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INTRODUCTION 

The standard Shewhart charts provide good performance in detecting large changes in a 

process, but are much less effective for smaller but persistent changes. Other complementary 

charting methods that fill this gap include the exponentially weighted moving average 

(EWMA) chart. Since Roberts (1959) introduced the EWMA control chart for a univariate 

nonnal process with independent and identical distribution, its properties has been evaluated 

numerically and analytically for a variety of situations (Robinson and Ho, 1978; Hunter, 1986; 

Crowder, 1989; Lucas and Saccucc~ 1990). 

Lowry et al. (1992) extended the original univariate EWMA procedure to a multivariate 

control chart scheme for controlling the mean of a multivariate normal process. The 

multivariate EWMA (MEWMA) chart is a straightforward vector generalization of the 

corresponding univariate procedure, using a smoothing matrix instead of the scalar smoothing 

constant of the EWMA. Current MEWMA practice seems to be confined to using a 

smoothing matrix with zero off-diagonal elements, and generally equal diagonal elements 

(Lowry et al., 1992). We will use the abbreviation DEWMA for this MEWMA with nonzero 

elements only on the diagonal of the smoothing matrix. A general MEWMA chart with an 

unrestricted smoothing matrix is proposed in this paper. We will use the abbreviation of 

FEWMA for the multivariate EWMA chart with a full smoothing matrix. 

There are a number of differences between the DEWMA and the FEWMA charts. In 

particular, ifµ, µo and l: represent the out-of-control mean vector, the in-control mean vector 

and the covariance matrix of measurements, the DEWMA chart is directionally invariant -

that is its ARL depends on these three quantities only through the value of the noncentrality 

parameter 

'flc = ~t5t-1t5. where the mean shift 6 = µ- µo 

The FEWMA chart does not have this directional invariance property - its performance is 

affected by the direction of shift and the covariance structure as well as the noncentrality. 

Thus we will study the ARL performance of the FEWMA scheme for various correlation 

structures and mean shift directions. 
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The FEWMA scheme is described in the next section, and the following section contains 

nwnerical results, including the ARL performance of FEWMA. In a subsequent section, some 

conclusions are presented. 

GENERAL MULTIVARIATE EWMA CHARTS 

Suppose that the successive p-component vectors of measurements { xn, n = 1,2, ... } are 

independent and identically distributed multivariate normal random vectors Xn - N(µ, :E). 

The in-control mean vector is µo. A FEWMA vector is defined by 

y n = R(xn - µ 0 ) + (I - R)y n-l 

for n = 1,2, ... where Yo= 0 and R is the smoothing matrix. 

The DEWMA chart of Lowry et al. used a diagonal matrix with elements {O < r1 ~ 1, i = 

(1) 

1,2, ... ,p} for R. Unless there is any reason to weight the quality characteristic measurements 

differently, all diagonal elements ofR are set to the same value -- that is, r1 = r2 = ... = r P = r. 

This DEWMA control scheme gives an out-of-control signal as soon as 

T 2 ,~-1 h 
n = Yn~y,.Yn > 

where h > 0 is a control limit and 

r[l-(l-r)2n] ~ 
I =-----~ 

y,. 2-r 

The covariance matrix I Yn is not constant, but varies with n. As n increases, it tends to the 

asymptotic covariance matrix 

r 
I =-1: 

y,. 2-r · 
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Often the process stays in control for a sufficiently long period to make 1: effectively y,. 

indistinguishable from its asymptotic form, and for this reason the DEWMA is often designed 

to use the asymptotic ('steady state') form 

A natural extension to the DEWMA chart is to allow non-zero off-diagonal elements in R. 

With non-zero off-diagonal elements in R, the covariance matrix of the FEWMA vector y n is 

more complicated than that of the MEWMA procedure. It may be computed most easily 

recursively by the recursion 1:Yo = O; 

I:Y. = RI:R' + (I-R):EY.-1 (1-R)' 

As n increases, this converges to the asymptotic value 1:co given by the solution to the linear 

system 

:Eco - (I - RJEco (I - R)' = Rl:R' 

provided the matrix R has all eigenvalues less than 1 (Cullen, 1972). 

From here on we will assume, mainly for notational convenience, that the elements of x 

have been standardized to mean zero and standard deviation 1. As in the diagonal case, in the 

absence of some good reason to the contrary, we will treat the different measurements 

symmetrically, so if r !I is the (i, J) th element of R, it is natural ( and will be done here) to 

restrict the values to equal diagonal elements r;; = r0n for i = 1,2, ... ,p and to equal off

diagonal elements r iJ = r off for i,j = 1,2, ·· · ,p and i * j. It is convenient when studying the 

impact of off-diagonal weights to fix the total weight of each variable. We will define this 

total weight of a variable by the row sums ofR 

p 

r = ~)ij =r0n +(p- l)r0ff, Vi. 
j=l 

(6) 

. Since it seems inappropriate to use off-diagonal weights greater than the on-diagonal 

weight, this study uses the matrix R such that r off = er on for O ~ c < 1. We will characterize 

such a FEWMA scheme by its r and c. Given these, 
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r er 
r = ---- and r = ----

on l+(p-l)c off l+(p-l)c 

The diagonal DEWMA chart using (3) corresponds to c = 0. Table 1 contains an example of 

the full smoothing matrix R with r = 0.1 and c = 0. 75. 

ARL PERFORMANCE OF GENERAL MULTIVARIATE EWMA CHARTS 

The performance of a control chart is commonly measured by its average run length (ARL), 

defined as the average number of observations from the time of occurrence of a shift to the 

time that the chart signals. We can distinguish two interesting ARL's- the 'initial state' ARL 

assumes that the shift occurs the instant that the chart is started, so the data are off-center 

from the very first observation. The 'steady state' ARL assumes that the chart has run long 

enough for the covariance matrix ~YD to reach its asymptotic level. These two possibilities 

represent in some sense the extremes between which all others lie. Since in practice processes 

often start out off-center due to start-up problems or ineffective control action for the 

previous signal, the reaction of the chart to immediate shifts, as measured by the 'initial state' 

ARL, is perhaps the more generally relevant of these two measures. 

It is a feature of the general FEWMA is that, unlike the DEWMA, it is not affine invariant. 

It responds differently to shift of the same magnitude but in different directions, and so by 

suitable choice of the parameters r and c, it can be made more sensitive to mean shifts. ARL 

performance ofFEWMA control schemes depends on the correlation structure ofx, the 

direction and size of the shift in mean, and the c and r parameters of the smoothing matrix R. 

To illustrate the potential for improvement in going beyond the diagonal form of the 

EWMA, consider the detection of a shift in four-component data vectors by the diagonal 

scheme r=0. l, c=O and the scheme r=O. l c=0. 75, which has the same total weight on the most 

recent observation but which has large off-diagonal elements. We will vary correlation 

structures - 'Ind' refers to independent components inx; the structure 'P _8' has all 

correlation equal to 0.8 and in the structure 'M_8' variables i andj have correlation-0.8 if i-J 

is odd, and +0.8 ifit is even. We also vary the direction of shift- 'equal' corresponds to all 

elements of 6 being equal; in 'single' just one is shifted and the remainder are zero, and for 
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'Symmetric' the first two are a positive constant while the last two are the negative of this 

constant. 

