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Abstract 

We present a new class of statistical models designed for life history anal­
ysis of plants and animals. They allow joint analysis of data on survival and 
reproduction over multiple years, allow for variables having different statis­
tical distributions, and correctly account for the dependence of variables on 
earlier variables (for example, that a dead individual stays dead and cannot 
reproduce). We illustrate their utility with an analysis of data taken from an 
experimental study of Echinacea angustif olia sampled from remnant prarie 
populations in western Minnesota. Statistically, they are graphical models 
with some resemblance to generalized linear models and survival analysis. 
They have directed acyclic graphs with nodes having no more than one par­
ent. The conditional distribution of each node given the parent is a one­
parameter exponential family with the parent variable the sample size. The 
model may be heterogeneous, each node having a different exponential family. 
We show that the joint distribution is a fiat exponential family and derive 
its canonical parameters, Fisher information, and other properties. These 
models are implemented in an R package 'aster' available from CRAN. 

Keywords: Conditional Exponential Family; Curved Exponential Family; 
Flat Exponential Family; Generalized Linear Model; Graphical Model; Max­
imum Likelihood; Nuisance Variable. 

This technical report consists of a draft paper about aster models supple­
mented by 5 appendicies on technical subjects. 

• Appendix A (p. 19) gives details about "prediction" (what the 
predict. aster function does), although the technical details are about 
change-of-parameter formulas and their derivatives. 

• Appendix B (p. 24) gives details about the one-parameter exponential 
families currently available as conditional distribution of variables given 
their parent variable in the aster package. 

• Appendix C (p. 29) gives details about simulating a Poisson distribution 
conditional on being nonzero (the only non-trivial issue being getting 
efficient simulation for unconditional means close to zero). 

• Appendix D (p. 31) gives details of the data analysis that is briefly 
described in the draft paper. 

• Appendix E (p. 58) shows that steepness of conditional exponential 
families implies stepness of corresponding unconditional families, and 
the full unconditional family gets no new parameter points (that do not 
correspond to conditional parameter points). · 



Chapter 1 

Draft Paper 

1.1 Introduction 

This article introduces a class of statistical models that we call aster 
models. They were invented for life history analysis (LHA) of plants and ani­
mals, and are best introduced by example. Archetypal data for these models 
are about perennial plants censused at various times. For each individual 
planted, we record whether it is still alive, whether it has flowered, and how 
many flowers it has. These data are complicated, especially when recorded 
for several years, but when considered conditionally, simple models may suf­
fice. We consider mortality status ( dead or alive) to be Bernoulli given the 
preceding mortality status. Similarly for flowering status given mortality sta­
tus. Given flowering, the number of flowers may have a Poisson distribution 
conditioned on being nonzero. Figure 1.1 gives a graphical representation of 
this kind of data. 

The most important feature of these models is the simplest one. A si­
multaneous analysis that models the joint distribution of all the variables in 
a life history analysis can answer questions that cannot be addressed when 
one does a separate analysis of each variable ( conditional on the values of the 
others). 

Although we called the Figure 1.1 data 'archetypal', there is nothing spe­
cial about the three particular measurements in that example. We could add 
a fourth variable, seed number, modelled conditional on flower number. And 
so forth. Nor is there anything special about plants or even living organisms. 
This methodology applies to any similar conditional· modelling. 

Our models have some resemblance to discrete time Cox regression (Cox, 
1972; Breslow, 1972, 1974) when the graph is linear and all the responses 
are Bernoulli, but does not have exactly the same likelihood (so those aster 
models are competitors rather than generalizations of Cox models). Of course, 
if the graph is a general forest or the responses are not all Bernoulli, then the 
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Figure 1.1: Graph for Archetypal Aster Data. Arrows go from nodes to their 
successors. Nodes are labelled by their associated variables. The only founder 
node is associated with the constant variable 1. Mj is the mortality status in 
year 2000+ j. Fj is the flowering status in year 2000+ j. Hj is the flower head 
count in year 2000 + j. The Mj and Fj are Bernoulli conditional on their 
predecessor variables being one ( and zero otherwise). The Hj are Poisson 
conditioned on being nonzero conditional on their predecessor variables being 
one (and zero otherwise). 

resemblance to survival analysis is faint. 
Our models also have some resemblance to generalized linear models 

(GLM; McCullagh & Nelder, 1989) when the graph has only one node, but 
we do not allow arbitrary link functions or quasi-likelihood, using only canon­
ical exponential family parameters as linear predictors (so those aster models 
are specializations of GLM). Of course, if the graph is a general forest and 
especially if the responses do not all have the same exponential family, then 
the resemblance to GLM is faint. 

Our models are graphical but of the simplest kind, associated with di­
rected acyclic graphs (Lauritzen, 1996, Section 3.2.2), in which the joint den­
sity is a product of conditionals as in equation (1.1) below. Readers need no 
knowledge of graphical model theory to understand aster models. 

The main innovative aspect of aster models is the interplay between two 
canonical parameterizations described in Sections 1.1.2 and 1.1.3 below. One, 
the conditional canonical parameterization, arises when each distribution in 
the product of conditionals (1.1) belongs to an exponential family and we 
use the canonical parameterization for each. These are the conditional expo­
nential family ( CEF) aster models. The other, the unconditional canonical 
parameterization, arises from observing that the joint model is a full flat expo­
nential family (Barndorff-Nielsen, 1978, Chapter 8) and using the canonical 
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parameters for that family, defined by equation (1.5) below. These are the 
flat exponential family (FEF) aster models. And we see that CEF could also 
stand for 'curved exponential family' since, considered unconditionally, that 
is what they are. 

We named our models after flowers because the name is short and much 
nicer than / orest graph exponential family conditional or unconditional canon­
ical statistic models or any other descriptive name we could think of. The 
particular name was chosen for the organism in our example, the purple cone­
flower Echinacea angustifolia, which is in the family Asteraceae of-'Yhich Aster 
is the type genus. They also come with a neat motto: per aspera cum astris, a 
take-off on the motto of the sunflower state ( sunflowers are also A steraceae). 

1.1.1 Forest Graph Models 

We describe conditional dependence structure graphically, as in Fig­
ure 1.1. Each node in the graph is associated with a variable (in Figure 1.1 we 
labelled the nodes by their variable names). Aster models have / orest graphs: 
directed acyclic graphs in which each node has at most one predecessor and 
there are no isolated nodes. Each edge (arrow) in the graph represents a 
conditional distribution of the variable at the arrow head given the variable 
at the arrow tail (its predecessor). Thus the joint distribution of all the vari­
ables is the product of conditionals, equation (1.1) below, one conditional for 
each arrow in the graph. 

When m is the predecessor of j, we also say j is a successor of m. Nodes 
that have no predecessors are called root nodes. Nodes that have no successors 
are called leaf nodes. We also use an alternative terminology saying parent 
instead of predecessor, child instead of successor, founder instead of root, 
and childless instead of leaf. 

We divide the nodes of the graph into disjoint sets F and J, the founder 
and non-founder nodes, respectively, and introduce a function p : J -+ JU F 
that maps nodes j to their predecessors p(j). The diagram of pis just like 
the graph of the graphical model (like Figure 1.1) except that all the arrows 
are reversed. With this notation, we can write the joint distribution of all 
the variables as the product of conditionals 

IT Pr{X;IXp(j)}­
jeJ 

{1.1) 

The fact that the variables X; associated with root nodes do not appear 'in 
front of the bar' in (1.1} m~ans these variables are nonrandom (or at least are 
treated as nonrandom in that we are conditioning on them and not modelling 
their distributions). 

· 'It will simplify notation in what follows if we define the partial -order 
relations determined by the graph. The predecessor function p determines 
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a relation { (j,p(j)) : j E J }. We denote its transient closure by -<, so 
j-< m means m = p(j), or m = p(p(j)), or .... And we denote its transitive 
reflexive closure by ~, so j ~ m means j -< m or j = m. We call -< the 
ancestor relation, and read j -< m as mis an ancestor of j. We call ~ the 
ancestor-or-self relation. 

It will also simplify notation if we define the function f : J ~ F that 
maps a node j to its (unique) founder ancestor /(j). 

1.1.2 Conditional Exponential Families 

We take each of the conditional distributions in {1. 1) to be a one­
parameter exponential family (perhaps a different such family for each j) 
with Xj the canonical statistic and the dependence on Xp(j) being that Xj 
is the sum of Xp(j) i. i. d. {independent and identically distributed) random 
variables. In order that this make sense the variables Xj for j E p(J), where 
p(J) denotes the range of the predecessor function {the set of non-leaf nodes), 
must be nonnegative-integer-valued. No such restriction is placed on Xj for 
j ~ p(J) (for leaf nodes). 

Then the log likelihood for the whole family has the form 

L xioi - xPu>'ifJj(Oj) 
jEJ 

{1.2) 

where (Ji is the canonical parameter for the j-th conditional family and 1/J; 
is the so-called cumulant Junction for that family (Barndorff-Nielsen, 1978, 
pp. 105, 139, and 150) that satisfies 

Ee; {XjlXpc;)} = 1/J'(O;) 

vare; {X;IXp(j)} = 1/J"(O;) 

(for examples of cumulant functions, see Appendix B). 

{1.3a) 

{1.3b) 

When we have independent and identically modelled (i. i. m.) observa­
tions (independent and come from the same model but may have different 
parameter values) of data from such families, the log likelihood becomes 

~ ~ X· ·0· · - X· ( ·>"1' ·(9· ·) 0 0 'I.] 'I.] ip ] 'YJ 1,3 (1.4) 
iEJ jEJ 

where J is a finite set (indexing individuals). Note that 1/J; is not "Pii so each 
node of the graph has only one exponential family associated with it, an idea 
required by the rows of the data matrix being i. i. m. 
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1.1.3 Unconditional Exponential Families 

Introducing the notation 

S(j) = { m E J : j = p( m) } 

for the set of successors of j and collecting terms with the same Xi in (1.2), 
we get 

where S(F) is the set of children of founders. 
Now we see that by introducing new parameters 

'Pi = 0i - I: 1Pm(0m), 
meS(i) 

jEJ (1.5) 

we have an unconditional exponential family with canonical statistics Xi and 
canonical parameters 'Pi for j E J. 

Collecting the canonical statistics and parameters into vectors X and cp 
we can write the log likelihood of this unconditional family as 

l(cp) = (X,cp} - t/J(cp) (1.6a) 

where (X, cp} denotes the inner product 'Ei Xj'Pi and where the cumulant 
function of this family is 

1/J(cp) = L Xp(j)1Pi(0;) (1.6b) 
jES(F) 

Note that all of the Xp(j) in (1.6b) are at founder nodes and are constant 
so 1/1 is a deterministic (not random) function, and also note that, although 
it is not obyious that the right hand side of {1.6b) is (as the left hand side 
says) a function of cp, this must be true by the logic of exponential families 
(Barndorff-Nielsen, 1978, pp. 105 ff.). 

A little more thought shows that the system of equations (1.5) can be 
solved for the 0i in terms of the 'Pi in one pass through the equations in 
any order that finds 0i for children before parents. Thus (1.5) determines an 
invertible change of parameter. 

The analog of (1.6a) and (1.6b) when we have i. i. m. replication requires 
we interpret matrices as vectors, elements of the finite-dimensional vector 
space aixJ_ Equation (1.6a) remains, although we reinterpret its inner prod­
uct as 'Eii Xij'Pii, and (1.6b ). gets additional indices 

t/J(cp) = L L Xip(j)1Pi(0ij) 
iE/ iES(F) 
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as does (1.5) 

'Pij = (}ij - L 1Pm(0im), 
mES(j) 

1.1.4 Sufficient Statistics 

i E /, j E J. {1.6d) 

As is well known (Barndorff-Nielsen, 1978, p. 111) the canonical statistic 
of an exponential family is minimal sufficient. Since we have both conditional 
and unconditional families in play, we stress that this well-known result"is 
about unconditional families. 

One of the desirable aspects of exponential family GLM defined by repa­
rameterization of the form 

cp = M,8, (1.7) 

where M is a known matrix (the model matrix), is that from the identity 
(X, M,8) = (MTX, ,8} we see that the result is a new exponential family 
with canonical statistic MTX and canonical parameter ,8. The dimension of 
this new family will be the dimension of ,8, if M has full rank. 

If X is a matrix interpreted as a vector, then M is. an array representing 
a linear operator JRK-+ JRlxJ. So {1.7) means 

and Y = MTX means 

'Pij = z: mijk/3k, 
kEK 

iEl jEJ 

(1.8) 

{1.9) 

This 'dimension reduction' to sufficient statistics Yk does not occur when 
the conditional parameters 8 are 'generalized linear modelled' in a similar 
way, and this suggests that generalized linear models for the unconditional 
parameterization may be scientifically more interesting despite their more 
complicated structure. 

1.1.5 Mean Value Parameters 

Canonical parameters, although interesting both theoretically and prac­
tically because they are the GLM 'linear predictors', have no real-world in­
terpretation. The parameters that do are the mean value parameters. 

