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Abstract 

Sparse discriminant methods based on independence rules, such as the nearest 

shrunken centroids classifier (Tibshirani et al. 2002) and features annealed indepen­

dent rules (Fan & Fan, 2008), have been proposed as computationally attractive tools 

for feature selection and classification with high-dimensional data. A fundamental 

drawback of these rules is that they ignore correlations among features and thus could 

produce misleading feature selections and inferior classifications. We propose a new 

recipe for sparse discriminant analysis, motivated by least squares formulation of linear 

discriminant analysis. To demonstrate our proposal, we study the numerical and theo­

retical properties of discriminant analysis constructed via Lasso/SCAD penalized least 

squares. Our theory shows that both the proposed methods can consistently identify 

the subset of discriminative features contributing to the Bayes rule and at the same 

time consistently estimate the Bayes classification direction, even when the dimension 

can grow faster than any polynomial order of the sample size. The theory allows for 

general dependence among features. Simulated and real data examples show that our 

methods compare favorably with other popular sparse discriminant proposals in the 

literature. 

Keywords: Discriminant analysis, Feature selection, High-dimensional data, Lasso, 

SCAD, Nearest shrunken centroid classifier, NP-dimension asymptotics. 
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1 Introduction 

Consider a binary classification problem where x = {x1 , ... , xp) represents the predictor 

vector and G = 1, 2 denotes the class label. Linear discriminant analysi(LDA) is perhaps 

the oldest classification technique that is still being used routinely in real world applications. 

The linear discriminant analysis model assumes x I (G = g) rv N(µ9 , E), Pr{G = 1) = 
1r1 , Pr(G = 2) = 1r2 . Then, the Bayes rule, which is the theoretically optimal classifier 

minimizing the 0-1 loss, classifies a data point to class 2 if and only if 

( 

µ1 + µ2)T -1 7r2 
x -

2 
E (µ2 - µi) + log 7r

1 
> 0. {1) 

Let µ1, n 1 and µ2, n2 be the sample mean vector and sample size within class 1 and class 

2, respectively. Let :E be the sample estimate of E. To implement the Bayes rule, linear 

discriminant analysis substitutes µ1 = JJ,1, µ 2 = µ2, E = :E, 1r1 = ni/n, 1r2 = n2/n in (1). 

Despite its simplicity, linear discriminant analysis has been proven to be a reasonably good 

classifier in many applications. For example, Michie et al. {1994) and Hand (2006) have 

shown that linear discriminant analysis has very competitive performance for many real 

world benchmark datasets. 

With rapid advance of technology, high dimensional data appear more and more fre­

quently in contemporary statistical problems, such as tumor classification using microarray 

data. In such data the dimension {p) can be much larger than the sample size (n). It has been 

empirically observed by many that for classification problems with high-dimension-and-low­

sample-size data some simple linear classifiers perform as well as much more sophisticated 

classification algorithms such as the support vector machine and boosting. See, e.g., the 

comparison study by Dettling {2004). Hall et al. {2005) provides some geometric insight 

into this interesting phenomenon. In recent years, many papers have considered ways to 

modify the usual LDA such that the modified discriminant analysis method is suitable for 

high dimensional classification. A seemingly obvious choice is by using more sophisticated 

estimates of the inverse covariance matrix E-1 to replace the naive sample estimate. Under 

some sparsity assumption, one can obtain good estimators of E and E-1 even when p is 

much larger than n (Bickel & Levina 2008, Cai et al. 2010, Rothman et al. 2008). However, 

a better estimate of E-1 does not necessarily lead to a better classifier. Consider an ideal 

scenario where we know E is an identity matrix. Even so, Fan & Fan (2008) showed that 

this classifier performs no better than random guessing when p is sufficiently large, due to 

noise accumulation in estimating µ 1, µ 2 . Therefore, effectively exploiting sparsity is critically 
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important for high-dimensional classification. 

Tibshirani et al. (2002) proposed the nearest shrunken centroid classifier(NSC) for tumor 

classification and gene selection using microarray data. The shrunken centroid classifier is 
n fi,·1 - µ ·2 

defined as follows. For each variable Xj, we compute di 1 = -- 3 3 and di2 = -dj1 , 
n1 n2 Sj + so 

where fi,il and P,j2 are the within-class sample mean, s; is the sample estimate of Eii and s0 

is a small positive constant added for robustness consideration. For simplicity, we can think 

so = 0. Define the shrunken centroid mean by 

,.., - ~1 d" µjg = Xj + - - -Sj jg, 
ng n 

g = 1,2 

h - n1P,1; + n2P,2; . th . 1 1 f ' . h .. w ere xi = --.a..---"'- 1s e margma samp e mean o Xj, I\ 1s a pre-c osen pos1t1ve 
n 

constant and dJ9 is computed by soft-thresholding di9 : dJ9 = sign(d;9 )(ld;9 I - .-\)+, g = I, 2. 

The NSC classifies x to class 2 if 

(2) 

Comparing (2) and (1), we see that the nearest shrunken centroid classifier modifies the 

usual LDA in two directions. First, it only uses the diagonal sample covariance matrix to 

estimate E. If.,\= 0, NSC reduces to the so-called diagonal linear discriminant analysis. As 

shown in Bickel & Levina {2004), the diagonal linear discriminant analysis may work much 

better than the usual LDA in high dimensions. Second, NSC classifier uses the shrunken 

centroid mean to estimate µ1, µ2 in order to perform feature selection. Note that if we use 

a sufficiently large.-\, then the soft-thresholding operation will force µJ 1 = µJ2 = xi for some 

variables and those variables have no contribution to the classifier defined in (2). NSC is 

implemented in the R package pamr written by Hastie, Tibshirani, Narasimhan and Chu. 

See http://cran.r-project.org/web/packages/pamr/index.html. Many empirical experiments 

have shown that NSC is very competitive for high-dimensional classification. Variants of the 

shrunken centroid idea have been considered in other sparse discriminant analysis proposals 

(Guo et al. 2006, Wang & Zhu 2007). More recently, Fan & Fan (2008) proposed features 

annealed independence rules in which gene selection is done by hard-thresholding marginal 

t-statistics for testing whether µ 1i = µ2j. 

Since the goal of sparse discriminant analysis is to find genes/features that contribute 

most to classification, the target of an ideal feature selection should be the discriminative 

set which contains all "discriminative genes" that contributes to the Bayes rule. This is 
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a very natural argument because we would use the Bayes rule for classification if it was 

available. Feature selection is needed when the cardinality of the discriminative set is much 

smaller than the total number of genes/features. The performance of feature selection by a 

sparse discriminative method is measured by its probability of discovering the discriminative 

set. There is little theoretical work for justifying NSC and its variants. To our knowledge, 

only Fan & Fan (2008) provided some detailed theoretical analysis of features annealed 

independent rules(FAIR), where the fundamental assumption is that Eis a diagonal matrix. 

