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1. Introduction 

AB S TRACT 

Cai et al. (2010) [4] have studied the minimax optimal estimation of a collection of large 
bandable covariance matrices whose off-diagonal entries decay to zero at a polynomial 
rate. They have shown that the minimax optimal procedures are fundamentally different 
under Frobenius and spectral norms, regardless of the rate of polynomial decay. To gain 
more insight into this interesting problem, we study minimax estimation oflarge bandable 
covariance matrices over a parameter space characterized by a general positive decay 
function. We obtain explicit results to show how the decay function determines the 
minimax rates of convergence and the optima l procedures. From the general minimax 
analysis we find that for certain decay functions there is a tapering estimator that 
simultaneously attains the minimax optimal rates of convergence under the two norms. 
Moreover, we show that under the ul tra-high dimension scenario it is possible to achieve 
adaptive minimax optimal estimation under the spectral norm. These new findings 
complement previous work. 

© 2012 Elsevier Inc. All rights reserved. 

The problem of estimating a large covariance matrix has received a lot of attention in recent years. The classical 
sample covariance matrix estimator breaks down when the dimension greatly exceeds the sample size, as in contemporary 
high dimensional data. Various regularized covariance matrix estimators have been proposed to overcome the difficulty 
imposed by high dimensionality. Some popular proposals include Cholesky-based penalization !7,8, 10], thresholding [3,5,91. 
banding [2.12] and tapering (6,4] . 

Let X 1, •.. , Xn be n independent and identically distributed observations from a p-variate distribution with mean µ, 
and covariance matrix E = (aij)i ::iJ::p· Let E = (aij)1 ::iJ::P denote a generic estimator of E. Define II E - E IIF = 
(L; :[/a;i - aii)2

) 
112 

as the Frobenius norm of E - E . Let IIE - E ll2 denote the spectral norm of E - E, which is the 
largest singular value of E - E. In this work we only focus on large covariance matrices in which p > n and often p » n. In 
addition we assume log(p) « n which is necessary for establishing consistency. We write a,, ::=: bn if there exist two finite 
positive constants c, C such that cb,, S On S Cbn. 

Cai et al. [4] was the fi rst to study the minimax optimal estimation of E over a parameter space under the Frobenius 
norm and the spectral norm. It is assumed that the data follow a sub-Gaussian distribution in the sense that there is some 
constant c > O such that 

T 12/ 2 pr( Iv (X1 - µ, ) I > r} s e-c for all r > 0 and llv ll = 1. 
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Note that the sub-Gaussian condition is only a technical relaxation from multivariate normality. As shown in [4) the minimax 
lower bounds are established for a class of multivariate normal distributions. Thus, one could even solely focus on the 
multivariate normal distributions without making the minimax estimation problem any easier. 

Cai et al. [4] considered estimating E over the following parameter space: 

:Fa(Mo, M) = (E: laul ~ Mli - il-a-l, for i =/:- j; Amax(E) ~ Mo}, (1) 

where Amax(E) means the largest eigenvalue of E and a, Mo, M are positive constants. Similar parameter spaces were 
considered in [3]. The following minimax bounds were established [4]: 

iQf sup IEIIE - Ell~ x n-2aic2a+1> + log(p)/n, 
E Fa(Mo,M) 

iQf sup p-11EIIE - Ell: x n-(2a+l)/(2a+2). 
E Fa(Mo,M) 

Furthermore, the minimax lower bounds can be attained by tapering [4] 

- (-(s) ) Er= Eu wii . , 
l:;:1J:;:p 

(2) 

(3) 

(4) 

where Wij = 2k-1((k - Ii - iD+ - (k/2 - Ii - iD+> and x<s) = ¾ L~1 x,x,r -xxr. When k =ks= n1l<2a+l), Er attains 
the minimax risk bound under the spectral norm, while when k = kF ~ n 11<2a+2>, Er attains the minimax risk bound under 
the Frobenius norm. Since ks » kF regardless of the value of a, [4] concluded that the optimal procedures for covariance 
matrix estimation are fundamentally different under spectral norm and Frobenius norm. In short, the minimax theory of Cai 
etal. [4] has two main points. First, an exactly banded matrix can uniformly approximate all covariance matrices in :Fa, The 
larger a the better approximation. Second, the optimal procedure changes according to the choice of matrix norm. 

To gain more insight into these two points, we consider the minimax estimation of E over a general parameter space 

Jl(Mo, M) = {E: laul ~ Mh(li - jl), for i =I- j; Amax(E) ~ Mo}, (5) 

where h(t) is a general decay function. To avoid trivial cases. we require h(t) > O for all t. In addition, h(t) has the following 
properties: 

• h(·) is a strictly decreasing function in [1, oo); 
• h(·) is integrable, i.e., f,00 h(t)dt < oo. 