Some ARLs to detection of a shift with T)=0.4 and in-control ARL of 300 follow. All have 

standard errors of approximately 0.4. For this noncentrality, the DEWMA has a steady-state 

ARL of 60.2, and an initial-state ARL of 58.5. 

Steady-state Initial state 

P-8 Ind M-8 P-8 Ind M-8 

Equal 45.2 45.3 45.5 41.6 41. 8 41. 4 

Single 57.7 53.4 54.5 35.4 36.6 36.3 

Symmetric 58.1 58.7 57.6 35.7 35.9 34.4 

Noteworthy features are: 

• The FEWMA beats the DEWMA in all cases. 

• The benefit is particularly large for 'initial state' shifts, where the ARL's are 30 to 40% 

lower. 

• The correlation structure appears to have little effect. 

Theoretical analysis - small shifts 

These details of performance improvements raise the question of whether these features 

hold in general. This question is not easily answered in general terms as the performance of 

the FEWMA involves a complex mix of steady-state and transient behavior. We can however 

make considerable progress for the case 6 small. This case is particularly interesting since it is 

for moderate shifts that control is most needed, since simple Shewhart charts easily detect very 

large shifts. 

If the shift is not large, then its detection will generally require a number of out-of-control 

data vectors. From the initial state, n points after the shift, the vector Yn follows a multivariate 

normal distribution (recall that we are assuming f.1<>=0) 

n 

N[L (I- R)1 R8,IY.]. 
i=l 

As n increases, this approaches N[8,I«>], so the noncentrality is 8T.:18. With the 

supposition that detecting the shift will require more than a handful of observations, we may 

use this asymptotic distribution to gain some understanding of the impact of different choices 

of the parameters rand c. First, we fix rand ask whether using a particular non-zero c leads 
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to better performance than the DEWMA with c=O. Writing :I;aJ (c) for the asymptotic 

covariance matrix considered as a function of c, we·conclude that the FEWMA will 

outperform the DEWMA if 6 lies in some direction such that c511;:1 (c)c5 > c511;:1 (0)8 and will 

underperform it otherwise. 

We can explore the limiting relative performance of the two charts for small 6 by solving 

the simultaneous diagonalization problem 

If 6 lies in the principal direction 8i and the corresponding "-i is greater than 1, then the 

DEWMA can be expected to outperform the FEWMA for small shifts. Ifit is less than 1, then 

the FEWMA is the winner. This prediction of relative performance is an approximate one 

since it depends on the assumption that the signal does not occur very shortly after the shift, 

but it is nevertheless very useful. 

We illustrate this with the 5-component M-8 configuration, evaluating at r =0.1 and 

c=0.75. The eigenvalues and corresponding eigenvectors are:-

Principal direction i 

1 2 3 4 5 

A. 1.612 0.060 0.060 0.060 0.058 
a 3.62 3.98 1.65 6.69 -0.69 

5.25 0.00 6.69 -1.65 1. 34 
3.62 3.98 -1.65 -6.69 -0.69 
5.25 0.00 -6.69 1.65 1.34 
3.62 -7.96 0.00 0.00 -0.69 

This suggests that for a shift in the first of these directions (proportional to the vector 

(0.7,1,0.7,1,0.7), the DEWMA should out-perform the FEWMA, the eigenvalue being larger 

than 1. For shifts in any of the other principal directions though, the FEWMA should 

outperform the DEWMA. Furthermore, while A1 is not substantially larger than I, the other Ai 

are much smaller than I, leading to the conclusion that while the FEWMA will never be much 

worse than the FEWMA, it may be much better, and furthermore is much better in "most" 

directions. 

To check these predictions, we evaluated the ARL for shifts in the direction 81 and 8s, 

setting the noncentrality to 0.2. With an in-control ARL of 300, this gave the out-of-control 

ARL's 

c= 0.75 

Steady state Initial state 
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Direction 81 168 

152 

157 

124 

169 

166 

167 

167 

As the scheme with c=O is affine invariant, the four ARL' s on the right are identical except for 

random variation in the simulation The first direction is that in which the FEWMA is 

predicted to perform worst relative to the DEWMA However it matches the DEMW A in the 

steady state, and beats it modestly in the initial state. The best direction for the FEWMA 

shows a substantial improvement in the initial state and a smaller improvement in the steady 

state. Despite the improvement in performance where the theory predicted none, these results 

indicate that the theory is helpful in predicting better and worse behavior of the FEWMA 

relative to the DEWMA. 

In the light of this, we list the eigenvalues of some scenarios. To the P _8, M_8 and Ind 

scenarios, we have added a fourth - the covariance matrix labeled 'Random' is a matrix of 

independent uniforms multiplied by its transpose. 

p Structure Eigenvalues 
4 p 8 1. 0000 0.0734 0.0734 0.0734 

Ind 1. 0000 0.0734 0.0734 0. 0734 
M-8 1. 0000 0.0734 0.0734 0.0734 
Random 1.4588 0.0734 0.0734 0.0712 

5 Ind 1.0000 0.0596 0.0596 0.0596 
p 8 1. 0000 0.0596 0.0596 0.0956 0.0596 
M-8 1.6118 0.0596 0.0596 0.0596 0.0582 
Random 2.9092 0.0596 0.0596 0.0596 0.0573 

In all cases, at most one eigenvalue reached or exceeded the value 1, the remainder being 

substantially less than 1. The main message we believe can be drawn from these figures is that 

"most" directions correspond to the situation 8't~1(c)8 > 8't~1{0)8 in which the FEWMA 

outperforms the DEWMA, but it is certainly possible for the reverse to happen 

Some empiric performance evaluation 

The performance of the FEWMA is clearly quite a complicated function of the various 

parameters involved. Potential users are therefore best advised to check the performance of 

particular choices of r and c in their particular setting - that is to say, using their actual 

process correlation matrix and some anticipated shifts that are to be guarded against. This 

experimentation need only be done once, at the design phase. It is greatly facilitated by a 
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computer program FEWMA, discussed in a companion report (Hawkins et al. 2002), which 

allows trail scenarios to be assessed quickly. 

It is helpful though to provide some general guidelines. To investigate the joint impact of 

these factors, we chose seven correlation structures and three shift directions. First is the 

multivariate normal process with no correlation, denoted IND. The other six correlation 

structures are categorized into two classes: the positive type, in which all pairs of variables 

have an equal positive correlation, and the mixed type, in which variables i and j for i -::t: j 

have a negative correlation if i + j is odd and a positive correlation if i + j is even The 

common correlation is set to one of three values - 0.2, 0.5, 0.8, giving rise to three positive

correlation settings P-2, P-5, P-8, and three mixed settings M-2, M-5, M-8. An example of 

the correlation type ofM-8 is illustrated in Table 1. The out-of-control mean process is 

modeled with three shift directions: 

Equal Shift, in which all components ofµ are equal; 

Symmetric Shift, which differs from Equal Shift in that the first half of the components 

ofµ has different signs to the second half; 

Single Shift, in which only a single component ofµ is non-zero. 

