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Abstract 

This technical report (TR) gives details of a data reanalysis 
backing up a paper having the same authors as this TR and 
having the title that is quoted in the title of this TR. Two 
previous TR, 658 and 661, have the bulk of the supporting data 
analysis this paper. This TR deals with one minor issue, Box­
Cox transformation of predictor variables to make them more 
normal and the effect of such transformation on the estimation 
of fitness surfaces, in particular on Figure 3 of the paper, which 
is also Figure 14 of TR 661. The sole objective of this TR is to 
produce the analog of that figure using transformed predictors. 



1 Discussion 

Traditionally discussion goes at the end, but since the point of 
this technical report (TR) is very simple, we put it here. The job 
of this TR is to produce Figure 6. This figure is to be compared 
with Figure 3 in Shaw, Geyer, Wagenius, Hangelbroek, and Etterson 
(submitted), which was produced as Figure 14 of TR 661 (Shaw, et 
al., 2007) 

The only difference between these two figures is that Figure 3 of 
the paper uses log transformation of the two predictor variables ( the 
x- and y-axes of the plot) and Figure 6 of this TR uses Box-Cox 
transformations. 

The point of the Box-Cox transformations is that Lande-Arnold 
theory (Lande and Arnold, 1983) requires joint multivariate normality 
of predictor variables. Aster theory does not, so as far as aster analysis 
is concerned, Figure 3 of the paper with its more conventional log 
transformation is just fine. It did, however, occur to us that someone 
might raise the issue that we are being unfair to Lande and Arnold 
(1983) in not making our best effort to transform to multivariate 
normality. There being no really good methods for transformation 
to multivariate normality (Andrews et al., 1971; Riani, 2004), we do 
Box-Cox transformation (Box and Cox, 1964; Venables and Ripley, 
2002, pp. 170-172) of each predictor variable separately. This, of 
course, need not even produce univariate normality of each variable 
separately; it merely does the best job of any power transformation 
of producing univariate normality. 

In this example, there seems to be little point to the Box-Cox 
transformation. Qualitatively, nothing changes. 

• The aster estimate of the fitness surface still has a peak, the best 
quadratic approximation (Lande-Arnold estimate) has a saddle. 

• The peak of the fitness landscape is near the edge of the dis­
tribution of predictor values, hence this should not be called 
"stabilizing selection" on leaf number but "directional selection." 

• The disagreement between the aster estimate (peak) and the 
Lande-Arnold estimate (saddle) is entirely due to the inability 
of a quadratic function to fit both a peak and a flat region. 
Having to choose one or the other it chooses a saddle as its best 
approximation to the flat region to the left edge of the plot. 

The Box-Cox transformation might have made a difference in all of 
these aspects, but in this particular example it did not. 
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2 Data and Box-Cox 

We reanalyze a subset of the data analyzed by Etterson and Shaw 
(2001). These data are in the chamae2 dataset in the aster con­
tributed package to the R statistical computing environment. 

> library(aster) 
> data(chamae2) 

The only difference between the analysis in this technical report 
(TR) and the corresponding analysis in TR 661 is that we do a Box­
Cox transformation (Box and Cox, 1964; Venables and Ripley, 2002, 
pp. 170-172) of the predictor variables called SLA and LN in the 
paper but called LOGSLA and LOGLVS in the dataset. 

> sla <- 10-chamae2$LDGSLA 
> lvs <- 10-chamae2$LDGLVS 
> library(MASS) 
> out.sla <- boxcox(sla - 1, plotit = FALSE) 
> out.lvs <- boxcox(lvs - 1, plotit = FALSE) 
> 1ambda.s1a <- out.sla$x[out.sla$y == max(out.sla$y)] 
> lambda.lvs <- out.lvs$x[out.lvs$y == max(out.lvs$y)] 
> print(lambda.sla) 

[1] -0. 2 

> print(lambda.lvs) 

[1] 0. 3 

> chamae2$LDGSLA <- s1a-1ambda.s1a 
> chamae2$LDGLVS <- lvs-lambda.lvs 

Figure 1 (page 3) shows the Box-Cox plot for SLA. Figure 2 (page 3) 
shows the Box-Cox plot for LN. 

These data are already in "long" format, no need to use the re­
shape function on them to do aster analysis. We will, however, need 
the "wide" format for Lande-Arnold analysis. So we do that, before 
making any changes (we will add newly defined variables) to chamae2. 