The conditional mean value parameters are the conditional means 

(1.10) 

Strictly speaking, the eij are not parameters because they contain random 
data Xip(j)· Nevertheless, they do play the role of mean value parameters 

6 

_l 

-· 



when one is thinking conditionally, treating Xip(i) as constant. Standard 
exponential family theory (Barndorff-Nielsen, 1978, p. 121) says that 1/J'; is 
an invertible change of parameter. 

Similarly, the unconditional mean value parameters are the unconditional 
means 

T = Eip{X} = V'l/J(cp) (1.11) 

(V denotes the vector of partial derivatives). Again, standard theory says 
that V'l/J : cp .,.... T is an invertible change of parameter. The unconditional 
expectation in {1.11) can be calculated using the iterated expectation theorem 
{from probability theory) or the chain rule (from calculus) 

Eip{Xij} = xi/(j) II 1/J'm(Oim), 
mEJ 

j~m-</(j) 

where the Oij are determined from cp by solving (1.5). 

1.2 Theory 

1.2.1 Conditional Models 

(1.12) 

The score for conditional canonical parameters is particularly simple 

8l(8) ' aoii = Xii - Xip(i) 1/J i ( 0ii) 

and, if these parameters are modelled linearly in terms of other parameters, 
equation {1.8) with 'P replaced by 0, then we have 

8l({3) [ ' ] ~=LL Xij -Xip(j)1Pj(0ij) fflijk 
/Jk iEI jEJ 

(1.13) 

The observed Fisher information for 8 is diagonal with 

a2l(8) X "(O ) - ao?. = ip(j)1Pj ij 
1,3 

and zero for mixed second derivatives. And from this we see the observed 
Fisher information for /3 is 

:t:l = 'I:, L,xip(j),Pj(9;;)m;;kffl;;k'- (1.14a) 
k k iEI jEJ 

The expected Fisher information is just the (unconditional) expectation 
of the observed Fisher information. So it is 

{1.14b) 
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the unconditional expectation on the right hand side being evaluated by using 
{1.12). 

1.2.2 Unconditional Models 

The score for unconditional canonical parameters is, as in every ( uncon­
ditional) exponential family, 'observed minus expected' 

8l( <p) 
Bcpii = Xi; - Erp{Xi;} 

the unconditional expectation on the right hand side being evaluated by us­
ing (1.12), and, if these parameters are modelled linearly in terms of other 
parameters {1.8), then we have 

(1.15) 

Second derivatives with respect to the (unconditional) canonical param­
eters of an exponential family are nonrandom. Hence there is no difference 
between observed and expected Fisher information. The information for <p 
is given by either of the expressions V2¢(<p) or varrp(X),.tlie former being 
the matrix of second partial derivatives of the cumulant function (1.6c) and 
the latter being the variance-covariance matrix of the random vector with 
components Xi; (Barndorff-Nielsen, 1978, p. 150). We choose to work on the 
latter. The iterated variance formula gives 

varrp{Xij} = Erp[varrp{Xi;IXip(j)}] + varrp(Erp{Xi;IXip(j)}] 

= f/(Bij)Erp{Xip(j)} + 'I/J';(Bij)2 varrp{Xip(i)} 
(1.16a) 

Since we already have (1.12) to calculate expectations, (1.16a) allows calcu­
lation of all variances (diagonal elements of the Fisher information matrix) 
recursively. Now we work on the covariance of Xij and Xij' with j =/:- j', in 
which case we may assume without loss of generality that j' ~ j so 

COVrp{Xij, Xi;1 IXip(j)} = 0 = COVrp{Xij, Xi; 1 IXip(j),Xij'} 

because Xij is conditionally independent given Xip(j) of all variables except 
its descendants, which do not include Xii'. Then the iterated covariance 
formula gives 

COVrp{Xij, xij'} = covrp{ Erp(XijlXip(j)), Xij'} 

= 1".1(8i;) covrp{ Xip(j),Xij'} 
(1.16b) 

and this allows us to determine all of the covariances recursively. The calcu­
lation of the information for /3 from that for <p is analogous to that in the 
preceding section and is omitted. 
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1.2.3 Prediction 

By 'prediction', we mean no more than evaluation of a function of es­
timated parameters, one job the predict function in R does for linear or 
generalized linear model fits. In aster models we have five different param­
eterizations of interest ({3, 8, <p, e, and r). The Fisher information for /3, 
already described, tells us what we need to know about predicting {3. So this 
section is about 'predicting' the remaining four. 

One often predicts for new individuals having different cov~iate values 
from the observed individuals. Then the model matrix M used f~r· the predic­
tion is different from that used for fitting. So in this section M denotes this 
possibly different model matrix. However when we use Fisher information 
I(/3), either observed or expected (Sections 1.2.1 and 1.2.2), this is based on 
the original model used to obtain parameter estimates ~ and hence on the 
original model matrix. 

Let 17 be the linear predictor ( 17 = 8 for conditional models and 17 = <p 
for unconditional models). Let ( be any one of 8, <p, e, or T. Let J.,.,,~ denote 
the map 17 ~ (, and suppose we wish to predict the parameter 

g(/3) = h((:) = h(f.,.,,c(M/3)) (1.17) 

Then by the chain r~le (1.17) has derivative 

V g(/3) = V h( () o V f .,.,,~ ( 17) o M (1.18) 

(where here M denotes the linear operator associated with the model matrix) 
and by the 'usual' asymptotics of maximum likelihood and the delta method, 
the asymptotic distribution of the prediction h( C) = g(~) is 

Normal(g(/3), (V g(~))J(~)-1 [V g(~)f) 

where Vg(~) is given by (1.18) with ii= M~ plugged in for 17 and C = J.,.,,c(ii) 
plugged in for (: 

The point of writing 'predictions' in this complicated form is to separate 
the parts of the specification, the functions h and V h and the model ma­
trix M, that are easy but change from application to application from the 
hard part VJ.,.,,~ that does not change and can be done by computer (see 
Appendix A for details). 

For mean value parameters the user must also specify new 'response' data 
Xij as well as new 'covariate' data in M. This is one way that aster models 
differ from GLM. Unconditional mean value parameters Twill depend only 
on the root elements Xij, j E F. Conditional mean value parameters f will 
depend on all elements Xij, j E J U F. 
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This makes conditional mean value parameters as described almost use­
less. Thus we envisage that users will usually specify Xij = 1 for all hypo­
thetical individuals i and all nodes j so that then eii = 1PJ ( Oij) and hence are 
really parameters. 

1.3 Software 

We have developed an R (R Development Core Team, 2004) package 
aster that fits, tests, and predicts aster models. It uses the R formula 
mini-language, originally developed for GENSTAT and S (Wilkinson & Rogers, 
1973; Chambers & Hastie, 1992) so that model fitting is much like that for 
linear or generalized linear models. Similarly, R functions summary. aster, 
anova. aster, and predict. aster provide regression coefficients with stan­
dard errors, z statistics, and p-values, likelihood ratio tests for model com­
parison, and the predictions with standard errors described in Section 1.2.3. 
It is available from CRAN (http://www.cran.r-project.org). 

The current version of the aster package has two limitations of the general 
model described in this article. 

• In predictions, the only hallowed in (1.17) are linear, that is, h(C) = 
ATC, for some matrix A. 

• In modelling, the only families allowed are 

- Bernoulli, 

- Poisson, and 

- Poisson conditioned on being nonzero. 

The package contains 1500 lines of C source code, only 200 lines of which 
are R-specific, and 925 lines of R. It is provided under a permissive Xll-like 
open source license so the 1300 lines of C that are the computational core 
could be reused in another implementation, even a proprietary one. Adding 
another one-parameter exponential family requires only implementation of 
the 1/J, 1/J', and 1/J" functions for the family. 

1.4 Example 

Data having the aster model structure shown in Figure 1.1 were collected 
on 570 individuals of Echinacea angustifolia. These plants were sampled as 
seeds from seven remnant populations that are surviving fragments of the 
tall-grass prairie that a century ago covered western Minnesota and other 
parts of the Great Plains of North America. The plants were experimentally 
randomized at the time of planting into a field within 6.5 km of all populations 
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Table 1.1: Tests for Model Comparison. The model formulae are given above 
and the analysis of deviance below ( deviance is twice log likelihood). 

1: resp - varb + level:(nsloc + evloc) 
2: resp - varb + level:(nsloc + evloc) + hdct * pop - pop 
3: resp - varb + level : (nsloc + evloc) + hdct * pop 
4: resp - varb + level:(nsloc + evloc) +level* pop 

Model Model Model Test Test Test-
Number d. f. Deviance d. f. Deviance p-value 

1 15 2728.72 
2 21 2712.54 6 16.18 0.013 
3 27 2684.86 6 27.67 0.00011 
4 33 2674.70 6 10.17 0.12 

of origin. The data set contains three other predictor variables: evloc and 
nsloc are spatial coordinates, east-west and north-south positions, of the 
individuals within the field and pop is the predictor variable of scientific 
interest. It is categorical giving the remnant population of origin. 

The greatest advantage of aster models over previously available models 
for analyzing these data is that the aster model is a joint model for all the 
variables so a single analysis can account for all effects of predictors and re­
lationships among responses. A secondary advantage is that unconditional 
aster models directly model marginal distributions by controlling their un­
conditional mean value parameters. 

In order to use the R formula mini-language it is necessary to create some 
artificial variables. The variable resp is a vector comprising the nine response 
variables (the Mj, Fj, and Hj)- The variable varb is categorical naming 
these response variables (so they can still be distinguished within resp). The 
variable level is categorical naming the type of response variable (M, F, or 
H). The variable hdct is an indicator variable indicating the Hj responses 
(a convenient shorthand for level= H). 

We fit many models. See Appendix D for details. Scientific interest 
focuses on the model comparison shown in Table 1.1. All models contain the 
quantitative spatial effect level: (nsloc + evloc), which was chosen after 
extensive model comparison {details Appendix D). We explain here only the 
differences among the models. 

The terms that differ are all categorical. Such categorical terms include 
dummy variables in the model (one for each category) and (in an uncondi­
tional aster model, which these are) require the maximum likelihood mean 
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value parameters for each category (summed over all individuals in the cate­
gory) to match the observed values ('observed equals expected'}. 

The models are nested, numbered in increasing order, so Model 1 has 
no terms not in the others. Model 2 adds hdct * pop - pop, which makes 
observed equal expected for total flower head count for each of the 7 popu­
lations. Model 3 adds pop, which makes observed equal expected for total 
non-head-count O::::i Mi + F;) for each of the 7 populations. Model 4 adds 
level * pop, which splits total non-head-count into total survival (Ei Mi) 
and total flowering (Ei F;) and makes observed equal expected for them for 
each of the 7 populations. 

From purely statistical considerations, Model 3 is the best of these four 
nested models. Model 4 does not fit significantly better. Model 2 fits sig­
nificantly worse. According to Model 1, the life history depends only on 
position within the field in which the plants are growing. Model 2 fits differ­
ences among populations in total headcount. From scientific considerations 
Model 3 is rather difficult to interpret, because it fits differences among pop­
ulations in "non-head-count" (Mi+ Fj), scoring each individual O for dead, 1 
for alive without flowers, or 2 for alive with flowers. Model 4 fits differences 
among populations in each of survival, flowering, and headcount. 

Model 2 is the model of primary interest for reasons we _now explain. Evo­
lutionary biologists are very interested in fitness. For our purposes here the 
fitness of an individual may be defined as its contribution over its lifespan 
in descendants to the next generation (see Beatty, 1992; Keller, 1992; Paul, 
1992, for further discussion). Fitness is notoriously difficult to measure. One 
reason for this is that it is expressed over the lifespan, rather than instanta­
neously. For these data the most direct surrogate measure for fitness is total 
flower head count (Ei Hi). The currently available data represent a small 
fraction of this plant's lifespan. To obtain more complete measures of fitness, 
we are continuing these experiments and collecting these data for successive 
years. 

Biologists call all our measured variables (the Mi, Fi, and Hj) compo­
nents of fitness. Since M; and F; contribute to fitness (descendants) only 
through Hj, in an aster model the unconditional expectation of Hi (its mean 
value parameter) completely accounts for the contributions of M; and F;. 
Strictly speaking, this is not quite true, since we do not have H; measured 
over the whole life span, so the last M; contains the information that future 
reproduction is possible, but it becomes truer as more data are collected in 
future years. Moreover, we have no data about life span and do not wish to 
inject subjective opinion about future flower head count into the analysis. 

The statistical point of this is that the Mi and F; are only in the model 
to produce the correct stochastic structure. If we could directly model the 
marginal distribution of the H; (but we can't), we would not need the other 
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variables. They are 'nuisance variables' that must be in the model but are 
of no interest in this particular analysis. {This is similar to division of pa­
rameters into 'interest' and 'nuisance'. In fact the mean value parameters for 
those variables are nuisance parameters.) 