In lieu of an attempt at theoretical optimization of the parameters, we conducted empirical 

study instead, evaluating the ARL for six sizes of shift corresponding to the noncentrality 

parameter values T/c= 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 respectively. These were estimated from 

10,000 simulation runs using the same independent random seed number for each case 

considered 

First, we investigate the properties of the ARL performance of FEWMA charts for a 4-

variate normal processes using the control limits which result in ARL = 300 for in-control 

processes in both states for independent 10,000 simulation runs. Table 2 contains the 

estimated values of the control limit h for the seven correlation types, which were computed 

using a binary search method with linear interpolation. For the directionally invariant charts (c 

= 0) the control limit his independent of the correlation structures. For non-zero c, the 

estimated values of h vary only slightly with the correlation types. The differences between 

the h values for the seven types are less than 0.05 in most of the cases considered. The 

EWMA control limit increases with r, and decreases with c for a fixed r. Table 3 - 5 display 

the averages and standard deviations of the estimated ARL's for the seven correlation types 

9 



for the FEWMA charts ofr = 0.06, 0.1, 0.5 and c = 0, 0.15. Using the h values of in-control 

ARL = 300 in Table 2, these results were obtained from total of70,000 simulation runs by 

applying the seven types to 10,000 runs each. Each entry in the table represents the average 

of seven ARL's, one for each of the seven correlation types. The values in parentheses are 

the standard deviations of these seven ARL's. 

For the steady state out-of-controi these tables show that the best choice of r and c 

depends somewhat on the distances and directions of the shift in the mean vector. In Equal 

Shift, the chart appears to perform best with r = 0.06 and c = 0.15 for T/c 2:: 0.8, r = 0.2 and c 

= 0. 75 for T/c = 1.6, and r = 0.5 with the virtually identical out-of-control ARL's for different 

c' s at the largest shift distance. In the other shift directions, the shortest ARL is given by the 

non-diagonal smoothing schemes ofr = 0.06 and c = 0.5 for T/c ~ 0.2, r = 0.06 and c = 0.25 

for T/c = 0.4, but the charts of diagonal smoothing matrices with r = 0.1, 0.2, 0.5 show the 

best performance for T/c = 0.8, 1.6, 3.2 respectively. The FEWMA scheme generally yields a 

shorter ARL with larger c for a given r in Equal Shift, but the ARL increases with increasing c 

for relatively large shifts in the other shift directions. When shifting a small distance, the ARL 

is reduced more by using a nonzero c in Symmetric and Single Shifts than Equal Shift. For the 

initial state out-of control, the FEWMA scheme appears to always have shorter ARL for 

smaller r and larger c in all the shift directions. The initial state benefits more than the steady 

state from using the non-diagonal components. As shown in the results of the standard 

deviations (the values in parenthesis), the variation in ARL for the different classes of 

correlation type is not much different between the diagonal and non-diagonal smoothing 

schemes, except for small shifts with larger r's in Single Shift. For these cases, the non

diagonal scheme varies considerably more than the diagonal one. The performance of the 

FEWMA charts when c :;; 0 appears to be sensitive to the shift directions of the process mean. 

For example, when 'IJc= 0.2, the chart ofr = 0.1 and c = 0.5 has the ARL's of 148.7, 118.7, 

122.7 for the steady state and 138.7, 103.6, 107.5 for the initial state in Equal, Symmetric and 

Single Shifts respectively. 

The values of the control limit h for the FEWMA charts of r = 0. l were estimated for the 

10 in-control ARL's with run-length increment of 100 from in-control ARL = 100. The cases 

ofp = 2, 3, 4, 5, 10 were considered for two correlation types, M-5 and P-5. All the . 
thresholds were computed such that the chart results in having the specified in-control ARL 

for the independent 10,000 simulation runs. Table 6 illustrates the h values obtained for in-
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control ARL = I 00, 300, 500, I 000 of the IO lengths considered. The h values differ a little 

between the correlation types with the maximum difference of less than 0.1 (the differences in 

most of the cases considered are less than 0.05). The EWMA control limit has a smaller value 

for larger c, and for the steady state than for the initial state. The simulation results indicate 

that a control limit of the FEWMA chart can be approximated with a linear function of the in

control ARL. Table 7 contains the estimated values ofh using the function 

h = aln(ARL) +b. 

for c = 0.75 and the P-5 correlation type. The parameters of (7) for the results in Table 7 

were estimated using only three points of in-control ARL = I 00, 500, I 000, while the 

(7) 

estimated values of h ( h ) are compared with the values computed using simulation ( hnm) for 

the 10 in-control ARL's considered. 

Based on independent 10,000 simulation runs, the comparison of the FEWMA charts ofr = 
0.1 were made for p = 2, 3, 5, 10 using the M-5 and P-5 correlation types by shifting the mean 

vector in two extreme directions of Equal and Single Shifts. The control schemes were 

designed to give an out-of-control signal when the test statistic is greater than the 

threshold h of in-control ARL = 300 in Table 6. Table 8 and 9 displays the comparison results 

for the out-of-control processes in the Equal and Single Shift directions respectively. From 

these tables, the performance of the chart for p = 2, 3, 5, 10 is very similar to that for p = 4. 

Table IO presents the optimal values of r (r mm) for the FEWMA charts using three large 

values of c for p = 4 and in-control ARL = 300, 500, 1000 in Equal Shift for the steady state. 

This search was made with increments of0.001 when r:::;; 0.03 and increments of0.01 when 

r > 0.03 using 10,000 independent simulation runs. In Table 10, ARLmm represents the 

minimwn out-of-control ARL at the shift of interest and the ranges of r values are 

corresponding to those values that differ with the minimum ARL in ± 1 % of the ARLmm value. 

The optimal values of r are very similar for all the three values of c, and larger for the diagonal 

scheme than for the non-diagonal one except for very small shift. From the results in the 

previous investigation, FEWMA charts may use smaller r and larger c for better ARL 

performance in the initial state. However, it may result in computational instability to use 

extreme values close to the boundary for r and c. We recommend to choose the values in 

r > 0.001 and c < 0.99. In the steady state, larger values of c for the FEWMA chart yields 
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shorter ARL for Equal Shift, but it is not true for the other shift directions. For some shift 

directions such as Single and Symmetric Shifts, the FEWMA chart does not give better ARL 

performance for larger values of c, and the diagonal scheme is even more effective in detecting 

large shifts in the process mean. Given a correlation structure and shift direction of process 

mean for quality control environment, we can design the optimal FEWMA chart for a specified 

in-control run length by using a simulation approach. 