> chamae2w <- reshape(chamae2, direction= "wide", timevar = "varb", 
+ v.names = "resp", varying = list(levels(chamae2$varb))) 
> names(chamae2w) 

[1] "id" "root" "STG1N" 11 LOGLVS" "LOGSLA" 11 BLK" 11 fecund 11 

[8] 11 fruit 11 
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Figure 1: Box-Cox Plot for SLA. 
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Figure 2: Box-Cox Plot for LN. 
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3 Aster Analysis 

We need to choose the non-exponential-family parameter (size) for 
the negative binomial distribution, since the aster package only does 
maximum likelihood for exponential family parameters. We start with 
the following value, which was chosen with knowledge of the maximum 
likelihood estimate for this parameter, which we find in Section 3.1. 
The value that is found then is written out to a file and loaded here 
if the file exists, so after several runs ( of Sweave) we are reading 
in here the maximum likelihood value of this non-exponential-family 
parameter. 

> options(show.error.messages = FALSE, warn= -1) 
> try(load("chamae2-alpha.rda")) 
> options(show.error.messages = TRUE, warn= 0) 
> ok <- exists("alpha.fruit") 
> if (!ok) { 
+ alpha.fruit<- 3 
+} 

> print(alpha.fruit) 

[1] 2.51 

Then we set up the aster model framework. 

> vars <- c("fecund", "fruit") 
> pred <- c(0, 1) 
> famlist <- list(fam.bernoulli(), fam.truncated.negative.binomial(size alpha.fruit, 
+ truncation= 0)) 
>tam<- c(1, 2) 

We make up new predictors that apply only to the variable fruit. 

>too<- as.numeric(as.character(chamae2$varb) == "fruit") 
> chamae2$LDGLVSfr <- chamae2$L0GLVS * too 
> chamae2$LDGSLAfr <- chamae2$L0GSLA * too 
> chamae2$STG1Nfr <- chamae2$STG1N * too 

Now we fit the model called out7 in TR 661, which is the one 
used for fitness surface estimation. The only difference is that here 
we have transformed the predictor variables. 

> out7 <- aster(resp - varb + BLK + L0GLVSfr + L0GSLAfr + 
+ I(LDGLVSfrA2) + I(L0GSLAfrA2) + I(L0GLVSfr * L0GSLAfr) + 
+ STG1Nfr, pred, tam, varb, id, root, data= chamae2, 
+ famlist = famlist) 
> summary(out7, info.tol = 1e-10) 
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Call: 
aster.formula(formula = resp - varb + BLK + LOGLVSfr + LOGSLAfr + 

I(LOGLVSfrA2) + I(LOGSLAfrA2) + I(LOGLVSfr * LOGSLAfr) + 
STG1Nfr, pred = pred, fam = fam, varvar = varb, idvar = id, 
root= root, data= chamae2, famlist = famlist) 

(Intercept) 
varbfruit 
BLK2 
BLK4 
LOGLVSfr 

Estimate Std. Error z value Pr(>lzl) 
-5.745e+OO 1.422e-01 -40.395 < 2e-16 *** 
5.981e+OO 2.124e-01 28.166 < 2e-16 *** 

-2.572e-03 4.094e-04 -6.283 3.33e-10 *** 
-2.307e-05 3.781e-04 -0.061 0.951342 
4.204e-02 6.515e-03 6.454 1.09e-10 *** 

LOGSLAfr 8.664e-01 2.067e-01 4.191 2.77e-05 *** 
I(LOGLVSfrA2) -1.649e-03 1.477e-04 -11.160 < 2e-16 *** 
I(LOGSLAfrA2) -2.812e-01 7.319e-02 -3.841 0.000122 *** 
I(LOGLVSfr * LOGSLAfr) -1.178e-02 4.492e-03 -2.623 0.008704 ** 
STG1Nfr -1.210e-03 1.880e-04 -6.435 1.23e-10 *** 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0.1 ' ' 1 

3.1 Maximum Likelihood Estimation of Size 

The aster function does not calculate the correct likelihood when 
the size parameters are considered unknown, because it drops terms 
that do not involve the exponential family parameters. However, the 
full log likelihood is easily calculated in R. 

> x <- out7$x 
> logl <- function(alpha.fruit, theta, x) { 
+ x.fecund <- x[, 1] 
+ theta.fecund<- theta[, 1] 
+ p.fecund <- 1/(1 + exp(-theta.fecund)) 
+ logl.fecund <- sum(dbinom(x.fecund, 1, p.fecund, 
+ log = TRUE)) 
+ x.fruit <- x[x.fecund == 1, 2] 
+ theta.fruit<- theta[x.tecund == 1, 2] 
+ p.fruit <- (-expm1(theta.fruit)) 
+ logl.fruit <- sum(dnbinom(x.fruit, size= alpha.fruit, 
+ prob= p.fruit, log= TRUE) - pnbinom(O, size= alpha.fruit, 
+ prob= p.fruit, lower.tail= FALSE, log= TRUE)) 
+ logl.fecund + logl.fruit 
+} 

We then calculate the profile likelihood for the size parameter alpha. fruit 
maximizing over the other parameters, evaluating the profile log like­
lihood on a grid of points. We do not do this if the results would be 
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the same as we got last time and have stored in the variable logl. seq. 