Statisticians seem not to have studied this kind of nuisance variable ( there 
is an established usage meaning 'confounded with treatment effect' that is not 
what we mean). Model 3 is the best according to the likelihood ratio test, 
but does it fit the variables of.interest better than Model 2? We do not know 
of an established methodology addressing this issue, so we propos~ looking at 
confidence intervals for the mean value parameters for total flower head count 
shown in Figure 1.2 (page 14). Although we have no formal test to propose, 
we claim it is obvious that Model 3 is no better than Model 2 at 'predicting' 
the best surrogate of expected fitness. We take this as justification for using 
Model 2 in scientific discussion and infer from it significant differences among 
the populations in flower head count and, thus, fitness. 

As we said above, Model 3 is difficult to interpret scientifically. Model 4 is 
the next larger readily interpretable model. The fact that Model 4 fits signif­
icantly better than Model 2 ( P = 0.00016) implies that there are differences 
among populations in mortality and flowering ( the Mi and F;) that may be 
of scientific interest even though they make no direct contribution to fitness 
(since Model 2 already fully accounts for their contributions through H;). 

Note that we would have gotten very different results had we used a 
conditional model (not shown, see Section D.3.2). The parameters of interest 
are unconditional expectations of total flower head count. This alone suggests 
an unconditional model. Furthermore, we see in (1.5) that unconditional aster 
models 'mix levels' passing information up from children to parents. This is 
why Model 2 in our example was successful in predicting total head count 
while only modelling pop effects at head count nodes. By not mixing levels 
in this way, a conditional aster model must model all levels and so usually 
needs many more parameters than an unconditional model. 

1.5 Discussion 

The key idea of aster models ( as we see it) is the usefulness of what we 
have called unconditional aster models (FEF), which have low-dimensional 
sufficient statistics {1.9). Following Geyer and Thompson (1992), who argued 
in favour of exponential family models with the 'right' sufficient statistics 
{chosen to be scientifically interpretable), an idea they attributed to Jaynes 
{1978), we argue that scientists are likely to find among these models the 
ones of scientific interest. 

We don't insist, though. The aster R package is even-handed witli re­
spect to conditional and unconditional models and conditional and uncondi-
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Figure 1.2: Confidence Intervals for Total Head Count. 95% (non­
simultaneous) confidence intervals for the unconditional expectation of total 
flower head count ( all three years) for individuals from different populations 
and central spatial location. Solid bars based on Model 2 in Table 1.1. Dashed 
bars based on Model 3 in Table 1.1. 
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tional parameters. Users may use whatever seems best to them. Any joint 
analysis is better than any separate analyses of different variables. 

But we have one warning for naive users. Conditional models, though 
algebraically simple, are deceptively complicated statistically. As with all 
exponential family models, the map from canonical parameters to mean value 
parameters is monotone. So with sufficient statistics Yk given by (1.9) we have 

_ a2l(f3) _ 8E,a{~} 
0 8Pl - apk > (1.19a) 

in an unconditional model. The middle term gives the regression coefficients 
their simple interpretation: an increase in Pk causes an increase in E.a{Yk}, 
other betas being held constant. The analog for a conditional model is 

(1.19b) 

There is no way to give the middle term in (1.19b) an interpretation as a 
single conditional or unconditional expectation and hence no corresponding 
simple interpretation of regression coefficients. 

Unconditional aster models seem algebraically complicated. If one at­
tempts to understand them by understanding (1.5) and (1.16a) and (1.16b) 
and similarly complicated equations relegated to the appendices, one will find 
them very confusing. One can only understand them by understanding the 
big picture. They are the flat exponential families with the desired sufficient 
statistics. They are the aster models that behave according to the intuitions 
one has developed from linear and generalized linear models. They are statis­
tically simple. In contrast, conditional aster models are algebraically simple 
but statistically complicated. 

Aster models are, once one accepts the restriction to one-parameter ex­
ponential f~milies for the single-node models, simply the right thing. There 
is no reason for the restriction to one-parameter exponential families other 
than our desire to keep the complexity manageable. Aster models are already 
very complicated and take some time to digest. We were afraid that allowing, 
for example, leaf nodes to be two-parameter normal would overwhelm both 
implementers (us) and users. 

We saw in our example that aster models allowed us to successfully model 
the surrogate of fitness. In humans, Darwinian fitness is not the summum 
bonum that it is for organisms lacking language, memes, and minds. But 
neither is mere survival! Survival analysis, by its very name, rules out any 
consideration of quality of life. Aster models do permit such consideration. 
We understand that application of aster models to clinical trials in~Qlves 
medical and ethical considerations we are incompetent to address. We merely 
raise the point. 
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Appendix A 

More Details on Prediction 

A.1 Introduction 

A.1.1 Functions of Regression Coefficients 

Suppose we have an aster model, a maximum likelihood estimate /3, and 
Fisher information I(/3), whether observed or expected makes no difference. 
The asymptotic distribution of /j is 

Normal(,B, I(/j)-1) 

where f3 is the true unknown parameter value. 
But we usually don't want to make predictions about f3 (regression co­

efficients are meaningless, only probabilities and expectations are directly 
interpretable) but about some function g(/3), where g is a scalar-valued or 
vector-valued function. The delta method then says that the asymptotic 
distribution of g(/j) is 

Normal (g(,B), [V g(,8) )I(/j)-1 [v' g(/j) f) 
Since we already have /j and J(/3), we only need v'g(/j) to finish our problem. 

A.1.2 Functions of Other Parameters 

Since regression coefficients are meaningless, users will typically want to 
specify a function of some other parameter, for example the unconditional 
mean value parameter T, which, of course, is itself a function of f3 if the 
model is correct. That is, we have a composition 

g = ho /13,.,. 

where h is an arbitrary function specified by the user and /13,.,. is the __ map 
/3 14 T. The point is that /13,.,. is quite complicated but is understood (or 
should be understood) by the computer, whereas h may be quite simple. 
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Of course, from the chain rule we have 

Vg(/3) = Vh(r) o V /13,r(/3) (A.la) 

Since V h( T) and V f /3,-r (/3) are linear operators represented by matrices ( of 
partial derivatives), the composition here is represented by matrix multipli­
cation. Of course, we want to use this with estimates plugged in. 

Vg([j) = Vh(f-) o V /13,-r(/3) (A.lb) 

So the general idea is that the user supplies the easy part, the matrix repre­
senting Vh(f-), and the computer does the hard part, the matrix representing 
V f 13,-r([j). 

There is one slight complication. The user often provides part of the 
specification of V f 13,,.([3), for which see Section A.1.4 below. 

A.1.3 What Other Parameters? 

We suppose that in place of 7' in the preceding section, the user may 
chose to specify h in terms of any of the parameters we use in discussing 
aster models. There are four ( the one already ~entioned and three others) 

• (}, the conditional canonical parameters. 

• cp, the unconditional canonical parameters . 

• e, the conditional mean value parameters. 

• 7', the unconditional mean value parameters. 

Letting C stand for any one of these parameters, we replace 7' by C in (A.I b) 
obtaining 

V g([j) = V h( C) 0 V f 13,(;([j) (A.le) 

we need the user to be able to specify a V h( C) and have the computer produce 
the required V f /3,~ ([3). 

A.1.4 What Covariates? 

An important thing the predict . lm function in R does is allow prediction 
at covariate values other than those in the observed data. In fact, this is its 
main '~feature." The multiplicity of parameter values found in aster models 
is absent in simple least squares regression. 

Let 77 be the canonical parameter that is linearly modeled in terms of /3 
(either() for a conditional model or cp for an unconditional model). Then the 
ugeneralized linear" part of the aster model is 

11 = M/3 
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where Mis a linear operator, represented by a matrix (the model matrix), 
but, and this is important, the Mused in the prediction problem need not be 
the M used in fitting the model to observed data. The two model matrices 
must have the same column dimension and the columns must have the same 
meaning ( covariate variables), but the rows need bear no analogy. Each 
row of the model matrix for the real data corresponds to a real individual, 
but rows of the model matrix for a prediction problem may correspond to 
entirely hypothetical individuals, or newly observed individuals not in the 
original data, or whatever. In this note we use the notation M t.o stand for 
the model matrix involved in our prediction problem. The model matrix for 
the original data, when needed, will be denoted Morig· 

Now we can write our function to predict as the composition 

g = hof.,,,c oM 

and the chain rule with plug-in becomes 

Vg(/3) = Vh(C) o VJ.,,,dfi) oM 

(the derivative of a linear operator being the operator itself). 

(A.ld) 

So the division of labor we envisage is that the user will specify the two 
matrices Vh(() and M (the latter either explicitly or, more usually, implicitly 
by specifying a new data frame to be used with the formula for the regression) 
and the computer must figure out V J.,,,,(ii) by itself. 

A.2 Changes of Parameter 

A.2.1 Identity 

For two "changes of parameter" of interest to us, f .,,,, is the identity map­
ping and hence so is VJ.,,,,. These are the cases 'Tl=("= 8 and,,,= C = cp. 
In these cases the computer's part of (A.Id} is trivial. 

A.2.2 Conditional Canonical to Unconditional Canonical 

This section deals with f B,cp, which is described by (1.6d). Let A0ij denote 
an increment in Bi; and similarly for Acpij. Then 

(A.2} 

provides a description of V !B,cp(O). It is a linear operator that maps a vector 
with components A0ij to a vector with components Acpij· 
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It is perhaps easier to understand this (and more useful to the ac­
tual computer programming of predictions) if we compute the composition 
VJ.,.,,(;(f/) oM, the last two bits of (A.Id). We get, in this case where TJ = 8, 

8t.pij "'"" f A 

8~ = mijk - ~ 1/Jz(Oii)milk 
k lES(j) 

where mijk are the components of M. 

A.2.3 Unconditional Canonical to Conditional Canonical · · 

This section deals with f cp,9, which is implicitly described by (1.6d). It is 
clear that inverting (A.2) gives 

"'"" ' A ll0ij = llt.pij + ~ ¢k(0ik)ll0ik (A.3) 
kES(j) 

Since (A.3) has ll0im terms on both sides, it must be used recursively, 
as with many other aster model equations, including (1.6d) itself. Clearly, if 
(A.3) is used when S(j) is empty, it is trivial. This gives us (A.3) for all "leaf" 
notes of the graph. We can then use (A.3) for j such that S(j) is contained 
in the leaf nodes. This gives us more nodes done, and we can repeat, at each 
stage being able to use (A.3) for j such that S(j) is contained in the set of 
nodes already done. When the graphical model is drawn, like Figure 1.1, with 
parents above children then the recursion moves up the graph from children 
to parents to grandparents and so forth. 

If G = V J.,.,,(;(f/) o M had components 9ijk and M has components mijk, 
then we get in this case where TJ = <p, 

"'"" I A 9iik = miik + ~ ¢z(0il)9ilk (A.4) 
leS(j) 

and (as discussed above), since 9i·k is on both sides of the equation (A.4) 
must be used recursively going from the leaves of the graph toward the roots. 

A.2.4 Conditional Canonical to Conditional Mean Value 

This section deals with /0,t_, which is trivial given exponential family 
theory. This map is given by equation (1.10) which we repeat here 

fo = Xip(i) ¢J ( 0ii) 

and so the derivative is trivially 

8{ij X ,,,,,,((} ) 
80ij = ip(i) 'f' i ij (A.5) 

(other partial derivatives being zero). 
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A.2.5 Unconditional Canonical to Unconditional Mean Value 

This section deals with /ip,r, which is also trivial given exponential family 
theory. This map is given by equation {1.12) which we repeat here 

T = /ip,-r(<p) = v''l/J(cp) 

and so the derivative is trivially 

v'fip,-r(cp) = v'2'1/J{cp). (A.6) 

Although algebraically complicated, this map is already known' 'to the com­
puter, since it needs it to calculate Fisher information for unconditional 
models. It is completely described by equations {1.16a) and (1.16b) in Sec­
tion 1.2.2. 

A.2.6 Conditional Canonical to Unconditional Mean Value 

This section deals with Je,-r, which could be considered already done 
because of f e,-r = f ip,-r o /8,ip· We could compute derivatives using the chain 
rule. 

But let us try something different. We have a simple expression of -r in 
terms of 0 given by {1.12) in Chapter 1 

,,.ij(e) = xif(j) II 'l/J:n(oim)-
meJ 

jjm-(.f(j) 

We can easily differentiate this directly 

8Tij(0) _ . ·(B)VJ'/n((}im) 
80im - Tt.J 1/J:n(9im), 

( and other partial derivatives are zero). 

j ~ m ~ f(j) 

A.2. 7 Unconditional Canonical to Conditional Mean Value 

This section deals with /'l',E, and this one we probably should consider 
already done using /rp,E = /e,Eo Jip,8· We compute derivatives using the chain 
rule 

v'f'l',E('P) = Vfe,E(9) o v'Jip,8('P) 

since one of these v' Je,e(B) is diagonal, given by (A.5), this should be easy. 
The other bit v' f ip,8 ( <p) is given by ( A.4) and the following discussion. 

