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INTRODUCTION

The standard Shewhart charts provide good performance in detecting large changes in a
process, but are much less effective for smaller but persistent changes. Other complementary
charting methods that fill this gap include the exponentially weighted moving average
(EWMA) chart. Since Roberts (1959) introduced the EWMA control chart for a univariate
normal process with independent and identical distribution, its properties has been evaluated
numerically and analytically for a variety of situations (Robinson and Ho, 1978; Hunter, 1986;
Crowder, 1989; Lucas and Saccucci, 1990).

Lowry et al. (1992) extended the original univariate EWMA procedure to a multivariate
control chart scheme for controlling the mean of a multivariate normal process. The
multivariate EWMA (MEWMA) chart is a straightforward vector generalization of the
corresponding univariate procedure, using a smoothing matrix instead of the scalar smoothing
constant of the EWMA. Current MEWMA practice seems to be confined to using a
smoothing matrix with zero off-diagonal elements, and generally equal diagonal elements
(Lowry et al.,, 1992). We will use the abbreviation DEWMA for this MEWMA with nonzero
elements only on the diagonal of the smoothing matrix. A general MEWMA chart with an
unrestricted smoothing matrix is proposed in this paper. We will use the abbreviation of
FEWMA for the multivariate EWMA chart with a full smoothing matrix.

There are a number of differences between the DEWMA and the FEWMA charts. In
particular, if 4, 4 and Z represent the out-of-control mean vector, the in-control mean vector
and the covariance matrix of measurements, the DEWMA chart is directionally invariant —
that is its ARL depends on these three quantities only through the value of the noncentrality

parameter
7. =V6Z'6 . where the mean shift 8 =p— o

The FEWMA chart does not have this directional invariance property — its performance is
affected by the direction of shift and the covariance structure as well as the noncentrality.
Thus we will study the ARL performance of the FEWMA scheme for various correlation

structures and mean shift directions.



The FEWMA scheme is described in the next section, and the following section contains
numerical results, including the ARL performance of FEWMA. In a subsequent section, some

conclusions are presented.
GENERAL MULTIVARIATE EWMA CHARTS

Suppose that the successive p-component vectors of measurements {x,,n=1,2, ...} are
independent and identically distributed multivariate normal random vectors x,, ~ N(u,Z).

The in-control mean vector is pg. A FEWMA vector is defined by
yn = R(xn _ﬂO) + (I - R)yn-l (1)

forn=1,2,... where y, = 0and R is the smoothing matrix.

The DEWMA chart of Lowry ef al. used a diagonal matrix with elements {0< 7, <1, j =
1,2,...,p} for R. Unless there is any reason to weight the quality characteristic measurements
differently, all diagonal elements of R are set to the same value -- thatis, r, =7, = ... =r, =r.
This DEWMA control scheme gives an out-of-control signal as soon as

T =yZ'y,>h 7))
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where A > 0 is a control limit and
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The covariance matrix Z, is not constant, but varies with n. As n increases, it tends to the
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Often the process stays in control for a sufficiently long period to make = 5, effectively

indistinguishable from its asymptotic form, and for this reason the DEWMA is often designed

to use the asymptotic (‘steady state’) form.

A natural extension to the DEWMA chart is to allow non-zero off-diagonal elements in R.

With non-zero off-diagonal elements in R, the covariance matrix of the FEWMA vector y,, is
more complicated than that of the MEWMA procedure. It may be computed most easily

recursively by the recursion £, =0;
X, =RZR'+(I-R)Z, (I-R)
As n increases, this converges to the asymptotic value Z_ given by the solution to the linear

system

X, —-(I-RX_(I-R)'=RZR’
provided the matrix R has all eigenvalues less than 1 (Cullen, 1972).

From here on we will assume, mainly for notational convenience, that the elements of x
have been standardized to mean zero and standard deviation 1. As in the diagonal case, in the

absence of some good reason to the contrary, we will treat the different measurements

symmetrically, so if 7;; is the (i, /) th element of R, it is natural (and will be done here) to
restrict the values to equal diagonal elements r; = r,, fori=1,2,..., p and to equal off-
diagonal elements r,, = r . for i,j = 1,2,---,p and i# j. Itis convenient when studying the
impact of off-diagonal weights to fix the total weight of each variable. We will define this

total weight of a variable by the row sums of R

p
r=zrij =ron +(p=Drog, Vi. ()
J=1

Since it seems inappropriate to use off-diagonal weights greater than the on-diagonal

weight, this study uses the matrix R such that r 4 = cr,, for 0<c <1. We will characterize

such a FEWMA scheme by its » and ¢. Given these,
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r —; and r __Cr_
o 1+(p-1c b 1+(p-Dc’

The diagonal DEWMA chart using (3) corresponds to ¢ = 0. Table 1 contains an example of
the full smoothing matrix R with »=0.1 and ¢ = 0.75.

ARL PERFORMANCE OF GENERAL MULTIVARIATE EWMA CHARTS

The performance of a control chart is commonly measured by its average run length (ARL),
defined as the average number of observations from the time of occurrence of a shift to the
time that the chart signals. We can distinguish two interesting ARL’s — the ‘initial state® ARL
assumes that the shift occurs the instant that the chart is started, so the data are off-center
from the very first observation. The ‘steady state’ ARL assumes that the chart has run long

enough for the covariance matrix = _to reach its asymptotic level. These two possibilities

represent in some sense the extremes between which all others lie. Since in practice processes
often start out off-center due to start-up problems or ineffective control action for the
previous signal, the reaction of the chart to immediate shifts, as measured by the “initial state’
ARL, is perhaps the more generally relevant of these two measures.

It is a feature of the general FEWMA is that, unlike the DEWMA, it is not affine invariant.
It responds differently to shift of the same magnitude but in different directions, and so by
suitable choice of the parameters » and ¢, it can be made more sensitive to mean shifts. ARL
performance of FEWMA control schemes depends on the correlation structure of x, the
direction and size of the shift in mean, and the ¢ and » parameters of the smoothing matrix R.

To illustrate the potential for improvement in going beyond the diagonal form of the
EWMA, consider the detection of a shift in four-component data vectors by the diagonal
scheme r=0.1, ¢=0 and the scheme r=0.1 ¢=0.75, which has the same total weight on the most
recent observation but which has large off-diagonal elements. We will vary correlation
structures — ‘Ind’ refers to independent components in x; the structure ‘P_8’ has all
correlation equal to 0.8 and in the structure ‘M_8’ variables i and j have correlation —0.8 if i-j
is odd, and +0.8 if it is even. We also vary the direction of shift — ‘equal’ corresponds to all

elements of 8 being equal; in ‘single’ just one is shifted and the remainder are zero, and for



‘Symmetric’ the first two are a positive constant while the last two are the negative of this
constant.