However, such an assumption is too restrictive to hold in real applications, because strong 

correlations exist in microarrays and other types of high-dimensional data. It is not hard to 

see that ignoring the important correlation structure may lead to misleading feature selection 

results. In fact, we argue that both NSC and FAIR aim to discover the so-called signal set 

whose definition is given explicitly in Section 2. We further provide a necessary and sufficient 

condition under which the signal set is identical to the discriminative set. The necessary and 

sufficient condition can be easily violated and hence independent rules could select wrong 

features. 

In this work we propose a new recipe for sparse discriminant analysis in high dimensions. 

Our proposal is motivated by the well-known fact that in the traditional low dimension set­

ting the LDA classifier can be reconstructed exactly via least squares (Hastie et al. 2008). 

\Ve suggest using penalized sparse least squares methods to derive sparse discriminant meth­

ods. Our proposal is computationally efficient in high dimensions with the help of efficient 

algorithms for computing penalized least squares. We further provide theoretical justifica­

tions for our proposal. Suppose the Bayes rule has a sparse representation. Our theoretical 

results show that the proposed sparse discriminant method can simultaneously identify the 

discriminative set and estimate the Bayes classification direction consistently. The theory is 

valid even when the dimension can grow faster than any polynomial order of the sample size 

and does not impose strong assumptions on the correlation structure among predictors. 

The rest of the paper is organized as follows. In Section 2 we discuss the differences 

between the signal set and the discriminative set. In Section 3 we introduce the penalized 

least squares formulation of sparse discriminant analysis. In Section 4 we establish the 

theoretical properties of Lasso-LDA and SCAD-LDA, where the Lasso penalty and the SCAD 

penalty are used to do feature selection. Numerical results are presented in Section 5. 

Technical proofs are relegated to an Appendix. 
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2 The signal set and the discriminative set 

Consider the problem of tumor classification with gene expression arrays. It is an intuitively 

sound claim that differentially expressed genes should be responsible for the tumor classifi­

cation and equally expressed genes can be safely discarded. However, we show in this section 

that a differentially expressed gene can have no role in classification and at the same time 

an equally expressed gene can significantly influence classification. 

We begin with some necessary notation. By definition, the discriminative set is equal 

to A = {j : (E-1 (µ2 - µ 1)) i =I- 0}, since the Bayes classification direction is E-1 (µ2 - µ 1). 

Variables in A are called informative or discriminative variables. Define A = {j : µ 1i =I- µ 2i} 

which is referred to as the signal set and variables in A are called signals. Independent rules 

select genes by comparing their within-class means. In an ideal situation, A is the gene 

selection outcome of an independent rule. 

Finding A is of course an interesting and valid statistical inference problem, which is 

often formulated as a multiple hypothesis testing problem (Dudoit & Van der Laan 2008, 

Efron 2010). Various new methods and theories have been developed for doing thousands 

of hypotheses testing at the same time. See Benjamini & Hochberg (1995), Storey (2002), 

Storey et al. (2004), Genovese & Wasserman (2004), Efron (2005), Donoho & Jin (2004), 

Sun & Cai (2007), among others. Efron {2009) discussed the connection between large­

scale classification and large-scale testing under a special LDA model assuming a diagonal 

covariance matrix. When E is diagonal A = A. For a general covariance matrix, however, the 

informative set and the signal set can be very different, as shown in the following proposition. 

1. A~ A if and only if E.4c
1
.4EA~A(µ2,A - µ1,A) = 0. 

2. A ~ A if and only if µ2,Ac = µ1,Ac or EAc,AEA~A (µ2,A - µ1,A) = 0. 

Based on Proposition 1 it is very easy to construct concrete examples to show that a 

non-signal can be informative, and vice versa. Here are two examples. Consider a LDA 

model with µ 1 = Op, Ei,i = 1 and Ei,i = 0.5, 1 ~ i, j ~ 25 and i =/- j, where p = 25. If 

µ2 = (1, 1, 1, 1, 1, 0, · · · , of, then A = {1, 2, 3, 4, 5} and A = {j : j = 1, · · · , 25}, i.e., all 

variables are informative. Similarly, if let µ 2 = (3, 3, 3, 3, 3, 2.5, · · · , 2.5f, then all variables 

are signals but A= {l, 2, 3, 4, 5}. 
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The above arguments warn us that sparse discriminant analysis using independent rules 

could end up with a wrong set of features. A different sparse discriminant analysis method 

was recently proposed by Wu et al. (2008). Their proposal starts with Fisher's view of LDA, 

that is, the LDA direction is obtained by maximizing f3T B/3/ /3T'E/3 where 't is the within 

covariance matrix and B = (µ2 - µ1)T(ft2 - µi) is the between covariance matrix. Note that 

f3T B/3 = ll(ft2 - ft1f /311~- Wu et al. {2008) proposed the following sLDA: 

Witten & Tibshirani {2011) proposed another £1-penalized linear discriminant analysis: 

p 

max{/3T B/3 - A E1si/3il}, subject to /3T'E(3:::; 1. 
j=l 

(3) 

(4) 

Little is known about the theoretical properties of the estimators defined in (3) and (4). 

However, it is not our interest in this paper to prove or disprove these two methods, although 

we do include them in our numerical experiments. 

3 Methodology 

3.1 Sparse LDA via penalized least squares 

Our approach to sparse LDA is motivated by the intimate connection between linear discrim­

inant analysis and least squares in the classical p < n setting (Hastie et al. 2008). Suppose 

we numerically code the class labels as Y1 = -n/n1 and y2 = n/n2 where n = n1 + n2 . Let 
n 

(/Jols,/Jgls) = argwin E(Yi -/Jo - xf /3)2 
1 

O i=l 

(5) 

Then /3°15 = c't-1(µ2 - µi) for some positive constant c. In other words, the least square 

formulation in (5) exactly derives the usual LDA direction. 

The connection is lost in high dimensional problems because the sample covariance esti­

mate is no longer invertible and the LDA direction is not well defined in its original form. 

However, we may consider a penalized least squares formulation to produce a classification 

direction. Let P>.(·) be a generic sparsity-inducing penalty. Specific choices of P>.(·) are given 

in Section 2.2. We first compute the solution to a penalized least squares problem 

n P 

">. ">. · 1'""" T 2 '""" (/3 , /30 ) = arg mm - ~(Yi - /3o - xi /3) + ~ P>.(1/3il). 
/3,/30 n . 