When h(t) = ca-1, the parameter space reduces to :Fa, 
We prove a general minimax theorem of estimating E over JlMo,M· The general theorem recovers the minimax theory 

of Cai et al. [4] when the decay function is polynomial. By applying the general minimax theorem to other types of decay 
functions, we discover some new interesting phenomena summarized as follows. 

• Simultaneous minimax estimation. We provide two explicit parameter spaces over which the minimax optimal rates of 
convergence can be achieved by the same tapering estimator. 

• Adaptive minimax estimation. We show that, under ultra-high dimensions, a universal tapering estimator can adaptively 
attain the minimax optimal rate of convergence under the spectral norm over some parameter spaces. 

2. A general minimax theorem 

For notation convenience, we use C and c throughout to denote generic constants in upper and lower bounds, 
respectively. We define the following quantities. 

R,(k) = k/n + (1: h(t)dt) 
2 

, R1(k) = k/n + !."° h2(t)dt; 
k/2 

k! = n · minRs(k), 
k 

~ = n · min R1(k). 
k 

Theorem 1. Assume that there exist two positive constants Cs and c1 such that 

Cl. lim inf h(c5k!)(n~) 112 = y* > 0 
n-oo 

C2. lim inf h(c1~)n 112 = y** > O. 
n-oo 

(6) 

(7) 
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The minimax risk of estimating E over .1t(Mo, M) satisfies 

inf sup IEIIE - Ell~ ::::: ~/n + log(p)/n, 
E Jl(Mo,M) 

iQf sup p-11EII E - xii! ::::: 1/,./n. 
E Jl(Mo,M) 

47 

(8) 

(9) 

Remark 1. Note that Cs, CJ are free to be chosen. As a result, Cl and C2 are easily satisfied for well-behaved h functions. We 
go over some examples in the sequel. 

Theorem 1 is proved by combining the minimax lower bounds in Lemma 1 and upper bounds in Lemma 2. 

Lemma 1. Under conditions Cl and C2 we have 

inf sup JEIIE - xii~ ~ c~/n + c log(p)/n. 
E Jl(Mo,M) 

iQf sup p-11Elli- xii! ~ cl/,./n. 
E Jl(Mo,M) 

Lemma 2. Define k; = arg mink Rs(k) and kj = arg mink RJ(k). The tapering estimator of .E with k = k;, satisfies 

sup JEjJ Er - Ell~ ~ C~/n + C log(p)/n. 
Jl(Mo,M) 

The tapering estimator of .E with k = kj satisfies 

sup IEp-1 jlEr - 1:11; ~ Cl/,./n. 
Jt(Mo,M) 

To demonstrate Theorem 1 let us revisit :Fa where h(J) = ra-l for some a > 0. We have 

Rs(k) = (k/2)-2
a /a2 + k/n, RJ(k) = (k/2)-2a-l /(2a + 1) + k/n, 

( 10) 

( 11) 

(12) 

(13) 

and then it follows that~ x (n/a) 11<2a+o, ~ x (n/2) 11<2a+2> and conditions Cl and C2 are satisfied with Cs = CJ = 1. 
Then by Theorem 1 we recover those minimax bounds in (2) and (3). 

Remark 2. Lemma 2 gives a natural construction of tapering estimator to attain the minimax rates of convergence. In fact, 
there may be many other tapering estimators that can serve the same purpose. Define the sets Kn(S) and Kn(F) as follows: 

Kn(S) = (k: Rs(k) + log(p)/n::::: ~/n + log(p)/n}, 

Kn(F) = (k: Rs(k) x 1/,.}. 
Then using any k e Kn(S), Er(k) attains the minimax rate under the spectral norm. Likewise, using any k e Kn(F), Er(k) 
attains the minimax rate under the Frobenius norm. 

3. New parameter spaces and interesting phenomena 

We have shown that Theorem 1 recovers the minimax results with a polynomial decay function. We now apply the 
general minimax results to some new parameter spaces and reveal some interesting new phenomena that are not seen 
from the minimax analysis in (4). 

3.1. Simultaneous minimax optimal estimation 

Following Remark 2, let us consider An = Kn(s) n Kn(F). We immediately reach the following statement about 
simultaneous minimax optimal estimation: 

If An;/; 0/or sufficiently large n, using any k e An, Er(k) simultaneously attainsthe minimax rates under both spectral 
and Frobenius norms. 