Some ARLs to detection of a shift with n=0.4 and in-control ARL of 300 follow. All have
standard errors of approximately 0.4. For this noncentrality, the DEWMA has a steady-state
ARL 0f 60.2, and an initial-state ARL of 58.5.

Steady-state Initial state
P-8 Ind M-8 P-8 Ind M-8
Equal 45.2 45.3 45.5 41.6 41.8 41.4
Single 57.7 53.4 54.5 35.4 36.6 36.3
Symmetric 58.1 58.7 57.6 35.7 35.9 34.4

Noteworthy features are:

e The FEWMA beats the DEWMA in all cases.

o The benefit is particularly large for ‘initial state’ shifts, where the ARL’s are 30 to 40%
lower.

¢ The correlation structure appears to have little effect.
Theoretical analysis — small shifts

These details of performance improvements raise the question of whether these features
hold in general. This question is not easily answered in general terms as the performance of
the FEWMA involves a complex mix of steady-state and transient behavior. We can however
make considerable progress for the case 8 small. This case is particularly interesting since it is
for moderate shifts that control is most needed, since simple Shewhart charts easily detect very
large shifts.

If the shift is not large, then its detection will generally require a number of out-of-control
data vectors. From the initial state, » points after the shift, the vector y, follows a multivariate

normal distribution (recall that we are assuming po=0)
N[Y.(I-R)'RS,Z, ].
i=1

As n increases, this approaches N[8,Z_], so the noncentrality is §£_'6. With the

supposition that detecting the shift will require more than a handful of observations, we may
use this asymptotic distribution to gain some understanding of the impact of different choices

of the parameters r and c. First, we fix » and ask whether using a particular non-zero c leads



to better performance than the DEWMA with c=0. Writing Z_(c) for the asymptotic
covariance matrix considered as a function of ¢, we conclude that the FEWMA will
outperform the DEWMA if 3 lies in some direction such that 6% (c)d > §Z.'(0)8 and will
underperform it otherwise.

We can explore the limiting relative performance of the two charts for small 8 by solving
the simultaneous diagonalization problem

[Z.() -MZ,(0)] a=0

If 3 lies in the principal direction a; and the corresponding A; is greater than 1, then the
DEWMA can be expected to outperform the FEWMA for small shifts. Ifit is less than 1, then
the FEWMA is the winner. This prediction of relative performance is an approximate one
since it depends on the assumption that the signal does not occur very shortly after the shift,
but it is nevertheless very useful.

We illustrate this with the 5-component M-8 configuration, evaluating at » =0.1 and

¢=0.75. The eigenvalues and corresponding eigenvectors are:-

Principal direction i

1 2 3 4 5

A 1.612 0.060 0.060 0.060 0.058
a 3.62 3.98 1.65 6.69 -0.69
5.25 0.00 6.69 -1.65 1.34

3.62 3.98 -1.65 -6.69 -0.69

5.25 0.00 -6.69 1.65 1.34

3.62 -7.96 0.00 0.00 -0.69

This suggests that for a shift in the first of these directions (proportional to the vector
(0.7,1,0.7,1,0.7), the DEWMA should out-perform the FEWMA, the eigenvalue being larger
than 1. For shifts in any of the other principal directions though, the FEWMA should
outperform the DEWMA. Furthermore, while A, is not substantially larger than 1, the other A;
are much smaller than 1, leading to the conclusion that while the FEWMA will never be much
worse than the FEWMA, it may be much better, and furthermore is much better in “most”
directions.

To check these predictions, we evaluated the ARL for shifts in the direction a, and as,
setting the noncentrality to 0.2. With an in-control ARL of 300, this gave the out-of-control
ARL’s

c=0.75 c=0
Steady state Initial state Steady state Initial state



Direction a 168 157 169 167
as 152 124 166 167

As the scheme with ¢=0 is affine invariant, the four ARL’s on the right are identical except for
random variation in the simulation. The first direction is that in which the FEWMA is
predicted to perform worst relative to the DEWMA. However it matches the DEMWA in the
steady state, and beats it modestly in the initial state. The best direction for the FEWMA
shows a substantial improvement in the initial state and a smaller improvement in the steady
state. Despite the improvement in performance where the theory predicted none, these results
indicate that the theory is helpful in predicting better and worse behavior of the FEWMA
relative to the DEWMA.

In the light of this, we list the eigenvalues of some scenarios. To the P_8, M_8 and Ind
scenarios, we have added a fourth — the covariance matrix labeled ‘Random’ is a matrix of

independent uniforms multiplied by its transpose.

p Structure Eigenvalues

4 P_8 1.0000 0.0734 0.0734 0.0734
Ind 1.0000 0.0734 0.0734 0.0734
M-8 1.0000 0.0734 0.0734 0.0734
Random 1.4588 0.0734 0.0734 0.0712

5 Ind 1.0000 0.0596 0.0596 0.0596
P_8 1.0000 0.0596 0.0596 0.0956 0.0596
M 8 1.6118 0.0596 0.0596 0.0596 0.0582
Random 2.9092 0.0596 0.0596 0.0596 0.0573

In all cases, at most one eigenvalue reached or exceeded the value 1, the remainder being

substantially less than 1. The main message we believe can be drawn from these figures is that
“most” directions correspond to the situation §Z_ (c)d > §Z_(0)5 in which the FEWMA
outperforms the DEWMA, but it is certainly possible for the reverse to happen.

Some empiric performance evaluation

The performance of the FEWMA is clearly quite a complicated function of the various
parameters involved. Potential users are therefore best advised to check the performance of
particular choices of 7 and c in their particular setting — that is to say, using their actual
process correlation matrix and some anticipated shifts that are to be guarded against. This

experimentation need only be done once, at the design phase. It is greatly facilitated by a



computer program FEWMA, discussed in a companion report (Hawkins ez al. 2002), which
allows trail scenarios to be assessed quickly.

It is helpful though to provide some general guidelines. To investigate the joint impact of
these factors, we chose seven correlation structures and three shift directions. First is the
multivariate normal process with no correlation, denoted IND. The other six correlation
structures are categorized into two classes: the positive type, in which all pairs of variables
have an equal positive correlation, and the mixed type, in which variables i and ; for i = j
have a negative correlation if / + j is odd and a positive correlation if / + j is even. The
common correlation is set to one of three values — 0.2, 0.5, 0.8, giving rise to three positive-
correlation settings P-2, P-5, P-8, and three mixed settings M-2, M-5, M-8. An example of
the correlation type of M-8 is illustrated in Table 1. The out-of-control mean process is
modeled with three shift directions:

Equal Shift, in which all components of x are equal;
Symmetric Shift, which differs from Equal Shift in that the first half of the components
of u has different signs to the second half,

Single Shift, in which only a single component of # is non-zero.

