two-stage or sequential procedure to provide a solution to the problem.

2.3 Examples in which the statistics T, have gamma distribution.

This section deals with the examples in which the statistics used have
gamma distribution with unknown scale parameter and known shape parameter.
Definition: A variable X is said to have the gamma distribution y(Q,B)

with parameters Q and B, if the probability density of X is given by

(2.3.1) g(x|a,8) = {:[%ar(a)]’l K1 /B for x > 0,

for x = 0.

Here O and B are positive constants; B is the scale parameter and O is
called the shape parameter. The distribution y(Q,B) is sometimes referred
to as a Type III distribution. The class of distributions {(y(c,B): B > 0}
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Tn for a fixed ¢, is an SI family. We shall denote the c.d.f. of the distri-
bution ¥(®%B), by G(-]a;B).

(1) Normal populations with unknown variamces

LetHi be characterized by the normal distribution with mean W, and
variance 91 (1 =1;2,...,k). Here 0's are unknown aﬁd u's may be known or
unknown. We assume that Goal II is of interest. We shall use statistics

T,, or Ti where

il 2
(2'3‘2) Ti.l ji]_ (xij = I»’-i) ? T12 = jl (xij = xi) 9

according as the means are known or unknown. The statistic Til is sufficient

for €, when Hi is known, whereas T,, is a function of the sufficient statistic

i i2

n n
(s 5 x?

xi ’ i ) when By is unknown. Further T, 1is distributed as
j=1 ‘ﬁ,j,’ j=1 J

im

2
Gixig%' where Vi

is r(vm,zei). Thus here

= n/2 and v, = (n-1)/2; i.e., the distribution of Tim

(2-3.3) G, (:10) = 6(-|v ,20),

when the statistics Tim are used. When the means are unknown this example
is the one in which nuisance parameters are present. Since 6 is the scale

parameter for the family E; » we use the distance measure defined by

(2.3.4) d@x,y) = x/y.

Here the selected subset is the set of populations which correspond
to the s smallest T-values. As mentioned in section 1.1, we know that the
sample size necessary to achieve Goal II for given values of c;k;8,t,P*
and d* is same as the sample size necessary to achieve Goal I with the:-
parameters ¢' = (k-t)-(s-c), k;, k-8, k-t, P* and d*. That is, the sample
size necessary is vo or v0+1 according as the means are known or unknown,

where v, is the smallest (integer) value of v for which

0
-38-



<

5(2.3.5) H' (V) > P,
k‘\
Here Hgl(v) is the value of Hs(n) as given by (1.7)15) where c¢,s8,t and
Gn(') are to be replaced, respectively, by c¢', k-s, k-t and Gv(-). In

other words

(2.3.6) ug(v) - [I[Gv(xd*);c,t-c+1]dI[Gv(x);s-c+1,c°],
0

where Gv(°) = G(-Ivm,Z) when the statistics T, (m = 1,2) are used., If

im

HII(V) is a non-decreasing function of v, we can replace the inequality in
(2.3.5) by an equality.
This problem for the case ¢ = 8§ = t was considered by Bechhofer and

Sobel (1954).

(i1) Life testing with (negative) exponential distributions

Suppose we have a random sample of n, items from ]]i which are put on
a life test (L = 1,2,...,k). Let the life distribution of items from H1

be the (negative)exponential distribution with the probability density

i

0 for Aigx .

o1 exp[-(x-A,)/6,] for A, <x < w
(2.3.7) f(xlei,Ai)= {

Here Gi >0 and Ailg 0. Suppose we stop testing the items from Ili

after obtaining the first r( » 1) failures. On the basis of this infor-
mation the experimenter is interested in achieving Goal I.
Let the r ordered failure times of the items from IIi be

X,,. <X,.<...<X (L =1,2,...,k). We use the statistics T

il i2 ir

or '1‘12 according as Ai

meters when they are unknown. The statistics are defined as

il

9
8 are known or unknown. Ai's are nuisance para-

r
T, = 321 Ry = A + @By - DX - Ay)
(2.3.8)

r
Tz = B Gyt X)) 0y DG - Xy
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E Epstein and Sobel (1954) proved that the distribution of Tﬁa is Y(va’ei)’
where v, =1 and v, = r-1. The problem here is the determination of r,
so as to achieve Goal I.

(i1i) Double exponential distributions (Laplace distributions)

Let us assume that the population IIi is characterized by the double

exponential distribution with the probability density

2.3.9)  £(x|6) = (267" expl- |x|/6,].
n
We use the statistics Ti = X |Xi I; T1 is sufficient for 6,(1i = 1,2,...,k).
o1 M '

Further Ti has the distribution ?(n,ei). Here also Goal I is of interest.

(iv) Gamma distributions with unknown scale parameters and common known O

In some experimental situations one is sampling from gamma populations
with unknown scale parameter and common known Q. The scale parameters are
of interest. For example such a thing arises when one is observing life
distfibutions of structures. It has been shown by Birnbaum and Saunders
(1958), that the life length of certain structures under a particular load

pattern follows a gamma distribution with known O and unknown scale parameter.

Then for each i, xij has the distribution 702,91)(3 =1,2,...50). We
n

use the statistics '1‘i = X xij’ whére mivhasnthé?distrmbdnionr'%%30,91)
j=1 |

(i =1,2,...,k). Here again Goal I is of interest.
In each'of the cases (ii) through (iv), the statistics T1 have gamma
distributions and the parameters of interest are the scale parameters. We

have to find vo, the smallest (positive integer) value of v for which

(2.3.10) Hg(v) 2 P%,

‘Here HS(V) is Hs(n) as given by (1.7.15), where Gn(-) is to be replaced
by G('Iv,l). Now the required r-value in case (ii) is Yo ©OF v0+1 according

as A's are known or unknown. In case (iii) the required sample size is

14

Yo and in case (iv) the required sample size is [ ?g ] +1 ([x] denotes
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. the integral part of x).

Again it may be pointed out that when HS(V) is a non-decreasing
function of v, we can replace the inequality in (2.3.10) by an equality.
We now show that the sufficient condition for the existence of the
solution of (2.3.10), as found in section 1.10, is satisfied here. We
give the proof of this in relation to cases (ii) through (iv). Since
the proof is true for all values of c,s,;t for given k,P* and d%, a similar

result holds for the case (i).

Using the notation of section 1.10, we have to show that
(2.3.11) P[Yk < Yl] -+ 0 as v -+ w,

1 and Yk are independent random variables with the distributions

Y(v,1) and v (v,d¥*) we have

Since Y

E(Y, - Y;) = v(d* - 1),
2 i
Var (Yk - Yl) = Var Y, + Var Y, = v(d*~ + 1)/
Now

Var (eYy) vara
®e -2 vax1)?

- 0, as v -» o,

This implies that (2.3.11) is true, which implies that

lim H_(v) = 1.
V b0 s

Thus the solution of (2.3.10) exists for any P* < 1.

When ¢ =8 =t = 1, we have

k-1
Hg(v) = f 6, " (xd*) de, (x),
0
where Gv(°) is the c.d.f. of 7v(v,1). Tables prepared by Gupta (1963)

can be used to find v values for given values of k,P* and d%.

Large sample approximation to the infimum of the PCS

Now we consider an approximation to the infimum of the PCS assuming
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that the sample size n is sufficiently large (in case (ii) we assume that
. r is large). It is known that the family of distributions y(x,B) satisfy

the addition theorem for independent random variables, namely

v(a,8) * r(oy.B) = v(@ +0y.8)

where ¥ stands for convolution. Thus in each of the above four-:cases, Ti
can be viewed as a sum of independent and identically distributed random
variables each having gamma distribution. By lemma Se.l of Rao(1952),
it follows that Z; = b(v)[logeTi/{a(v)Gi}] is asymptotically distributed
as a standard normal variable, Here a(v) and b(v) are suitable functions
of v.

Expressing the PCS in terms of the variables Zi’ and using their

asymptotic distributions we obtain
0
(2.3.12) inf PI ~ jn T[0(x+N)3c',s~c+1] dI[®(x);t-c+l,c],
where e
A = b(v) loged*,

and P_ is the PCS for Goal I. Also we have

I
Hgl(v) %.jﬂ I[0(x+N);c,t-c+1] dI[0(x);s-c+l,c']
= JF T[o(x4N) e’ ,s-c+1] dI[d(x);t-c+l,c].

In obtaining the second expression from the first, we used the well known
results ¢(x) = 1-0(-x) and Ix(p,q) = 1-Il_x(q,p).
Thus an approximation to the solution of (2.3.5) and also to the solu-

tion of (2.3.10) is the smallest integer greater than

Vé = b"l[A(c,k,s,t)/loged*],

where b-1(°) is the inverse to b{-) and A(c,k,s,t) is given by
o]
JP I[0(x+N);c',s-c+1] dI[0(x);t-c+l,c] = P*,

-00

These A-values can be obtained from tables 1 and 2. Approximating Yo by
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[v&] + 1, one can obtain an approximation to the required sample size
(the r-value in case (ii)).