1 
. 

i= J=l 

(6) 
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Then our classification rule is to assign x to class 2 if 

(7) 

It is important to note that /Jo in (7) differs from /36 in (6). In the p << n case, consider the 

OLS estimator and the usual LDA. Let us write /3°1s = c/JLDA, /JLDA = "t-1(µ2 - µ1). We 

should use /Jo= c/J"'frDA in (7) where 

f3tDA = log ( :: ) _ CL1; µ2) T [3LDA 

such that the OLS classifier and the LDA rule yield identical classification. If we use /Jg1s in 

(7), the the OLS classifier is in general not identical to the LDA rule. 

Finding the right intercept is critical for classification but receives little attention in the 

literature. Hastie et al. (2008) mentioned that one could choose the intercept /Jo empirically 

by minimizing the training error. We show here that for a given classification direction, there 

is a nice closed-form formula for the optimal intercept. 

Proposition 2. Suppose a linear classifier assigns x to class 2 if xT [3 + f3o > 0. Given [3, if 

(µ2 - µ 1)T [3 > 0, then the optimal intercept [30 is 

(8) 

which can be estimated by 

r--opt 1 (,. ,. )T/3- [3Tt,[3 l n2 
/JO . = - -

2 
µ1 + µ2 + ,. " - og - . 

(µ2 - µ1)T {3 n1 
(9) 

Without sparsity condition on [3, the estimator given in (9) would not work well when 
- · -T - - - -T"' -

p > n. However, when {3 1s sparse, we have /3 E/3 = Ei,j:/3d=O,Pp/;O 'Eij/3i/3i and /3 E/3 = 
,. - - - -T,. -

Li,j:/3d=0,/3;#:0 'Eij/3i/3j- Even when p » n, as long as 11/3110 « n, /3 'E/3 is a good estimator 

for [3T'E[3. Using a regularized estimate of E could provide some further improvement. For 

example, for banded covariance matrices, the banding estimator (Bickel & Levina 2008) 

and the tapering estimator (Cai et al. 2010) are better estimators for 'E than the sample 

covariance. However, in this work our primary focus is fJ>. and we do not want to entangle 

the issue of estimating large covariance matrices with the problem of feature selection. 

The condition (µ2 - µ1 f [3 > 0 in proposition 2 is very mild. Suppose the linear classifier 

actually yields (µ2 - µ1 f [3 < 0, then it is easy to show that such a classifier is dominated 

by the other linear classifier using direction f3new = -[3 that obeys (µ2 - µ1)T f3new > 0. 
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By proposition 2 , the sparse LDA classifier is defined as follows: assigning x to class 2 if 

T ">. T" ">. 

( x - -
2
1 (P,1 + P,2)) fJ>. + ((3 ) LJ{3 " log n2 > 0. 

(P,2 - /l1 )T {3>. n1 
(10) 

The sparse LDA classifier depends on the regularization parameter .X. In practice we need 

to select a good regularization parameter such that the generalization error is as small as 

possible. Cross-validation is a popular method for tuning. In this paper we use cross­

validation to select A under the 0-1 loss. 

3.2 Choice of penalty and computing algorithm 

We now discuss the choice of penalty functions in ( 6). We note first that our sparse LDA 

approach can work with any sparsity-inducing penalty function. In recent years, many 

papers have been devoted to designing nice penalty functions for sparse regression. Some 

well-known examples are lasso (Tibshirani 1996), SCAD (Fan & Li 2001), elastic net (Zou & 

Hastie 2005), fused lasso (Tibshirani et al. 2005), grouped lasso (Yuan & Lin 2006), adaptive 

lasso (Zou 2006), MCP (Zhang 2010) and SICA (Lv & Fan 2009), among others. Fan & 

Lv (2010) provided a good review on feature selection and penalized regression models. 

Roughly speaking, these penalty functions can be classified into two categories: the convex 

family and the concave family, with lasso and SCAD being the representing examples. To 

fix idea, we focus on the lasso and SCAD penalties when constructing sparse LDA classifiers. 

The lasso penalty function is P.x(t) = .Xt fort~ 0. The SCAD penalty function is defined by 

P.x,a(0) = 0 and P~,a(t) = .XI(t ~ A)+ (a:=~)+ I(t > .X) fort> 0 where a> 2. Following Fan 

and Lv (2001), we used a= 3.7 in our numerical experiments. If the lasso penalty is used 

in (6), we call the resulting classifier Lasso-LOA. Likewise, if the SCAD penalty is used, we 

call the resulting classifier SCAD-LOA. 

There has been considerable progress in developing efficient algorithms for computing 

sparse regularized regression models in high dimensions. The LARS algorithm (Efron et al. 

2004), implemented in the R package lars, computes the entire solution path for the lasso 

regression with the same order of computational cost as a single ordinary least squares fit. 

Friedman et al. (2008) implemented the coordinate descent algorithm for computing the lasso 

regression in the R package glmnet and showed that glmnet can be even faster than lars. 

Zou & Li (2008) showed that using the LLA algorithm one can solve the concave penalized 

regression problem via an iterative weighted-lasso regression procedure. One could combine 

the LLA algorithm and glmnet to solve any concave penalized least squares for each fixed 
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II 

A. For the SCAD penalty, it turns out that an even faster algorithm is possible by directly 

applying the coordinate descent principle. The coordinate decent algorithm works well for 

the lasso because the univariate lasso regression solution is given by the soft-thresholding rule 

(Tibshirani 1996, Friedman et al. 2008). Likewise, the univariate SCAD solution also has a 

closed-form formula given by the SCAD thresholding rule (Fan & Li 2001). Therefore, with 

some proper modification, glmnet can be used to compute the SCAD penalized regression. 

In a word, both Lasso-LDA and SCAD-LDA can be computed very efficiently even when 

p » n. Hence they are practically useful for high dimensional classification problems. 

4 Statistical Theory 

In this section we study the theoretical properties of the sparse LDA classifiers based on 

lasso /SCAD penalized least squares. In the literature there are many results on sparse 

penalized least squares (Fan & Li 2001, Zou 2006, Zhao & Yu 2006, Zhang & Huang 2008, 

Zhang 2010, Fan & Lv 2008, Lv & Fan 2009). But they cannot be directly applied to our 

setting although we borrow the least squares criterion to derive the sparse LDA classifier, 

because the linear model assumption (y = L; x;/3;+errar), the foundation for these existing 

theoretical work, does not hold for the LDA model. Furthermore, if we regard the predictor 

matrix as the "design" matrix, then our theory always deals with the random design case, 

whereas the fixed design theory is common in the existing work on high-dimensional penalized 

least squares regression. 