In lieu of an attempt at theoretical optimization of the parameters, we conducted empirical
study instead, evaluating the ARL for six sizes of shift corresponding to the noncentrality
parameter values 77,= 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 respectively. These were estimated from
10,000 simulation runs using the same independent random seed number for each case
considered.

First, we investigate the properties of the ARL performance of FEWMA charts for a 4-
variate normal processes using the control limits which result in ARL = 300 for in-control
processes in both states for independent 10,000 simulation runs. Table 2 contains the
estimated values of the control limit / for the seven correlation types, which were computed
using a binary search method with linear interpolation. For the directionally invariant charts (¢
= 0) the control limit 4 is independent of the correlation structures. For non-zero c, the
estimated values of / vary only slightly with the correlation types. The differences between
the A values for the seven types are less than 0.05 in most of the cases considered. The
EWMA control limit increases with 7, and decreases with c for a fixed ». Table 3 - 5 display

the averages and standard deviations of the estimated ARL’s for the seven correlation types



for the FEWMA charts of » =0.06, 0.1, 0.5 and ¢ =0, 0.75. Using the A values of in-control
ARL = 300 in Table 2, these results were obtained from total of 70,000 simulation runs by
applying the seven types to 10,000 runs each. Each entry in the table represents the average
of seven ARL’s, one for each of the seven correlation types. The values in parentheses are
the standard deviations of these seven ARL’s.

For the steady state out-of-control, these tables show that the best choice of 7 and ¢

depends somewhat on the distances and directions of the shift in the mean vector. In Equal
Shift, the chart appears to perform best with » = 0.06 and ¢ = 0.75 for 77, 20.8, r = 0.2 and ¢
=0.75 for 17, =1.6, and r = 0.5 with the virtually identical out-of-control ARL’s for different
¢’s at the largest shift distance. In the other shift directions, the shortest ARL is given by the
non-diagonal smoothing schemes of » = 0.06 and ¢ = 0.5 for 7, <02, r=10.06 and ¢ = 0.25
for n, = 0.4, but the charts of diagonal smoothing matrices with» = 0.1, 0.2, 0.5 show the
best performance for 7,= 0.8, 1.6, 3.2 respectively. The FEWMA scheme generally yields a

shorter ARL with larger ¢ for a given r in Equal Shift, but the ARL increases with increasing ¢
for relatively large shifts in the other shift directions. When shifting a small distance, the ARL
is reduced more by using a nonzero ¢ in Symmetric and Single Shifts than Equal Shift. For the
initial state out-of control, the FEWMA scheme appears to always have shorter ARL for
smaller 7 and larger c in all the shift directions. The initial state benefits more than the steady
state from using the non-diagonal components. As shown in the results of the standard
deviations (the values in parenthesis), the variation in ARL for the different classes of
correlation type is not much different between the diagonal and non-diagonal smoothing
schemes, except for small shifts with larger ’s in Single Shift. For these cases, the non-
diagonal scheme varies considerably more than the diagonal one. The performance of the
FEWMA charts when ¢ # 0 appears to be sensitive to the shift directions of the process mean.
For example, when 7,= 0.2, the chart of » = 0.1 and ¢ = 0.5 has the ARL’s of 148.7, 118.7,
122.7 for the steady state and 138.7, 103.6, 107.5 for the initial state in Equal, Symmetric and
Single Shifts respectively.

The values of the control limit / for the FEWMA charts of » = 0.1 were estimated for the
10 in-control ARL’s with run-length increment of 100 from in-control ARL = 100. The cases
of p=2, 3, 4, 5, 10 were considered for two correlation types, M-5 and P-5. All the
thresholds were computed such that the chart results in having the specified in-control ARL
for the independent 10,000 simulation runs. Table 6 illustrates the 4 values obtained for in-

10



control ARL = 100, 300, 500, 1000 of the 10 lengths considered. The 4 values differ a little
between the correlation types with the maximum difference of less than 0.1 (the differences in
most of the cases considered are less than 0.05). The EWMA control limit has a smaller value
for larger c, and for the steady state than for the initial state. The simulation results indicate
that a control limit of the FEWMA chart can be approximated with a linear function of the in-

control ARL. Table 7 contains the estimated values of 7 using the function

h=aln(ARL) + 5. ™

for ¢ = 0.75 and the P-5 correlation type. The parameters of (7) for the results in Table 7
were estimated using only three points of in-control ARL = 100, 500, 1000, while the

estimated values of » (};) are compared with the values computed using simulation (4, ) for

the 10 in-control ARL’s considered.

Based on independent 10,000 simulation runs, the comparison of the FEWMA charts of r =
0.1 were made for p=2, 3, 5, 10 using the M-5 and P-5 correlation types by shifting the mean
vector in two extreme directions of Equal and Single Shifts. The control schemes were
designed to give an out-of-control signal when the test statistic is greater than the
threshold 4 of in-control ARL =300 in Table 6. Table 8 and 9 displays the comparison results
for the out-of-control processes in the Equal and Single Shift directions respectively. From
these tables, the performance of the chart for p =2, 3, 5, 10 is very similar to that for p = 4.

Table 10 presents the optimal values of 7 (r) for the FEWMA charts using three large
values of ¢ for p = 4 and in-control ARL = 300, 500, 1000 in Equal Shift for the steady state.
This search was made with increments of 0.001 when » < 0.03 and increments of 0.01 when
r >0.03 using 10,000 independent simulation runs. In Table 10, ARL,,;, represents the
minimum out-of-control ARL at the shift of interest and the ranges of r values are
corresponding to those values that differ with the minimum ARL in +1% of the ARLq;, value.
The optimal values of r are very similar for all the three values of ¢, and larger for the diagonal
scheme than for the non-diagonal one except for very small shift. From the results in the
previous investigation, FEWMA charts may use smaller  and larger ¢ for better ARL
performance in the initial state. However, it may result in computational instability to use
extreme values close to the boundary for 7 and c. We recommend to choose the values in

r>0.001 and ¢ <0.99. In the steady state, larger values of ¢ for the FEWMA chart yields

11



shorter ARL for Equal Shift, but it is not true for the other shift directions. For some shift
directions such as Single and Symmetric Shifts, the FEWMA chart dées not give better ARL
performance for larger values of ¢, and the diagonal scheme is even more effective in detecting
large shifts in the process mean. Given a correlation structure and shift direction of process
mean for quality control environment, we can design the optimal FEWMA chart for a specified

in-control run length by using a simulation approach.