2.4 Uniform distributions.

‘

In this section we consider the problem in relation to two types of
uniform distributions viz., (a) those involving one parameter, (b) those
involving two parameters. It may be noted that these distributions are non-
regular.‘ In this respect these special cases differ from those considered
so far.

(a) One-parameter uniform distributions

Here we assume that the population IIi is characterized by the uniform
distribution over the interval (0,91), i=1,2,...,ke We base our procedure

on the statistics T, where T, = max X,,. It may be noted these statistics

i i 3 ij
are sufficient for 91,92,...,9k. The density function of Ti is
y“'l/e‘i1 for 0<y <6,

’ n
(2.4.1) g,v[8,) = {
0 otherwise.

1f Gn(-lei) is the distribution function of T,, then the class of distribu-
tion functions f; = {Gn(-le);e > 0} is a scale parameter family such that
Gn(OPG) = 0. Hence it is an SI family. Since 6 is a scale parameter for

the family S; , we define the distance measure as
(204;2) d(x’y) = x,y.

Here the infimum of the PCS is Hs(n). The value of Hs(n) can be
obtained from (1.7.15) by taking GnCy) to be the distribution function
corresponding to the demsity gn(yll) (which is given by 2.4.1). Denoting

y" by u and (d*)" by d%, from (1.7.15) we have
1
(2.4.3) Hg(n) =u/“(1-1[ (:ﬁ%‘) st-c+l,c]ld1fu;c’,s-c+l].
0 n

Since d* > 1, dg increases with n. So 1-I [( E‘i—) ;t-c+1,c]
‘ n
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increases with n for each u. Hence Hs(n) is an increasing function of n.
Thus the required sample size is the smallest integer greater than or equal

to the solution of the equation

(2.4.4) fé (1-10 () st-c+1,c]) dIfuse’,s-c+1] = P,
n
Also since d¥> 1, 1lim -%¥ = 0, so that
n—o N
(2.4.5) lin Hg(n) = J§ dr (c',s-c+l) = 1.
n— o

Thus the solution of (2.4.4) and hence the required sample size exists for
any specified P¥ < 1. It is unique since Hs(n) is an increasing function

of n.

This problem with ¢ = s = t has been considered by Barr and Rizvi(196L4),

(b) Two-parameter uniform distributions

Now we assume that IL is characterized by the uniform distribution
over (pi, Wy + Gi) (i =1,2,...,k). We consider the following different cases.

Case (i) p's are equal with the common value known or unknown and the

populations are ranked according to 6-values

Whether the common p-value is known or unknown, we can express the PCS

in terms of U, = T, - p, where the statistics T, are defined as in (a),

i i

Then the problem reduces to the one~parameter case considered above,

i

Case (ii) 6-values are equal and the populations are ranked according to

W-values
Whether the common 6-values is known or unknown we use the minimum of

the sample as our statistic. The probability demnsity function of T, is

i
y-p
| % [1'(—zri)]n-1 for By <y < Wy + 2]
(2.4.6) gn(ylpi,e) =
: 0 otherwise,
If Gn('lpi,e) is the distribution function of Ti’ then the family
?; = [Gn(.lp,e) : - o< u< + ») is a location parameter family for fixed

6. Hence it is an SI family. We take the distance measure given by

e
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- (2.2.4), when 6 is known. In the case of known O-value, we make a scale

transformation on the statistics Ti and use the statistics z1

= pi/G and we can define the pre-

= Tile, s0
that the new location parameters are Qi
ference zone in relation to the new parameters. If the €-value is unknown

we express the PCS in terms of the random variables Zi and assume

(2.4.7) d(x,y) = L.

With this modification we can solve the problem. This type of modification

in the definition of the distance measure has been suggested in case of normal

populations with unknown common variance, which are ranked according to means.
Let ® stand for (d*/6) or d* according as € is known or unknown. Setting

Gn(') = Gn(°|0;1) (the.distribution function corresponding to gn(-IO.l) of

(2.4.6)) in the second expression of (1.7.9), we obtain for d < 1.
1-5
(2.4.8) HL(n) =\/ﬁ I[l-(l-y-a)n;c',s-c+1]dI[1-(14y)n;t-c+1,c]

0
1

1-5
and for & > 1
1

1
(2.4.9) H (n) a\/\ dI[1- (1-y)";t-e4l,c] = /\dI[u;t-c+1,c] = 1.
0 0

The required sample size is the smallest integer value of n for which
(2.4.10) HL(n) > P*,

It is evident that we have to consider only those values of d* for which
5 <1, to have a non-trivial problem.
Now we shall show that HL(n) tends to one as n =+ w. It is sufficient

to show that (see section 1.10)
(2.4.11) P(Yk < Yl) -0 s as n - o,
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We shall show that (1.10.10) is satisfied here. Now

by (%) + 1, (8)) ” .
0 — 3 = 3 3 -+ 0, as n =+ o,
by @) - 1y (6p) @) (n41)° (@42)

This implies that (2.4.11) is true. Hence the required sample size exists
for any specified P* < 1.

Case (iii) ‘u-values are unknown and the populations are ranked according to

O-values

Here we use the sﬁatistics '1‘i = m?g xij - m}n xij' The distribution of
Ti is independent of By The probability density of T1 is

n-2 ‘
@b 1, a - for 0<y <o,
(2.4.12) g (yle,) = 1 i i
n i .
otherwise.

1f Gn(-lei) is the c.d.f. of T , then the family § = {Gn(-le);e >0) is

i
a scale parameter family with Gn(OIG) = 0; hence it is an SI family. Here
we take the ratio as the distance measure (see (2.3.4)).

Now the required sample size is the smailest integer value of n for which
(2-4.13) Hg(n) > P*.

Replacing Gn(') by Iy(n-l,Z), from (1.7.15) we have

(2.4.14) Hg(n)

1
= U/‘ l-I[IjL(n-l,Z);t—c+1,c] dI[Iy(n-l,Z);c',s-c+1].
0 d%

We shall now show that
(2.4.15) lim Hs(n) = 1.
n-e
By the sufficient condition derived in section 1.10, we have to show that
P(Yk < Y,) >0 s as n —+ ®.

Here Y, and (Yk/d*) are independent and each has the beta distribution with

1
the parameters n - 1 and 2. We show that the sufficient condition for (2.4:15)
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(2.4.16) Thus =

to hold, namely, (1.10.10) is true here, Hene e = d¥ and Gé =1,
ui(d*) = d*ui(1) and py(d*) = (8%)%u,(1).

ﬁe(d*)+“2(l) 1+d*2 pg(l)

[wg(a%)-u (1) ]2 (a%-1)2 [u (112

Since Gn(xll) = Ix(n-1,2), we have

E’n-l)
(nF1)2(n+2)

(1) = &t -
pl(l) - n+1 and pg(l) =

Now the right side expression of (2.4.16) becomes

1+4d¥2 2(n-1) . (n"'l)2 -0 as n =
(@%-1)2  (n+1)2(n+2) n-1

which implies that
lim P[Y, <Y.] = 0 3 H(n) = 1, as n o,
k 1 S
n-? o

This means the required sample size exists for any specified P¥ < 1.

2.5 Normal populations with common known variance and ranked according to

the absolute values of the means

Here we assume that IL;is characterized by the normal distribution with
mean p. and variance 02, which is known. The parameters 61 of interest

are defined by
ei= l“il ’ i= 1,2’..o’k-

The problem for the case ¢ = s = t has been considered by Rizvi (1963).
We use the absolute values of the sample means as our statistics,
That is, T, = JKil, i=1,2,...,k. It has been shown by Rizvi (1963),
that the probability density of Ti has a strict monotone likelihood
ratio. For convenience we assume that the common variance o2 is unity.

the probability density of Ti is

-
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. 1 1 1
: 2[¢[n2(x-9i)] + °{n2(x+01)]] for x >0
(2.5.2) ga(xlei) m{:

for x < 0,
and its distribution function is

1
Q[nz(x-ei)] - ¢[n2(-x-9

(%]

i)] for x >0

(2.5.3) G (xlei) = {
n 0 for x < 0.

Here ¢ and ¢ stand for the c.d.f. and p.d.f. of the standard normal distribu-
tion.

Here 0 is neither a pure scale parameter nor a pure location parameter
for the family T; « We define our distance measure as the difference (see

(2.2.4)). Denoting k - t - 8 + ¢ by c’ we have

[}
(2.5.4) Q(6,n) = f 1le, (x|6-a%);se’,5-c1] dilc, (x|6);t-c41,el.
19 1
Denoting n29 and nzd*, respectively by O and B, we obtain
(2.5.5) Q(®%:B) = Q(6;n) = A f 1le(x|0-B) s’ s-c#1] 65 x|y [1-6 x|y 1 g (x|oyax
0

= A J©@;B) say,

. where

(2.5.6) G(x|6) = ¢(x-6) - ®(-x-6), g(x|6) = ¢(x-6) + ¢(x+9),

A = to/[(e-1):(t-c).].