A.3 Discussion 

All of this is a bit brief, but it is the design document that was used to 
implement and test the code in the aster package for R. 
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Appendix B 

Some One-Paraineter 
Exponential Families for 
Aster Models 

B.1 Bernoulli 

B.1.1 Density 

B.1.2 Canonical Parameter 

The log density is 

log /p(x) = x logp + {1 - x) log{l - p) 

= x log ( 1 ~ p) + log(l - p) 

from which it is seen that the canonical parameter is 

II = logit(p) = log ( 1 ~ P) 

Note that the inverse map is 
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B.1.3 Cumulant Function 

We must have 
log/p(x) = x0 - 'l/J(0) + h(x) 

from which we get 

1/J(B) = - log(l - p) 

=-log(-
1 

) 
1 + e9 

= log ( 1 +e0
) 

B.1.4 Mean Function 

,.-. 

By mean function we mean the map between the canonical parameter 
and the mean value parameter 

Here 

7(0) = EoX = 'l/J'(0). 

1 
7(0) = _1 _+_e_~o 

B.1.5 Variance Function 

By variance function we mean the derivative of r 

v(0) = 7
1(0) = varo X = t/J"(O). 

Here 

B.1.6 Check 

We do have 

7(0) = p 

v(0) = p(l - p) 

the familiar mean and variance of the Bernoulli distribution. 

B.2 Poisson 

B.2.1 Density 
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B.2.2 Canonical Parameter 

The log density is 

log/µ(x) = xlogµ- µ- log(x!) 

from which it is seen that the canonical parameter is 

0 = log(µ) 

Note that the inverse map is 

B.2.3 Cumulant Function 

And 

B.2.4 Mean Function 

And 

B.2.5 Variance Function 

And 

B.2.6 Check 

We do have 

µ= e(J 

1/1(0) = µ 

= ee 

r(O) =. ,l 

v(O) = e9 

r(0) = µ 

v(O) = µ 

the familiar mean and variance of the Poisson distribution. 

B.3 Poisson Conditioned on Non-Zero 

B.3.~ Density 
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(µ is the mean of the Poisson distribution not this distribution). 

B.3.2. Canonical Parameter 

The log density is 

log /µ(x) = x logµ - log (el' -1) - log(x!) 

from which it is seen that the canonical parameter and its inverse are still 
given by (B.la) and (B.lb). 

B.3.3 Cumulant Function 

And 

1/1(0) = log (el-' - 1) 

= log ( ee
9 

- 1) 
B.3.4 Mean Function 

Here 

B.3.5 Variance Function 

And 

B.3.6 Check 

We do have 

eo e-eB e20 
v(0) = ---- - -------,,-

1 - e-eB (1 - e-e9)2 

= r(O) (1 - r(0)e-e
9

) 

r(0) - µ 
1-e-µ. 

v(O) = µ[1 - {1 + µ)e-µJ 
(l -e-1-')2 

= r(0)(1 - r(O)e-µ] 
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the somewhat unfamiliar mean and variance of the Poisson distribution con­
ditioned on not being zero. Despite it not being obvious from the formula, 
v( 0) is indeed nonnegative, as a variance must be, ·and goes to zero as (} goes 
to minus infinity. 
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Appendix C 

Siniulation of Poisson 
Conditioned on Being 
Nonzero 

How to simulate Poisson conditional on nonzero? We have two cases. 

• For large µ, we can do rejection sampling. Just simulate Poisson(µ) 
random variates until we get one greater than zero, and return it. 

• For small µ, naive rejection sampling can be arbitrarily slow. So we 
need another strategy. 

Let us be slightly more sophisticated about our rejection sampling for 
small µ. The density of X is 

X = 1, 2, .... 

Consider rejection sampling from Y which is one plus a Poisson(v). The 
density of Y is 

yY-1 -v 
9v(Y) = (y - l}!e , y= 1,2, .... 

The ratio of the two densities is 

/µ(x) µx (x - 1)! e-µ 1 
9v(x) = vx-l · x! · 1 - e-µ e- 11 

= (!:)x-1 . .!, . µe-µ . ev 
V X 1- e-µ 

This is bounded above considered as a function of x (so rejection sampli~g is 
possible at all) if and only if µ ~ 11. 
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Introduce the notation 
,= µ 

1- e-µ 

for the mean of X. And the upper bound is 

max Jµ(x) = Jµ(l) = ,e-µ · ev 
x2::1 9v(x) 9v(l) 

If we're not worried about being maximally clever, then we can takeµ = v, 
so the upper bound becomes just,. And what happens if we take the break 
point between the two schemes to be µ = 1? The first scheme then has worst 
case rejection fraction 

> dpois(O, 1) 
. ; 

[1] 0. 3678794 

And the second scheme then has worst case rejection fraction 

>mu<- 1 
>tau<- mu/(1 - exp(-mu)) 
> print(tau) 

[1] 1.581977 

> fmu <- function(x) dpois(x, mu)/(1 - dpois(O, mu)) 
> gnu <- tunction(y) dpois(y - 1, mu) 
> xxx <- seq(1, 100) 
> yyy <- fmu(xxx)/(tau * gnu(xxx)) 
> all.equal(yyy, 1/xxx) 

[1] TRUE 

> max(yyy) 

[1] 1 

Now rejection sampling simulates X "' 1 +Poisson(µ) and U "' Uniform( 0, 1) 
and accepts this X if U < 1 / X. 

The probability it fails to do so is 

> 1 - sum(1/xxx * gnu(xxx)) 

[1] 0.3678794 

Perfect balance! 
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Appendix D 

Example Analysis of Purl)le 
Coneflovver ( Echinacea 
angustif olia) Data 

D.1 Preliminaries 

Load the aster package and the data. 

> library(aster) 
> data(echinacea) 
> names(echinacea) 

[1] "hdct02" "hdct03" "hdct04" "pop" 
[7] "ld02" "f102" "ld03" "f103" 

"ewloc" 
"ld04" 

"nsloc" 
"f104" 

the variables with numbers in the names are the columns of the response 
matrix of the aster model. The variables ld0x (where xis a digit) are the 
survival indicator variables for year 200x (one for alive, zero for dead). The 
variables fl0x are the flowering indicator variables (one for any flowers, zero 
for none). The variables hdct0x are the inflorescence (flower head) count 
variables ( number of flower heads). The variables without numbers are other 
predictors. The variables ewloc and nsloc are spatial positions ( east-west 
and north-south location, respectively). The variable pop is the remnant 
population of origin of the plant, so plants with different values of pop may 
be more genetically diverse than those with the same values of pop. 

Make the graph ( of the graphical model, specified by a function p given 
by an R vector pred). 

> pred <- c(O, 1, 2, 1, 2, 3, 4, 5, 6) 
>tam<- c(1, 1, 1, 1, 1, 1, 3, 3, 3) 
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Reshape the data. 

> vars <- c("ld02", "ld03", "ld04", "fl02" 7 "fl03", 
+ "fl04" 7 "hdct02", "hdct03", "hdct04") 
> redata <- reshape(echinacea, varying= list(vars), 
+ direction= "long", timevar = "varb", times= as.factor(vars), 
+ v .names = "resp") 
> redata <- data.frame(redata, root= 1) 

> names (redata) 

(1) 11pop 11 11 evloc 11 11nsloc 11 "varb" "resp" "id" 

D.2 Modeling 

D.2.1 First Model 

"root" 

For our first model we try something simple (moderately simple). We 
have no population effects. We put in a mean and effect of north-south and 
east-west position for each of t~e nine variables. That gives us 3 x 9 = 27 
parameters. 

> out1 <- aster(resp - varb + varb:nsloc + varb:ewloc, 
+ pred, fam 7 varb 7 id, root, data= redata) 
> summary(out1 7 show.graph = TRUE) 

Call: 
aster.formula(formula = resp - varb + varb:nsloc + varb:evloc, 

pred = pred, fam. = fam., varvar = varb, idvar = id, root= root:, 
data= redata) 

Graphical Model: 
variable predecessor family 
ld02 root bernoulli 
ld03 ld02 bernoulli 
ld04 ld03 bernoulli 
fl02 ld02 bernoulli 
fl03 ld03 bernoulli 
fl04 ld04 bernoulli 
hdct02 fl02 non.zero.poisson 
hdct03 fl03 non.zero.poisson 
hdct04 fl04 non.zero.poisson 

Estimate Std. Error z value Pr(>lzl) 
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(Intercept) -1.6418322 0.1928540 -8.513 < 2e-16 *** 
varbfl03 -0.2585034 0.2961442 -0.873 0.38272 
varbfl04 -0.3368137 0.2601966 -1.294 0.19551 
varbhdct02 1.9661735 0.2675730 7.348 2.0le-13 *** 
varbhdct03 1.9185775 0.2203482 8.707 < 2e-16 *** 
varbhdct04 2.4696479 0.2001443 12.339 < 2e-16 *** 
varbld02 -0.9772646 0.3502261 -2.790 0.00526 ** 
varbld03 1.0373523 0.4281242 2.423 0.01539 * 
varbld04 4.1243999 0.3469256 11.888 < 2e-..:l:6 *** 
varbfl02:nsloc 0.0838694 0.0265213 3.162 0.00157 ** 
varbfl03:nsloc 0.0655407 0.0302581 2.166 0.03031 * 
varbfl04:nsloc 0.0698900 0.0244358 2.860 0.00423 ** 
varbhdct02:nsloc -0.0179987 0.0116776 -1.541 0.12324 
varbhdct03:nsloc 0.0001156 0.0138761 0.008 0.99335 
varbhdct04:nsloc -0.0034831 0.0074230 -0.469 0.63891 
varbld02:nsloc -0.0463586 0.0376371 -1.232 0.21805 
varbld03:nsloc 0.0291040 0.0527152 0.552 0.58088 
varbld04:nsloc 0.0339060 0.0405000 0.837 0.40249 
varbfl02:ewloc 0.0460555 0.0267844 1.719 0.08553. 
varbfl03:ewloc -0.0060486 0.0290874 -0.208 0.83527 
varbf104:ewloc -0.0094399 0.0239818 -0.394 0.69385 
varbhdct02:ewloc 0.0024187 0.0120993 0.200 0.84156 
varbhdct03:ewloc 0.0230630 0.0135295 1.705 0.08826. 
varbhdct04:ewloc 0.0084179 0.0072661 1.159 0.24665 
varbld02:ewloc 0.0149197 0.0357336 0.418 0.67629 
varbld03:ewloc -0.0285742 0.0517154 -0.553 0.58059 
varbld04:ewloc 0.0048502 0.0409964 0.118 0.90582 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 C ' 1 

D.2.2 Second Model 

So now we put in population. 

> levels(echinacea$pop) 

[1] "AA" 11 Eriley 11 "Lf" "Nessman" "NWLFn "SPP" 
[7] 11 Stevens 11 

Let us put pop in only at the top level in this model (just to see what happens). 
In order to do that we have to add a predictor that "predicts" the top level. 

> hdct <- grep("hdct", as. character(redata$varb)) 
> hdct <- is.element(seq(along = redata$varb), hdct) 

33 



> redata <- data.frame(redata, hdct = as.integer(hdct)) 
> names(redata) 

(1] "pop" 11 ewloc 11 "nsloc" 11varb 11 "resp" "id" 
(8] "hdct" 

"root" 

> out2 <- aster(resp - varb + varb:nsloc + varb:ewloc + 
+ hdct * pop - pop, pred, tam, varb, id, root, 
+ data= redata) 
> summary(out2) 

Call: 
aster.formula(formula = resp - varb + varb:nsloc + varb:ewloc + 

hdct * pop - pop, pred = pred, fam = fam, varvar = varb, 
idvar = id, root= root, data= redata) 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.6259835 0.1925029 -8.447 < 2e-16 *** 
varbfl03 -0.2591673 0.2953707 -0.877 0.38025 
varbfl04 -0.3272159 0.2594037 -1.261 0.20716 
varbhdct02 2.0516689 0.2751442 . 7.457 8.87e-14 *** 
varbhdct03 2.0032366 0.2298569 . 8.715 < 2e-16 *** 
varbhdct04 2.5544660 0.2106706 12.125 < 2e-16 *** 
varbld02 -0.9847880 0.3499238 -2.814 0.00489 ** 
varbld03 1.0268923 0.4279181 2.400 0.01641 * 
varbld04 4.1086115 0.3467427 11.849 < 2e-16 *** 
varbfl02:nsloc 0.0835490 0.0264359 3.160 0.00158 ** 
varbfl03:nsloc 0.0655031 0.0301469 2.173 0.02980 * 
varbf104:nsloc 0.0698326 0.0243307 2.870 0.00410 ** 
varbhdct02:nsloc -0.0184434 0.0116321 -1.586 0.11284 
varbhdct03:nsloc ~0.0004162 0.0138183 -0.030 0.97597 
varbhdct04:nsloc -0.0038684 0.0073788 -0.524 0.60010 
varbld02:nsloc -0.0459235 0.0376414 -1.220 0.22245 
varbld03:nsloc 0.0295182 0.0527428 0.560 0.57571 
varbld04:nsloc 0.0339706 0.0405350 0.838 0.40200 
varbfl02:ewloc 0.0462769 0.0267337 1. 731 0.08345. 
varbf103:ewloc -0.0054404 0.0289865 -0.188 0.85112 
varbf104:ewloc -0.0089080 0.0239051 -0.373 0.70942 
varbhdct02:ewloc 0.0028066 0.0120847 0.232 0.81635 
varbhdct03:ewloc 0.0231490 0.0134693 1.719 0.08568. 
varbhdct04:ewloc 0.0086106 0.0072716 1.184 0.23636 
varbld02:ewloc 0.0153283 0.0357260 0.429 0.66789 
varbld03:ewloc -0.0283036 0.0517141 -0.547 0.58417 
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varbld04:evloc 0.0048550 0.0409914 0.118 0.90572 
hdct:popEriley -0.1782285 0.0893919 -1.994 0.04618 * 
hdct:popLf -0.1617692 0.0960825 -1.684 0.09225 
hdct:popNessman -0.3152202 0.1387855 -2.271 0.02313 * 
hdct:popNWLF -0.1076672 0.0832346 -1.294 0.19582 
hdct:popSPP 0.0198694 0.0862319 0.230 0.81777 
hdct:popStevens -0.1288083 0.0891936 -1.444 0.14870 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0,1 ' ' 1 