EXAMPLE

We illustrate the method with some ambulatory monitoring data. Here, the subject
indefinitely wears instrumentation that measures and records heart function every 15 minutes.
The data set is part of a record some 7 years long. At the first stage, the 15 minute traces are
reduced to week-long summary statistics; these are the numbers we study. For reasons
sketched in Hawkins and Olwell (1998) Chapter 8 (which also provides detail on the source of
the data and more description), we rejected the first year’s data, and used the following two
years’ data to estimate the parameters. For brevity, we restrict the analysis to four measures —
MESORs (location statistics) of systolic blood pressure (SBP), diastolic blood pressure
(DBP), mean arterial pressure (MAP) and heart rate (HR). These had the correlation matrix:

SBEM DBPM MAPM
DBPM 0.9329
MAPM 0.9532 0.9571
HRM 0.4995 0.4788 0.5242

An initial check by simultaneous diagonalization of Z_(0.75), Z_(0) with r = 0.1 gave the
eigenvalues 1.0664, 0.0734, 0.0734 and 0.0730, showing that there is much potential but little
downside risk in using the FEWMA rather than the DEWMA for control of the vectors.

There is particular interest in increases in the blood pressure measures (SBP, DBP and
MAP) as these lead to increased risk of stroke. So we used the interactive program FEWMA
to calibrate a FEWMA with 7 =0.1, ¢ =0.75 for an in-control ARL of 300, corresponding to a
false signal roughly once every six years, and evaluated its performance for a shift of (0.2, 0.2,
0.2, 0) — that is, a 0.2 standard deviation increase in each of these three blood pressure

measures but not the heart rate. FEWMA'’s output included: -
This gives root noncentrality 0.237
DEWMA steady state noncentrality 1.034
FEWMA steady state noncentrality 3.323

suggesting the benefit from using FEWMA rather than DEWMA — a more than trebling of the
non-centrality — is quite dramatic.

12



Estimated h is 11.182 with CI 11.060 11.283
00C ARL is 77.727 with CI 75.625 79.830

showing that the ARL to detection of this quite small shift would be about a year and a half.
Repeating the performance calculations using the DEWMA gives an out-of-control ARL of

130 weeks, nearly twice as long, confirming the FEWMA'’s performance improvement.

We then ran the FEWMA on the data starting from week 161 of the sequence. The first 20
cases” data are listed in Table 11, and the resulting values of y, and T? are in Table 12. The

FEWMA broke through the control limit at week 165, returned, and then went through
convincingly and stayed above for the remainder of the 4 year history. What is striking is that
none of the individual components of y, was even close to the control limit, which would be
approximately 0.72. Thus this shift was one that could only be seen using a multivariate

approach to the measures, and not a univariate one.

CONCLUSIONS

This study suggests extending the multivariate EWMA technique of Lowry, ef al. (1992) by
using a general matrix for the smoothing weight coefficient rather than restricting it to be
diagonal. Some theoretical calculations for small shifts give an indication of the circumstances
under which the full smoothing matrix will improve performance, but these diagnostics are
best confirmed with actual ARL calculations as part of any plan to implement the FEWMA.

Whereas the diagonal scheme of MEWMA is directionally invariant, the ARL performance
of the non-diagonal smoothing scheme is affected by the direction of the shift, and by the
correlation structure, thereby complicating the chart design. Using non-diagonal components
for the smoothing matrix creates modest additional computational requirements, but offers a
practical advantage of improving the performance in detecting a shift in the process mean for
many cases of quality control environment.

This paper demonstrates the potential utility of the general FEWMA. To turn this into
actual performance in a particular setting with a particular covariance matrix, target mean shift
and in-control ARL requires additional design tools. At this stage, theoretical understanding
of the interplay between these factors in determining the chart’s performance is incomplete.
We do not however see this as a fatal flaw. In a companion manuscript, we set out a

computer program FEWMA that can be used as such a design tool, allowing the user to
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experiment with different choices of the weighting parameters to determine which will give the
best performance for shifts of particular interest. In conjunction with the general insights of
this paper, we believe this program turns the FEWMA into a useful tool for multivariate

control.
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Table 1. Covariance matrix %, of MEWMA vector y, withr = 0.1 and ¢ = 0.75 for negative

correlation type M-8 in time ».

Rof r=0.1and ¢=0.75 Z of M-8
0.031 1
0.023 0.031 -0.8 1
0.023 0.023 0.031 0.8 -0.8 1
0.023 0.023 0.023 0.031 -0.8 0.8 -0.8 1
E.Vn
(n=101) (n=201)
0.0055 0.0061
0.0000  0.0055 -0.0005  0.0061
0.0049  0.0000  0.0055 0.0054 -0.0005  0.0061
0.0000  0.0049  0.0000  0.0055 -0.0005  0.0054 -0.0005 0.0061
(n=301) Steady state (n=00)
0.0063 0.0063
-0.0006  0.0063 -0.0007  0.0063
0.00s5 -0.0006  0.0063 0.0055 -0.0007  0.0063
-0.0006  0.0055 -0.0006  0.0063 -0.0007  0.0055 -0.0007  0.0063
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Table 2. 2 values of in-control ARL =300 for FEWMA’s of p=4.
(Steady State)

r ¢ M-8 M-5 M-2 IND P-2 P-5 P-8
0 1280 1280 1280  12.80 1280  12.80  12.80
0.06 025 1138 1138 1139 - 1139 1140 1140  11.39
0.5 1017 1017 1015 1013 1014 1015  10.13
0.75 8.1 8.79 8.79 8.78 8.78 8.77 8.77
0 1383 1383 1383 138 1383 1383  13.83
0.10 0.25 1262 1262 1260 1260 1260 1260  12.60
0.5 1148 1145 1146 1146 1149 1149 1146
0.75 1018 1017 1013 1012 1015 1015 10.10
0 1484 1484 1484 1484 1484 1484  14.84
0.20 025 1392 1394 1394 1394 1395 1396  13.95
0.5 13.02 1300 1301 1303  13.02 1300 1298
0.75 1181 1182 1179 1.79 1183 118 1177
0 1565 1565 1565 1565 1565 1565  15.65
0.50 0.25 1517 1518 1518 1518 1519 1517 1520
0.5 1452 1451 1450 1450 1451 1451  14.51
0.75 1353 1352 1353 1352 1350 1350  13.50
(Initial State)
r ¢ M-8 M-5 M-2 IND P-2 P-5 P-8
0 1305 1305 1305  13.05  13.05  13.05  13.05
0.06 0.25 11.89 1190 1191 1192 1193 1192  11.90
0.5 1,10 1108 1106 1106 1105 1106  11.06
0.75 1039 1038 1036 1035 1036 1036  10.38
0 1395 1395 1395 1395 1395 1395  13.95
0.10 025 1289 1289 1290 1290 1289 1290  12.88
0.5 1205 1202 1205 1204 1204 1203  12.04
0.75 1125 1124 1125 1124 1122 1123 11.23
0 1489 1489 1489 1489 1489 148  14.89
0.20 025 1406 1407 1406 1407 1407 1408  14.07
0.5 1327 1327 1329 1328 1328 1328 13.26
0.75 1240 1243 1243 1242 1243 1243 1239
0 1566 1566 1566 1566 1566 1566  15.66
0.50 025 1521 1522 1523 1522 1522 1521 1524
0.5 1459 1459 1459 1458 1460 1460  14.59
0.75 1376 1377 1378 1377 1374 1375 1376