Now we have to find the infimum of Q over the possible values of 6, or
equivalently over possible values of O, for fixed value of B. Both O and
6-d* belong to @9==[d,w). Hence 6 varies over [d*,w). In other words O
varies over [B,®). The following result helps us to find the required infimum.
It is to be noted that here we need the second stage minimization in
obtaining the infimum of the PCS. In the previous examples this is not the

case. In this respect this example differs.from the previous ones.
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» Lemma 2.:2.1

J(a,B) is an increasing function of @, for fixed B.
Proof:
Substituting for g(x|a) and splitting the integral into two integrals

we obtain

(2.5.7) J(a,B) ﬁ; I[G(xla-B);c',s-c+1)]Gt-c(xla)[l-G(x|a)]c'1¢(xdu)dx

+

[7 T6(xla-B)se’ ,s-c+1) 165 (x@) [1-6(x| o) 1L (i) dx.

By substituting u for x ~ & in the first integral and u for x + @ in the
second integral, we obtain
* t-c c-1
(2.5.8) J(@;8) = [ I[G(utx|a-B);c',s-c+1)]G  ~(utax|a)[1-G(uta|a)]™ “o(u)du
~

+ fm I[G(u-a|a-B);c' ,s-c+l, (u-a[a)[l G(u-a|a)] m(u)du.
(07

Using the relationship between ¢ and G(°

(le-t)1/[ (-} (e -1)! ]

by B, from (2.5.8) we obtain on differentiation

oJ
(2.5.9) 2{2:2)

t-c-1
= 2(t-c) f 1[G(uiax|a-B);c' ,5-c+1]G (ﬁ+oz|a)[1 c(urax|a) " cp(u-!-eoz)cp(u)du
e
t-c

- 2(c~1) f 1[¢(ut|a-B)sc' ys-c+1]G (utc|a)[1- G(u&ala)] ¢(u+8a)¢(u)du

ooc-].

+ 2B [ G (uta|a-B)[1- 6(uta|a-p)]%” cG (u«z[a)[l G(u+a|a)] m(u+2a~6)¢ﬁu)du
04
t-c-1
- 2(t-c) f I[G(u-x|a-B);c' ,s-c+1]G (u-0|a)[1- G(udzla)] ( -2 )p(u)du
t-c
+ 2{c~1) f I[G(u-a|a-p);c' ,s-c+1]G (u-a]a)[1- G(u-a|&)] (u—82)¢(u)du

o4
P -1
- 2B [, Gc(u-ala B)[1-G(u<|a-g)]%" °G (u-ala)ll 6(u-cr|or) 1L (u-2008 ) u )du.

By substituting x for u + O in the first three integrals and x for

u -~ & in the second three integrals of (2.5.9), it is easily seen that the
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* first and fourth integrals add to zero. Further the second and fifth integrals

also add to zero. Hence we have

(2.5.10) Q-Jégﬁl
= 2B fw Gc'-1(x|a-6)[1-G(x[a-B)]s-cGt-c(x|Ol)[1-G(x|a)]c-1
[p(x+a-B Jp(x-a) - o(x-0i8 )p(x+a) Jdx.

Since - xS x and @ - B < (&, using the monotone likelihood ratio property
of o(x|6) = o(x-6) we have, for y > 0 and p > 0, '
o( -x-0+8)o(x-a)>0(-x-a)o(x-a+8),

i.cee, @(x+a-B)o(x-0a)>op(x+a)olx-a+B).

Hence, from (2.5.10), it follows that éigﬁdil is positive for fixed value
of B. In other words J(C,B) is an increasing function of @, for fixed B.

Thus, by the lemma 2.5.1, we have
(2.5.11) inf Q(@,8) = A inf J(@,B) = A J(B,8) = H(n), say.
az B oz B

Hence the required sample size is the smallest integer value of n for which
(2.5.12) H(n) =z P*,

where H(n) = Q(B,8) and can be obtained from (2.5.5).

We shall now show that H(n) is an increasing function of n and
it tends to one as n tends to infinity.
Leémma 2.5.2

H(n) is an increasing function of n.

From (2.5.5) we obtain

(2.5.13) H(n)

7 1066x0)s¢" ,s-ct1] AIIG(x|B)stctL,c]

fz {1-1[6(x|B);t=c+l,c]} dI[G(x|0);c' ss-ct+l].
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) "It is sufficient to show that for each x, D(x,ﬁ) is an increasing function

of n where
(2.5.14) Dlx,B) = 1 - I[G(x|B);t~ctl,c].

Now, using (2.5.6), we obtain

t-c
(2.5.15) @g,;ﬁ = -A G (x]B)[1-6(x|B) 1" [~ o(x-B) + o (x48)]

t-c

A G (x|B)[1-6(x|B) 1 Lp(x-B) - p(x+B)].

I

Since x > O and B > 0O, it is easy to see that

o(x - B) > o(x48),

and hence égégiél is positive. Thus D is an increasing function of B
(i.e., an increasing function of n). This completes the proof of the lemma.

It is easy to see that for each x > O,

lim D(x,8) = 1 - lim I[G(x|B);t-ctl,c] =1,

n- o n—- oo
since lim G(x|B) = 0. Thus
n— o
o 1
lim H(n) = IO di[6(x|0);c' ,s-cH+l] = fo dIy[c',s-c+1] = 1,
n—> o ‘

Thus the required sample size is the smallest integer greater than or

equal to

(2.5.16) n, = (B/d*)2

where B is the solution of the equation

(2.5.17) fO I[1-G(x|B);c,teect+l] dIG(x|0);c',s-c+l] = P*,

When ¢ = s = t, this equation reduced to (3.13) of Rizvi (1963). The existence
and uniqueness of the solution of (2.5.17), follows from the lemma 2.5.2
When the common variance is ¢2, it is easily seen that the sample size

is the smallest integer greater than or equal to
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. ny = (Bo/d*)Z,

where B is the solution of (2.5.17).
The remarks of section 2.2 concerning the solution to the problem under
different variance models are also applicable to this case.

2.6 Cauchy populations

Now we consider the problem in relation to two types of Cauchy distri-
butions namely (i) those involving a single parameter, (ii) those involving
two parameters,

(i) One parameter Cauchy distributions

Here we assume that the distribution function which characterizes Ik

is given by
1 1
(2.6.1) F(x|6i) = 5 + — arctan (x-ei),

so that the corresponding probability density is

(2.6.2) £(x|6,) = = ;ELG—F .
i

It is known that there does not exist a sufficient statistic of fixed-
dimensions for the location parameter 6 of Cauchy distribution (Koopman,
1936). Also it is known that the sample median is a consistent estimator
of . We base our procedure on the statistics Ti’ where Ti is the median
of sample from:ﬂ;. For convenience, we assume that the common sample size
is odd so that n = 2m + 1 (say).

We now show that the class of distribution functions of the sample median
T, indexed by 6, is an SI family. In fact we prove a slightly more general result.
Lemma 2.6.1

Let Ur be the r-'-:-ll order statistic in a random sample of size n from
the distribution function F(x|6), where {F(x|8);6 ¢® )} is an SI family,
The class of distribution functions of Ur’ when indexed by 6, is an SI
family.
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« Proof:

The distribution function of Ur is

(2.6.3) H(x|6)

2 () Fx0)1-5(x] 0) 1"
j=r

it

I[F(x|0);r,n-r+l].

Since:: . for each x, F is a non~increasing function of &, so is the function H.
In other words H(*|6) constitutes an SI family of distribution functions.

Here F(x|6) as defined by (2.6.1) is a location parameter family and ™
hence it constitutes an SI family. Thus the distribution functions of the

median T of a sample from F(x|8) constitute an SI family. Now the c.d.f. of T is
(2.6.4) G(x|6) = I[F(x|6); m+ 1, m+ 1],

and its probability density function is
(2.6.5) &(x|6) = (™) F™(x|0)[1-F(x|0)I"£(x|6).

Lemma 2.6.2
The densities g(x|6) do not possess monotone likelihood ratio in x.
Proof:

Differentiating g(x|6) with respect to x, we obtain after some simplification

(e.6.6) BHE o gxl0)e(xl0) LBy - ToaTey - 2O

Now differentiating both sides of (2.6.6) with respect to 6, we obtain after

some simplification

(e.6.7) o) . Lo 28(xl0) RBGIO) ., or(ag)g(x| 0)2(x 0)]

mf(x|6)

«|0) £(x|0) [RE(x[O) arl,
+ g(x|8) £(x|6) (e[ ) * (1-F(x| 0)) *
@6.6) 1.e., 3(xl9) a?-gég}.{e) ] agéﬁle) agézle) = or(x-0)g(x|0)£(x|0) 2&lxl8) L=l
+ g2(x|0)£(x|6) {mf(xla) y —mE(x]8) ary.

£2(x|6) . [1-F(x|6)]?
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A necessary and sufficient condition for g(x|®) to possess monotone

likelihood ratio in x (Lehmann 1959, p. 111, problem 6) is that

(2.6.9) g(x|e) aaeay _E%ELQ) .§E§§L§l z O for all x and 6,

Using (2.6.6) and (2.6.8) this condition reduces to that for all x and 6

(2.6.10) ar(x-6) g2(x|6) £2(x|6) fF(xTe) - 1-F?g|e) - ar(x-6) 3

+ g2(x|e6) £(x|e) @i(x[0) , _mf(x|0) + ar} z O.
F2(x|0) [1-F(x|6)]3

Thus it is necessary and sufficient that for all values of u=x - 0

(2.6.11) g2(u) £2(u) h(u) = O,
were h(u) = 2y TR T Y TS Y e T 2 o)

B ru[1-2F(u)] | 1 1 _
= m [F(U)[l-F(U)] ! F2(u) * [1-F(u)]2 b+ ari(1-u®).