EXAMPLE 

We illustrate the method with some ambulatory monitoring data Here, the subject 

indefinitely wears instrumentation that measures and records heart fimction every 15 minutes. 

The data set is part of a record some 7 years long. At the first stage, the 15 minute traces are 

reduced to week-long summary statistics; these are the numbers we study. For reasons 

sketched in Hawkins and Olwell (1998) Chapter 8 ( which also provides detail on the source of 

the data and more description), we rejected the first year's data, and used the following two 

years' data to estimate the parameters. For brevity, we restrict the analysis to four measures -

MESORs (location statistics) of systolic blood pressure (SBP), diastolic blood pressure 

(DBP), mean arterial pressure (MAP) and heart rate (HR). These had the correlation matrix: 

DBPM 
MAPM 
HRM 

SBPM 
0.9329 
0.9532 
0.4995 

DBPM 

0.9571 
0.4788 

MAPM 

0.5242 

An initial check by simultaneous diagonalization of l:a) (0. 75), :Ea) (O) with r = 0.1 gave the 

eigenvalues 1. 0664, 0. 0734, 0. 0734 and 0. 0730, showing that there is much potential but little 

downside risk in using the FEWMA rather than the DE~ for control of the vectors. 

There is particular interest in increases in the blood pressure measures (SBP, DBP and 

MAP) as these lead to increased risk of stroke. So we used the interactive program FEWMA 

to calibrate a FEWMA with r =0.1, c =0.15 for an in-control ARL of 300, corresponding to a 

false signal roughly once every six years, and evaluated its performance for a shift of (0.2, 0.2, 

0.2, 0)- that is, a 0.2 standard deviation increase in each of these three blood pressure 

measures but not the heart rate. FEWMA's output included: -

This gives root noncentrality 0.237 

DEWMA steady state noncentrality 1.034 

FEWMA steady state noncentrality 3.323 

suggesting the benefit from using FEWMA rather than DEWMA- a more than trebling of the 

non-centrality - is quite dramatic. 
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Estimated his 11.182 with CI 11.060 11.283 

OOC ARL is 77.727 with CI 75.625 79.830 

showing that the ARL to detection of this quite small shift would be about a year and a half. 

Repeating the performance calculations using the DEWMA gives an out-of-control ARL of 

130 weeks, nearly twice as long, confirming the FEWMA' s performance improvement. 

We then ran the FEWMA on the data starting from week 161 of the sequence. The first 20 

cases' data are listed in Table 11, and the resulting values ofyn and Tn2 are in Table 12. The 

FEWMA broke through the control limit at week 165, returned, and then went through 

convincingly and stayed above for the remainder of the 4 year history. What is striking is that 

none of the individual components of Yn was even close to the control limit, which would be 

approximately 0. 72. Thus this shift was one that could only be seen using a multivariate 

approach to the measures, and not a univariate one. 

CONCLUSIONS 

This study suggests extending the multivariate EWMA technique of Lowry, et al. (1992) by 

using a general matrix for the smoothing weight coefficient rather than restricting it to be 

diagonal. Some theoretical calculations for small shifts give an indication of the circumstances 

under which the full smoothing matrix will improve performance, but these diagnostics are 

best confirmed with actual ARL calculations as part of any plan to implement the FEWMA. 

Whereas the diagonal scheme of MEWMA is directionally invariant, the ARL performance 

of the non-diagonal smoothing scheme is affected by the direction of the shift, and by the 

correlation structure, thereby complicating the chart design. Using non-diagonal components 

for the smoothing matrix creates modest additional computational requirements, but offers a 

practical advantage of improving the performance in detecting a shift in the process mean for 

many cases of quality control environment. 

This paper demonstrates the potential utility of the general FEWMA. To turn this into 

actual performance in a particular setting with a particular covariance matrix, target mean shift 

and in-control ARL requires additional design tools. At this stage, theoretical understanding 

of the interplay between these factors in determining the chart's performance is incomplete. 

We do not however see this as a fatal flaw. In a companion manuscript, we set out a 

computer program FEWMA that can be used as such a design tool, allowing the user to 
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experiment with different choices of the weighting parameters to determine which will give the 

best performance for shifts of particular interest. In conjunction with the general insights of 

this paper, we believe this program turns the FEWMA into a useful tool for multivariate 

control. 
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Table 1. Covariance matrix .E Yn of MEWMA vector Yn with r = 0.1 and c = 0. 7 5 for negative 

correlation type M-8 in time n. 

R ofr= 0.1 and c = 0.15 l:ofM-8 

O.o31 

0.023 0.031 -0.8 

0.023 0.023 0.031 0.8 -0.8 

0.023 0.023 0.023 0.031 -0.8 0.8 -0.8 

~Yn 

(n = 101) (n =201) 

0.0055 0.0061 

0.0000 0.0055 -0.0005 0.0061 

0.0049 0.0000 0.0055 0.0054 -0.0005 0.0061 

0.0000 0.0049 0.0000 0.0055 -0.0005 0.0054 -0.0005 0.0061 

(n =301) Steady state (n=OO) 

0.0063 0.0063 

-0.0006 0.0063 -0.0007 0.0063 

0.0055 -0.0006 0.0063 0.0055 -0.0007 0.0063 

-0.0006 0.0055 -0.0006 0.0063 -0.0007 0.0055 -0.0007 0.0063 
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Table 2. h values of in-control ARL = 300 for FEWMA's of p = 4. 

(Steady State) 

r C M-8 M-5 M-2 IND P-2 P-5 P-8 
0 12.80 12.80 12.80 12.80 12.80 12.80 12.80 

0.06 0.25 11.38 11.38 11.39 11.39 11.40 11.40 11.39 

0.5 10.17 10.17 10.15 10.13 10.14 10.15 10.13 

0.75 8.81 8.79 8.79 8.78 8.78 8.77 8.77 

0 13.83 13.83 13.83 13.83 13.83 13.83 13.83 

0.10 0.25 12.62 12.62 12.60 12.60 12.60 12.60 12.60 

0.5 11.48 11.45 11.46 11.46 11.49 11.49 11.46 

0.75 10.18 10.17 10.13 10.12 10.15 10.15 10.10 

0 14.84 14.84 14.84 14.84 14.84 14.84 14.84 

0.20 0.25 13.92 13.94 13.94 13.94 13.95 13.96 13.95 

0.5 13.02 13.00 13.01 13.03 13.02 13.00 12.98 

0.75 11.81 11.82 11.79 11.79 11.83 11.83 11.77 

0 15.65 15.65 15.65 15.65 15.65 15.65 15.65 

0.50 0.25 15.17 15.18 15.18 15.18 15.19 15.17 15.20 

0.5 14.52 14.51 14.50 14.50 14.51 14.51 14.51 

0.75 13.53 13.52 13.53 13.52 13.50 13.50 13.50 

(Initial State) 