4.1 Notation and definitions 

We first introduce some necessary notation to be used in the theoretical analysis. For a 

general m x n matrix M, define IIMll00 = maxi=l, .. ,m I:;=1 IMi;I. For any vector b, let 

llblloo = maxi lb;I and lblmin = min; lbil· We let ,B(Bayes) = E-1(µ2 - µ1) represent the 

Bayes classifier coefficient vector. So A = {j : /3(Bayes)j ':/ 0} and let s = IAI. We use 

C = Cov(x) to represent the marginal covariance matrix of the predictors and partition C 
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C AAc) . We define three quantities that frequently appear in our analysis: 
CAcAc 

K, - IICAcA(CAA)- 11100, 

'P - II ( C AA)-1 lloo, 
Di. - llµ2A - µulloo· 

(11) 

(12) 

(13) 

Suppose X is the predictor matrix and let X be the centered predictor matrix such 

that the column-wise mean is zero. Obviously, c<n) = ¾fcT X is an empirical version of C. 
· · · 1 -T - (n) 1 -T - (n) L1kew1se, we can write nXAXA = CAA and nXAcXA = CACA• 

Denote /3* = (CAA)- 1(µ2A-µ1A), Now we can define ,B(Bayes) by letting ,B(Bayes)A = /3* 

and ,B(Bayes)Ac = 0. The following is a simple but very useful result, showing the equivalence 

between ,B(Bayes) and /3(Bayes) in the context of LDA model. 

Proposition 3. /3(Bayes) and /3(Bayes) are equivalent in the sense that /3(Bayes) = c/3(Bayes) 

for some positive constant c and the Bayes classifier is also equivalent to assigning x to class 

2 if 

( 
µ1 + µ2)r/3-(B ) (/3(Bayes)f~,B(Bayes) 1 1r2 0 x - --- ayes + _ og - > . 

2 (µ 2 - µ1)T/3(Bayes) 1r1 
(14) 

Proposition 3 tells us that it suffices to show the proposed sparse LDA can consistently 

recover the support of ,B(Bayes) and estimate /3*. 

4.2 Main results 

We now present the main theoretical results. In our analysis we assume the variance of 

each variables is bounded by a finite constant. This regularity condition usually holds. In 

practice, one often standardizes the data beforehand. Then the finite constant can be taken 

as one. In this subsection, Eo and c1, c2 are some positive constants. 

Suppose the Lasso-LDA estimator does find the support of the Bayes rule, A, then we 

have /3(lasso)Ac = 0 and /3(lasso)A should be identical to 13A, where 

(15) 

We introduce J3A only for mathematical analysis. It is not a real estimator, because its 

definition depends on knowing A. 
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To ensure the Lasso-LDA classifier has the variable selection consistency property, we 

impose a condition on the covariance matrix of the predictors: 

(16) 

The above condition is an analogue of the irrepresentable condition for the Lasso regression 

estimator (Zhao & Yu 2006, Zou 2006). 

Theorem 1 (Analysis of Lasso-LDA). Pick any A such that A< min(½l/3*lmin/cp, ~). 

1. Assuming the condition in {16}, with probability at least 1 - 81, SA(lasso) = SA and 

SAc(lasso) = 0, where 

n 2 A 1 - "' - 2Ecp 2 81 = 2ps exp{-2 € c1) + 2p exp(-nc2( 
4 1 

) ) 
s + K, 

(17) 

d . ·t. t t t. ,.f. • • ( t(l-tt) ) an € is any posi ive cons an sa is1ymg € < mm Eo, ½+(l+tt).6. . 

2. With probability at least 1 - 82, none of the elements of f3A is zero, where 

(18) 

where€ is any positive constant satisfying€< min{Eo, ~~). 

3. 

" 2 nc1 2) 2) Pr(ll/3A - /3*lloo ~ 4cpA) ~ 1 - 2s exp(--2 € - 2s exp{-nc2€ , 
s 

(19) 

where € is any positive constant satisfying € < min{ Eo, 2;.a., A). 

In our analysis we compare SCAD-LDA to an oracle estimator knowing the true feature 

set A. We first define 

(20) 

It is easy to see that ,B(oracle)A is the solution to a least squares criterion min I::=l (Yi -

f3o - I:jeA Xij/3j)
2

. Hence, in terms of classification ,B(oracle) is equivalent to the oracle 

LDA only using the subset A. The oracle estimator is then defined as S( oracle) such that 

,B(oracle)A = ,B(oracle)A and ,B(oracle)Ac = 0. 
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Theorem 2 (Analysis of SCAD-LDA). 1. For any E > 0 satisfying 

€ • ( 1 ) 
€ + 2D..cp ~ mm Eacp, Ea D.. , 

we have 

Pr(ll,8( oracle) - ,B*lloo ~ E) 
2 nc1 €2 nc2 €2 D.. 2 

< 2s exp(- 482 cp2(€ + 26.cp)2) + 2s exp(- 4 (E + 26.cp)2). (21) 

2. For any,,\ < l/3*~min, with probability at least 1- 83 , none of the elements of /3( oracle)A 

is zero and ,8( oracle) is a local solution to the SCAD-LDA criterion, where 

nc1 1 € 
2pexp(-nc2E

2) + 2psexp(--2 2 (---)2) 
S cp E+K+l 

2 nc1 €2 nc2 €2 b,..2 
+2s exp(- 4s2 cp2(€ + 2D..cp)2) + 2sexp(-4 (E + 26.cp)2), (22) 

where E is any positive constant, E < Ea and obeys the following constraints: e+~+l < 

<.pEa, e+;~"° ~ min(Eocp, Eo½), and E < min(l,B*lmin - a,,\, 6~, ¼, 61\:~X ) . 
.0. 

The analysis of SCAD-LOA does not require condition (16). Theorem 2 works for any 

positive "'· 

The non-asymptotic results in Theorems 1 and 2 can be easily translated into some 

asymptotic arguments when considering the triple of ( n, s, p) goes to infinity at some proper 

rates. To highlight the main points, we assume 6., "-, cp are constants in the asymptotic 

arguments. In addition, we need the following two regularity conditions: 

(Cl). n,p ~ oo and log(ps)s2 /n ~ 0, 

{C2). l,B*lmin » log{ps)s2 

n 

Condition (Cl) puts some restriction on p. Clearly, we cannot expect the proposed 

method (or any sensible method) works for an arbitrarily large p. However, the restriction 

is rather loose. Consider the case where s = o(n½--Y) for some 1 < ½- (Cl) holds as long 

as p « en2
...,. Therefore, p is allowed to grow faster than any polynomial order of n. This 

implies the applicability of the Lasso-LDA and SCAD-LDA to real world problems such as 

gene expression classification. 

Condition (C2) requires the non-zero elements of the Bayes rule to be large enough such 

that we could consistently separate them from zeros by using observed data. The lower 
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bound actually converges to zero asymptotically under (Cl), and hence condition (C2) is 

not a strong assumption. 