In order to prove the lemma it is sufficient to exhibit at least one value
of u for which (2.6.11) is not true. Let u = J3 so that arc tan /3 = 3
and F(/3) = 2. Now h(J3) m{ii’ri/—@ . 26.;}2} - 2

36

Hm e 200
25 (26 3

] - )-l-‘lTa < Oo

This completes the proof of the lemma.

In all the previous examples, the distribution.function of T is not
only SI, but it is also true that the density of T has the monotone likelihood
ratio., Here the density of T does not possess the monotone iikelihood
ratio property although the distribution function of T is stochastically:-
increasing. Hence this example is different from the others considered so far,

we define the distance measure

as the difference (see (2.2.4)). Let m, be the smallest integer value of m

for which
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.

m) 2 P,

;

{2.6.12) Hy {

v
ts

where H, 1is given by {1.7.9) in which Gn(«} is to be taken as G{-|0) of

(2.6.4). The required sample size is 2my + 1.
Now we shall prove that the limit of HL(m) as m 2o is 1, so that the
required m-value exists for any P~ ~ 1. {It would be interesting to show

that HL(m) is a non-decreasing function of m.) In view of the discussion

in section 1.10 it is sufficient (in the notation of that section) to show that

(2.6.13) lim P[Yk <y = 0.

mw

1)
Here Y, and Y, are medians in samples of size 2m + 1 from F(+|0) and F(-|d¥)

respectively., We know that if Yn is the median of a random sample of size n,

from the one-dimensional distribution with c.d.f, F(x|6) and p.d.f. £(x|6), then

etloym ™t (v - 0 B wo,1),

where { 1is the population median. (Cramér 1946, p. 369). Now the median of

the distribution F{-|6) as defined (2.6.1) is 6. Thus

) ~ 2 " % 2
(2.6.1k4) P[Yk < Yl] = P = Vomt1 (Yk -dV +d%) < = 2m+1 Yl]
o2 ¥
= P[ Up * = vemrl d7 < va say.

Here Um and Vm are independent sequences of random variables, each having
standard normal as the limiting distribution. Now given ¢ > O, arbitrarily

small and fixed, we can find a number a such that
(2.6.15) 1 -0o(al/2) s .
When m 1is sufficiently large, we have

(2.6.16) % Jemil 4% > a



N so that

< ",

-y

| 2
(2.6.17) o= p[v_- U >Z Potl ax] = PV - U_ > al.

Thus

v
1A

(2.6.18) 0 = lim Plv_-U > Pl ax] lim P[V_- U_ > a]
m~—> oo m—> o0 m m

= P[V-U>a] = 1-0(a/ V2) s ¢,
Since:(2.6.18) is true for every ¢ > 0, we have

(2.6.19) lim 2[V_- U > 7'2F [omil ax] = o.

m — o0

From (2.6.19) and (2.6.14) we obtain (2.6.13)..

-ﬁ
An approximation to the infimum of P(CS|8)

Using the limiting distribution of the sample median (as stated above) we

é
willlobtain an approximation to the infimum of P(CS|8). Here the infimum is
ﬁ

vHL(m) which is the PCS at the point & for which
6[1] Z e = e[k-t] = 0; e[k"t"‘l] = Q[k_t+2] = gee = e[k] = d*.

Thus, denoting 2d¥% /2m+1 /r by N, we have
0
e ',8= -
(2.6.20) H.L(m) {m Iq’(x_l_}\)(c 48=c+1) dI‘D(x)(t ctl,e).

Now an approximation to m, is the smallest integer greater than

_ I y2
where A is the solution of (2.2.9). The numerical value of Afor certain

values of ¢, k, s, t and P¥ can be obtained from the tables 1 and 2,

(b) Two parameter Cauchy populations with common scale parameter

Let the distribution function characterizing :ﬂ; be

x=C,
( p

arc tan

] =

5,

1
(206022) E(x|0£i,3) = —2- +
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so that the corresponding probability density is

(2.6.23) £(x|a, ,B) = 1 B

(2.6.

™ 32+(x~ai)2

The experimenter is interested in the location parameters. In the earlier
discussion we have assumed that scale parameters are all equal and that the
common value is one; we now relax this assumption. Here we comnsider the
following two cases. If the common scale parameter value is known, by
making an appropriate scale transformation on the statistics we can reduce
the problem to the one discussed earlier,

Suppose the common scale parameter B is unknown. By defining the
preference zone in a slightly different manner we can solve the problem in
the same way as we have done in an—éarlier :séction, say for example in

section 2.2. We define here the distance measure as

ak) d(x,y) = {x-y)/B.

Again the required sample is n = 2mo+1, where Iy is the smallest integer for

which {2.0.12) is true.

2.7 Laplace distributions with common scale parameter,

Suppose that the distribution characterizing the population IL is
the Laplace distribution with the probability density

..lx..e |/ﬁ
1 i
f,(Xlei,BQ = -2— e N

!
i

where B is known or unknown. The experimenter is interested in the location
parameters. We use the sample median as our statistic; this is the maximum
likelihood estimate of Gi. We assume that we take an odd number of obser-
vations from each of the k given populations. The class of distribution
functions of the sample median, indexed by €, is an SI family since 6

is a pure location parameter for the Laplace distribution.



* Now the determination of the required sample size can be carried out
exactly in the same way as we did in the case of the Cauchy distributions
in the previous section,

2.8 Some remarks in relation to applications to discrete distributions.

The examples, so far considéred, have the common feature that F(x]@)
is the c.d.f. of an absolutely continuous distribution. In the next section
we consider the problem assuming that [L is the Poisson population with
parameter 61 (i =1,2,...,k). In:this.section we make some general remarks
relating to ranking and selection problems dealing with discrete distributions.
Since the distribution characterizing IL_is a discrete distribution, so
will be the distribution of the statistic Ti' In view of this fact in
writing the probability of a CS for the goal of interest under the procedure
Rs, we have to take into consideration the possibility of multiple ties in
certain places., This results in clumSy and cumbersome expressions for the
PCS. For these reasons, following Sobel (1963), we introduce a statistic Ti
with a continuous distribution corresponding to each discrete-valued statistic
ng this:transforms the problem inté one dealing with continuous statistics
and we can use the solution to the problem, which has been obtained in Chapter I.
Let X be a discrethvalued random variable. We shall -

assume '.." that X takes on non-negative integer values, Let the probability

function of X be given by
(2.8.1) P(X=x) = £(x|6), x=0, 1,2, «00 .

Corresponding to the distribution of X, we define a continuous distribution
with the probability density defined by

s £([ylle for 0 s y<o
(282 519" = {

otherwise,
where [y] is the largest integer = y, It is easily seen that the corresponding

(cumulative) distribution function is
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d [
2.6.3) 6G18) = = £318) + (-Dy] 1y,
j=

s

Let Y denote a random variable having the distribution defined
by the probability density g(°|6) given by (2.8.2) and let U = U(0,1)
denote a random variable with uniform distribution on (0,1) and is independent
of the random variable X.
Lemma 2.8.1
The relation between the random variables X and Y is given by
Y = X+U,

where U = U[0,1].

Proof:
[y]-1
(2.8.4) P(x#U=sy) = £ PX+Usy|X=j)P(X=3j)+P(XHUs y|X=[y])P(X = [y])
4=0
Iyl
= 'Zo P(Us y - j)E(j|6) + B(Us y - [y])E([yl]6)
J=
[yl-1
= = £(j|e) + (v - [¥y]) £(ly]]e) ,
j=0
for js[yl-1sy-1 3 y-jz1 3 P(Usy-j) = 1 and since

y-I[yls1l wehave P(Usy - [y]) = y - [y].

i.e., P(X+Usy) = G(y|6) = P(¥Ysy).

Lemma 2.8.2

1f £(x|0) has monotone likelihood ratio in x, then g(y|6) has monotone
likelihood ratio in y.
Proof:

Let x, = [yi] (i = 1,2); then Y5V, F xS X Since f has m.l.r
property, for 61 S 92 and Y1 s v, we have X s X, and

(2'8-5) g(yllel) g(y2|62) = f(x1|61) f(x2|92)
z £(x;]6,) £(x,]6;) = 8(y;|6,) &(v,6;)-
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This proves the lemma.

The above lemma shows that the m.l.r. property is preserved when we
transform the discrete distributions into absolutely continuous distributions
in the manner described above. Now we will show that if the discrete distri-
butions is an SI family, (without possessing m.l.r. property) the transformation

into absolutely continuous distributions preserve this property also.

Lemma 2.8.3

Let of be an SI family of distributions defined by probability mass
functions f(xIG) where 6e@. Then the classAsa of the corresponding absolutely
continuous distributions defined by (2.8.2), is also an SI family.