r C M-8 M-5 M-2 IND P-2 P-5 P-8 
0 13.05 13.05 13.05 13.05 13.05 13.05 13.05 

0.06 0.25 11.89 11.90 11.91 11.92 11.93 11.92 11.90 

0.5 11.10 11.08 11.06 11.06 II.OS 11.06 11.06 

0.75 10.39 10.38 10.36 10.35 10.36 10.36 10.38 

0 13.95 13.95 13.9S 13.9S 13.95 13.95 13.9S 

0.10 0.25 12.89 12.89 12.90 12.90 12.89 12.90 12.88 

o.s 12.05 12.02 12.05 12.04 12.04 12.03 12.04 

0.75 11.25 11.24 11.25 11.24 11.22 11.23 11.23 

0 14.89 14.89 14.89 14.89 14.89 14.89 14.89 

0.20 0.25 14.06 14.07 14.06 14.07 14.07 14.08 14.07 

0.5 13.27 13.27 13.29 13.28 13.28 13.28 13.26 

0.75 12.40 12.43 12.43 12.42 12.43 12.43 12.39 

0 15.66 15.66 15.66 15.66 15.66 15.66 15.66 

0.50 0.25 15.21 15.22 15.23 15.22 15.22 15.21 15.24 

0.5 14.59 14.59 14.59 14.58 14.60 14.60 14.59 

' 0.75 13.76 13.77 13.78 13.77 13.74 13.75 13.76 
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Table 3. Averages (standard deviations) of ARL's of FEWMA's for seven correlation types 

using h of in-control ARL = 300 for Equal Shift of p = 4. 

Equal Shift (Steady State) 

r C 'le =0.1 'le=0.2 T/e =0.4 T/e =0.8 T/e =l.6 'le =3.2 

0.06 0 230.7 (0.7) 136.7 (0.7) 52.9 (0.1) 18.8 (0.0) 8.0(0.0) 3.9(0.0) 

0.75 218.0 (1.0) 120.8 (0.5) 46.1 (0.1) 16.5 (0.0) 7.0(0.0) 3.4(0.0) 

0.20 0 265.0 (0.8) 197.0 (0.7) 87.8 (0.4) 22.4 (0.1) 6.3(0.0) 2.7(0.0) 

0.75 257.1 (2.0) 181.2 (1.8) 78.2 (0.5) 21.2 (0.1) 6.0(0.0) 2.5(0.0) 

0.50 0 285.4 (0.2) 249.3 (1.0) 157.5 (0.6) 49.6 (0.2) 8.1(0.0) 2.2(0.0) 

0.75 281.8 (1.7) 238.4 (1.1) 142.7 (1.1) 46.1 (0.2) 8.5(0.0) 2.2(0.0) 

Equal Shift (Initial State) 

r C 'le =0.1 'le =0.2 T/e =0.4 T/e =0.8 'le =l.6 'le =3.2 

0.06 0 227.7 (0.3) 131.3 (0.7) 47.0 (0.1) 14.l (0.0) 4.4(0.0) 1.6(0.0) 

0.7S 198.8 (l.S) 98.3 (0.6) 33.1 (0.2) 10.3 (0.0) 3.4(0.0) 1.4(0.0) 

0.20 0 264.4 (0.6) 196.3 (1.0) 86.3 (0.6) 21.1 (0.0) 5.2(0.0) 1.8(0.0) 

0.75 25S.l (1.8) 170.2 (1.3) 66.3 (0.4) 15.9 (0.1) 4.3(0.0) 1.5(0.0) 

0.50 0 285.8 (0.3) 249.5 (0.8) 157.5 (0.7) 49.1 (0.2) 7.8(0.0) 1.9(0.0) 

0.75 280.6 (1.7) 235.9 (1.2) 135.1 (0.8) 39.2 (0.2) 6.5(0.0) 1.7(0.0) 
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Table 4. Averages (standard deviations) of ARL's ofFEWMA's for seven correlation types 

using h of in-control ARL = 300 for Symmetric Shift of p = 4. 

Symmetric Shift (Steady State) 

r C 11e =0.1 'le =0.2 'le =0.4 'le =0.8 'le =1.6 'le =3.2 

0.06 0 235.1 (1.8) 137.7 (0.3) 52.9 (0.1) 18.8 (0.0) 8.1(0.0) 3. (0.0) 

0.75 210.8 (0.6) 132.1 (0.1) 71.1 (0.1) 36.7 (0.1) 18.7(0.0) 9. (0.0) 

0.20 0 266.2 (0.9) 197.5 (0.8) 85.8 (0.3) 22.2 (0.0) 6.4(0.0) 2. (0.0) 

0.75 210.5 (0.8) 120.4 (0.3) 56.5 (0.1) 26.6 (0.0) 13.0(0.0) 6. (0.0) 

0.50 0 285.8 (0.7) 249.0 (0.7) 156.9 (0.8) 48.S (0.1) 8.3(0.0) 2. (0.0) 

0.75 226.9 (0.8) 129.0 (0.6) 52.3 (0.1) 21.0 (0.0) 9.5(0.0) 4. (0.0) 

Symmetric Shift (Initial State) 

r C 'le =0.1 T/e=0.2 rJe=0.4 'le =0.8 1'/e =l.6 T/e =3.2 

0.06 0 232.1(2.0) 131.9(0.4) 47.1(0.1) 14.2(0.0) 4.5(0.0) 1.6(0.0) 

0.75 171.4(0.8) 85.3(0.3) 32.6(0.1) 10.7(0.0) 3.5(0.0) 1.4(0.0) 

0.20 0 265.5(0.6) 196.8(0.7) 84.4(0.3) 21.0(0.1) 5.3(0.0) 1.8(0.0) 

0.75 196.6(0.9) 101.7(0.3) 39.7(0.2) 13.3(0.1) 4.2(0.0) 1.5(0.0) 

0.50 0 286.2(0.8) 249.4(0.8) 156.6(0.9) 48.3(0.l) 7.9(0.0) 1.9(0.0) 

0.75 221.7(1.2) 121.3(0.8) 44.9(0.1) 14.6(0.0) 4.7(0.0) 1.7(0.0) 

9 
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Table 5. Averages (standard deviations) of ARL's ofFEWMA's for seven correlation types 

using h of in-control ARL = 300 for Single Shift of p = 4. 