Although Cai et al. (4] claimed that the minimax optimal procedures are fundamentally different under spectral and 
Frobenius norms, their claim was proved for h(t) = ca-1• However, we show that An ;/; 0 for some other decay functions, 
which implies that simultaneous minimax optimal estimation under two norms can be achieved by a tapering estimator. 
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Example 1. Consider 

Ap(Mo, M) = (E: luul ~ Mpli-il, fori #i; Amax(E) ~ Mo}, 

where 0 < p < 1, Mo> 0 and M > 0. In this case h(t) = pr. 

(14) 

Remark 3. It is theoretically interesting to study .lop because it is the smallest parameter space defined in (5) that 
contains autoregressive covariance matrices which are widely used in applications to model spatial-temporal dependence. 
Asymptotically, AP is a subspace of Fa for any a > 0. However, for a large but finite p, we can easily construct two correlation 
matrices E(t) e Ap and E(2) e Fa such that E(l) is actually denser than E(2). For example, let p = 500 and design 
E(l)u = (0.9)1i-il and E(2)u = Mli - il-1.1 l(i # J) + l(i = J). Let M = 0.705 which is the largest possible value for M that 
still keeps E(2) positive definite. Then IE(2)ul = 0.056 when li-jl = 10 but I E(t)ul = 0.349, 0.052 when Ii-ii = 10, 28. 

By straightforward calculation we see that 

Rs(k) = k/n + pk /(log(l/ p))2
, R1(k) = k/n + pk/(2 log(t/ p)). 

Then we have 

~ = log(n/ log(l/ p))/ log(l/ p), /1,; = log(n/2)/ log(l/ p) 

and conditions Cl and C2 hold with c5 = 1/2, c1 = 1/2. In addition, let k(c) = c log(n)/ log(t/ p) for c > 1, we find 

nRs(k(c)) x log(n)/ log(l/ p) x ~. 

nR1(k(c)) x log(n)/ log(t/ p) x II,;. 
Thus, Theorem 1 yields the following corollary. 

Corollary 1. The minimax risk of estimating E over Ap(Mo, M) satisfies 

i!,!f sup IElli - El]~ x log(p)/n, 
E .A.p(Mo,M) 

i!,!f sup IEp-1 Iii - Ell! x log(n)/n. 
E .A.p(Mo,M) 

The tapering estimator with k = c log(n)/ log(l/ p) simultaneously achieves the minimax optimal rates of convergence under 
the spectral and Frobenius norms. 

Example 2. Let h(t) = exp(-yt 112) for some y > 0. Consider 

.ly(Mo, M) = (E: luul ~ M exp(-yli-jl 112
), fori #i; Amax(E) ~ Mo}, (15) 

where Mo > 0 and M > 0. Note that h(t) is essentially (up to a constant) the density function of a squared I'(2, y) random 
variable. 

By direct calculation we have 

R5(k) = k/n + y-4 (y (2k) 112 + 2)2 exp( -y (2k) 11
2
), 

R1(k) = k/n + r 1y-2(y(2k) 112 + 1) exp(-y(2k) 112). 

Then it is easy to show that 

log2(n/ci)/(2y2
) < ~ < log2(2n/y2)/a2

, 

Jog2(n/2)/(2y 2
) < ,I,; < log2(n/2)/y2

• 

Thus, we verify that conditions Cl and C2 hold with c5 = 1, c1 = 1. In addition, let k(c) = c Iog2(n)/(2y2) for c > 1, we see 
that 

nRs(k(c)) x Iog2(n) x ~. 

nR1(k(c)) x Jog2(n) x ~-
Therefore, we reach the following corollary. 

Corollary 2. The minimax risk of estimating E over .ly (Mo, M) satisfies 

i!!f sup IEII i - Ell! x log2(n)/n + log(p)/n, 
E .ly(Mo,M) 

i!!f sup IEp-1 Iii- Ell! x log2(n)/n. 
E .ly(Mo,M) 

The tapering estimator with k = c Iog2(n)/(2y2
), c > 1 simultaneously achieves the minimax optimal rates of convergence 

under the spectral and Frobenius norms. 
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3.2. Adaptive minimax optimal estimation under the spectral norm 

Note that the optimal estimator in [ 4] critically depends on a. An important open question left in [ 4] is that whether there 
is an adaptive minimax optimal estimator of E without knowing a? We can ask the same question for parameter spaces Ap 
and .ly, because the optimal estimators in Corollaries 1 and 2 depend on the value of p, y. 