Proof:

(2.8.6)

(2.8.7)

By the definition of an SI family we have
F(x{el) 2 F(x|62)

for all x e R and 6, < 6,, where F(-|61) is tke c.d.f. of the distribution

1
defined by the probability mass function f(.|ei) (i = 1,2).

Let Xi be the random variables associated with the distribution defined

by F(°

Gi) (1 = 1,2). Then the random variables associated with the corres-
ponding continuous distributions defined by G(°|61) and G(-|92) are Xl + U1

and X, + U,, where U, is a uniform random variable on (0,1) which is indepen-

2 i
dent of X, (i = 1,2). Thus

G(y|91) = P(x1 +U; s y) = P(x1 Sy - Ul)
1
- L Fy - u]8))as,
1
z [ F(y - u|62)du, from (2.8.6)
0

G(y|92)°

Hence the lemma.
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2.9 Poisson populations.

-

Here we assume that IL_ is characterized by the Poisson distribution
with parameter 61 {i = 1,2,...,k). It has been pointed out by Sobel (1963)
that in the case of the goal of choosing the 'best' population, the solution
based only on the parameter differences or only on the parameter ratios does
not exist, He obtained a solution based on the simultaneous consideration of
differences and ratios. Here alsoc the same is true. Thus following Sobel (1963),

we define the preference zone §{d¥,r¥) as

(2.9.1) Qla*,r¥) = (8

[k-t] ™ [k-t+1] O [k-e1]) B T¥)

Here r*{ > 1) and d¥] > 0) are specified numbers,

We use the statistics Ti where
(2.9.2) T, = £ X6 (i = 1,2,...,k),

It is well known that Ti is distributed as a Poisson variable with the
parameter nei = wi(i = 1,2,0005k),

In view of the remarks of section 2.8, after compgting the statistics Ti
from the random samples, we transform them into observations on the variables
Yi by adding to each Ti a random observation from the uniform distribution
over [0,1]. We apply the procedure R, to Yi's. Here the probability density

of Y, is
1 =)

;  [¥]
e ¥y / (IyD! for 0<y<w

(2.9.3) sGlyy) - {

G otherwise,

We shall dencte the c.d.f. of ¥, by G(ylwi). Let us note the fact that the
distribution G{.|¥) forms an SI family, when indexed by ¥. Now theorem 1.6.1
is applicable., So in finding the infimum of the PCS over Q(d*;r¥); it is
sufficient to confine our attention to the points in the GLF configuration
and find the infimum of the PCS over such points. The points 51 which are

in GLF configuration, are those points for which
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(2.9.4) °111 7 %217 oot 7 Opieee] ' (say)
. e[k-t-l-l] = G[k_t+2] = a0 = G[k] = 6 (Say),

Let ¥' =n6', ¥ = nf, and let the PCS at the GLF configuration be.
denoted by I(V¥,V¥'). This corresponds to P(6,6.) of the discussion in section

1.6. Now

'-1)!(s-c)! , £e ¢ _
(2.9.5) LU 1ty = B (D) sesvr) (sey),

where

(2.9.6)  Hosv') = [ Xl I1-6Gx[ W15 ¢ Ly [1-6(x[¥1) 157 glx|y")ex.

We denote the entire sum on the right side of (2.9.5) by J(¥,¥'). Now we
have to find the infimum of I{V¥,¥'), equivalently the infigum of J(V¥,¥"')

over the pairs (¥,¥') where
(2.9.7) Y/U' 2 r¥ and Y= Y' =z nd¥,

Remark

Here is another example where we need minimization of the PCS at GLF
configuration. It may be noted that € is neither a location parameter nor a
scale parameter for the distribution G(-|n6).

Now we give some known results concerning g(-|¥) and G(.|¥) which are
used in proving a theorem which in turn used to obtain the infimum of J(\if,ilf')°

We know that G{-|V¥) is given by

(2.9.8) G(y|¥)

where

(2.9.9) £y = eVl
Now

(2.9.10) di‘l, [e(y|W)] = &ly - 1{¥) - &(y[¥) = g(y|¥){ -[—{;l - 13,

1

[?le £(3lv) + (v - [y]) £(Iy1|¥),
J=
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(2.9.11) ;}l-q-; l6ly|¥)]1 = (v - [yl -1)ely-1¥) - (v - IyD) &ly|v)

g(y|¥) {(y - [yl - 1) —-Y— -(y - [yD)}.

i

Further

(2.9.12) A G|V = 6|V -6y - 1V = - g 6v|WI.

Theorem 2.9.1

For k =2 2, letting ¥ = ay' + b where ¥' > 0, a2 1 and b2 O we have
ifazl and b=20 case 1

d \ 2
(2.9.13) Fd [3(¥,¥")] {é

ifa=1 and b2 0O case 2,

The strict inequality holds when a > 1 in case 1 and when b > 0 in case 2.

Proof:

Let D(¥') stand for the derivative of J with respect to V¥'. Then

t-c
(2.9.18)  D(¥) = T () gr Lxay' + byl

Now

(2.9.15) a'%r [3(csay’ + by")] =
- a0t f L ¥ 110 9) T5°%2 0w ) [1-6 (|9 ') 1% (x| w') [26 (x| ¥) 1dx

+ a(e)fy MW T1-60x[¥)15% 6% "1 [y ) [1-6Cx | ¥") 1 g (x| ') [AG(x | ¥) Tax

t~a c'-2

- (e'-1) f: (x| ) [1-6{x|¥)] (x|¥')[1-6(x|¥") 1> (x| ¥") [ae(x|¥") Jax
+ (s=¢) [ x| VT1-60x[1) 1% "L ) [1-60x ¥ 15 g (x| ') [ac (x| ') Jax
+ fz (x| ¥) [1-6(x |¥) 1596 ~Hx |9 Y [1-G(x ¥ ) 15 [g(n-1]¥") - g(x|¥') Tex

Denoting the last integral on the right side of (2.9.15) by Ih we have

“%6S LW ) [1-e(x ¥ 157 & [- ac(x|¥') Jax .

(2.9.16) 1, = f (x| ¥) [1-6{x|¥)]

Integration by parts gives
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(2.9.07) 1, = o [ [86(x|v") 6% M x| w) [1-6(x[9)15 %"

(=|¥")[1-6(x|¥') 1° (x| ¥)dx
- (t-a) f: [Aa(xlw')JG“(xlw)[1-G(x|w)]t'“'lc°"1(xlwf)tl-c(xlw')ls'°g(xlw)dx
+ (c'-1) f: (a6 (x ¥ ) 16%(x | ¥) [1-6(x | ¥) 157%° 2 (x| v ) [1-e(x|v") 1°~Sa (x| v )ax

- (s-c) ﬁ: (6 (x ") 16%(x | w) [1-6(x [ ¥) 5% ~L(x [ w") [1-6(x|w") 1%~ Lg(x | ¥")ax.

Using (2.9.17) in (2.9.15), we obtain, after cancellation

d ' i
(2.9018) Wr J(Ol;a\lf g bs‘l’)

t-0-1

= (t-a) f x| ¥) [1-60x[¥) 15O ¢ L]y [1-a(x|¥")15"C

s(x[We(x|v) ((a-1) (x-[x1) + B (x-[1-1) e

t- c o1

+<xf (x|¢)[1-G(x|w)] (x]¥")[1-6(x|¥')]°~°

s(x|Wa(x ") ((a-1) (e-[x]) + B2 (x-lx]-1))ax

Since x 2 [x] > x - 1, it follows that for a2 1 and b= 0 the
integrals of (2.9.18) are non-negative and that for a=1 and b2 O the
integrals are non-positive, To prove strict positiveness or negativeness of
the integrals we first note the fact that V' > O so that V¥ > O, Further
both the densities are non -degenerate. Since x - {x} = O only at integers
and [x] = 0 only for 0= x <1, it follows that for a>1 and b =0
the term (a-1)(x-[x]) is strictly positive and that for b> O and a = 1

[x]b (x - [x] - 1) < o0,

Hence
d 2 0 for a2 1 and b=20
ol J(azay' + b,y') ‘{
=0 for a=1 and bz 0,
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d >0 for a>1 and b=20
o J(azay' + b,y') '{
v <0 for a=1 and b > 0.

From (2.9.14) the required result follows.
From the second part of the theorem, we can find the pair (V¥,}') satisfying
(2.9.7) for which J{¥,¥') is minimum., In other words we can find the pair (6,6')

such that
(2.9.19) 6/6' z r¥ and 6 - 6' =z d¥* |

for which P(CS|GLF) is minimum and hence we can find the required sample size.
We can rewrite (2.9.5) as

0

(2.9.20) I(V,¥') = fo - IG(xlw)(t-c+1,c)] dIG(xlw.)(c',s-c+1).

Let us note the fact that the region (2.9.19) is such that by decreasing
0 (with 6' fixed) we can change at least one of the inequalities in (2.9.19)
to an equality. By the monotone (decreasing) nature of G and the form of the
integral I, as given in (2.9.20), it is easy to see that any such decrease in
6 will not increase I. Hence we can restrict our attention to points

6= (6,08') on at least one of the two lines L., L

o given by

1

L 6/6' = r* (r* > 1)9

12

L, : 6-6' = d% (&% > 0).