Original predictor variables dropped (aliased) 
hdct 

> anova(out1, out2) 

Analysis of Deviance Table 

Model 1: resp - varb + varb:nsloc + varb:evloc 
Model 2: resp - varb + varb:nsloc + varb:evloc + hdct * pop - pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 27 2717.39 
2 33 2701.26 6 16.13 0.01 

Comment The last bit of the summary that the "original predictor" hdct 
was "dropped (aliased)" means just what it (tersely) says. The R for­
mula mini-language as implemented in the R functions model. frame and 
model . matrix produces a model matrix that is not full rank. In order to es­
timate anything we must drop some dummy variable that it constructed. In 
this particular case the ( dummy variable that is the indicator of) hdct is equal 
to the sum of the ( dummy variables that are the indicators of) varbhdct02, 
varbhdct03, and varbhdct04. Thus we must drop one of these variables for 
the model to be identifiable. So aster does. 

Comment The reason for the - pop in the formula is not obvious. In fact, 
we originally did not write the formula this way and got the wrong model (see 
''Tenth Model" in Section D.2.10 below). It took some grovelling in various 
bits of R documentation to come up with this - pop trick, but once you see 
it, the effect is clear. 

We want population effects only at the "hdct" level. But the hdct * pop 
crosses the hdct indicator variable, which has two values (zero and one) with 
the pop variable, which has seven values (the seven populations), giving 14 
parameters, one of which R drops (because it is aliased with the intertept). 
But that's not what we want. We don't want pop effects at the "non-hdct" 
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levels. The way the R formula mini-language allows us to specify that is - pop 
which means to leave out the population main effects (7 fewer parameters, 
leaving 6) and we see that we do indeed have 6 degrees of freedom difference 
between models one and two. 

D.2.3 Third Model 

Let us now put pop in at all levels in this model. 

> level <- gsub(" [0-9] ", "", as. character(redata$varb)) 
> redata <- data.frame(redata, level= as.factor(level)) 
> out3 <- aster(resp - varb + varb:nsloc + varb:ewloc + 
+ level* pop, pred, fam, varb, id, root, data= redata) 
> summary(out3) 

Call: 
aster.formula(formula = resp - varb + varb:nsloc + varb:ewloc + 

level* pop, pred = pred, fam = fam, varvar = varb, idvar = id, 
root= root, data·= redata) 

' Estimate St-d. Error z value Pr(>lzl) 
(Intercept) -1.937453 0.423538 -4.574 4.77e-06 *** 
varbfl03 -0.268508 0.293765 -0.914 0.36071 
varbf104 -0.303001 0.257928 -1.175 0.24009 
varbhdct02 2.477882 0.546517 4.534 5.79e-06 *** 
varbhdct03 2.433586 0.525941 4.627 3.71e-06 *** 
varbhdct04 2.972531 0.516328 5.757 8.56e-09 *** 
varbld02 -0.739801 0.582421 -1.270 0.20401 
varbld03 1.256976 0.632563 1.987 0.04691 * 
varbld04 4.322854 0.581362 7.436 1.04e-13 *** 
popEriley 0.807390 0.451694 1.787 0.07386. 
popLf 0.877245 0.481248 1.823 0.06833. 
popNessman -0.602180 0.681430 -0.884 0.37686 
popNWLF -0.111507 0.434671 -0.257 0.79754 
popSPP 0.541625 0.450808 1.201 0.22958 
popStevens 0.112023 0.465345 0.241 0.80976 
varbfl02:nsloc 0.083795 0.026329 3.183 0.00146 ** 
varbf103:nsloc 0.066937 0.029982 2.233 0.02558 * 
varbf104:nsloc 0.070146 0.024162 2.903 0.00370 ** 
varbhdct02:nsloc -0.018769 0.011491 -1.633 0 .10240 
varbhdct03:nsloc -0.001417 0.013619 -0.104 0.91715 
varbhdct04:nsloc -0.004397 0.007261 -0.606 0.54477 
varbld02:nsloc -0.044854 0.037640 -1.192 0.23340 

36 

-· 



varbld03:nsloc 0.030181 0.052719 0.572 0.56699 
varbld04:nsloc 0.034831 0.040522 0.860 0.39003 
varbf102:ewloc 0.035972 0.026717 1.346 0.17817 
varbf103:ewloc -0.015152 0.028934 -0.524 0.60050 
varbf104:ewloc -0.018685 0.023867 -0.783 0.43371 
varbhdct02:ewloc 0.006926 0.012016 0.576 0.56435 
varbhdct03:ewloc 0.026914 0.013389 2.010 0.04441 * 
varbhdct04:ewloc 0.012554 0.007241 1.734 0.08298. 
varbld02:ewloc 0.013009 0.035812 0.363 O.Ji641 
varbld03:ewloc -0.030830 0.051730 -0.596 0.55119 
varbld04:ewloc 0.002422 0.040976 0.059 0.95287 
levelhdct:popEriley -1.341288 0.587473 -2.283 0.02242 * 
levelld:popEriley -0.560351 0.553094 -1.013 0.31100 
levelhdct:popLf -1.408221 0.631418 -2.230 0.02573 * 
levelld:popLf -0.674658 0.588417 -1.147 0.25156 
levelhdct:popNessman 0.418459 0.893928 0.468 0.63970 
levelld:popNessman 0.922668 0.778683 1.185 0.23605 
levelhdct:popNWLF 0.046822 0.553566 0.085 0.93259 
levelld:popNWLF 0.140229 0.531548 0.264 0.79192 
levelhdct:popSPP -0.702929 0.573865 -1.225 0.22061 
levelld:popSPP -0.479659 0.561548 -0.854 0.39301 
levelhdct:popStevens -0.215472 0.593594 -0.363 0.71661 
levelld:popStevens -0.240029 0.569320 -0.422 0.67331 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0.1' ' 1 

Original predictor variables dropped (aliased) 
levelhdct 
levelld 

> anova(out1, out2, out3) 

Analysis of Deviance Table 

Model 1: resp - varb + varb:nsloc + varb:ewloc 
Model 2: resp - varb + varb:nsloc + varb:ewloc + hdct * pop - pop 
Model 3: resp - varb + varb:nsloc + varb:ewloc +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 27 2717.39 
2 
3 

33 2701.26 6 
45 2663.55 12 

16.13 0.01 
37.71 0.0001715 
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Comment This would finish a sensible analysis, but we're really not sure 
we have dealt with the "geometry" {the variables ewloc and nsloc) correctly. 

D.2.4 Fourth Model, Less Geometry 

Thus we experiment with different ways to put in the spatial effects. First 
we reduce the geometry to a product, either year or level. 

>year<- gsub("[a-z]", "", as.character(redata$varb)) 
> year <- paste("yr", year, sep = "") 
> redata <- data.frame(redata, year= as.factor(year)) 
> out4 <- aster(resp - varb +(level+ year):(nsloc + 
+ ewloc) +level* pop, pred, fam, varb, id, root, 
+ data= redata) 
> summary(out4) 

Call: 
aster.formula(formula = resp - varb +(level+ year):(nsloc + 

ewloc) +level* pop, pred = pred, fam = fam, varvar = varb, 
idvar = id, root= root, data= redata) 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.875208 0.419723 -4.468 7.91e-06 *** 
varbf103 -0.384991 0.268534 -1.434 0.15166 
varbf104 -0.373643 0.244457 -1.528 0.12640 
varbhdct02 2.387001 0.541799 4.406 1.05e-05 *** 
varbhdct03 2.399402 0.522036 4.596 4.30e-06 *** 
varbhdct04 2.913906 0.513754 5.672 1.41e-08 *** 
varbld02 -0.679149 0.562506 -1.207 0.22729 
varbld03 1.114165 0.611123 1.823 0.06828. 
varbld04 4.225862 0.573484 7.369 1.72e-13 *** 
popEriley 0.809271 0.451391 1.793 0.07300. 
popLf 0.878454 0.480895 1.827 0.06774. 
popNessman -0.600230 0.681076 -0.881 0.37816 
popNWLF -0.111683 0.434221 -0.257 0.79702 
popSPP 0.540528 0.450468 1.200 0.23017 
popSt~vens 0.110291 0.464961 0.237 0.81250 
levelfl:nsloc 0.068603 0.015126 4.535 5.75e-06 *** 
levelhdct:nsloc -0.014500 0.007501 -1.933 0.05324. 
levelld:nsloc 0.001078 0.007299 0.148 0.88258 
levelfl:ewloc 0.004590 0.015092 0.304 0.76102 
levelhdct:evloc 0.020550 0.007740 2.655 0.00793 ** 
levelld:ewloc -0.001435 0.007502 -0.191 0.84825 
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yearyr03:nsloc 0.009125 0.007155 1.275 0.20224 
yearyr04:nsloc 0.009184 0.006137 1.496 0.13453 
yearyr03:ewloc -0.001812 0.007242 -0.250 0.80241 
yearyr04:ewloc -0.011085 0.006324 -1. 753 0.07965. 
levelhdct:popEriley -1.344673 0.587258 -2.290 0.02204 * 
levelld:popEriley -0.561644 0.552345 -1.017 0.30923 
levelhdct:popLf -1.410639 0.631143 -2.235 0.02541 * 
levelld:popLf -0.674982 0.587591 -1.149 0.25067 
levelhdct:popNessman 0.416160 0.893648 0.466 0.,.64144 
levelld:popNessman 0.919968 0.777808 1.183 0.23690 
levelhdct:popNWLF 0.046781 0.553089 0.085 0.93259 
levelld:popNWLF 0.140718 0.530656 0.265 0.79087 
levelhdct:popSPP -0.701296 0.573572 -1.223 0.22145 
levelld:popSPP -0.477678 0.560739 -0.852 0.39429 
levelhdct:popStevens -0.213370 0.593238 -0.360 0.71909 
levelld:popStevens -0.237795 0.568455 -0.418 0.67571 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0.1 ' '1 

Original predictor variables dropped (aliased) 
levelhdct 
levelld 

> anova(out4, out3) 

Analysis of Deviance Table 

Model 1: resp - varb +(level+ year):(nsloc + ewloc) +level* pop 
Model 2: resp - varb + varb:nsloc + varb:ewloc +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 37 2668.39 
2 45 2663.55 8 4.83 0.78 

So we have goodness of fit, and this can be our "big model". 

D.2.5 Fifth Model, Much Less Geometry 

Now we reduce the geometry to just two predictors. 