17



Table 3. Averages (standard deviations) of ARL’s of FEWMA'’s for seven c(;rrelation types
using h of in-control ARL = 300 for Equal Shift of p =4.

Equal Shift (Steady State)

r c n,=0.1 n,=0.2 7,=0.4 7,=0.8 7.=1.6 7.=3.2

006 0 2307 (0.7) 1367 (0.7) 529(0.1) 188 (0.0)  8.0(0.0) 3.9(0.0)
0.75 218.0 (1.0) 1208 (0.5) 46.1 (0.1) 165 (0.0)  7.0(0.0) 3.4(0.0)

020 o 265.0 (0.8) 197.0 (0.7) 878 (04) 224 (0.1 6.3(0.0) 2.7(0.0)
0.75 257.1 2.0) 181.2 (1.8) 782 (0.5) 212 (0.1) 6.0(0.0) 2.5(0.0)

050 0 2854 (0.2) 2493 (1.0) 1575 (0.6)  49.6 (0.2) 8.1(0.0) 2.2(0.0)
0.75 2818 (1.7) 2384 (1.1) 1427 (1.1)  46.1 (0.2) 8.5(0.0) 2.2(0.0)

Equal Shift (Initial State)

r ¢ 7,=0.1 7,=0.2 7,=04 1,=0.8 7,=16 n,=3.2
006 0 2277 (03) 1313 (0.7) 470 (0.1) 141 (0.0)  4.4(0.0) 1.6(0.0)
0.75 1988 (1.5) 983 (0.6) 33.1(02) 103 (0.0)  3.4(0.0) 1.4(0.0)
020 0 2644 (0.6) 1963 (1.0) 863 (06) 21.1(0.0)  52(0.0) 1.8(0.0)
0.75 255.1 (1.8) 1702 (13) 663 (04) 159 (0.1)  4.3(0.0) 1.5(0.0)
050 0 2858 (0.3) 249.5(0.8) 157.5(0.7)  49.1(02)  7.8(0.0) 1.9(0.0)
0.75 2806 (1.7) 2359 (12) 1351 (08) 392 (02)  6.5(0.0) 1.7(0.0)
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Table 4. Averages (standard deviations) of ARL’s of FEWMA's for seven correlation types
using & of in-control ARL = 300 for Symmetric Shift of p = 4.

Symmetric Shift (Steady State)

r c 7,=0.1 7,=02 7,=0.4 7,=0.8 n,=16 1,=32
006 0 2351 (1.8) 1377 (03) 529 (0.1) 188 (0.0)  8.1(0.0) 3. (0.0)
0.75 2108 (0.6) 1321 (0.1) 7L1(0.1) 367 (0.1) 18.7(0.0) 9. (0.0)
020 0 2662 (0.9) 197.5(0.8) 858 (03) 222 (0.0)  6.4(0.0) 2. (0.0)
0.75 210.5 (0.8) 1204 (0.3) 565 (0.1) 266 (0.0)  13.0(0.0) 6. (0.0)
050 0 2858 (0.7) 2490 (0.7) 1569 (0.8) 485 (0.1)  8.3(0.0) 2. (0.0)
0.75 2269 (0.8) 1290 (0.6) 523 (0.1) 210 (0.0)  9.5(0.0) 4. (0.0)

Symmetric Shift (Initial State)

r c 7,=0.1 7,=0.2 n.=0.4 7,=0.8 7.=1.6 7, =3.2

006 0 232.1(20)  131.9(04) 47.1(0.1) 14.2(0.0) 4.5(0.0) 1.6(0.0)
0.75 171.4(0.8) 85.3(0.3) 32.6(0.1) = 10.7(0.0) 3.5(0.0) 1.4(0.0)

020 0 265.5(0.6)  196.8(0.7) 84.4(0.3) 21.0(0.1) 5.3(0.0) 1.8(0.0)
0.75 196.6(0.9)  101.7(0.3) 39.7(0.2) 13.3(0.1) 4.2(0.0) 1.5(0.0)

050 0 286.2(0.8)  249.4(0.8)  156.6(0.9) 48.3(0.1) 7.9(0.0) 1.9(0.0)
0.75 221.7(1.2)  121.3(0.8) 44.9(0.1) 14.6(0.0) 4.7(0.0) 1.7(0.0)
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Table 5. Averages (standard deviations) of ARL’s of FEWMA’s for seven correlation types
using & of in-control ARL = 300 for Single Shift of p = 4.

Single Shift (Steady State)
r c 7,=0.1 n,=02 7,=0.4 7,=0.8 7.=1.6 n.=3.2
006 0 232.0(1.0) 137.5(0.5) 52.900.2) 18.8(0.0) 8.0(0.0) 3.9(0.0)
0.75 211.9009)  129.0(1.6) 65.1(3.3) 30.1(34) 13.8(24) 6.7(1.4)
020 0 267.1(0.6) 196.9(0.9) 87.5(0.7) 22.3(0.1) 6.3(0.0) 2.7(0.0)
0.75 217.2(3.6) 127.3(4.0) 58.6(1.3) 25.5(0.6) 11.0(1.1) 4.9(0.8)
050 0 285.5(0.9)  248.3(0.9) 156.8(0.3) 48.9(0.5) 8.2(0.0) 2.2(0.0)
0.75 234.4(4.5) 142.6(8.0) 58.6(4.1) 22.5(0.9) 9.4(0.1) 4.0004)

Single Shift (Initial State)

r c 7,=0.1 7,=02 n,=04 7,=0.8 7,=1.6 7,=32

006 O 228.6(1.4) 131.3(0.4) 47.0(0.2) 14.1(0.1) 4.4(0.0) 1.6(0.0)
0.75 175.2(2.1) 86.4(1.0) 323(0.2) 10.5(0.0) 3.5(0.0) 1.4(0.0)

020 0 267.0(0.8) 196.5(0.7) 86.0(0.7) 21.00.1) 5.2(0.0) 1.8(0.0)
0.75 205.4(4.0) 109.6(4.6) 42.1(1.7) 13.5(0.2) 4.2(0.0) 1.5(0.0)

050 0 285.8(1.1) 248.5(1.0) 156.6(0.3) 48.4(04) 7.9(0.0) 1.9(0.0)
0.75 230.54.7) 135.3(8.2) 51.0(3.9) 16.0(0.9) 49(0.1) 1.7¢0.0)
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Table 6. # values of FEWMA’s of # = 0.1 for various in-control ARL’s.