(2.9.21)

By the second part of the theorem 2,9.1, I 1is strictly increasing in 6'

on L1 and it is strictly decreasing in 6' on L Hence I is minimum at

20

the point where the two lines meet, i.e., at

d* 60 - r¥d*

r¥a.] 2 T

(2.9.22) aé =

°

(=)

Thus denoting n6° and nGé by VYo, and wé we have
d

inf B(CS|0) = T(v,,¥Y) -
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‘ Hence the required sample size is the smallest integer:'value 6f nifor which

1(n99,996)> > px ,
- (2.9.23) i.e., i) [1 - IG(X|WO)(C-C+1’C)] dIG(K|¢6)(c ,8-c+l) = P¥ .

When s = t = ¢ = 1, our goal reduces to the goal of selceting the 'best'’
population which is considered by Sobel (-1963).
We shall now: show:that

(2.9.24) ifﬂL I(wb,wé) = 1.

From the discussion in section 1.10, it is sufficient to show that

Var Y, + Var Y,
(2.9.25) > - 0, as n -,
(EYk - EYl)

v, 1 - 1
Here E(Yl) = ¢O +35 s E(Yk) = WO +5,

v, L - L
and Var(Y,) =« ¥ + 35 » Var(Y,) =¥, + 15 .
Thus

' 0 '
Var Y, + Var Y, ) Yo + ¥+ (1/6) i 6" + 6% . 1
- 2 - - ¢')2 0 12 2(g° 1)2

(E(Y, - Y,)} (¥y - %)) n(e” - 6}) 6n2(6" - 6))

Hence (2.9.25) is true which implies (2.9.24). 1In other words the required

sample size exists for any P¥ < 1,

-66-



“ Chapter III

Some Properties of the Procedure Rs

In this chapter we prove some properties of the procedure Rs' For
convenience, in this discussion we assume that the labels on the popu-
lations are such that the parameter associated with IIi is Gi where

< <0.. < °
61 < 62 < < Gk

3.1. Multivariates vahiaselaess: of the Procedure R,

Let ozl, Oiz, sooy as ,:'Q% 7

£ = ki.and, B be dntegers such that

oo‘ < oon< < < <.°.<
(3.1.%) 1o a, < @, <B<oa a Sk,

for some i where 2 < i < s+l.Let I be the set of integers 1,2,...,k and

J be the set I - {« ,..,,ai_l,azai,...,as]. Further let P(Q,Q),...,2 )
denote the probability of selecting the populations le ,IIJ s eeey

III under the procedure Rso Since the procedure R8 is ;asedzon the
'st:tistics Ti’ the probabilities of interest are functions of the distribution
funbtidnsc Gﬁ(°|ei)° In this discussion the sample size n is some fixed
(bpsitive) integer and so we drop the subscript n of Gn(°|9). The results
to be proved are based on one of the following assumptions.

Assumption 3.1.1: The family E; = [Gn(~|9) : 6 €@} is a stochastically
increasing family for each value of n.

Assumption 3.1.1': The family T; is a strictly stochastically increasing
family for each value of n.

Lemma 3.1.1

Under the assumption 3.1.1 we have

. (3,102) P(al’ GOJo.ai-lg ais ai-'-l’ s e as)EP(ala o060y a -19 B’ a 9 ®o0 o0y as)o

i i+l

< 6, » the inequality in (3.1.2) is
i

If the assumption 3.1.1' holds and GB

a strict inequality.

Proof:
First we consider the case 8;< k-1.
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(3.1.4) p(c

Let U = max T,, and H(u) be its c.d.f., Using assumption 3.1.,1,
1 .

(3.1.3) B < oy =) 9B £ 6, =) G(u|9B) z G(u]Gai) for all real u,

= - £1 - e .
» 1 G(u|66) 1 - G(u| O‘i) for all real u

Further

1o Oy 1 0%gs0 s %)

"

P[ min. Ty > max(TB,U)]

1=mss m
- s
=f}1(u)G(u|96)d[l - 1l @ - ctule, N1
m=1 m
0 S
ng(u)G(uIea [l - || (1 -6(ulg, )] by (3.1.3)
et i m=1 m

vo:: s
_J (1 - H (1 - 6(ul8, )}]d[H(u)G(ulGai)]
m=1 m

]

g

{1 - G(u|6a )}d[H(u)G(ulea.)]

z] [ ﬂ (1 - 6(alg, NI - o(ale)alu(w)e(ul & )] by (3.1.3)

= P(al’.'.’ai-l’B’ai'l'l’...,as).

When s = k-1, the proof is similar to the above with H(u) replaced by 1 and
hence omitted., If GB < Ga‘ and if the assumption 3.1.1' holds, then the inequal-
ities in (3.1.3) will be s::.rict inequalities and consequently we get a strict
inequality in the final result. This completes the proof of the lemma,

Remark 3.1.1

If al 22and 128 < al, by a reasoning similar to the above we have

P(ozl, %y vaes ozs) z P(B, Ogs vevs ozs).

Let & Ots and Bl’ 52, coes BS be two subsets of I such that

1’ a2, ees vy
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< @ <0, < ...<0, B <B,<...<B_ and o 2B, i=1,2,...,s,

with ai >.Bi for at least one value of i. Then the subset of populations

IE R Ilﬁ 3 eees ILi is said to be inferior to the subset of populations
1 2. s

,II ’ .:.,II . Now a repeated application of the lemma gives us
a2 as

the following

Theorem 3.1.1

Under the assumption 3.1.1
(3.1.5) AR o) =z P(Bl, Bos wres ﬁs).

Remark 3.1.2

If qui > qBi for at least one i and if the assumption 3.1.1' holds then
strict inequality holds in (3.1.5).

Thus the probability of selecting any subset @; of s populations
is not less than the probability of selecting any subset of size s, which
is inferior to @; . In this sense, the procedure Rs possesses the property
of multivariate unbiasedness.

Let q(¢) denote the probability of including the population ]}a
in the selected subset under the procedure Rs' As a direct consequence

of the above theorem we get the following property of unbiasedness.

Corollary 3.1.1

Under the assumption 3.1.1

(3.1.6) q(a) = q(B) for a <B.

We now give an independent proof of this result.

Proof:

Let q(@,B) denote the probability of including ILI and excluding



[L in the selected subset under the procedure Rs. Further let V be
the random variable corresponding to the (s-l)—s—E largest of

Tr(r = 1;25000k; T # O,B) and H(v) be its c.d.f. Now
(3:1.7) q(@) - q(B) = q(%B) - q(@,B)

=P[TB<V<Ta] -P[Ta<V<TB]

=f G(VIGB)[I-G(VIGG)]dH(v) -f G(vlea)[l-c(vles)]dn(v)

ﬂy/\ [G(vles) - G(v|qa)]dn(v).

Since @ < B, we have

(3.1.8) % < O =>c(vles) < G(vlea) for all real v.

Hence 4(@) - q®) <°0.

Remark 3.1.2

Also 1if qz < Gb and if the assumption 3.1.1' is satisfied, then

strict inequality holds in (3.1.8) and hence in the result (3.1.6).

L
RS

3.2 An optimal property.

In this section we prove that the procedure Rs is the uniformly
best decision rule among the impartial decision rules for the loss

function
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(3.2.1)

W=c=-T7,

where 7 denote the number of populations from the set of the t 'best'
populations, that #re include& in the selected subset of size s.

Before proving this result we specify our'assumptions and define
some terms which will be used later.

We assume that a random sample of size n is available from each ..
of the k given populations. That is, we are given independent random

variables {xij}, 1 =1,2,e00,k;j = 1,2,..0,n, from the k populations

- se

(302'2) ) Ti = T(xil’ x12’ LI xin)’ . 1 = 1’29.0091‘,

Wheie'Tl’ T,» "f; T, is an independent set, and Ti has the probability
density'g(~lei) = gi(o) such that 91 < 92.5 ese < Sk. Further we assume
th;t.the densitiés'g('|9) possess monotone likelihood ratio property.

Let $[;]‘< Ti2] < 4o < Tlk] be the ordered Ti‘s.

Following Bahadur (1950) we now define a class of decision rules
which shall be called the class of non-rﬁndomized impartial decision rules.
This class of.decision rules are based on the statistics [Ti} and it is
denoted b& D(T).

Definition 3.2.1. A variable Y is said to be an indicator.variable corres-

ponding to the event E if Y = 1 when E happens and'Y = 0 otherwise.

"Definition 3.2.2. A decision rule & = 8({Ti]) is said to be an impartial

non-randomized decision‘rule if 5 defines non-negative random variables

)" LR ‘ = 200 (]
j(T[l]' Traye ’ T[k]),J 1,2,.+5k (depending only on the ordered T, 's)

such that lj is the indicator variable corresponding to the event that the popu-

k

lation which gave T[j] is selected under the decision rule 5 and T lj = g,
. j=1

(In other words the impartial decision rules are those rules which are
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> invariant with respect to relabeling of the populations.)

i

Since Ti's have a joint distribution which

Let A,. be the event {T, = T and a
1] vent {T; = Tpyp) an

corresponding to the event A

i be the indicator variable

ij°
is absolutely continuous, the sets Aij are well defined with probability
k k
one, Further we have X a,, =1 for every jand % a,, = 1 for every i,
i=1 ij j=1 ij

with probability one.