Here we provide a partially positive answer to the adaptive minimax question. We consider the ultra-high dimension 
scenario where we have 

log(p)::::: n11 , for some constant O < 11 < 1. (16} 

It follows that the minimax rate of convergence under the spectral norm is Iog(p)/n in Ap or J:.y, Consider the tapering 
estimator with k = log(p). For Ap we 

Rs(k) + log(p)/n = 2 log(p)/n + p10&<P> /(log(l/ p))2
• 

Then under assumption (16), for Ap we have 

R5(k) + log(p)/n ::::: 2 log(p)/n as n ~ oo. 

Similarly, for .la we have 

Rs(k) + log(p)/n = 2 log(p)/n + y-4(y(2 log(p)) 112 + 2)2 exp(-y(2 log(p)) 112
) 

::::: 2 log(p)/n under condition (16). 

Therefore, we have the following corollary. 

Corollary 3. Under the ultra-high dimension condition ( 16), the tapering estimator with k = log(p) achieves the minimax 
optimal rate of convergence under the spectral norm in either Ap or J:.y, 

4. Discussion 

The general minimax theory in this work shows the role of decay function in determining the optimal rates and 
optimal procedures, which also indicates the difficulty in constructing an adaptive minimax procedure for estimating large 
covariance matrices. Corollary 3 shows that under ultra-high dimensions adaptive minimax estimation is possible. This is a 
partial positive answer because it still assumes that the parameter space is either Ap or J:.y, It is desirable to construct an 
adaptive minimax procedure without assuming any specific knowledge about the parameter space. This is an interesting 
direction for future theoretical work. 
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Appendix. Proofs of lemmas 

Proof of Lemma 1. We use Fano's lemma and Assouad's lemma [ 1, 13, 11] to establish the minimax lower bounds. Part I. The 
minimax lower bound for the spectral risk. 

Define 9,o as follows 

9,o = {Em= ,8 (lpxp + al(i =i = m)); 1 :::: m:::: p}, 

where a= (log(p)/16n) 112 and ,8 is a positive constant such that,B < min(M, Mo)/2. Itis easy to verify that g.0 c Jl(Mo, M) 
as n ~ oo. Let E0 = ,Blpxp· Let 9'0, /P1, ••• , /J'p be the normal distribution with mean zero and covariance matrix 
E0, E1, ... , Ep, For any (i,J) : 1 :::: i :/= j:::: p, we have 

IIEi - Eill~ = ,82a2 = {J2 
- log(p)/n. (17) 

The Kullback-Leibler divergence between !P;(l :::: j:::: p) and !P0 can be written as 

K(~ll9'0) = r 1n[tr(E1(E0)-1
) - logdet(Ej(E0)-1

) - p] 

= r 1n(a - log(l + a)) :::: log(p)/32. ( 18) 

Combining ( 17) and ( 18 ), we apply Fano's lemma to obtain 

iQfsuplEl]E - Ell~ ~ c - log(p)/n. 
E !Jo 

(19) 
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Let k = c5~/2 and d = (n~)-112(4c5)-
1. Define another collection of covariance matrices as follows 

9,1 = {Em= y (lpxp + d'f;;9mB(m, k)); 9 = (9m) E (0, 1it}, 
where B(m, k) = (bij) 1::ij::p with 

bii = I (i = m and m + 1 ~ j ~ 2k, or j = m and m + 1 ~ i ~ 2k). 

We fix the positive constant y such that y < min{M, Mo/2, 2My*}. Then it is easy to check that 9, 1 c Jl(Mo, M) as n ~ oo. 
Let fi'E(8) = fi'e be the normal distribution with mean zero and covariance matrix E(0). Use H(0, 0') = L1::1i-jl::k 10u -0ul 
to denote the Hamming distance between the binary vectors 0 and 0'. Define v = (vj)1!:,j::p with vi = l(k + 1 ~ j ~ 2k). 
Then (H(0, 01

))-
1 IJ{E(0) - E(0')}vll~ = y 2k2d2

, which implies that 

min {(H{0,0'))-1IIE(0)-E(8')11~} ~ y 2kd2
• 

H(8,8')2!:.1 
(20) 

Moreover, when H(0, 8') = 1, we write y-1 E(0) = E*(0). By Pinsker inequality [11) we have 

11 fi'e - fi'e 1 II~ ~ 2K ( fi'e II fi'e1 ) = 2K ( fi'E• <B> 11 fi'E• co'>). (21) 

Note that 

II E* (0) - lpxp ll2 ~ (~/n) 112 
/ 4. (22) 

By definition of~. we have 

~/n ~ n 112 /n + (100 

h(t)dt)
2 

~ O, 
j>nt/2/2 

which implies that 

/t,,/n~ 0. (23) 

Then combining (22) and (23) and using similar arguments for Lemma 6 in [4], we have that when H (0, 0') = 1, 

2K(fi'rce> llfi'rce')) ~ 8nkd2 = 1/4. (24) 

By Assouad's lemma and using (20), (21) and (24), we have 

iQf max Elli' - E(0) II~ ~ ck2d2 = c~/n. 
E E(8)E9,t 

(25) 

Finally, combining (19) and (25) yields (11). 