Theorem 3 (Asymptotic properties of Lasso-LOA and SCAD-LDA). Under conditions {Cl} 

and {C2}, if we choose some A = An such that An « l,B* lmin and An » Jlog(ps )s2 /n, then 

, with probability going to one, a SCAD-LDA solution is identical to the oracle LDA that is 

consistent in feature selection and 11,B(oracle)A - ,B*ll00 = op( Jlog(s)s2/n). Moreover, if we 

further assume"' < 1, then the Lasso-LDA is consistent in feature selection and 11,B( oracle)A­

,B*lloo = Op(An). 

Finally, it is important to point out that our theory does not require any structure 

assumption on the common covariance matrix E, which clearly shows the fundamental dif­

ference between our method and those based on high dimensional covariance estimation. 

In the current literature on covariance or inverse-covariance matrix estimation, a commonly 

used assumption is that the target matrix has some sparsity structure (Bickel & Levina 2008, 

Cai et al. 2010, Rothman et al. 2008). Such assumptions are not needed in our method. 

5 Numerical Results 

5.1 Simulation 

We use simulated data to demonstrate the good performance of Lasso-LOA and SCAD­

LDA. For comparison, we included NSC, FAIR, the sparse LDA proposed by Witten & 

Tibshirani (2011) and the sparse LDA proposed by Wu et al. (2008). NSC is implemented 

in the R package pamr; see http://cran.r-project.org/web/packages/pamr/index.html. The 

sparse LDA proposed by Witten & Tibshirani (2011) is implemented in the R package 

penalizedLDA; see http://cran.rproject.org/web/packages/penalizedLDA/index.html. We 

used the code by Dr. Wu to implement their proposal of sparse LDA. 

We randomly generated n class labels such that 1r1 = 1r2 = 0.5. Conditioning on the 

class labels g (g = 1, 2), we generated the p-dimensional predictor x from a multivariate 

normal distribution with mean vector µ9 and covariance E. Without loss of generality, we 

set µ 1 = 0 and µ 2 = E,BBayes. Vve considered six different simulation models. The choices of 

n, p, µ2, E and ,eaayes are shown in Table 1. Models 1-4 are sparse discriminant models with 

different covariance and mean structure, while models 5 and 6 are "practically sparse" in the 

sense that their Bays rules depend on all variables in theory but can be well approximated 
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Model n p E /3 ayes 

1 100 400 E·· -0 5 i-i '1,J - • 0.556(3, 1.5, 0, 0, 2,0p-sf 
2 100 400 Eii =0.5li-il 0.582(3, 2.5, -2.8, 0v-3f 
3 400 800 Eii = 1, Eii=0.5, i # j. 0.395(3, 1.7, -2.2, -2.1,2.55,0p-sf 
4 300 800 Eii = 1,Eii =0,li-jl ~ 160 0. 916 ( 1. 2 ,-1. 4, 1.15 ,-1. 64, 1. 5 ,-1, 2, Op-7 f 

Eij=0.6, 0 < Ii - JI < 160 
5 400 800 Eii = 1, Eii=0.5, i # j. 0.551(3, 1.7, -2.2,-2.1,2.55,(p - 5)-1 lp-sf 
6 400 800 Eii = 1, Eii=0.5, i # j. 0.362(3, 1.7, -2.2,-2.1,2.55,(p - 5}-1lp_5f 

Table 1: Simulation settings. 

by sparse discriminant functions. Table 2 summarizes the simulation results based on 2000 

replications. For each measure we reported its median and the corresponding standard error 

in parentheses. Only Lasso-LDA and SCAD-LDA show consistently good performance in 

all six simulation settings. They closely mimic the Bayes rule, regardless of the Bayes error 

and covariance structure. NSC and FAIR have very comparable performance, but they are 

much worse than Lasso-LDA and SCAD-LDA except in model 1. By direct calculation one 

can see that the first five elements of µ 2 - µ 1 are much larger than the rest, which implies 

that independence rules can include all three discriminative variables. On the other hand, 

although model 2 uses the same E as in model 1, it has very different mean structure: 

the first two elements of µ 2 - µ 1 are dominating while the rest are much smaller. This 

means that independence rules have difficulty in selecting variable three, resulting inferior 

classification. Wu's method has good classification accuracy overall, but it can often miss 

some important features. Witten's method has rather poor performance, which is somewhat 

surprising because the basic idea behind Witten's method is similar to Wu's. We do notice 

that Witten's formulation in ( 4) is nonconvex while Wu's formulation in (3) and is convex, 

which may help explain their different performance. 
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Bayes rule Lasso-LDA SCAD-LDA Wu Witten NSC FAIR 
Model 1 
Error(%) 10 10.89 11.39 13.71 10.81 10.94 11.47 

(0.03) (0.04) (0.01) (0.01) (0.02) (0.05) 
TRUE Selection 3 3 3 3 1 3 3 

(0) (0) {0) (0) (0) (0) 
FALSE Selection 0 2 0 0 26 6 7 

{0.16) {0) {0.49) (0.11) {0.61) {0.66) 
Model 2 
Error(%) 10 12.84 14.03 14.5 14.25 15.12 15.67 

(0.05) (0.05) {0.01) (0.02) {0.05) {0.07) 
TRUE Selection 3 3 3 1 2 2 2 

{0) (0.48) {0.14) (0) (0.34) (0) 
FALSE Selection 0 6 13 0 4 9 8 

(0.27) (0.64) (0) (0.61) (0.73) (0.29) 
Model 3 
Error(%) 20 21.93 21.37 22.37 33.69 27.48 25.69 

(0.03) (0.03) (0.05) (0.01) (0.07) (0.02) 
TRUE Selection 5 5 5 5 3 3 2 

(0) (0) (0) (0) (0) (0) 
FALSE Selection 0 14 12 2 419.5 2 0 

(0.59) (0.49) (0) (10.19) (0.31) (0) 
Model 4 
Error(%) 10 12.50 12.12 13.99 23.90 19.25 18.56 

(0.02) (0.03) (0.03) (0.01) (0.04) (0.00) 
TRUE Selection 7 7 7 6 4 4 3 

(0) (0.03) (0) (0) (0) (0) 
FALSE Selection 0 18 15 2 35 1 0 

(0.70) (0.42) (0) ( 4.43) (0.48) (0) 
Model 5 
Error(%) 10 11.11 10.55 12.07 21.99 14.72 14.27 

(0.02) (0.03) (0.07) (0.01) (0.03) (0.01) 
Fitted model size 800 21 14 7 737 3 3 

(0.65) (0.19) (0.16) (2.29) (0.46) (0) 
Model 6 
Error(%) 20 22.22 21.62 23.34 30.43 26.13 24.14 

(0.03) (0.03) (0.05) (0.01) (0.07) (0) 
Fitted model size 800 20 16 5 592.5 8 3 

(0.53) (0.31) (0.49) (7.46) (0.51) (0) 

Table 2: Simulation results. The standard errors are reported in parentheses. 
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Lasso-LOA SCAD-LDA Wu Witten 
Colon Error(%) 86.4 86.4 84.1 86.4 

(1.54) (2.08) (2.17) (0.49) 
Fitted model size 5 6 1 10 

(0.63) (0.60) (0) (1.39) 
Prostate Error(%) 94.1 91.2 91.2 91.2 

(0.55) (1.37) (0.70) (0.24) 
Fitted model size 10 8 1 18 

(0. 77) (0.96) (0) ( 4.45) 

Table 3: Real data. 