We now give, without proof, a lemma due to Bahadur (1950) which will
be used subsequently.
Lemma 3.2.1

For any non-negative random variable A = h(T[l]’ T[2], cees T[k]) and

any p,q,m = 1,2,...,k with p = q, we have
(3.2.3) § E(Aa, ) = 5 E(\a, )
Py a, = a .
3.2.3 i=m ip i=m iq

A direct consequence of this lemma is the following result.

Corollary 3.2.1

Under the assumptions of lemma 3.2.1, we have
(3.2.4) £ E@pa,) = I E(ra, )
. L] xa g Ka L]
3 . i=1 ip i=1 iq

In the sequel we further assume that the parameter space Q is defined by

4
(6: 6 i1 > Gd

(3.2.5) Q

Let b be any monotone non-decreasing function of 6 so that

b, = b(ei), i=1,2,...,k. For i< j, we have b, = bj, since 6, = ej.

Any decision rule &eD(T) defines a vector random variable

A3) = [xl(S),LE(S),...,Ak(S)] and this vector in turn defines another

vector random variable p(8) = [pl(a),pe(S),...,pk(S)] where

k
(3.2.6) p;(8) = jil xj(a)aij, i=1,2,...,k.

Here pi(S) can be interpreted as an indicator variable corresponding to the
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event that the population IIi is selected under the decision rule 35, It

is easy to see that & pi(B) = s. For any 5eD(T), let us define
i=1

) . B
(3.2.7) o(8|®) = E[Z b,p,(5)]5).

i=1

Theorem 3.2.1

For every 529

o(8°18) = sup o(5]8),
5eD(T)
and
p(80|§>> = inf Q(SI?),
85eD(T)

where 80 and 80 are those decision rules belonging to D(T) which correspond
to the A-vectors (0,0,...,0,1,...,1) and (1,1,...,1,0,...,0).
Proof:

-—)
Now for any &eD(T) and for any 6eQ, we have

(3.2.8) o(8]9)

i

k
B bypy (8)]6)

Kk K 2
13[121 bi{j}:l xj(s)aij]l ]

]
il

: (8)a,.|®
% b.E[A.(8)a,.lf].
i,j=1 * ] 1]

A

< <
We know that b1 < b2 vee S bk and we write

o
]

o
+
(2]
+

(3.2.9) i 1

1 c2 + ... + ci’ ci 20, i=1,2,...,k.

Let A(3) be such that Kj (8) = ... = Kj (8) = 1, where Jp < eee < g
1 s

Further let the other components of A(8) be zero. Let us note that
Me S+1(80) = ... = xk(SO) = 1 and the remaining components of x(ao) are
zero. Also Al(So) = ... = KS(SO) = 1 and the remaining components of

x(so) are zero. Now

(3.2.10) Qs ja £k -s+0 for @ =1,2,...,s,

with at least one of the inequalities being strict, It is easily seen that
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'.. ,%;161F{ xj(S)aij} = i;é;l (b1+c}z:..+ci) E{hj(S)aij}
= b,s + g g [ g Ef{a,. }lc
1 m=1 O=1 i=m iJa m
k s k

A

b.s+ Z:  [Z Efa

}le
1 m=1l O=1 j=m i,k—8+a m

3 r(8%)a, )
z b.E{N.(87)a,.}.
i,j:l i j 1]

In obtaining the inequality we made use of (3.2.10) and the lemma 3.2.1.
-
(3.2.11) i.e., p(s|§3 s p(a°|§3 for all 6eq.

Further by a similar argument we have

b biE{hj(ab)aij] s ZbEM(8)a; )
(3.2.12) i.e., p(3|8) 2 p(aol'e") for all 0en .

From (3.2,11) and (3.2.12) we obtain, for every Be
su g(ﬁla = o(8°]9),
5eD(T
inf p(8 53 = p(d 53.
8eD(T§( | (3|

The class of decision rules D(T) consists of ¢ = (E) members and let
us denote them by 81,82,...,8§. Let D¥(T) D D(T) be the class of impartial
decision rules based on T = (Tl’TQ""Tk) such that any typical member
5% of D¥(T) can be represented by a vector with ¢ components viz.,
(¢1,¢2,...,¢§); here ?,, is the probability of choosing the non-randomized
decision rule Sa@D(T) and oél Py = 1. Now it is easy to see that for any

Tt and for any 5%eD*(T) from (3.2.11) and (3.2.12)

(3.2.13) p(s°]8) = o(5%|9),

and

(3.2.14) p(8,18) < o(5%|8).
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LR Hence for any 529

(3.2.15) sup  p(e%[8) = p(s°]9),
S%eD*(T)

((3.2.16) inf  o(s*|8) = 0o(5,]8).
S%€D*(T)

Let us consider the problem of choosing a subset of size s from a set
of k given populations. We confine our attention to the class of impartial
decision rules D¥(T) defined above. The problem is to find the uniformly

best decision rule in the class D¥(T) when the loss function is defined to be

(3.2.17) W = c¢c-n

where 17 1is the number of populations, from the set of the t best out
of k given populations, that enter into the selected subset. Here the t
best populations are those with the parameters ek-t+1’ak—t+ ""’%I’ Let

us define the b-function as follows:

1 for i = k—t"‘l’ k‘.-t"‘e, eeey k
(3.2.18) b(ei) = {

0] otherwise.
Then for any &%eB*(T), using the definition (3.2.18) of b-function,
’ k
(3.2.19) Eq(3%) = E{121 bipi(s*)} = p(5%).

By the previous discussion we have, for any Beq and for any 5%eD*(T),

(3.2.20) sup En(s%}8) = n(s°|9),
S%eD*(T)
so that
(3.2.21) inf  EW(s*|d) = mEi(s°|).
S5*eD*(T)

Hence 80 is the uniformly best decision rule in the class D¥(T) with

respect to the loss function (3.2.17). The decision rule 8° is the procedure R_.
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Part II

A Problem Dealing with the Selection of Subsets

Where the Subset Size is a Functiom of the

Common Sample Size
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Chapter IV

Selection of Subsets of Fixed Size Depending on the Sample Size.

4,1 Introduction.

In part I we considered the problem of selecting a subset, of specified
size s, from a given set of k populations. There specifying the subset
size s, we have solved the problem of sample size determination so that the
PCS under the procedure Rs meets certain requirement , Here we consider a
related problem where the sampde size is fixed in advance and the subset
size s is to be determined in relation to the common sample size,

4,2 Statement of the problem,

The problem can be stated as follows: '"Samples of size n¥ are available
from each of k given populations, The experimenter is interested in choosing
a subset of fixed size s (the value of s to be determined) which contains
the t best of the k given populations., He desires t& have a procedure
which will tell him how large a subset and which subset he has to choose so
that the probability of a correct selection (i.e., the subset selected by the
procedure contains thet best populations) is not less than a preassigned
number P*, for all parameter points in the preference zone".

4.3 Solution to the problem..

Here the preference zone of the parameter space is same as the one
given by (1.2.1). We propose the procedure R, of section 1.3, where the
subset size s is suitably chosen so as to satisfy the probability require-
ment (1.2.3). The choice of s, the subset size, is to be made as follows:
When the procedure R_ is used, let nl(s) = n(s|k,t,P*,d*) be the minimum
sample size necessary to achieve Goal 1, From a tabular solution to the
sample size determination problem in relation to Goal 1, we know values of
nl(s) for given values of k,t,d¥%,P¥ and various s values. From such a table
we can find an integer s (with t S s £ k) such that the given sample size n¥*

satisfies the relation
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s
B

o (%3.1) n(s - 1) > o* 2 n(s);
this value of s is the required subset size when one is using the procedure RS.
In giving the above solution we have tacitly assumed that, for given

values k,t,d¥ and P#*

Later in this chapter we prove this result.
The above problem may arise in several ways of which one is the situation
considered in the following section.

4.4 Relaxation of the goal of choosing the t best of k given populationms.

Suppose an experimenter is interested in the goal of selecting the ¢t
best of k given populations (those with the largest parameter values) in
the framework of Bechhofer (1954) with fixed t,k,d¥,P*¥ and a distance measure,
It may happen either due to economic reasons or because the observations were
already taken, that the procedure RS with s = t requires too many observations
for him, Then he may be willing to relax his goal. In other words he may
be willing to change his goal to another goal, which he can achieve with
lesser sample size, It is possible to think of several different ways of
relaxing the goal,

One way is to relax the goal to that of Goal 1, namely, to choose a subset
of size s which includes the t best. Then the above formulation of the
problem (where s >:t:is to 'be determined aéwa:fﬁnctién;bfan*, ¥, k, d¥ and P¥) is
appropriate; here n¥ is to be interpreted as the largest sample size that
the experimenter can obtain or the size of the sample he has already obtained.