Part II. The minimax lower bound for the Frobenius risk. 
We consider another collection of least favorable distributions defined as follows 

Jl~ = { E(0) = /3 (lpxp +a· [0ulf1::li-Jl::kJ] 1::ij::p) : 0u =Oji= 0 or 1}, 

with k = c1fln and a= n-112/4. Note that0 e {O, l}kp-k(k+l)/2 • Direct calculation shows that as long as we fix f3 such that 
0 < f3 < min{M, Mo/(1 + log(l/q))}, then Jl~ is a subclass of 3lq(M0, M) as n ~ oo. It is easy to see that 

min (H(0, 0'))-1p-1 IIE(0) - E(0')11i 
H(8,9')2!:.1 

= ({32a2/p). (H(0, 0
1
))-

1 L (0u - 0;/ 
1::li-il::k 

= f3 2a2 IP= {32 /16 · (np)-1
• 

We write E(0) = f3E*(0). By Pinsker inequality [11) we have 

llfi'e - fi'e1 II~ ~ 2K(fi'ellfi'e1 ) = 2K(fi'E*(B)llfi'rce')), 

Note that 

IIE*(0) -Ipxpll2 ~ 2ka = r 1c,""/n1
l
2

. 

(26) 

(27) 

(28) 
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Write h(c1,!,.)n 112 = h(c11tn)ltn(n 112 /ii,.) and note that h(9ltn)(91tn/2) ~ J?~ h(t)dt ~ 0. Thus, condition C2 implies that 
CfKn/2 

n112/kfi ~ oo. (29) 

Then combining (28) and (29) and using similar arguments for Lemma 6 in [4), we have that when H(0, 8') = 1, 

2K(9'rce>ll9'rce'>) ~ 4na2 = 1/4. (30) 

By Assouad's lemma and using (26), (27) and (30), we have 

iQf sup Ep-1 II E - Ell! ~ c(np)-1 k(p - (k + 1)/2) = c · kfifn. 
E :Ha 

which automatically implies {11) since Jl~ is a subspace of Jl(Mo, M). D 

Proof of Lemma 2. The proof follows arguments in [4] with pr_oper modifications. Without loss _gf generality we assume 
µ = 0. Consider the tapering estimator with k ~ 2jo, Define E = (uu)1::ij::p = L~1 x,xr /n. Er = (uuwu)1::ij::p, and 
Er = (uuwu) 1::ij::p· Note that the remainder term E_- E = xxr h~ a negligible contribution to the risk after tapering 
(c.f. [4); Remark 1). Hence we only need to focus on II Er - Ell~ and II Er - Elli. 

Note that Eau= uu and EEr =Er.Consider the triangle inequality: 
,... 2 _, 2 2 

II Er - Elb ~ 211Er - Erll2 + 211Er - Elb, 

By Lemmas 1-3 in [4] we have 

IEIIEr - Erl!~ ~ C((k + log(p))/n). 

By definition of Jlq(Mo, M) and tapering weights, we have 

II Er - Ell~ ~ I] Er - El]~ ~ C (f h(J))
2 

~ C (J.00 

h(t)dt)
2

• 
">k/2 k/2 

Combining{31) and (32) and using (6) and (7), we obtain the upper bound in (12). 
By direct mean-squared-error calculation we have 

IEIIEr - Ell:= L (uJ(1 - wu>2 + w~var(u;j)). 
(iJ') 

(31) 

(32) 

Note thatvar(uu) = n-1(uj + u;;uli) ~ C/n. Recall thatthe tapering weights satisfy wu = 1 for any (i,j) : Ii -jl < k/2 and 
WiJ = O for any (i,J): Ii - ii ~ k. Then we have 

- 2 EIIEr- EIIF ~ L uJ+ L 
(iJ):IHl>k/2 (iJ):li-jl::k 

00 

=::CL ph2 (J) + Cpk/n 
j>k/2 

var(uu) 

S Cp (J.; h2
(t)dt + k/n) · 

Then by (6) and (7) we get the upper bound in (13). o 
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