Wu Witten NSC FAIR 
Colon Error(%) 86.4(1.06) 86.4(0.51) 63.6(0.70) 77.3(2.16) 
Prostate Error(%) 91.2(1.24) 94.1(1.25) 91.2(1.39) 73.5(1.11) 

NSC FAIR 
86.4 86.4 

(1.20) (0.61) 
89 11 

(29.95) (1.19) 
91.2 76.5 

(0.96) (0.54) 
10 4 

(0.84) (0.40) 

Table 4: Classification accuracies if we force all the methods to select similar numbers of 
genes as Lasso-LOA and SCAD-LDA. 

5.2 Real data 

We further compare the methods on two benchmark datasets: Colon and Prostate cancer 

data. The basic task here is to predict whether an observation is tumor or normal tissue. 

We randomly split the datasets into the training and test sets with 2: 1 ratio. Model fitting 

was done on the training set and the classification accuracy was evaluated on the test set. 

This procedure was repeated 100 times. Shown in Table 4 are the (median) classification 

accuracy and the number of selected genes by each competitor. 

Colon and Prostate data have been previously used to test classification and feature 

selection methods. See Alon et al. (1999), Singh et al. (2002) and Dettling (2004). Dettling 

(2004) reported that BagBoost was the most accurate classifier for the Prostate data, with 

classification accuracy 92.5% and the nearest shrunken centroids classifier was the most 

accurate classifier for the Colon data. Table 3 shows that both Lasso-LOA and SCAD-LDA 

are as accurate as the nearest shrunken centroids classifier on the Colon data and Lasso-LOA 

significantly outperforms BagBoost on the Prostate data. Since BagBoost does not do gene 

selection, we do not include it in Table 3. Witten's method works quite well on these two 

real datasets. 

Note that Lasso-LOA and SCAD-LDA select similar numbers of genes. If we force other 

methods to select similar numbers of genes, the results would be as listed in Table 4. Wu's and 

Witten's methods have improved performance, while NSC and FAIR have worse performance. 
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6 Discussion 

Sparse discriminant analysis based on independence rules is computationally attractive for 

high dimensional classification. However, they may lead to misleading feature selection re­

sults and hence poor classification performance. Their limitation is due to the fundamental 

difference between discriminative and signal variables. When doing feature selection in clas­

sification, one should aim to recover the discriminative set not the signal set. Finding the 

signal set is the goal of large-scale hypothesis testing. We should point out that our argu­

ments are not against the developments of theory and methodology for large-scale multiple 

hypothesis testing. Discovering "signals" is the fundamental question of research in many 

scientific studies. We only wish to warn the practitioners that the problem of identifying 

features for discrimination could be very different from identifying interesting signals, and 

hence the statistical tools for data analysis should be carefully chosen. 

Built upon such insight, we have proposed a regularized least squares approach towards 

sparse LDA models. This approach is computationally efficient for handling high dimensional 

data. We have established some non-asymptotic theory for the Lasso/SCAD penalized LDA 

classifiers, from which NP-dimension asymptotic consistency results have been shown to 

hold for the Lasso and SCAD LDA classifiers. In addition, the numerical results are very 

promising, suggesting the great potential of the proposed sparse LDA classifiers for real world 

applications. 

The regularized least squares can be flexibly modified to accommodate some specific 

goals. For instance, if we wish to conduct group-wise variable selection when the groups are 

clearly defined, then we could use the grouped lasso penalty (Yuan & Lin 2006). If we wish 

to impose certain smoothness structure to the classification coefficients, we could apply the 

fused lasso penalty (Tibshirani et al. 2005). In some situations the predictors may have a 

natural ordering where the ordered variable selection is preferred. For that, we could apply 

the hierarchical LARS algorithm (Yuan & Lin 2007) or the nested lasso penalty (Levina et al. 

2008) to obtain the regularized least squares fit. Such generalizations are straightforward to 

implement, but the detailed treatment is out of the scope of this paper. 
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Appendix:proofs 

Proof of Proposition 1. 1. Let n = E-1 and ,eBayes = 0(µ2-µ1), Write n = A,A A,Ac . ( n-- n--) 
0.4c A 0.4c .4c 

' ' 
Note that A ~ A is equivalent to ,eJ:yes = 0. On the other hand, we have ,eJ;yes = 
0.4c .4(µ2 A - µ1 A) and 0.4c A= -(E.4c .4c - E.4c AEA-:1A-EA .4c)-1EA-c AEA-:1A-. Therefore, part 1 

t , , , , ' , , ' , 

is proven. 

2. By definition, A ~ A <===> Ac ~ ..4.c <===> µ2,Ac = µ1,Ac· Now using µ2- µ1 = E,BBayes 

h ~ ,eBayes d ~ {JBayes H · · ld h we ave µ2,A - µ1,A = .uA,A A an µ2,Ac - µ1,Ac = -'.JAC,A A . ence, 1t y1e S t at 

µ2,Ac - µ1,Ac = EA,1A (µ2,A - µ1,A)- Then part 2 is proven. D 

Proof of Proposition 2. We recode the response variable as y* = 1, -1. Note that Jgpt. = 

argmin,0
0 

E(Y~ew -/- sign(x~ewJ + Jo)ltraining data). Since Y~ew, Xnew are independent from 

the training data, (Y;ew, Znew = ~ewJ) obeys a one-dimensional LDA model, that is, 

* -r -r -
ZnewlYnew = 1 rv N(,8 µ2, ,8 E,8), Pr(y~ew = 1) = 7r2 

and 
* -r -r -

ZnewlYnew = -1 rv N(,8 µ1,,8 E,8), Pr(y:ew = -1) = 11"1. 