As pointed out by Sobel (see the footnote on page 22 of Bechhofer 1954)
the experimenter may choose a second method of relaxing his goal, namely to
‘choose a subset of size s and assert that they form a subset of the t best

populations (i.e., Goal 2). Then a forimulation with.s < t,.similar-te the above
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o ., on€ . is appropriate; Here again we determine s as a function of n¥,t,k,d*
and P¥; n¥* has the same interpretation as before:

A third method of relaxation is to choose Goal I viz., selecting a subset
of size s and asserting that the selected subset includes at least c¢ of
the t best. Here we have to find-a pair-(c,s) : such that n(c,s) s n¥,
n(c,s-1) > n* and n(c+l,s) > n*; n' has The: same interpretation as before and
n(c,s) is the minimum sample size necessary to achieve Goal T under Rs’

In all these situations a particular form of the above formulation of
the problem is appropriate. Which method of relaxation is the best among
the several possibilities depends on various factors and this probleéem.is:
not treated here,

In the above discussion we have implicitly assumed that each one of the
sample sizes necessary to achieve Goal I, Goal 1 and Goal 2 is smaller than
the sample size\necessary to achieve the goal of selecting the t best. We
now prove the relationships between the sample sizes necessary to achieve the
various goals that are related to the goal of choosing the t best,

In the sequel we use the notation of section 1.9.

Theorem 4.k4,1

For given k,t,P¥,d% and the distance measure d(x,y),
(k1) n(c,s-1) 2z n(c,s) = n(c-1,s-1) 2 n(e-1,s),

where max (1l,s4¢l+t-k) = c-1 and ¢ s min (s-1,t).

Proof:

S ———

As in case of theorem 1.9.1, here also it is sufficient to prove that

for fixed (but arbitrary) values of n and 6

(4.4.2) Q{c,s-1) = q(c,s) = qQ(e-1,s-1) = gfe-1,s) ,
where

(4.k.3) Q(e,s)
-_-p[c--t-:E largest of (Yk-t+1"°°’Yk) > (s-c-!-l)EE largest of (Yl""’Yk-t)]°
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It is easy to see that

>
N >

R (WY [OEE largest of (Y "’Yk) > (s-c)g—1 largest of (Yl""’Y

k-t+1’° k-t)]

> [cEE largest of (Y W > (s-c+1)§5 largest of (Yl""’Y

kets1? oY o)

> [(c-l)f-E largest of (Y Yk) > (s-c+1)EE largest of (Yl,...,Yk t)]

k-t+1”°°°?

> [(c-l)EE largest of (Y Y) > (s-c+2)Eé largest of (Yl,...,Y

kethl? oo o)1

From (L4.4.3) and (L4.4.4) we obtain (4.4.2). This completes the proof of the
theorem,

When ¢ S min (s-1,t), we have
(4.4.5) n(c,s-1) 2 n(c,s).

Setting c = t £ s - 1 in (4.4.5) and noting the fact, n(t,s) = nl(s) when

s 2 t we obtain
(4.4.6) nl(s -1) = nl(s).

Also when ¢ - 1 2 max(s+t+l-k,1), we have
(4.4.7) n(c,s) 2 n(c - 1l,s - 1).

Setting ¢ = s £ t in (4.4.7) and noting the fact that n(s,s) = n2(s) when

s S t, we obtain

(4.4.8) n2(s) z n(s-1).

The results (4.4.6) and (4.4.8) will now be stated as one result,

Corollary L4.4.1

*

For given k,t,P*,d* and the distance measure d(x,y),

nl(s) ifs-12¢t,

v

(4.4.9) nl(s - 1)

and

v

ne(s) n2(s - 1) if s s t.
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< . As a particular case of the corollary we have

(k.k.10) n, (t)
and
n,(t) = ny(t)

v

nl(s) for s> t,

v

ne(s) for s < t.

It may be interesting to relate nE(SE) and nl(sl) where s, < t < S, -

2

This is being done in the next theorem.

Theorem 4,4,2

For given k,t,P¥,d* and the distance measure d(x,y)
(4.4.11) n2(se) ES nl(sl) s

where 32 <t< Sl’

Proof:

Again it is sufficient to show that for fixed (but arbitrary) values of

n and 6
(’-l-.ll-.12) Q2(52) = Q(sesse)gql(sl) = Q:t,sl)o

Let U(+), W(+), T(-) and W(*) be the c.d.f.'s of the minimum of
st th
(Yk-t+1""’Yk)’ (slmt+1}—— largest of (Yl""’Ykat)’ s;— largest of

(Y ""’Yk) and the largest of (Yl""’Ykat) respectively, Now we have

k-t+l

00

(b.4.13) Q(t,s;) = [ [1 - u9(x)law(x).
Further

CRILY U(x)

s x]

Plmin (quul,..., k) <

0

P[ at least one of (¥ ,...,Yk) £ x]

k-t+1

1A

P[ at least (t—se+1) of (Yk—t+1""’Yk) £ x], since t > s,

= -ﬁ(x) o
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”

Tt Also

-

(3.4.15) wW(x)

]

P[(sl-t+1}35 largest of (Yl”"°Yk-t) £ x]

P[ at least (k-sl) of (Yl,...,Yk_t) £ x]

Ykat? s

v

P[ largest of (Yl""’ x! = W(x),

Thus from (4.4.13), (4.4.14) and (4.4.15), we obtain

ats) 2 [ (1 - Tlx)Ja(x)

(=]

[ )@ & [, T = ofsy.s,).

This completes the proof of the theorem.
Thus combining all the results proved so far, we have, for fixed k,t,P¥,d%

and the distance measure d(x,y)
(4.4.16) n(c,sl) s n(c,se) s n2(se) s nl(sl) s nl(t) = n2(t),

where ¢ £ 32 <t< sl.

An example which deals with normal populations

An experimenter is interested in choosing 2 best out of 5 normal popula-
tions, He specifies that d¥ = c¢ and P¥ = ,999.

From the table I of Bechhofer (1954), one obtains that the experimenter
needs 26 observations from each population to achieve his goal. If he can
afford only 25 observations per population, he can relax his goal to that of
selecting the best., (We used again table I of Bechhofer to arrive at the
figure 25.) Using table 1 one can obtain that if he can only afford 16
observations per population, he can relax his goal to Goal 1 with s = 3,
From the same table one obtains, that if he has only 15 observations per
population he can relax his goal to Goal 2 with s = 1., From table 2 one
obtains, that the experimenter needs 9 observations per population to relax

his goal to Goal I with s =2 and c = 1,
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Table 1 - A valuegffor Goal 1 and Goal 2

Goal 1 k=3 k=1L k=214 ko= L4 k=5
(s>t) |le=1,s=2|t=1,s=2}t=1, s t=2,s=3|t=1,s8=2
P* ,
-9995 3.639 3.965 3.185 3.8718 4.156
-999 3.387 3.723 2.94h 3.638 3.920
.995 2.738 3.102 2.301 3.022 3.313
.99 2.422 2.809 2,020 2.724 3.019
.98 2.076 2.4h72 1.689 2.412 2.698
97 1.856 2.264 1.479 2.198 2.495
.96 1.690 2.107 1.323 2.045 2.343
.95 1.556 1.980 1.191 1.920 2.219
.90 1.092 1.542 0.7h7 1.4ok 1.793
.80 0.528 1.013 0.206 0.980 1.278

" Goal 2. k = k=54 k =4 =4 k=14
(s <t) t=2,8=1[t=3,8=2]|t=3,5 t=2,s=1}t=1L4, s =23
Goal 1 k=5 k.= 5 k=5 =5 k=5
(s>t) |[t=1,s=3|t=1,s=4|t=2,5 t=2,s=4|t=3,s=14L
P*
.9995 3.542 2.916 L.19h 3.413 L.012
-999 3.295 2.673 3.963 3.184 3.777
.995 2.699 2.066 3.375 2.598 3.180
.99 2.410 1.781 3.096 2.314 2.893
.98 2.093 1.448 2.787 2.006 2.581
.97 1.892 1.243 2.594 1.812 2.384
.96 1.741 1.088 2.449 1.666 2.236
.95 1.619 0.962 2.332 1.547 2.117
.90 1.196 0.506 1.932 1.141 1.707
.80 0.685 * 1.453 0.652 1.215
Goal 2 k=5 k=5 k=5 k =5 k=5
(s <t) t=h,s=2t=k,s=1|t=3,s=9t=3, s = t=2,s=

4 These are the solutions of the equation (2.2.23).

¥* indicates the corresponding P¥* value is not of interest for these goals.
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Table 2 - A values! for Goal I

= b, t k=5, t=2 =6, t1= 2 = 6; t=2
p*

=2, ¢ s=2,c=1 =2, ¢ =1 =3, c=1
.9995 2.85 2.97 3.00 2.75
.999 2.66 2.89 2.96 2.49
-995 1.85 2.30 2.61 1.78
.99 1.52 1.92 2.18 1.48
.98 1.27 1.63 1.86 1.26
.97 1.03 1.44 1.68 1.04
.96 .88 1.32 1.50 .90
.95 .76 1.21 1.h2 .79
.90 .36 .79 1.04 R
.80_ * 32 29 *

+ These are the solutions of the equation (2.2.9),

* indicates the corresponding P* value is not of interest.for this goal.
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