(Steady State)
P ARL c=0 c=0.25 c=05 c=0.75
M5 P-5 M5  P-5 M5 P-5
300 9.57 9.19 920 876 8.79 824 825
2 500 10.76 1039  10.40 999  9.99 950 952
1000 12.32 1195 11.95 1161 1162 1.16 1116
300 11.77 1097 1099 1016 1021 923 924 -
3 500 13.04 1228 1228 1155 1158 1062 1070
1000 14.73 1403 14.05 1332 1337 1253 1257
300 13.83 1262 12,60 1145 1149 10.17  10.15
4 500 12.99 1405 14.03 1301 1301 1177 1175
1000 16.97 1595 1595 1497 1499 13.86 13.86
300 15.74 1407  14.08 1261 1261 10.87 10.86
5 500 17.10 1558 1561 1428 1429 1268 1265
1000 18.93 1760  17.59 1640 16.46 1498 15.02
300 24.08 2038 2036 1734 1735 1359 1356
10 500 25.75 2246 22.46 19.74  19.80 1632 1635
1000 27.90 2501 25.00 273 2275 1984 19.86
Tnitial State
- ¢ =025 c=05 c=075
p ARL e=0 M-5 P-5 M-5 P-5 M-5 P-5
300 9.69 933 934 897 9.00 8.59 858
2 500 10.82 1047 1048 1011 10.11 9.71 9.73
1000 1235 1200  12.00 1167 1168 1128 1128
300 11.89 119 1121 1057  10.59 9.93 9.96
3 500 13.11 1240 1241 1177 1180 1109 1118
1000 14.77 1409 1411 1346 13.50 1279 1282
300 13.95 1289 1290 1202 12,03 1124 1123
4 500 15.22 1423 1422 1333 1336 1248  12.50
1000 17.01 1600  16.03 1515 1517 1427 1427
300 15.87 1445 1447 1341 1341 1247 1245
5 500 17.19 1582 1586 1478 1479 1375 1375
1000 18.97 1712 1171 1665  16.72 1560 1561
300 24.25 2131 2130 1960  19.66 1832 1836
10 500 25.85 2303 2304 2119 2124 1966  19.69
1000 27.94 2528 2527 2347 2349 2179 2186
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Table 7. Estimated control limits of FEWMA chart of » = 0.1 and ¢ = 0.75 using linear
functions of logarithm of in-control ARL for P-5 correlation type.

(Steady State)

p=2 p=3 p=4 p=S5 p=10

b
o>
x>
3>
3

hsim hsim sim sim h h.tim

100 554 5.54 6.19 6.19 6.61 6.61 701 701 8.08 8.08
200 725 725 8.14 8.13 8.83 882 942 944 1145 11.64
300 825 8.26 924 927 10.15 10.12 10.86 10.86 13.56 13.73
400 898 897 10.09 10.07 11.05 11.04 11.87 11.87 15.14 15.20
500 952 952 10.70 10.70 11.75 11.75 12.65 12.65 16.35 16.35
600 996 9.95 11.21 11.19 12.34 1231 13.29 13.27 17.34 17.27
700 10.33 10.32 11.62 11.61 12.80 12.77 13.80 13.80 18.11 18.05
800 10.65 10.63 11.97 11.97 13.19 13.18 14.25 14.26 18.78 18.73
900 10.92 10.91 12.29 12.29 13.54 13.54 14.66 14.66 19.35 19.33
1000 11.16 11.16 12.57 12.57 13.86 13.86 15.02 15.02 19.86 19.86

(Initial State)

b33y
a}
3
=
S
¥
==
>

sim hsim

100 6.30 6.30 7.62 17.62 875 875 995 9.95 15.66 15.66
200 770 7.78 9.06 9.15 10.27 10.37 1147 11.59 17.28 17.40
300 8.58 8.64 9.96 10.05 11.23 1131 12.45 12.54 18.36 18.41
400 925 9.25 10.64 10.69 1194 11,98 13.17 13.22 19.12 19.13
500 973 9.73 11.18 11.18 12.50 12.50 13.75 13.75 19.69 19.69
600 10.13 10.14 11.59 11.61 12.96 12.97 14.23 14.24 20.22 20.26
700 10.49 1048 11.97 11.98 13.35 13.36 14.64 14.65 20.70 20.74
800 10.80 10.78 12.29 12.29 13.69 13.70 15.00 15.01 21.11 2116
900 11.05 11.04 12.57 12.57 14.00 14.00 15.32 15.33 21.51 21.53
1000 11.28 11.28 12.82 12.82 14.27 14.27 1561 15.61 21.86 21.86
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Table 8. ARL Performance of FEWMA’s of r = 0.1 using 4 of in-control ARL = 300 for
Equal Shift for two correlation types.

(Steady State)

M-5 P-5
7,=0.1 ,=0.2 n,=0.4 n,.=0.8 5,=1.6 n,=3.2 7,=0.1 5,=0.2 5,=0.4 7,=0.8 7,=1.6 7, =3.2

0 229.6 1331 478 151 60 29 231.7 1334 481 150 6.0 2.9

2 025 227.8 129.8 469 149 59 28 230.2 1310 470 149 59 28
0.5 2254 1272 455 146 58 28 226.0 1278 459 146 58 28
0.75 219.3 1239 441 143 57 2.7 221.1 1228 443 143 57 2.7

0 237.4 1460 547 169 66 3.1 2399 1457 548 169 6.6 3.1

3 025 235.1 1431 540 169 66 3.1 237.5 1413 531 166 6.5 31
0.5 2347 141.1 542 171 66 3.1 2343 1364 516 163 63 3.0
0.75 2335 1404 541 173 66 3.1 2257 1303 492 156 6.1 29

0 2564 1724 672 200 75 35 257.0 1741 676 201 1715 35

5 025 249.8 1658 666 204 76 35 250.0 163.5 650 199 74 34
0.5 2472 1634 660 206 75 3.4 2476 156.7 628 194 171 33
0.75 2442 1594 651 198 72 33 2402 1508 592 181 6.7 31