> out5 <- aster(resp - varb + nsloc + e~loc +level* 
+ . pop, pred, tam, varb, id, root, data = redata) 
> summary(out5) 
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Call: 
aster.formula(formula = resp - varb + nsloc + ewloc +level* 

pop, pred = pred, fam = fam, varvar = varb, idvar = id, root= root, 
data = redata) 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.740778 0.415402 -4.191 2.78e-05 *** 
varbfl03 -0.334899 0.264510 -1.266 0.205473 
varbfl04 -0.328208 0.240321 -1.366 0.172032 
varbhdct02 2.190026 0.536935 4.079 4.53e-05 *** 
varbhdct03 2.209167 0.516225 4.279 1.87e-05 *** 
varbhdct04 2.712799 0.509537 5.324 1.01e-07 *** 
varbld02 -0.769927 0.562247 -1.369 0.170882 
varbld03 0.982700 0.611052 1.608 0.107789 
varbld04 4.110627 0.573689 7.165 7.76e-13 *** 
nsloc 0.013506 0.001725 7.828 4.97e-15 *** 
ewloc 0.005965 0.001722 3.465 0.000531 *** 
popEriley 0.755567 0.448815 1.683 0.092284. 
popLf 0.809411 0.478696 1. 691 0. 090862 . 
popNessman -0.721910 0.677652 -1.065 0.286735 
popNWLF -0.138061 0.433020 -0.319 0.749854 
popSPP 0.516341 0.448626 1.151 0.249757 
popStevens 0.080025 0.464014 0.172 0.863074 
levelhdct:popEriley -1. 259136 0.585222 -2.152 0.031433 * 
levelld:popEriley -0.548422 0.554771 -0.989 0.322881 
levelhdct:popLf -1.308189 0.629591 -2.078 0.037724 * 
levelld:popLf -0.635814 0.590884 -1.076 0.281910 
levelhdct:popNessman 0.581044 0.890106 0.653 0.513898 
levelld:popNessman 1.048141 0.779258 1. 345 0. 178609 
levelhdct:popNWLF _ 0.072362 0.552482 0.131 0.895795 
levelld:popNWLF 0.183780 0.534492 0.344 0.730967 
levelhdct:popSPP -0.662518 0.572464 -1.157 0.247147 
levelld:popSPP -0.474797 0.564778 -0.841 0.400528 
levelhdct:popStevens -0.171288 0.593123 -0.289 0.772742 
levelld:popStevens -0.216441 0.572985 -0.378 0.705622 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0.1' '1 

Original predictor variables dropped (aliased) 
levelhdct 
levelld 

> anova(outS, out4, out3) 
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Analysis of Deviance Table 

Model 1: resp - varb + nsloc + ewloc +level* pop 
Model 2: resp - varb +(level+ year):(nsloc + ewloc) +level* pop 
Model 3: resp - varb + varb:nsloc + varb:ewloc +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 29 2696.56 
2 

3 
37 2668.39 8 
45 2663.55 8 

28.18 0.0004416 
4.83 0.78 

So we do not have goodness of fit, and this cannot be our "big model". 

D.2.6 Sixth Model, Intermediate Geometry, Levels 

So we try again with the geometry. 

> out6 <- aster(resp - varb + level:(nsloc + ewloc) + 

+ level* pop, pred, tam, varb, id, root, data= redata) 
> swnmary(out6) 

Call: 

aster.formula(formula = resp - varb + level:(nsloc + ewloc) + 
level* pop, pred = pred, fam = fam, varvar = varb, idvar = 
root= root, data = redata) 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1. 907186 0.420138 -4.539 5.64e-06 *** 
varbfl03 -0.354186 0.266796 -1.328 0.1843 
varbfl04 -0.319952 0.242895 -1.317 0.1878 
varbhdct02 2.424075 0.542402 4.469 7.85e-06 *** 
varbhdct03 2.447742 0.521950 4.690 2.74e-06 *** 
varbhdct04 2.945476 0.514751 5.722 1.05e-08 *** 
varbld02 -0.626114 0.562017 -1.114 0.2653 
varbld03 1.128493 0.611062 1.847 0.0648. 
varbld04 4.254223 0.573494 7.418 1.19e-13 *** 
popEriley 0.812524 0.451595 1.799 0.0720. 
popLf 0.882088 0.481103 1.833 0.0667. 
popNessman -0.593161 0.680863 -0.871 0.3837 
popNWLF -0.110570 0.434822 -0.254 0.7993 
popSPP 0.543515 0.450805 1.206 0.2280 
popStevens 0.114072 0.465336 0.245 0.8063 
levelfl:nsloc 0.070763 0.014568 4.857 1.19e-06 !:tc* 
levelhdct:nsloc -0.006425 0.005465 -1.176 0.2398 
levelld:nsloc 0.008036 0.005924 1.356 0.1749 
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levelfl:ewloc 0.007768 0.014546 0.534 0.5933 
levelhdct:ewloc 0.011689 0.005561 2.102 0.0356 * 
levelld:ewloc -0.007240 0.006114 -1.184 0.2363 
levelhdct:popEriley -1.350424 0.587897 -2.297 0.0216 * 
levelld:popEriley -0.563945 0.552117 -1.021 0.3071 
levelhdct:popLf -1.416802 0.631793 -2.243 0.0249 * 
levelld:popLf -0.678297 0.587394 -1.155 0.2482 
levelhdct:popNessman 0.405845 0.893667 0.454 0.6497 
levelld:popNessman 0.912760 0.777262 1.174 0.2403 
levelhdct:popNWLF 0.044673 0.554325 0.081 0.9358 
levelld:popNWLF 0.139453 0.530726 0.263 0.7927 
levelhdct:popSPP -0.705876 0.574445 -1.229 0.2191 
levelld:popSPP -0.481472 0.560611 -0.859 0.3904 
levelhdct:popStevens -0.218838 0.594180 -0.368 0.7126 
levelld:popStevens -0.242044 0.568322 -0.426 0.6702 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' ) 0.1 C ' 1 

Original predictor variables dropped (aliased) 
levelhdct 
levelld 

> anova(out5 1 out61 out4 1 out3) 

Analysis of Deviance Table 

Model 1: resp - varb + nsloc + ewloc +level* pop 
Model 2: resp - varb + level:(nsloc + ewloc) +level* pop 
Model 3: resp - varb +(level+ year):(nsloc + ewloc) +level* pop 
Model 4: resp - varb + varb:nsloc + varb:ewloc +level* pop 

1 
2 
3 
4 

Model Df Model Dev Df Deviance P(>IChil) 
29 2696.56 
33 2674.70 4 21.87 0.000213 
37 2668.39 4 6.31 0.18 
45 2663.55 8 4.83 0.78 

So we have goodness of fit, and this can be our "big model". But why drop 
year rather than level? 

D.2.7 Seventh Model, Intermediate Geometry, Years 

So we try again with the geometry. 
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> out7 <- aster(resp - varb + year:(nsloc + ewloc) + 

+ level* pop, pred, fam, varb, id, root, data= redata) 
> summary(out7) 

Call: 
aster.formula(formula = resp - varb + year:(nsloc + ewloc) + 

level* pop, pred = pred, fam = fam, varvar = varb, idvar = id, 
root= root, data= redata) 

,.- .. 
Estimate Std. Error z value Pr(>lzl) 

(Intercept) -1. 737420 0.416050 -4.176 2.97e-05 *** 
varbfl03 -0.316825 0.265066 -1.195 0. 231981 
varbfl04 -0.337380 0.241251 -1.398 0.161973 
varbhdct02 2.193871 0.538051 4.077 4.55e-05 *** 
varbhdct03 2.168558 0.517159 4.193 2.75e-05 *** 
varbhdct04 2.713968 0.510169 5.320 1.04e-07 *** 
varbld02 -0.778587 0.562724 -1.384 0.166480 
varbld03 0.992898 0.611831 1.623 0.104625 
varbld04 4.099985 0.574053 7.142 9.19e-13 *** 
popEriley 0.741522 0.449483 1.650 0.099000. 
popLf 0.799687 0.479291 1.668 0.095221 . 
popNessman -0.727352 0.678773 -1.072 0.283914 
popNWLF -0.128513 0.433273 -0.297 0.766765 
popSPP 0.507401 0.449178 1.130 0.258636 
popStevens 0.075879 0.464452 0.163 0.870225 
yearyr02:nsloc 0.009909 0.004372 2.266 0.023441 * 
yearyr03:nsloc 0.019664 0.004995 3.937 8.27e-05 *** 
yearyr04:nsloc 0.012311 0.003276 3.758 0.000172 *** 
yearyr02:ewloc 0.010774 0.004435 2.430 0.015116 * 
yearyr03:ewloc 0.008521 0.004798 1. 776 0. 075742 . 
yearyr04:ewloc 0.001578 0.003246 0.486 0.626836 
levelhdct:popEriley -1.239189 0.585903 -2.115 0.034429 * 
levelld:popEriley -0.532712 0.555127 -0.960 0.337246 
levelhdct:popLf -1.294188 0.630147 -2.054 0.039996 * 
levelld:popLf -0.624375 0.591157 -1.056 0.290881 
levelhdct:popNessman 0.587678 0.891330 0.659 0.509686 
levelld:popNessman 1.055395 0.779991 1. 353 0. 176028 
levelhdct:popNWLF 0.059302 0.552518 0.107 0.914526 
levelld:popNWLF 0.174231 0.534494 0.326 0.744444 
levelhdct:popSPP -0.650145 0.572908 -1.135 0.256452 
levelld:popSPP -0.463775 0.564970 -0.821 0.411712 
levelhdct:popStevens -0.165745 0.593407 -0. 279 0. 780007 · 
levelld:popStevens -0.211556 0.573114 -0.369 0.712028 
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0.1' ' 1 

Original predictor variables dropped (aliased) 
levelhdct 
levelld 

> anova(out5, out7, out4, out3) 

Analysis of Deviance Table 

Model 1: resp - varb + nsloc + ewloc +level* pop 
Model 2: resp - varb + year:(nsloc + ewloc) +level* pop 
Model 3: resp - varb +(level+ year):(nsloc + ewloc) +level* pop 
Model 4: resp - varb + varb:nsloc + varb:ewloc +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 29 2696.56 
2 
3 
4 

33 2691.95 4 
37 2668.39 4 
45 2663.55 8 

4.61 0.33 
23.57 9.761e-05 
4.83 0.78 

And we do not have goodness of fit! So Model Six is our "big model" 
and we have been logical in our model selection. Note that it is not valid 
to compare Models Six and Seven because they are not nested, but both fit 
between Models Five and Four, so Six and Seven can each be compared to 
both Five and Four (and this tells us what we want to know). 

D.2.8 Eighth Model, Like Models Two and Six 

We need to make a model with the structure of Model Two with respect 
to variables and like Model Six with respect to geometry. 

> outB <- aster(resp - varb + level:(nsloc + evloc) + 
+ hdct * pop - pop, pred, tam, varb, id, root, 
+ data= redata) 
> summary(out8) 

Call: 
aster.formula(formula = resp - varb + level:(nsloc + ewloc) + 

hdct * pop - pop, pred = pred, fam = fam, varvar = varb, 
idvar = id, root= root, data= redata) 

(Intercept) 
Estimate Std. Error z value Pr(>lzl) 

-1.591968 0.184332 -8.636 < 2e-16 *** 
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varbfl03 -0.349096 0.267919 -1.303 0.19258 
varbfl04 -0.344222 0.243899 -1.411 0.15815 
varbhdct02 1.991976 0.265192 7.511 5.85e-14 *** 
varbhdct03 2.013936 0.219375 9.180 < 2e-16 *** 
varbhdct04 2.521890 0.205048 12.299 < 2e-16 *** 
varbld02 -0.874272 0.315703 -2.769 0.00562 ** 
varbld03 0.895081 0.396189 2.259 0.02387 * 
varbld04 4.036755 0.334266 12.076 < 2e-16 *** 
levelfl:nsloc 0.070102 0.014652 4. 785 1. 71e-06. -~** 
levelhdct:nsloc -0.005804 0.005550 -1.046 0.29564 
levelld:nsloc 0.007165 0.005867 1.221 0.22196 
levelfl:ewloc 0.017977 0.014413 1.247 0.21229 
levelhdct:ewloc 0.007606 0.005561 1.368 0.17138 
levelld:ewloc -0.004787 0.005919 -0.809 0.41863 
hdct:popEriley -0.178799 0.089411 -2.000 0.04553 * 
hdct:popLf -0.162516 0.096116 -1.691 0.09087. 
hdct:popNessman -0.315507 0.138823 -2.273 0.02304 * 
hdct:popNWLF -0.108209 0.083110 -1.302 0.19292 
hdct:popSPP 0.019942 0.086198 0.231 0.81704 
hdct:popStevens -0.129238 0.089129 -1.450 0.14706 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' '0.1' '1 

Original predictor variables dropped (aliased) 
hdct 

> anova(out8, out6) 

Analysis of Deviance Table 

Model 1: resp - varb + level:(nsloc + ewloc) + hdct * pop - pop 
Model 2: resp - varb + level:(nsloc + ewloc) +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 21 2712.54 
2 33 2674.70 12 37.84 0.0001632 

D.2.9 Ninth Model, Like Models One and Eight 

We need to make a model with the structure of Model Eight except no 
populations. 

> out9 <- aster(resp - varb + level:(nsloc + ewloc), 
+ · pred, :fam, varb, id, root, data= redata) 
> summary(out9) 
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Call: 
aster.formula(formula = resp - varb + level:(nsloc + ewloc), 

pred = pred, fam = fam, varvar = varb, idvar = id, root= root, 
data = redata) 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1.607690 0.184593 -8.709 < 2e-16 *** 
varbfl03 -0.349426 0.268532 -1.301 0.1932 
varbfl04 -0.353847 0.244529 -1.447 0.1479 
varbhdct02 1.906022 0.257183 7.411 1.25e-13 *** 
varbhdct03 1.929506 0.209331 9.217 < 2e-16 *** 
varbhdct04 2.436417 0.194176 12.547 < 2e-16 *** 
varbld02 -0.866520 0.315991 -2.742 0.0061 ** 
varbld03 0.905229 0.396379 2.284 0.0224 * 
varbld04 4.052121 0.334412 12.117 < 2e-16 *** 
levelfl:nsloc 0.070281 0.014705 4.779 1.76e-06 *** 
levelhdct:nsloc -0.005378 0.005578 -0.964 0.3350 
levelld:nsloc 0.006855 0.005868 1.168 0.2427 
levelfl:ewloc 0.017686 0.014441 1.225 0.2207 
levelhdct:ewloc 0.007312 0.005542 1.320 0.1870 
levelld:ewloc -0.005027 0.005932 -o:a41 0.3968 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05' > 0.1' ' 1 

> anova(out9, outB, out6) 

Analysis of Deviance Table 

Model 1: resp - varb + level:(nsloc + ewloc) 
Model 2: resp - varb + level:(nsloc + ewloc) + hdct * pop - pop 
Model 3: resp - varb + level:(nsloc + ewloc) +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 15 2728.72 
2 

3 
21 2712.54 6 
33 2674.70 12 

16.18 0.01 
37.84 0.0001632 

D.2.10 Tenth Model, Between Models Six and Eight 

We accidentally created a new tenth model by not understanding the 
"minus populations" stuff in the formulae for Models Two and Eight. 