Single Shift (Steady State) 

r C 'le =O.l 'le =0.2 11c=0.4 'le =0.8 11e =l.6 11e =3.2 

0.06 0 232.0(1.0) 137.5(0.5) 52.9(02) 18.8(0.0) 8.0(0.0) 3.9(0.0) 

0.75 211.9(0.9) 129.0(1.6) 65.1(3.3) 30.1(3.4) 13.8(2.4) 6.7(1.4) 

0.20 0 267.1(0.6) 196.9(0.9) 87.5(0.7) 22.3(0.1) 6.3(0.0) 2.7(0.0) 

0.75 217.2(3.6) 127.3(4.0) 58.6(1.3) 25.5(0.6) 11.0(1.1) 4.9(0.8) 

0.50 0 285.5(0.9) 248.3(0.9) 156.8(0.3) 48.9(0.5) 8.2(0.0) 2.2(0.0) 

0.75 234.4(4.5) 142.6(8.0) 58.6(4.1) 22.5(0.9) 9.4(0.1) 4.0(0.4) 

Single Shift (Initial State) 

r C 11e =0.1 'le =0.2 11e =0.4 11e =0.8 11e =1.6 11e =3.2 

0.06 0 228.6(1.4) 131.3(0.4) 47.0(0.2) 14.1 (0.1) 4.4(0.0) 1.6(0.0) 

0.75 175.2(2.1) 86.4(1.0) 32.3(0.2) 10.5(0.0) 3.5(0.0) 1.4(0.0) 

0.20 0 267.0(0.8) 196.5(0.7) 86.0(0.7) 21.0(0.1) 5.2(0.0) 1.8(0.0) 

0.75 205.4(4.0) 109.6(4.6) 42.1(1.7) 13.5(0.2) 4.2(0.0) 1.5(0.0) 

0.50 0 285.8(1.1) 248.5(1.0) 156.6(0.3) 48.4(0.4) 7.9(0.0) 1.9(0.0) 

0.75 230.5(4.7) 135.3(8.2) 51.0(3.9) 16.0(0.9) 4.9(0.1) 1.7(0.0) 

' 
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Table 6. h values of FEWMA's of r = 0.1 for various in-control ARL's. 

!Stead~ State~ 

ARL c=0 
c=0.25 c=0.5 C = 0.15 

p 
M-5 P-5 M-5 P-5 M-5 P-5 

300 9.57 9.19 9.20 8.76 8.79 8.24 8.25 

2 500 10.76 10.39 10.40 9.99 9.99 9.50 9.52 

1000 12.32 11.95 11.95 11.61 11.62 11.16 11.16 

300 11.77 10.97 10.99 10.16 10.21 9.23 9.24 · 

3 500 13.04 12.28 12.28 11.55 11.58 10.62 10.70 

1000 14.73 14.03 14.05 13.32 13.37 12.53 12.57 

300 13.83 12.62 12.60 11.45 11.49 10.17 10.15 

4 500 12.99 14.05 14.03 13.01 13.01 11.77 11.75 

1000 16.97 15.95 15.95 14.97 14.99 13.86 13.86 

300 15.74 14.07 14.08 12.61 12.61 10.87 10.86 

5 500 17.10 15.58 15.61 14.28 14.29 12.68 12.65 

1000 18.93 17.60 17.59 16.40 16.46 14.98 15.02 

300 24.08 20.38 20.36 17.34 17.35 13.59 13.56 

10 500 25.75 22.46 22.46 19.74 19.80 16.32 16.35 

1000 27.90 25.01 25.00 22.73 22.75 19.84 19.86 

Initial State 

ARL c=0 
C =0.25 c=0.5 C =0.15 

p 
M-5 P-5 M-5 P-5 M-5 P-5 

300 9.69 9.33 9.34 8.97 9.00 8.59 8.58 

2 500 10.82 10.47 10.48 10.11 10.11 9.71 9.73 

1000 12.35 12.00 12.00 11.67 11.68 11.28 11.28 

300 11.89 11.19 11.21 10.57 10.59 9.93 9.96 

3 500 13.11 12.40 12.41 11.77 11.80 11.09 11.18 

1000 14.77 14.09 14.11 13.46 13.50 12.79 12.82 

300 13.95 12.89 12.90 12.02 12.03 11.24 11.23 

4 500 15.22 14.23 14.22 13.33 13.36 12.48 12.50 

1000 17.01 16.00 16.03 15.15 15.17 14.27 14.27 

300 15.87 14.45 14.47 13.41 13.41 12.47 12.45 

5 500 17.19 15.82 15.86 14.78 14.79 13.75 13.75 

1000 18.97 17.72 17.71 16.65 16.72 15.60 15.61 

300 24.25 21.31 21.30 19.60 19.66 18.32 18.36 

10 500 25.85 23.03 23.04 21.19 21.24 19.66 19.69 

1000 27.94 25.28 25.27 23.47 23.49 21.79 21.86 
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Table 7. Estimated control limits ofFEWMA chart ofr = 0.1 and c = 0.15 using linear 

functions of logarithm of in-control ARL for P-5 correlation type. 

(Steady State) 

p=2 p=3 p=4 p=5 p= 10 

ARL hsim i, hsim h hsim i, hsim i, hsim i, 

100 5.54 5.54 6.19 6.19 6.61 6.61 7.01 7.01 8.08 8.08 

200 7.25 7.25 8.14 8.13 8.83 8.82 9.42 9.44 11.45 11.64 

300 8.25 8.26 9.24 9.27 10.15 10.12 10.86 10.86 13.56 13.73 

400 8.98 8.97 10.09 10.07 11.05 11.04 11.87 11.87 15.14 15.20 

500 9.52 9.52 10.70 10.70 11.75 11.75 12.65 12.65 16.35 16.35 

600 9.96 9.95 11.21 11.19 12.34 12.31 13.29 13.27 17.34 17.27 

700 10.33 10.32 11.62 11.61 12.80 12.77 13.80 13.80 18.11 18.05 

800 10.65 10.63 11.97 11.97 13.19 13.18 14.25 14.26 18.78 18.73 

900 10.92 10.91 12.29 12.29 13.54 13.54 14.66 14.66 19.35 19.33 

1000 11.16 11.16 12.57 12.57 13.86 13.86 15.02 15.02 19.86 19.86 

(Initial State) 

p=2 p=3 p=4 p=5 p= 10 

ARL hsim i, hsim i, hsim i, hsim i, hsim i, 

100 6.30 6.30 7.62 7.62 8.75 8.75 9.95 9.95 15.66 15.66 

200 7.70 7.78 9.06 9.15 10.27 10.37 11.47 11.59 17.28 17.40 

300 8.58 8.64 9.96 10.05 11.23 11.31 12.45 12.54 18.36 18.41 

400 9.25 9.25 10.64 10.69 11.94 11.98 13.17 13.22 19.12 19.13 

500 9.73 9.73 11.18 11.18 12.50 12.50 13.75 13.75 19.69 19.69 

600 10.13 10.14 11.59 11.61 12.96 12.97 14.23 14.24 20.22 20.26 

700 10.49 10.48 11.97 11.98 13.35 13.36 14.64 14.65 20.70 20.74 

800 10.80 10.78 12.29 12.29 13.69 13.70 15.00 15.01 21.11 21.16 
0 

900 11.05 11.04 12.57 12.57 14.00 14.00 15.32 15.33 21.51 21.53 

1000 11.28 11.28 12.82 12.82 14.27 14.27 15.61 15.61 21.86 21.86 
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Table 8. ARL Performance ofFEWMA's of r = 0.1 using h of in-control ARL = 300 for 

Equal Shift for two correlation types. 