0 269.3 199.7 878 254 90 42 2677 1979 874 253 90 42

10 0.25 261.5 193.4 886 272 94 41 263.3 1926 889 273 93 4.1
05 260.1 190.1 887 267 89 3.9 261.5 1919 886 268 88 39
0.75 2454 173.0 76.5 223 1.7 35 243.8 173.1 760 224 7.7 35

(Initial State)
M-5 P-5
7,=0.1 n,=0.2 5 =04 1,=0.8 . =1.6 5,=3.2 7,=0.1 .=0.2 5,=0.4 n,=0.8 5 =1.6 5 =3.2

0 229.6 1306 448 127 40 1.5 231.0 131.1 452 126 40 1.5

2 025 2272 1260 428 121 38 14 228.0 1266 433 121 38 1.4
0.5 221.8 1224 409 116 3.7 14 223.3 123.2 413 1.7 37 14
0.75 2155 1167 385 111 36 1.4 2164 1159 384 110 36 14
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3 025
0.5
0.75

5 025
0.5
0.75

10 0.25
0.5
0.75

235.1
231.9
2325
227.4

253.2
245.6
240.6
230.9

267.1
255.9
246.9
236.2

142.6
137.8
133.1
124.6

168.2
157.1
147.8
134.0

197.4
179.3
158.6
136.5

51.4
48.9
46.2
422

63.8
58.2
52.6
44.8

83.2
70.9
57.5
46.0

14.2
13.3
12.4
11.5

17.0
15.2
13.6
12.1

220
17.9
14.8
12.5

44
4.1
3.9
3.7

5.0
4.6
4.2
38

6.2
51
45
4.0

1.6
1.5
1.5
1.4

1.8
1.6
1.5
1.5

2.1
1.8
1.6
1.5

239.1
234.9
230.9
219.8

255.2
247.9
238.4
225.4

264.4
255.7
253.2
238.7

142.9
137.3
128.6
118.1

171.4
156.0
144.1
127.6

196.1
178.4
164.0
140.4

51.7
482
44.3
40.3

64.2
57.0
49.6
42.5

83.4
71.2
58.3
46.6

14.3
13.4
12.5
11.5

17.1
15.2
13.5
11.9

220
17.9
15.0
12.6

44
4.1
3.9
3.7

5.1
4.6
4.2
3.8

6.3
5.2
4.5
4.0

1.6
1.5
1.5
1.4

1.8
1.6
1.5
1.5

2.1
1.8
1.6
1.5
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Table 9. ARL Performance of FEWMA’s of » = 0.1 using 4 of in-control ARL = 300 for
Single Shift for two correlation types.

(Steady State)

M-5 P-5
7.:=0.1 ,=0.2 ,=0.4 1,=0.8 ,=1.6 ,=3.2 7,=0.1 4,=0.2 ,=0.4 7,=0.8 7,=1.6 7,=3.2

2 0 231.7 1334 481 150 6.0 29 2259 1301 482 153 6.0 2.9
2 025 2250 126.6 460 151 6.2 3.0 2199 1198 448 158 6.7 33
0.5 2187 1193 448 154 63 3.0 2104 111.8 442 172 176 37
0.75 211.1 1152 449 159 64 3.1 201.1 109.5 482 204 90 43

0 2424 1466 546 171 66 3.1 2403 1455 554 171 66 31

3 025 2279 1282 490 176 74 3.6 2216 1248 482 180 7.8 38
0.5 2158 1202 490 194 83 4.0 209.0 1151 488 207 94 4.6
0.75 208.7 1196 543 227 95 44 200.1 1160 563 262 121 58

0 2548 1720 674 201 75 35 259.2 1754 670 202 175 35

5 025 230.3 1386 558 214 93 4.5 2303 1353 3543 216 97 4.8
0.5 219.7 1289 585 252 112 53 216.1 1252 576 264 126 63
0.75 2181 1352 685 313 134 60 215.6 133.1 703 350 171 84

V] 267.7 1989 885 254 90 42 268.7 201.4 881 254 90 4.2

10 0.25 2387 150.1 676 292 134 65 2341 1458 664 294 140 70
0.5 230.6 1486 770 374 175 82 227.1 1462 769 385 192 938
0.75 227.8 1587 90.6 456 209 9.2 225.2 1575 922 493 252 128

(Initial State)
M-5 P-5
n.=0.1 7,=0.2 ,.=0.4 7,=0.8 ,=1.6 ,=3.2 9,=0.1 p.=0.2 5,=0.4 5,=0.8 1,=1.6 5. =3.2

0 231.0 131.1 452 126 4.0 1.5 2268 1283 454 128 40 1.5

2 025 222.1 1222 420 121 3.8 1.4 2163 1150 403 122 39 1.5
05 2146 1136 391 116 3.7 14 2048 1046 373 11.8 38 1.4
0.75 206.2 1057 369 111 36 14 191.1 954 353 113 36 1.4

0 240.1 1436 515 144 44 1.6 239.0 142.8 520 144 44 1.6
3 025 223.7 1223 432 132 42 1.5 2190 1191 426 13.1 42 1.5
0.5 2106 1101 393 124 40 1.5 200.6 103.7 384 123 3.9 1.5
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0.75

5 025
0.5
0.75

10 0.25
0.5
0.75

191.8

253.1
226.1
207.2
188.7

266.6
227.0
198.0
175.5

97.7

169.3
128.8
109.5
96.9

197.1
132.2
106.7
90.3

36.4

63.8
47.0
41.2
36.7

84.4
49.9
41.8
35.8

11.6

17.2
14.6
13.2
11.9

21.9
16.4
14.1
12.2

37

5.1
4.6
4.2
38

6.3
52
4.5
4.1

1.4

1.8
1.6
1.5
1.5

2.1
1.8
1.6
1.5

184.0

258.0
225.7
201.1
182.7

267.4
2248
201.3
177.1

93.4

172.6
126.2
104.7
92.2

197.5
127.8
105.4
90.0

358

63.5
454
39.8
35.7

84.0
49.0
41.5
35.5

11.6

17.3
14.5
13.2
11.9

21.9
16.1
13.9
12.1

3.7

5.1
4.6
42
3.9

6.2
52
4.6
4.1

1.4

1.8
1.6
1.5
1.5

2.1
1.8
1.7
1.6
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Table 10. Optimal FEWMA schemes of in-control ARL’s 300, 500, 1000 with a fixed ¢ for p
= 4 and steady state in Equal Shift.