Then by some straightforward calculation we obtain (8). D 

Proof of Proposition 3. It suffices to prove that, there exists a constant c > 0 such that 
- T ,B(Bayes)A = c,B(Bayes)A, Note that CAA = EAA + 1r11r2(µ2A - µ1A)(µ2A - µ1A) and 

CAAJ(Bayes)A = µ2A - µlA. Let c = n (n - 2 + 1r11r2(µ2A - µ1AfEA1(µ2A - µIA))-
1 > 0 

then we have fi(Bayes)A = c,B(Bayes)A. D 

We now prove theorems 1, 2 and 3. The following two lemmas provide some useful 

concentration inequalities that are repeatedly used in the proof. 

Lemma 1. There exists some constants Eo and c1, c2 such that for any € ~ Eo we have 

(23) 

for each ( i, j) pair; and 

(24) 
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for each j. Moreover, we have 

Pr(IICtl - CAAlloo ~ €) ~ 2s2 exp(- ~E2c1), 
s 

Pr(IIC1~~ - CAcAlloo ~ €) ~ 2(p- s)sexp(- ~E2c1), 
s 

Pr(ll(ft2 - ft1) - (µ2 - µ1)lloo ~ €) ~ 2pexp(-nE2c2), 

Pr(ll(ft2A - itIA) - (µ2A - µIA)lloo ~ €) ~ 2s exp(-nE2c2). 

(25) 

(26) 

(27) 

(28) 

Lemma 2. There exists some constants Eo, c1 such that for any€~ min(Eo, i), we have 

P (llc(n) (c(n))-1 C (C )-111 (~ + l)E<p) ( n 2 ) r Ac A AA - Ac A AA oo ~ 
1 

~ 2ps exp - 2 € c1 . 
-<p€ s 

(29) 

Proof of Lemma 1. Note that inequalities in {25)-(28) can be obtained from {23)-(24) by 

simple union bounds. So we only prove (23) and (24). First, it is easy to see that Pr(lft11 -

µ111 ~ EIY) ~ 2exp(-n1~). Also, n1 rv Bernaulli(n,1r1), Hence, Pr(ln1 - 1r1nl ~ 
J 

nE) ~ 2 exp(-n~E2) for some ~ > 0. Therefore, Pr{lft1 - µ1 I ~ €) ~ 2 exp(-nT~) + 
J 

2 exp(-n~( ~ )2) ~ 2 exp( -nc~1) €2) for some small enough c~1) and € > 0. Similarly, we have 

Pr(lft2-µ2I ~ €) ~ 2exp(-nc~2)E2). Thus (24) holds. 

To prove (23), note that ci~n) = ¼ r:;=1 XkiXkj - XiXj, Since Xv = fr1ft1v + fr2ft2v, for 

v = i, j, by the previous arguments, we know that there exists c~ > 0 such that 

(30) 

¼ E~=l XkiXkj - E(xixi) = L~t ~ ( ~, Lgk=l XkiXkj - E(xiXj lg = l)) + E;=l E(xiXj 19 = 
l)(~ - 1r1) and E(xixil9 = l) = Eii + µliµli for l = 1, 2. Then it suffices to show that there 

exists some constant ci1> such that 

Pr (1~
1 
Lxk,xki - E(x;x;IY = 1)1 ~ EIY) ~ 2exp(-n,ci0€2). (31) 
9k=l 

We further have that n-1 r:;=1 XkiXkj-E(xixj) = E;=1 nif n { n11 Lgk=l XkiXkj - E(xiXj I g = l) }+ 
E;=1 E(xixi I g = l)(ntf n - 1r,) and E(xixi I g = l) = Eii + µliµli for l = 1, 2. Note that 

n11 L XkiXkj = n,1 L(xki - µli)(xki - µ,1) + µli(µli - ft11) + µ,1(µli - ftli) + µliµli· 
9k=l 9k=l 

Bickel & Levina (2008) showed that, for € < Eo, 

Pr(ln,1 L(xki - µli)(xki - µ11) - Eiil >€I Y) ~ 2 exp(-c3nE2). (32) 
9k=l 

Combining the concentration results for µ111 , n, and (32), we have (23). D 
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Proof of Lemma 2. Let f/1 = IICAA - ctllloo, f/2 = IICAcA - c1~~lloo and f/3 = ll(C1nl)-1 -

( C AA)-1 lloo· First we have 

IIC1~~(Cij)-1 
- CAcA(CAA)- 1 lloo (33) 

< 11c1~~ - CAcAlloo. ll(Cinl)-1 
- (CAA)-1 1100 + 11c1~~ - CAcAlloo. ll(CAA)-1 1100 

+IICAcA(CAA)-11100 · IICAA - ctllloo · ll(CAA)-11100 

+IICAcA(CAA)-1 1100 · IICAA - ctllloo · ll(C1n1)-l - (CAA)-1 1100 

< (KrJt + T/2) ( <p + f/3) 

Moreover, 

f/3 < ll(C1j)-1lloo · ll(Cij - CAA)lloo · ll(CAA)-1lloo 
- ( <p + rJ3)<prJ1 • 

2 
So as long as cpr,1 < 1 we have r,3 ::; 1 :._J~

1 
and hence 

llc(n) (c<n>)-1 _ C (C )-1 II < ("-T/1 + f/2)<p 
ACA AA ACA AA 00 - 1 . 

- 'PT/1 

Then we consider the event of max(r,1, r,2 ) ::; E and use Lemma 1 to obtain Lemma 2. 

(34) 

(35) 

D 

Withy= .11.. or - ..!!.. and the centered predictor matrix X, we can rewrite the Lasso-LOA 
n2 n1 

estimator as 

,. 1 T -r - T ~ 
/3(lasso) = argmin-/3 (X X)/3- 2(µ2 - fi,1) /3 + A L.)/3i1· 

P n i=I 
(36) 

Similar to the Lasso-LOA, the SCAD-LDA estimator can be written as 

argmin ¾/3T(_kT X)/3 - 2(Jl2 - Jl1f /3 + t PA,a(l/3;1), (37) 
j=l 

where P>.,a ( ·) is the SCAD penalty function. 

Proof of Theorem 1. Part (1). By definition we can write 

fjA = ( .!..xixAr1((µ2A - /1,IA) - ~tA) 
n 2 

(38) 

where tA represents the so-called subgradient which is defined as 
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From (38) we can write 

/3A = (CAA)-1(µ2A - µu) + (Ctl)-1((µ2A - Jl,1A) - (µ2A - µ1A)) (39) 

-((Ctli- 1 
- (CAA)- 1)(µ2A - µIA) - ~(c.tlt1tA, 

In order to show /3(lasso) = (/3A, 0) it suffices to verify 

1 -T - ,. ,.\ 
ll;XAcXA,BA - (Ji,2Ac - Jl,1Ac )lloo ~ 2. 