> out10 <- aster(resp - varb + level:(nsloc + ewloc) + 
+ hdct * pop, pred, tam, varb, id, root, data= redata) 
> summary(out10) 
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Call: 
aster.formula(formula = resp - varb + level:(nsloc + ewloc) + 

hdct * pop, pred = pred, fam = fam, varvar = varb, idvar = id, 
root= root, data= redata) 

Estimate Std. Error z value Pr(>lzl) 
(Intercept) -1. 726122 0.223462 -7.724 1.12e-14 *** 
varbfl03 -0.349106 0.266693 -1.309 0.19053 
varbfl04 -0.330903 0.242658 -1.364 0.17268 .. ·. 
varbhdct02 2.203913 0.331242 6.653 2.86e-11 *** 
varbhdct03 2.226234 0.296256 7.515 5.71e-14 *** 
varbhdct04 2. 732111 0.285814 9.559 < 2e-16 *** 
varbld02 -0.861178 0.316060 -2.725 0.00644 ** 
varbld03 0.888715 0.396388 2.242 0.02496 * 
varbld04 4.008350 0.334436 11.985 < 2e-16 *** 
popEriley 0.375414 0.154884 2.424 0.01536 * 
popLf 0.355237 0.164870 2.155 0.03119 * 
popNessman 0.231430 0.189693 1.220 0.22245 
popNWLF 0.012016 0.145094 0.083 0.93400 
popSPP 0.185498 0.158948 1.167 0.24319 
popStevens -0.069680 0.153063 -0.455 0.64894 
levelfl:nsloc 0.070918 0.014584 4.863 1.16e-06 *** 
levelhdct:nsloc -0.006532 0.005504 -1.187 0.23528 
levelld:nsloc 0.007901 0.005959 1.326 0.18488 
levelfl:ewloc 0.014308 0.014359 0.996 0.31904 
levelhdct:ewloc 0.010083 0.005557 1.814 0.06961. 
levelld:ewloc -0.009182 0.006100 -1.505 0.13231 
hdct:popEriley -0.794844 0.264102 -3.010 0.00262 ** 
hdct:popLf -0.744006 0.282716 -2.632 0.00850 ** 
hdct:popNessman -0.705433 0.355627 -1.984 0.04730 * 
hdct:popNWLF -0.114923 0.245244 -0.469 0.63935 
hdct:popSPP -0.270775 0.262750 -1.031 0.30276 
hdct:popStevens 0.003604 0.260305 0.014 0.98895 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1' ' 1 

Original predictor variables dropped (aliased) 
hdct 

> anova(out9, outB, out10, out6) 

Analysis of Deviance Table 

47 



Model 1: resp - varb + level: (nsloc + evloc) 
Model 2: resp - varb + level : (nsloc + evloc) 
Model 3: resp - varb + level: (nsloc + evloc) 
Model 4: resp - varb + level:(nsloc + evloc) 

+ hdct * pop - pop 
+ hdct * pop 
+level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 15 2728.72 
2 21 2712.54 6 16.18 0.01 
3 27 2684.86 6 27.67 0.0001083 
4 33 2674.70 6 10.17 0.12 

So this says that Model Ten (which only has 12 d. f. for "pop") can be the 
big model. 

D.3 Mean Value Parameters 

D.3.1 Unconditional 

As argued in Chapter 1, canonical parameters are "meaningless." Only 
mean value parameters have real world, scientific interpretability. 

So in this section we compare predicted values for a typical individual (say 
zero-zero geometry) in each population under both Models Six and Eight. 
The functional of mean value parameters we want is total· head count, since 
this has the biological interpretation of the best surrogate measure of fitness 
in this data set. A biologist ( at least an evolutionary biologist) is interested 
in the "ancestor variables» of head count only insofar as they contribute to 
head count. Two sets of parameter values that "predict" the same expected 
total head count (over the three years the data were collected) have the same 
contribution to fitness. So that is the "prediction" (really functional of mean 
value parameters) we ''predict." 

To do this we mus~ construct ''newdata" for these hypothetical individuals. 

> newdata <- data.frame(pop = levels(echinacea$pop)) 
> for (v in vars) newdata[[v]] <- 1 
> newdata$root <- 1 
> newdata$ew1oc <- 0 
> newdata$ns1oc <- 0 
> renewdata <- reshape(newdata, varying= list(vars), 
+ ·direction= "long", timevar = "varb", times= as.factor(vars), 
+ v.names = "resp") 
> names(redata) 

[1] "pop" . "evloc11 "nsloc" "varb" "resp" "id" 
[8] "hdct" "level" "year" 
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,_- I. 

> names(renewdata) 

[1] "pop" "root" 11 evloc 11 "nsloc" "varb" "resp" "id" 

> hdct <- grep ( "hdct ", as. character (renewdata$varb)) 
> hdct <- is.element(seq(along = renewdata$varb), hdct) 
> renewdata$hdct <- as.integer(hdct) 
> level <- gsub(" [0-9] ", "", as. character(renet1data$varb)) 
> renet1data$level <- as.factor(level) .... 
> year <- gsub("fa-z]", "", as.character(renewdata$varb)) 
> year <- paste ("yr", year, sep = "") 
> renewdata$year <- as.factor(year) 
> setequal(names(redata), names(renewdata)) 

[1] TRUE 

We are using bogus data Xij = I for all i and j because unconditional mean 
value parameters do not depend on x. We have to have an x argument 
because that's the way the aster package functions work (ultimately due to 
limitations of the R formula mini-language). So it doesn't matter what we 
make it. In the following section, the predictions will depend on x, but then 
(as we shall argue), this is the x we want. 

> nind <- nrot1(newdata) 
> nnode <- length(vars) 
> amat <- array(0, c(nind, nnode, nind)) 
> for (i in 1 :nind) amat [i, grep("hdct", vars), i] <- 1 
> pout6 <- predict(out6, varvar = varb, idvar = id, 
+ root= root, newdata = renewdata, se.fit = TRUE, 
+ amat = amat) 
> poutB <~ predict(outB, varvar = varb, idvar = id, 
+ root= root, net1data = renewdata, se.fit = TRUE, 
+ amat = amat) 

Figure D.l is produced by the following code 

>cont.level<- 0.95 
> crit <- qnorm((1 + conf.level)/2) 

> popnames <- as.character(newdata$pop) 
> fitB <- pout8$fit 
> i <- seq(along = popnames) 
> ytop <- fitB + crit * pout8$se.fit 
> ybot <- fitB - crit * pout8$se.fit 
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Figure D.1: 95% confidence intervals for unconditional mean value parameter 
for fitness (sum of head count for all years) at each population for a ''typi­
cal" individual having position zero-zero and having the parameterization of 
Model Eight. Tick marks in the middle of the bars are the center (the MLE). 

> plot(c(i, i), c(ytop, ybot), type= "n", axes= FALSE, 
+ xlab = "", ylab = "") 
> segments(i, ybot, i, ytop) 
>too<- 0.1 
> segments(i - :foo, ybot, i 
> segments(i - :foo, ytop, i 
> segments(i - :foo, :fitB, i 
> axi~(side = 2) 

+ too, ybot) 
+ :foo, ytop) 
+ :foo, fitB) 

> title(ylab = "unconditional mean value parameter") 
> axis(side = 1, at= i, labels= popnames) 
> title(xlab = "population") 

and appears on p. 50. 
Figure D.2 is produced by the following code 
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,: 

> tit6 <- pout6$tit 
> i <- seq(along = popnames) 
> too <- 0.1 
> yBtop <- titB + crit * pout8$se.tit 
> yBbot <- titB - crit * pout8$se.tit 
> y6top <- tit6 + crit * pout6$se.tit 
> y6bot <- tit6 - crit * pout6$se.tit 
> plot(c(i - 1.5 * too, i - 1.5 * too, i + 1.5 * too, 
+ i + 1.5 * too), c(yBtop, yBbot, y6top, y6bot), -. 
+ type= "n", axes= FALSE, xlab = "", ylab = "") 
> segments(i - 1.5 * too, yBbot, i - 1.5 * too, yBtop) 
> segments(i - 2.5 * too, yBbot, i - 0.5 * too, yBbot) 
> segments(i - 2.5 * too, yBtop, i - 0.5 * too, y8top) 
> segments(i - 2.5 * too, titB, i - 0.5 * too, titB) 
> segments(i + 1.5 * too, y6bot, i + 1.5 * too, y6top, 
+ lty = 2) 
> segments(i + 2.5 * too, y6bot, i + 0.5 * too, y6bot) 
> segments(i + 2.5 * too, y6top, i + 0.5 * too, y6top) 
> segments(i + 2.5 * too, tit6, i + 0.5 * too, tit6) 
> axis(side = 2) 
> title(ylab = "unconditional mean value parameter") 
> axis(side = 1, at= i, labels= popnames) 
> title(xlab = "population") 

and appears on p. 52. 

D.3.2 Conditional 

This section is very incomplete. We don't redo everything using condi­
tional models. That's not the point. We only want to show that conditional 
models and conditional mean value parameters just don't do the same thing 
as unconditional models (which is obvious, but some people like examples, 
and in any case, this gives us an opportunity to show some options of aster 
model fitting). 

Conditional Models 

Let us redo Figure D .2 based on conditional models with the same model 
matrices (a dumb idea, since the meaning of the models is entirely different 
despite the similarity in algebra, but we want to hammer the point home). 

> cout6 <- aster(resp - varb + level:(nsloc + ewloc) + 
+ · level * pop, pred, tam, varb, id, root, data = redata:· 
+ type = "conditional") 
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Figure D.2: 95% confidence intervals for unconditional mean value parameter 
for fitness ( sum of head count for all years) at each population for a "typi­
cal" individual having position zero-zero and having the parameterization of 
Model Eight (solid bar} or Model Six (dashed bar). Tick marks in the middle 
of the bars are the center ( the MLE). 
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> coutB <- aster(resp - varb + level:(nsloc + ewloc) + 
+ hdct * pop - pop, pred, fam, varb, id, root, 
+ data= redata, type= "conditional") 
> pcout6 <- predict(cout6, varvar = varb, idvar = id, 
+ root= root, newdata = renewdata, se.fit = TRUE, 
+ amat = amat) 
> pcoutB <- predict(coutB, varvar = varb, idvar = id, 
+ root= root, newdata = renewdata, se.fit = TRUE, 
+ amat = amat) 

Note that these are exactly like the analogous statements making the analo­
gous objects without the "c" in their names except for the type = 11 condi­
tional II arguments in the two aster function calls. Then we make Figure D.3 
just like Figure D.2 except for using pcout6 and pcout8 instead of pout6 and 
pout8. It appears on p. 54. 

Note the huge difference between Figure D.2 and Figure D.3. The same 
model matrices are used in both cases. The linear predictor satisfies T/ = M{J, 
but in one case (Figure D.2) the linear predictor is the unconditional canonical 
parameter (Tl= c.p) and in the other case (Figure D.3) the linear predictor is 
the conditional canonical parameter (T/ = 8). In one case (Figure D.2} the 
predictions of a linear functional of the unconditional mean value parameter 
(T) are nearly the same for the two models and in the other case (Figure D.3) 
the predictions of the same linear functional of T are wildly different. 

Conclusion: conditional models and unconditional models are different. 
That's the whole point. That's why unconditional models were invented, 
because conditional models can't be made to do the same thing. 

More on Conditional Models 

Let us redo the analysis of deviance table in Section D.2.10 based on 
conditional-models with the same model matrices ( again we reiterate, this is 
a very dumb idea, since the meaning of the models is entirely different despite 
the similarity in algebra, but we want to hammer the point home). 