> ok <- exists("alpha.fruit.save") && (alpha.fruit.save== 
+ alpha.fruit) && exists("coef.save") && isTRUE(all.equal(coef .save, 
+ coefficients(out7))) 
> print(ok) 

[1] TRUE 

>alpha.fruit.seq<- seq(1.5, 4.5, 0.25) 
> if ( !ok) { 
+ logl.seq <- double(length(alpha.fruit.seq)) 
+ for (i in 1:length(alpha.fruit.seq)) { 
+ famlist.seq <- famlist 
+ famlist.seq[[2]] <- fam.trU11cated.negative.binomial(size = alpha.fruit.seq[i], 
+ trU11cation = 0) 
+ out7.seq <- aster(out7$formula, pred, tam, varb, 
+ id, root, data= chamae2, famlist = famlist.seq, 
+ parm = out7$coefficients) 
+ theta.seq<- predict(out7.seq, model.type= "cond", 
+ parm. type = "canon") 
+ dim(theta.seq) <- dim(x) 
+ logl.seq[i] <- logl(alpha.fruit.seq[i], theta.seq, 
+ x) 

+ } 
+} 

>alpha.too<- seq(min(alpha.fruit.seq), max(alpha.fruit.seq), 
+ o. 01) 
> logl.foo <- spline(alpha.fruit.seq, logl.seq, n = length(alpha.foo))$y 
> imax <- seq(along = alpha.foo)[logl.foo == max(logl.foo)] 
>alpha.fruit.save<- alpha.fruit 
>alpha.fruit<- alpha.foo[imax] 
> coef.save <- coefficients(out7) 
> if (!ok) { 
+ save(alpha.fruit, alpha.fruit.save, coef.save, logl.seq, 
+ file = "chamae2-a1pha.rda", ascii = TRUE) 
+ } 

At the end of this chunk we save the maximum likelihood estimate 
in a file which is read in at the beginning of this document. We also 
save some extra information so there is no need to do this step every 
time if there is no change in the alpha. 

Figure 3 (page 7) shows the profile log likelihood for the size pa­
rameter. 
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Figure 3: Profile log likelihood for size parameter for the (zero-­
truncated) negative binomial distribution of fruit. Hollow dots are 
points at which the log likelihood was evaluated exactly. Curve is the 
interpolating spline. Solid dot is maximum likelihood estimate. 

7 



0 0 

~ 

0 
N "": 0 0 
I 0 
::i 0 0 
Cf) 

"'.! 8 

"! 0 

2 4 6 8 10 

LNo.3 

Figure 4: Scatterplot of phenotypic variables. 

3.2 The Fitness Landscape 

We calculate for just one value of BLK and STGlN. 

> theblk <- "1" 
> thes tg <- 1 

Figure 4 (page 8) shows the scatter plots of t he two phenotypic 
variables (LDGLVS and LDGSLA, labeled LN and SLA because that is 
what they are called in the paper). It is made by the following code. 

> xlab <- quote(LN-2) 
> xlab[[3]] <- lambda.lvs 
> xlab <- as.expression(xlab) 
> ylab <- quote(SLA-2) 
> ylab[[3]] <- lambda.sla 
> ylab <- as . expression(ylab) 
> plot (chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = xlab, ylab ylab) 

The point of making t he plot Figure 4 is that we want to add 
contour lines showing the estimated fitness landscape. To do that we 
first start with a grid of points across the figure. 

> ufoo <- par("usr" ) 
> nx <- 101 
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> ny <- 101 
> z <- matrix(NA, nx, ny) 
> x <- seq(ufoo[1], ufoo[2], length= nx) 
> y <- seq(ufoo[3], ufoo[4], length= ny) 
>xx<- outer(x, y-o) 
> yy <- outer(x-o, y) 
>xx<- as.vector(xx) 
> yy <- as.vector(yy) 
> n <- length(xx) 

Then we create an appropriate newdata argument for the predict. aster 
function to "predict" at these points 

> newdata <- data.frame(BLK = factor(rep(theblk, n), levels= levels(chamae2$BLK)), 
+ STG1N = rep(thestg, n), LDGLVS = xx, LDGSLA = yy, 
+ fecund= rep(1, n), fruit= rep(3, n)) 
> renewdata <- reshape (newdata, varying = list (vars), direction = "long", 
+ timevar = "varb", times= as.factor(vars), v.names = "resp") 
> renewdata <- data.frame(renewdata, root= 1) 

>too<- as.numeric(as.character(renewdata$varb) == "fruit") 
> renewdata$LDGLVSfr <- renewdata$LDGLVS * too 
> renewdata$LDGSLAtr <- renewdata$LDGSLA * too 
> renewdata$STG1Nfr <- renewdata$STG1N * too 

Then we predict the unconditional mean value parameter T, for which 
the "fruit" component is expected fitness. 