The left hand side of ( 40) is equal to 

llc(n) (c(n))-1(" " ) c<n) (c(n))-1,.\t (" "' )II AcA AA µ2A - µIA - AcA AA 2 A - µ2Ac - µlAc oo• 

U1 = 11c1~~(c1i)-1- CNACA!lloo~ + ll(P,2AC - Jl,1Ac)- (µ2AC - µuc)lloo 
+rnct~(ctlt1 

- CAcAC.411100 + ~)ll(P,2A - P,u) - (µ2A - µIA)lloo 

(40) 

(41) 

+(IICi~~(ctl)-1 
- CAcACA}lloo + 11:)~ (42) 

P. k h h d 4~ (l-K) Ch k l-K l If 1c c sue t at c < co an c < x (I )~. ec c < - 2--. 
2+ +K If) 

and 

llc(n) (c(n))-1 - C c-111 < (K + l)ccp ACA AA ACA AA 00 - 1 -cpc 

A 1 - K - 2€cp 
ll(P,2 - JJ,1) - (µ2 - µ1)1100 ~ 4 1 + K 

then U1 ~ ½- Therefore, by Lemma 1 and Lemma 2, we have 

(43) 

(44) 

I -T - A .A 
Pr(ll;XAcXA,BA - (µ2Ac - µlAc)lloo ~ 2) (45) 

- l -81 
n 2 A 1 - K - 2ccp 2 > I - 2ps exp(- 2 c ci) - 2p exp(-nc2(-

4 1 
) ). 

S +K 

part (2). Let ( = I.Bd;in. Write f/1 = IICAA - c1~lloo and f/3 = ll(C1~)-l - (CAA)-1ll00• 
Then for any j EA, 
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When r,1 <p < 1 we have shown that rJ3 < 1:_:i1
1P, thus 

IPil :C:: (/l<p- l l (').
2
<p + ll(J12A - ftIA) - (µ2A - µ1A)lloo(f) + <p2r,1f:l.) = L1. (47) 

- rJ1 <p 

Note that ( $ 1, because 11.B*lloo $ !:l.<p. Hence A$ ½I.B*lmin/<p $ 3;<1,B*lmin/<p. Pick E such 

that E < min(Eo, i~, ~~) Under the events T/1 $ E and ll(it2A - it1A)- (µ2A - µ1A)lloo $ E 

we have £1 > O. Therefore, 

) 2 nc1 2 2 Pr(L1 > 0 ~ 1 - 2s exp(--2 e ) - 2s exp(-nc2E ). 
s 

(48) 

Part (3). By (39) and rJ1 <p < 1, we have 

11,BA - .B*lloo $; l l (~
2

<p + ll(P,2A - P,1A) - (µ2A - µIA)lloo(f) + <p2r,1f:l.). (49) 
- rJ1<p 

Pick E such that E < min( Eo, 2;~, A). Under the events rJ1 < E and II (it2A - itIA) - (µ2A -

µIA)lloo $Ewe have 11,BA - ,B*lloo ~ 4<pA. Thus, 

2 ( nc1 2) ( 2) ~ 1- 2s exp --
2 

E - 2s exp -nc2E . 
s 

(50) 

This completes the proof. 

D 

Proof of Theorem 2. Part (1). Fix any positive E satisfying e+;~IP $ min(Eo<p, Eo¾). Under 

the events T/1({) < l+k and ll(it2A - P,IA) - (µ2A - µIA)lloo $ e+;~IP/:l., we have 
( 

11,B(oracle) - ,B*lloo < (r,3 + <p)ll(P,2A - P,1A) - (µ2A - µ1A)lloo + rJ3llµ2A - µIAlloo 

< 
1 

1 
(ll(it2A - itu) - (µ2A - µu)lloo'P + 'P2TJ1ll) 

- rJ1 <p 
< €. 

Then (21) is obtained by Lemma 1. 

(51) 

Part (2). Let g(,B) = ¾.BT(.XTX),B- 2(µ2 - P,1f,B + I:~=l P,\(l,Bjl). If the following two 

conditions hold 

l,B(oracle)Almin > aA 

llc(n) (C(n))-1 (" " ) (" " ) II A AcA AA µ2A - µIA - µ2Ac - µlAc oo < 2 

(52) 

(53) 

then ,B( oracle) is a local minimizer of g(,B). To see this, consider any ,B = ,B( oracle) + 
b with a sufficiently small b satisfying llbl'2 < min(--\, ½(l,B(oracle)Almin - a--\)). Let z = 
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c1~~ ( ctl)-1 (/J,2A - /J,IA) - (P,2AC - fl1Ac ). Then it is easy to check that 

g(/3) - g(S(oracle)) - bTc(n)b + (E .-\jbjl) + 2zTbAc 

> E (.-\ - 2llzlloo)lbil 2:: 0. 
jEAC 

(54) 

Clearly, "=" is taken if and only if b = 0. Thus, within a sufficiently small ball centered at 

J(oracle), J(oracle) is the unique (strict) minimizer of the objective function. 

First, we derive a bound for the probability of (52). Pick some E in part (1) and let 

E < l/3*lmin - a.-\. Then Pr(l,B(oracle)Almin > a.-\) > Pr(IJ(oracle)Almin > l/3*lmin - €) and 

(21) implies 
2 2A2 

,. * 2 nc1 E ) ( nc2 E u 
Pr(lf3(oracle)Almin > l/3 lmin-E) 2:: 1-2s exp(- 482 cp2(€ + 2~cp)2 -2s exp -4 (€ + 2~cp) 2), 

(55) 

To derive a bound for the probability of (53), we use similar arguments as in the proof of 

Theorem 1. Consider three events 11c1~~(c1nl)-1 - CAcACA!lloo:::; € < 6i' ll(P,2AC - /J,1Ac )­

(µ2AC - µ1Ac) lloo :::; € < ¾ and II (/J,2A - /J,IA) - (µ2A - µIA) lloo :::; E < G1e~¾. Then we have 

IIG1~~(G1ir1(µ,2A - /J,1A) - (/J,2Ac - /J,}AC )lloo 
< 11c1~~(ctl)-1 - CAcACA!lloo~ + ll(it2AC - /J,}AC) - (µ2AC - µIAC )lloo 

+rnc1~~(c1nlr1 
- CAcACA!lloo + ~)ll(P,2A - /J,IA) - (µ2A - µ1A)lloo 

.,\ 
< -

2 

By Lemma 1 and Lemma 2, we also have 

(56) 

Pr(IICi~~(Ci~)-1(tl2A - tl1A) - (tl2Ac - il1Ac )Jloo < ~) (57) 

2 nc1 1 ( E ) 2) > 1- 2pexp(-nc2E) - 2psexp(--- ---- . 
s2 cp2 E + ~ + 1 

We obtain the expression for 83 in {22) by combining (55) and (57). This completes the 

proof. 

Proof of Theorem 3. Theorem 3 directly follows Theorems 1 and 2. 
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