(ARL=300) | 7.=01 7.=02  n=04 7=08 7=16  p=32
ARL.m | 199.1 1Ls 494 1831 634 2.15

c=0.0]| rum 0.01 0.015 0.03 0.09 0.23 0.63

rrange | 0.005-0.014  0.01-0.019 0.022-0.04 0.07-0.1 0.18-0.25 0.55-0.72

ARL ., 167.7 86.3 382 15.50 5.82 2.13
c=085| run 0.006 0.011 0.023 0.07 0.19 0.6
rrange | 0.004-0.009 0.008-0.014 0.016-0.03  0.05-008  0.15-023  0.45-0.68

ARL i 166.2 85.2 37.3 14.91 5.63 2,07
c=090| rum 0.006 0.011 0.023 0.07 0.2 0.6
rrange | 0.005-0.008 0.008-0.016  0.017-0.03  0.06-0.08  0.18-0.22  0.48-0.68

ARL ;0 165.9 84.2 36.3 14.18 5.34 1.97
0.006 0.01 0.025 0.08 0.2 0.6

Fmin

c=0.95| rrange | 0.005-0.01 0.009-0.016  0.019-0.04 0.06-0.1 0.16-0.25 0.49-0.7

(ARL = 500) 7.=0.1 7.=0.2 n.,=04 n.=08 n.=16 7.=3.2
ARL in 276.7 142.6 57.8 20.65 6.91 2.30

c=00 Ymin 0.01 0.015 0.03 0.09 0.2 0.61
rrange | 0.004-0.007 0.009-0.016 0.02-0.03 0.06~0.09 0.16-0.24 0.49-0.65

ARL i 2329 86.3 46.2 17.85 6.45 230
c=0.85{ rum 0.005 0.011 0.023 0.07 0.19 0.52

rrange | 0.004-0.008 0.006-0.012  0.015-0.03 0.04-0.09 0.14-0.22 0.44-0.60

ARL o 230.6 85.2 4.9 17.24 6.25 225
c=090| rum 0.005 0.011 0.023 0.07 0.19 0.54

r range | 0.005-0.008 0.007-0.013  0.017-0.03 0.04-0.09 0.14-0.22 0.45-0.60

ARL i 2289 84.2 43.6 1631 5.95 2.17
c=095| rum 0.006 0.01 0.025 0.07 0.19 0.56
rrange | 0.005-0.01  0.007-0.013  0.017-0.04  0.05-0.1 0.14-023  0.41-0.65

(ARL=1000) | #.=0.1 7.=0.2 7.=0.4 7.=0.8 7.=1.6 7.=3.2
ARL;, 412.5 187.9 69.9 23.58 7.68 2.49

c=00 Pein 0.004 0.015 0.024 0.07 0.18 0.51

27



o

"

»

rrange | 0.003-0.005 0.006-0.011  0.017-0.03 0.05-0.08 0.14-0.22 0.43-0.61
ARL 3543 151.7 583 21.57 732 2.52
N 0.006 0.009 0.018 0.05 0.17 0.47

¢=0.85 | rrange | 0.003-0.005 0.006-0.011  0.013-0.024 0.04-0.07 0.13-0.2 0.38-0.56
ARL, 351.7 149.4 57.0 20.60 7.16 249
T'min 0.006 0.009 0.019 0.05 0.16 0.48

¢=0.90 | rrange | 0.004-0.006 0.006-0.011 0.014-0.025 0.04-0.07 0.12-0.2 0.35-0.57
ARL 352.1 147.07 55.3 19.69 6.85 240
Yain 0.006 0.009 0.021 0.06 0.17 0.47

¢=0.95| rrange | 0.003-0.006 0.007-0.011 0.017-0.025 0.05-0.07 0.13-0.2 0.31-0.64
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Table 11. Ambulatory monitoring data

Week SBP
161 122.96
163 124.54
165 125.73
167 130.24
169 129.31
171 130.24
175 128.62
177 126.65
179 124.40
181 125.50
183 122.31
185 124.25
187 125.02
189 126.75
191 132.39

Table 12.

Week
161 -0.
162 -0.
163 -0.
164 -0.
165 -0.
166 -0.
167 -0.
168 -0.
169 -0.
170 -0.
171 -0.
172 -0.
175 -0.
176 0.
177 0.
178 0.
179 -0.
180 -0.
181 -0.
182 -0.

DBP
74.26
75.01
76.03
78.81
78.90
78.58
78.75
77.28
73.42
76.02
73.38
75.68
76.72
77.08
80.23

MAP

93
96
95

100.
100.

101.

.63
.51
.82
59

HR
81.35
82.10
81.82
87.31
85.19
85.67
83.08
84.61
84.19
86.72
80.14
80.71
81.65
80.47
87.75

Week
162
164
166
168
170
172
176
178
180
182
184
186
188
190
194

SBP

127.
123.
129.
129.
128.
.50

128

130.
128.
125.
123.
122.
124.
125.
124.
128.

77
06
08
03
07

70
82
71
44
08
S0
28
55
52

FEWMA of ambulatory monitoring data

Components of y vector
-0.168
-0.171
-0.257
-0.394
-0.447
-0.388
-0.265
-0.193
-0.122
-0.119
-0.049
~-0.041
-0.025

167 -0.
167 -0.
257 -0.
396 -0.
449 -0
386 -0
265 -0.
194 -o0.
126 -0.
120 -0.
050 -0.
042 -0.
027 -0.
040 0.
002 0.
023 0.
106 -0.
164 -0.
194 -o0.
276 -0.

164
164
253
391

.441
.380

259
187
115
108
038
034
014
052
019
037
096
152
180
254

0.041
0.003
0.023

-0.107
-0.164
-0.193
-0.267

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
.052

0.

0.

0.

0.

0.

0.
-0.
-0.
-0.
-0.

-0

157
146
230
359
408
341
213
133
062

020
033
047
112
083
113
003
050
063
129
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T

6.613
10.436

7.188
10.412
11.933
11.066

9.037

9.945

9.877
11.818
11.488
10.787
11.005
10.722
13.546
15.163
15.303
17.267
21.173
24.111

DBP

76.
73.
77.
78.
7.
.72

76

78.
7.
75.
75.
73.
75.
76.
76.
78.

71
81
58
10
78

94
13
97
58
00
12
26
73
75

MAP

96.
94.
98.
99.
97.
98.
100.
98.
96.
.44
.58
95.
96.
96.
99.

96
92

68
44
16
24
64
62
16
24
32

33
10
25
45

HR
86.08
81.33
85.62
86.94
84.41
85.33
85.02
87.00
84.34
83.98
81.60
80.83
82.14
81.35
83.38