> cout9 <- aster(resp - varb + level:(nsloc + ewloc), 
+ pred, tam, varb, id, root, data= redata, type= "cond") 
> cout10 <- aster(resp - varb + level:(nsloc + ewloc) + 
+ hdct * pop, pred, tam, varb, id, root, data= redata, 
+ type = "cond") 
> anova(cout9, coutB, cout10, cout6) 

Analysis of Deviance Table 

Model 1: resp - varb + level:(nsloc + evloc) 
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Figure D.3: 95% confidence intervals for unconditional mean value parameter 
for fitness ( sum of head count for all years) at each population for a ''typi­
cal" individual having position zero-zero and having the parameterization of 
Model Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle 
of the bars are the center (the MLE). The difference between this figure and 
Figure D .2 is that the models fitted are conditional rather than unconditional. 
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Model 2: resp - varb + level: (nsloc + ewloc) + hdct * pop - pop 
Model 3: resp - varb + level: (nsloc + ewloc) + hdct * pop 
Model 4: resp - varb + level:(nsloc + ewloc) +level* pop 

Model Df Model Dev Df Deviance P(>IChil) 
1 15 2720.97 
2 21 2693.09 6 27.88 9.916e-05 
3 27 2678.37 6 14,.72 0.02 
4 33 2660.97 6 17.40 0.01 

.-·-
It is hard to know what lesson to draw from this. Presumably since all 

three "large" models fit about equally well, none of them fit as well as the 
corresponding unconditional models (we see from the analysis in the preceding 
section). But since conditional and unconditional models are not nested, we 
cannot use standard likelihood ratio test methodology to test this. (So we 
have no clear lesson here, but leave it in to not hide anything). 

Conditional Parameter 

Let us redo Figure D .2 now not changing the model ( we still use the fits 
out6 and out8) but changing the thingummy we "predict". In Figure D.2 we 
"predict" a linear functional A'-r of the unconditional mean value parameter 
( the sum of three components of -r, those for flower head count). In Figure D .4 
we predict the same linear functional A' e of the conditional mean value 
parameter e. 
> pxout6 <- predict(out6, varvar = varb, idvar = id, 
+ root= root, newdata = renewdata, se.fit = TRUE, 
+ amat = amat, model.type= "conditional") 
> pxoutB <- predict(outB, varvar = varb, idvar = id, 
+ root= root, newdata = renewdata, se.fit = TRUE, 
+ amat = amat, model.type= "conditional") 

Note that these are exactly like the analogous statements maldng 
the analogous objects without the ''x" in their names except for the 
model. type = 11 conditional II arguments in the two predict function calls. 
Then we make Figure D.4 just like Figure D.2 except for using pxout6 and 
pxout8 instead of pout6 and pouts. It appears on p. 56. 

Note the huge difference between Figure D.2 and Figure D.4. The same 
models are used in both cases but in one case (Figure D.2) we "predict" a 
linear functional A'-r of the unconditional mean value parameter (-r) and in 
the other case (Figure D .4) we "predict" the same linear functional A' e of 
the conditional mean value parameter (e). 

Conclusion: conditional expectations and unconditional expectations 
are different. (Duh!) The two sorts of predictions can't be made to do the 
same thing. 
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Figure D.4: 95% confidence intervals for conditional mean value parameter 
for fitness (sum of head count for all years) at each population for a ''typi­
cal" individual having position zero-zero and having the parameterization of 
Model Eight (solid bar) or Model Six {dashed bar}. Tick marks in the middle 
of the bars are the center ( the MLE). The difference between this figure and 
Figure D.2 is that the parameters "predicted" are conditional rather than 
unconditional. 
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Figure D.5: 95% confidence intervals for unconditional mean value parameter 
for fitness (sum of head count for all years) at each population for a ''typi­
cal" individual having position zero-zero and having the parameterization of 
Model Eight (solid bar) or Model Ten (dashed bar). Tick marks in the middle 
of the bars are the center ( the MLE). 

D.4 Plot for the Paper 

We redo Figure D .2 changing the models compared to Model 8 and 
Model 10 (fits in outs and out10). 

> pout10 <- predict(out10, varvar = varb, idvar = id, 
+ root= root, newdata = renewdata, se.fit = TRUE, 
+ amat = amat) 

It appears on p. 57. 
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Appendix E 

Canonical Para1neter Spaces 
of Aster Models 

E.1 Basic Exponential Family Theory 

The Laplace transform of a positive measure A on lRJ is (Barndorff­
Nielsen, 1978, Chapter 7) the function c : ]R.J -. {O, oo) defi~ed. by 

c(cp) = J e<x,cp)A(dx).· 

(note that the value +oo is allowed so the function is defined for all cp). A 
log Laplace transform is both convex and lower semicontinuous (Barndorff­
Nielsen, 1978, Theorem 7.1). This implies that 

<I> = { cp E lRJ : c( cp) < oo } 

is a convex set. 
The full standard exponential family generated by A is the family 

'P = { Pep : cp E <I>} 

where Pv, is the distribution having density with respect to A defined by 

l (x) = - 1
-e(x,cp) <p E <I> 

cp c( cp) ' 

(Barndorff-Nielsen, 1978, Chapter 8). The moment generating function of Pep 
is defined by 

M (t) = I e(x,t) P. (dx) = c(<p + t) 
cp cp c(cp) 

From this we see that a Laplace transform is just like a moment generating 
function, except for a general positive measure A instead of for a probability 
measure P cp· 
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The cumulant generating function is the log of the moment generating 
function. Its derivatives evaluated at t = 0 are the cumulants of the distri­
bution (the first two are mean and variance). Since the derivatives of logMcp 
evaluated at t = 0 are the same as the derivatives of 1/J = log c evaluated at 
<p, we call¢ the cumulant function of the family. 

It is sometimes convenient to choose for the dominating measure of the 
family (.X in our original notation) one of the distributions in the family, a Pip• 
for some <p* E <P. We need to see what that does to our original formulation 
with .X as the dominating measure. 

The density of Pip with respect to Pip• is just the ratio of their densities 
with respect to .X 

(E.1) 

and we see that the Laplace transform for this "new" family is c{cp)/c(cp*) 
and the cumulant function is 1/J( <p) - 1/J( <p*). 

E.2 Exponential Family Theory Applied to Aster 
Models 

E.2.1 Cumulant Function and Full Canonical Parameter 
Space 

This appendix investigates what happens when the canonical parameter 
spaces of an aster model are not all of ]Rd. The full conditional canonical 
parameter space is a Cartesian product 

e= IJe; 
jEJ 

where 9j is the full canonical parameter space of the conditional one­
parameter exponential family model at the j-th node ( which has cumulant 
function Vlj), the set 

0j = { 0 E 1R: ,Pj(O) < oo }. 

Let Pe,i be the conditional probability measure of the j-th family. So the 
joint distribution is 

P9(dx) = IJ Pei,;(dx; I Xp(j))­
jEJ 

Fix 8* E 0 and let cp* be the corresponding unconditional canb~cal 
parameter found by applying the map {1.5) to 8*. Write cp = cp* + 6 for a 
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general unconditional canonical parameter. The Laplace transform (which in 
this case is also a moment generating function) of P v,• is 

J e<x,cS)pcp•(dx) = exp(¢(cp* + 6)-1/J(cp*)), (E.2) 

which agrees with the analysis in (E.1). Now we define the full canonical 
parameter space 

(we are using the original parameter cp instead of the "new" parameter 6). 
It stands to reason that ~ is just the set of points obtained by mapping e 
through the change of parameter defined by (1.5). The whole point of this 
appendix is to show that what seems obvious actually is obvious. 

E.2.2 Leaf Nodes 

For j a leaf node, the only part of the integral in (E.2) involving Xj is 

Now from the uniparameter case of the exponential family theory embodied 
in (E.2) we see that 

from which it follows from the multiplication rule for moment generating 
functions and the strµcture of aster models that 

This is finite if and only if 

in short if 

So that is the finiteness condition for leaf nodes. The part of the integral 
(E.2) that pertains to 9; and <p; has the "obvious" condition for being finite. 
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E.2.3 Non-Leaf Nodes 

Now consider a non-leaf node j whose children are all leaf nodes. After 
integrating out the Xm for all child nodes m, as above, the only part of the 
integral in (E.2) that contains x; is 

/ exp (x; [oj + L (1/Jm(0m) -1/Jm(O:n))]) Pe;,;(dx; I Xp(j)) {E.4a) 
mES(j) 

where we have written 0m = '{)m = 0:n + Om for the m, all of wnich are leaf 
nodes. We also write <p; = <p; + Oj and note that from (1.5) we have 

cpj + Oj + L 1Pm(0m) = '{)j + L 1Pm(0m) = 0j 
mES{j) mES(j) 

and similarly 

'{); + L 1Pm(0:n> = 0; 
mES(j) 

so the term in large square brackets in (E.4a) is just OJ - Oj, Hence (E.4a) is 

/ exp (x; [0; - OJ]) Pe;,j(dx; I xp(j)) = exp(xp(j)[VJj(Oj) - 1Pi(o;)J). (E.4b} 

and we see that (E.4a) and {E.4b} say exactly the same thing as (E.3). 
However, the implication about finiteness of bits of (E.2} is a bit different 

than the case for leaf nodes. Now we have that 

Oj E 9j 

is the finiteness condition for the term on the right hand side of {E.4b) ( no 
surprise there) and that translates to the following about <p;. Since 

Oj = '{)j + L 1/Jm(Om) 
meS(j) 

the finiteness condition for this section is 

'{)j E 9; - L 1Pm(0m). 
meS(j) 

E.2.4 All Nodes by Mathematical Induction 

Now assume (the induction hypothesis) that 

(E.5) 

/ exp (x; [oj + L (1/Jm(Om) -1/Jm(e:n))]) Po;J(dxj I Xp(j)) 

. mES(j) -· 

= exp(xp(j)[VJ;(9j) - ¢;(OJ)]). {E.6) 
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As we have seen, this holds for all of the nodes we have examined so far. But 
then we see that by the argument in the preceding section that if (E.6) holds 
for all children (successors) of a node, then it holds for the node itself. 

Thus (E.5) is the finiteness condition for all nodes, including leaf nodes 
for which S(j) is the empty set. 

Hence 4'? is indeed the image of 9 under the map (1.5). And the argument 
did turn out to be "obvious". 

E.2.5 Convexity 

The only non-obvious fact in this whole appendix is that hence 4'? must 
be a convex set (like all full canonical parameter spaces). Moreover, since 
the map (1.5) is a diffeomorphism (both it and its inverse are differentiable) 
between the interiors of 9 and 4'?, it follows that 9 and 4'? are both open sets 
or both not open. 

E.2.6 Regularity 

The important special case where the full canonical parameter space is 
an open set is called regular ( the family is a regular exponential family) 
(Barndorff-Nielsen, 1978, p. 116). They are the most well-behaved with re­
spect to maximum likelihood (no boundaries of the parameter space to worry 
about). 

Since 9 is open if and only if each 9; is, we see that the full flat expo­
nential family (with the unconditional canonical parameterization) is regular 
if and only if each one-parameter conditional family is regular. 

E.2. 7 Steepness 

A full exponential family is steep (Barndorff-Nielsen, 1978, p. 117) if given 
'Pi in the interior of cI> and 'Pb on the boundary of 4'?, then 

as t ! 0. 

Clearly this carries over to any flat subfamily (formed by intersecting the full 
canonical parameter space 4'? with an affine subspace). The subfamily is steep 
if the full family is. Thus we concentrate on the full (FEF) family only. 

AI?- equivalent (if and only if) condition for steepness is that the MLE 
map x 1--+ <,3(x) is one-to-one and is found by solving the "likelihood equa­
tions" which have "observed equals expected" form, as in equation (1.15) and 
the preceding unnumbered equation (Barndorff-Nielsen, 1978, Theorem 9.14, 
Corollary 9.6 and their surrounding discussion). 

Yet another equivalent (if and only if) condition for steepness is that the 
mean value parameterization map, V1/J : cp 1--+ T in aster model notation, 
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maps the interior of the full canonical parameter space <I> onto the interior of 
the closed convex support of the canonical statistic (Barndorff-Nielsen, 1978, 
pp. 117, 142, and 152). 

Let a; and b; be the endpoints (possibly infinite) of the full mean-value 
parameter space of the one-parameter exponential family for the j-th node. 
The endpoints themselves may or may not be in the mean-value parameter 
space 

.. •. 
but the closed convex support of the j-th one-parameter exponential family 
is the closed interval JR n [a;, b;) if this j-th family is steep (the point of the 
Rn is to omit -oo and +oo if either a; = -oo or b; = +oo ). 

Clearly from equation (1.12) the closed convex support of X; in the FEF 
is the closed interval 

JR n [xi,(j) II am, xif(j) 
mEJ 

j~m-<J(j) 

TI bml. 
mEJ 

j~m-<f(j) 

(E.7) 

It is clear also that as 8 runs over the interior of 0 the mean value parameter 
-r(8) runs over the interior of (E.7). Hence if each of the one-parameter 
exponential families is steep, then the FEF of an aster- model is steep. 

E.3 Conclusions 

This whole appendix is (in hindsight) "obvious." What we have learned 
is that what we thought was obvious is indeed obvious and there is no prob­
lem with maximum likelihood in an aster model if each of the one-parameter 
exponential families is regular or steep. Moreover, we have learned that the 
canonical parameter space of the FEF is convex (like every full canonical pa­
rameter space of every full exponential family) something that is "obvious" 
only from exponential family theory and not from looking at the definition of 
the map (1.5) between conditional and unconditional canonical parameteri­
zations. 
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