(Steady State) 

M-5 P-5 
p C 

11c =0.1 11c =0.2 11c =0.4 11c =0.8 11c =1.6 11c =3.2 11c =0.1 11c =0.2 11c =0.4 11c =0.8 71c =1.6 11c =3.2 

0 229.6 133.1 47.8 IS.I 6.0 2.9 231.7 133.4 48.1 15.0 6.0 2.9 

2 0.25 227.8 129.8 46.9 14.9 5.9 2.8 230.2 131.0 47.0 14.9 5.9 2.8 

0.5 225.4 127.2 45.5 14.6 5.8 2.8 226.0 127.8 45.9 14.6 5.8 2.8 

0.75 219.3 123.9 44.1 14.3 5.7 2.7 221.1 122.8 44.3 14.3 5.7 2.7 

0 237.4 146.0 54.7 16.9 6.6 3.1 239.9 145.7 54.8 16.9 6.6 3.1 

3 0.25 235.1 143.1 54.0 16.9 6.6 3.1 237.5 141.3 53.1 16.6 6.5 3.1 

0.5 234.7 141.1 54.2 17.1 6.6 3.1 234.3 136.4 51.6 16.3 6.3 3.0 

0.75 233.5 140.4 54.1 17.3 6.6 3.1 225.7 130.3 49.2 15.6 6.1 2.9 

0 256.4 172.4 67.2 20.0 7.5 3.5 257.0 174.1 67.6 20.1 7.5 3.5 

5 0.25 249.8 165.8 66.6 20.4 7.6 3.5 250.0 163.5 65.0 19.9 7.4 3.4 

0.5 247.2 163.4 66.0 20.6 7.5 3.4 247.6 156.7 62.8 19.4 7.1 3.3 

0.75 244.2 159.4 65.1 19.8 7.2 3.3 240.2 150.8 59.2 18.1 6.7 3.1 

0 269.3 199.7 87.8 25.4 9.0 4.2 267.7 197.9 87.4 25.3 9.0 4.2 

10 0.25 261.5 193.4 88.6 27.2 9.4 4.1 263.3 192.6 88.9 27.3 9.3 4.1 

0.5 260.1 190.1 88.7 26.7 8.9 3.9 261.5 191.9 88.6 26.8 8.8 3.9 

0.75 245.4 173.0 76.5 22.3 7.7 3.5 243.8 173.1 76.0 22.4 7.7 3.5 

(Initial State) 

M-5 P-5 
p C 

77. =0.1 77. =0.2 77. =0.4 77. =0.8 77. =1.6 77. =3.2 
C C C C C C 

11c =0.1 11c =0.2 11c =0.4 1Jc =0.8 11c =1.6 11c =3.2 

0 229.6 130.6 44.8 12.7 4.0 1.5 231.0 131.1 45.2 12.6 4.0 1.5 

2 0.25 227.2 126.0 42.8 12.1 3.8 1.4 228.0 126.6 43.3 12.1 3.8 1.4 

Cl 0.5 221.8 122.4 40.9 11.6 3.7 1.4 223.3 123.2 41.3 11. 7 3.7 1.4 

0.75 215.5 116.7 38.5 11.1 3.6 1.4 216.4 115.9 38.4 11.0 3.6 1.4 
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• 
0 235.1 142.6 51.4 14.2 4.4 1.6 239.1 142.9 51.7 14.3 4.4 1.6 

3 0.25 231.9 137.8 48.9 13.3 4.1 1.5 234.9 137.3 48.2 13.4 4.1 1.5 

0.5 232.5 133.1 46.2 12.4 3.9 1.5 230.9 128.6 44.3 12.5 3.9 1.5 

0.75 227.4 124.6 42.2 11.5 3.7 1.4 219.8 118.1 40.3 11.5 3.7 1.4 

0 253.2 168.2 63.8 17.0 5.0 1.8 255.2 171.4 64.2 17.1 5.1 1.8 

5 0.25 245.6 157.1 58.2 15.2 4.6 1.6 247.9 156.0 57.0 15.2 4.6 1.6 

0.5 240.6 147.8 52.6 13.6 4.2 1.5 238.4 144.1 49.6 13.5 4.2 1.5 

0.75 230.9 134.0 44.8 12.1 3.8 1.5 225.4 127.6 42.5 11.9 3.8 1.5 

0 267.1 197.4 83.2 22.0 6.2 2.1 264.4 196.1 83.4 22.0 6.3 2.1 

10 0.25 255.9 179.3 70.9 17.9 5.1 1.8 255.7 178.4 71.2 17.9 5.2 1.8 

0.5 246.9 158.6 57.5 14.8 4.5 1.6 253.2 164.0 58.3 15.0 4.5 1.6 

0.75 236.2 136.5 46.0 12.5 4.0 1.5 238.7 140.4 46.6 12.6 4.0 1.5 
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Table 9. ARL Performance ofFEWMA's of r = 0. I using h of in-control ARL = 300 for 

Single Shift for two correlation types. 

(Steady State) 

M-5 P-5 
p C 

11c =0.1 1Jc =0.2 1Jc =0.4 11c =0.8 1Jc =1.6 11c =3.2 1Jc =0.1 1Jc =0.2 1Jc =0.4 1Jc =0.8 11c =1.6 1Jc =3.2 

2 0 231.7 133.4 48.1 15.0 6.0 2.9 225.9 130.1 48.2 15.3 6.0 2.9 

2 0.25 225.0 126.6 46.0 15.1 6.2 3.0 219.9 119.8 44.8 15.8 6.7 3.3 

0.5 218.7 119.3 44.8 15.4 6.3 3.0 210.4 111.8 44.2 17.2 7.6 3.7 

0.75 211.1 115.2 44.9 15.9 6.4 3.1 201.1 109.5 48.2 20.4 9.0 4.3 

0 242.4 146.6 54.6 17.1 6.6 3.1 240.3 145.5 55.4 17.1 6.6 3.1 

3 0.25 227.9 128.2 49.0 17.6 7.4 3.6 221.6 124.8 48.2 18.0 7.8 3.8 

0.5 215.8 120.2 49.0 19.4 8.3 4.0 209.0 115.1 48.8 20.7 9.4 4.6 

0.75 208.7 119.6 54.3 22.7 9.5 4.4 200.1 116.0 56.3 26.2 12.1 5.8 

0 254.8 172.0 67.4 20.1 7.5 3.5 259.2 175.4 67.0 20.2 7.5 3.5 

5 0.25 230.3 138.6 55.8 21.4 9.3 4.5 230.3 135.3 54.3 21.6 9.7 4.8 

t 0.5 219.7 128.9 58.5 25.2 11.2 5.3 216.1 125.2 57.6 26.4 12.6 6.3 

0.75 218.1 135.2 68.5 31.3 13.4 6.0 215.6 133.1 70.3 35.0 17.1 8.4 

0 267.7 198.9 88.5 25.4 9.0 4.2 268.7 201.4 88.1 25.4 9.0 4.2 

10 0.25 238.7 150.1 67.6 29.2 13.4 6.5 234.1 145.8 66.4 29.4 14.0 7.0 

0.5 230.6 148.6 77.0 37.4 17.5 8.2 227.1 146.2 76.9 38.5 19.2 9.8 

0.75 227.8 158.7 90.6 45.6 20.9 9.2 225.2 157.5 92.2 49.3 25.2 12.8 

(Initial State) 