>tau<- predict(out7, newdata = renewdata, varvar = varb, 
+ idvar = id, root= root) 
>tau<- matrix(tau, nrow = nrow(newdata), ncol = ncol(out7$x)) 
> dimnames(tau) <- list(NULL, vars) 
> zfit <- tau[, "fruit"] 

Figure 5 (page 10), which is made by the following code, shows it. 

> plot(chamae2w$LDGLVS, chamae2w$LDGSLA, xlab = xlab, ylab = ylab, 
+ pch = ". ") 

> ztit <- matrix(zfit, nrow = length(x)) 
> contour(x, y, zfit, add= TRUE) 
> contour(x, y, zfit, levels= c(S, 10, 25), add= TRUE) 

3.3 Lande-Arnold Analysis 

In contrast to the aster analysis, the Lande-Arnold analysis is very 
simple. 

>lout<- lm(fruit - LDGLVS + LDGSLA + STG1N + I(LDGLvs-2) + 
+ I(LDGLVS * LDGSLA) + I(LDGSLA-2), data= chamae2w) 
> summary(lout) 
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Figure 5: Scatterplot of phenotypic variables with contours of fitness 
landscape estimated by the aster model. 
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Call: 
lm(formula = fruit - LOGLVS + LOGSLA + STG1N + I(LOGLvs-2) + 

I(LOGLVS * LOGSLA) + I(LOGSLA-2), data= chamae2w) 

Residuals: 
Min 1Q Median 3Q Max 

-484.81 -67.74 -11.65 53.89 697.87 

Coefficients: 
Estimate Std. Error t value Pr(>ltl) 

(Intercept) -5691.028 1705.142 -3.338 0.000859 *** 
LOGLVS -12.787 81. 954 -0.156 0.876026 
LOGSLA 8126.090 2476.600 3.281 0.001050 ** 
STG1N -17.479 2.832 -6.171 8.03e-10 *** 
I(LOGLvs-2) 11.471 1.993 5.757 9.76e-09·*** 
I(LOGLVS * LOGSLA) -21.767 60.657 -0.359 0.719740 
I(LOGSLA-2) -2849.604 908.744 -3.136 0.001736 ** 

Signif. codes: 0 '***' 0.001 '**' 0.01 ' * ' 0 . 05 ' . ' 0 . 1 ' ' 1 

Residual standard error: 122.2 on 2232 degrees of freedom 
Multiple R-Squared: 0.3562, Adjusted R-squared: 0.3545 
F-statistic: 205.8 on 6 and 2232 OF, p-value: < 2.2e-16 

Figure 6 (page 12), which is made by the following code, shows 
the best quadratic approximation to the fitness landscape fit above by 
multiple regression together with the estimate from the aster model 
from Figure 5. It is made by the following code, first the prediction 

> zzols <- predict(lout, newdata = data.trame(LOGLVS = xx, 
+ LOGSLA = yy, STG1N = rep(thestg, length(xx)))) 

> plot(chamae2w$LOGLVS, chamae2w$LOGSLA, xlab = xlab, ylab = ylab, 
+ pch = ". ") 
> contour(x, y, ztit, add= TRUE) 
> contour(x, y, ztit, levels= c(5, 10, 25), add= TRUE) 
> zzols <- matrix(zzols, nrow = length(x)) 
> contour(x, y, zzols, add= TRUE, lty = "dotted") 

Note that fitness is a positive quantity. Hence the negative con­
tours in the best quadratic approximation are nonsense, although they 
are the inevitable result of approximating a surface that is not close to 
quadratic with a quadratic function. Note also that the best quadratic 
approximation has a saddle point and no maximum, whereas it ap­
pears that the actual fitness landscape does have a maximum, albeit 
near the edge of the distribution of phenotypes. Apparently, the sad­
dle point is the result of the quadratic function trying to be nearly flat 
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Figure 6: Scatterplot of phenotypic variables with contours of fitness 
landscape estimated by the aster model (solid) and the best quadratic 
approximation (dotted). 
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on the left hand side of the figure ( a quadratic function cannot have 
an asymptote; the saddle point is the next best thing). A quadratic 
function cannot have both a saddle point and a maximum; it has 
to choose one or the other. Unfortunately, least squares makes the 
wrong choice from the biological point of view. It is more important 
to get the maximum right than the flat spot (where fitness is close to 
zero). 
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