M-5 P-5 
p C 

1Jc =0.1 7Jc =0.2 1Jc =0.4 1Jc =0.8 1Jc =1.6 11c =3.2 11c =0.1 11c =0.2 11c =0.4 1/c =0.8 1Jc =1.6 11c =3.2 

0 231.0 131.1 45.2 12.6 4.0 1.5 226.8 128.3 45.4 12.8 4.0 1.5 

2 0.25 222.1 122.2 42.0 12.1 3.8 1.4 216.3 115.0 40.3 12.2 3.9 1.5 

0.5 214.6 113.6 39.1 11.6 3.7 1.4 204.8 104.6 37.3 11.8 3.8 1.4 

0.75 206.2 105.7 36.9 11.1 3.6 1.4 191.l 95.4 35.3 11.3 3.6 1.4 

0 240.1 143.6 51.5 14.4 4.4 1.6 239.0 142.8 52.0 14.4 4.4 1.6 

" 3 0.25 223.7 122.3 43.2 13.2 4.2 1.5 219.0 119.1 42.6 13.1 4.2 1.5 

0.5 210.6 110.1 39.3 12.4 4.0 1.5 200.6 103.7 38.4 12.3 3.9 1.5 
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0.75 191.8 97.7 36.4 11.6 3.7 1.4 184.0 93.4 35.8 11.6 3.7 1.4 

0 253.1 169.3 63.8 17.2 5.1 1.8 258.0 172.6 63.5 17.3 5.1 1.8 

5 0.25 226.1 128.8 47.0 14.6 4.6 1.6 225.7 126.2 45.4 14.5 4.6 1.6 

0.5 207.2 109.5 41.2 13.2 4.2 1.5 201.1 104.7 39.8 13.2 4.2 1.5 

0.75 188.7 96.9 36.7 11.9 3.8 1.5 182.7 92.2 35.7 11.9 3.9 1.5 

0 266.6 197.1 84.4 21.9 6.3 2.1 267.4 197.5 84.0 21.9 6.2 2.1 

10 0.25 227.0 132.2 49.9 16.4 5.2 1.8 224.8 127.8 49.0 16.1 5.2 1.8 

0.5 198.0 106.7 41.8 14.1 4.5 1.6 201.3 105.4 41.5 13.9 4.6 1.7 

0.75 175.5 90.3 35.8 12.2 4.1 1.5 177.1 90.0 35.5 12.1 4.1 1.6 

't 

0 
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Table 10. Optimal FEWMA schemes of in-control ARL's 300, 500, 1000 with a fixed c for p 

= 4 and steady state in Equal Shift. 

(ARL=300) 'T/c = 0.1 'T/c=0.2 'T/c=0.4 'T/c=0.8 'T/c = 1.6 'T/c = 3.2 

ARLmin 199.1 111.5 49.4 18.31 6.34 2.15 

c=0.0 rmin O.Ql 0.015 0.03 0.09 0.23 0.63 

rrange 0.005-0.014 0.01-0.019 0.022-0.04 0.07-0.1 0.18-0.25 0.55-0.72 

ARLmin 167.7 86.3 38.2 15.50 5.82 2.13 

C = 0.85 rmin 0.006 0.011 0.023 0.07 0.19 0.6 

rrange 0.004-0.009 0.008-0.014 0.016-0.03 0.05-0.08 0.15-0.23 0.45-0.68 

ARLmin 166.2 85.2 37.3 14.91 5.63 2.07 

c= 0.90 rmin 0.006 0.011 0.023 0.07 0.2 0.6 

rrange 0.005-0.008 0.008-0.016 0.017-0.03 0.06-0.08 0.18-0.22 0.48-0.68 

ARLmin 165.9 84.2 36.3 14.18 5.34 1.97 

rmin 0.006 O.Ql 0.025 0.08 0.2 0.6 

c= 0.95 rrange 0.005-0.01 0.009-0.016 0.019-0.04 0.06-0.1 0.16-0.25 0.49-0.7 

(ARL=500) 'T/c = 0.1 'T/c=0.2 'T/c = 0.4 'T/c=0.8 'T/c = 1.6 'T/c= 3.2 

ARLmm 276.7 142.6 57.8 20.65 6.91 2.30 

c=0.0 Tmin 0.01 0.015 0,03 0.09 0.2 0.61 

rrange 0.004-0.007 0.009-0.016 0.02-0.03 0.06-0.09 0.16-0.24 0.49-0.65 

ARLmm 232.9 86.3 46.2 17.85 6.45 2.30 

c= 0.85 rmin 0.005 0.011 0.023 0.07 0.19 0.52 

rrange 0.004-0.008 0.006-0.012 0.015-0.03 0.04-0.09 0.14-0.22 0.44-0.60 

ARLmm 230.6 85.2 44.9 17.24 6.25 2.25 

c= 0.90 rmin 0.005 0.011 0.023 O.Q7 0.19 0.54 

rrange 0.005-0.008 0.007-0.013 0.017-0.03 0.04-0.09 0.14-0.22 0.45-0.60 

ARLmin 228.9 84.2 43.6 16.31 5.95 2.17 

c= 0.95 rmin 0.006 0.01 0.025 O.o7 0.19 0.56 

rrange 0.005-0.01 0.007-0.013 0.017-0.04 0.05-0.1 0.14-0.23 0.41-0.65 

(ARL= 1000) 'T/c = 0.1 'T/c=0.2 'T/c = 0.4 'T/c=0.8 'T/c = 1.6 'T/c= 3.2 

ARLmm 412.5 187.9 69.9 23.58 7.68 2.49 

c=0.0 rmin 0.004 0.015 0.024 0.07 0.18 0.51 
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rrange 0.003-0.005 0.006-0.011 0.017-0.03 0.05-0.08 0.14-0.22 0.43-0.61 

~ 354.3 151.7 58.3 21.57 7.32 2.52 

rmin 0.006 0.009 0.018 0.05 0.17 0.47 

c = 0.8S rrange 0.003-0.00S 0.006-0.011 0.013-0.024 0.04-0.07 0.13-0.2 0.38-0.S6 

ARLnun 3S1.7 149.4 S7.0 20.60 7.16 2.49 

Ymin 0.006 0.009 0.019 0.05 0.16 0.48 

c=0.90 rrange 0.004-0.006 0.006-0.011 0.014-0.02S 0.04-0.07 0.12-0.2 0.3S-0.57 

ARLnun 3S2.1 147.07 55.3 19.69 6.85 2.40 

rmin 0.006 0.009 0.021 0.06 0.17 0.47 

c = 0.9S rrange 0.003-0.006 0.007-0.011 0.017-0.025 0.05-0.07 0.13-0.2 0.31-0.64 

! 

D 
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Table 11. Ambulatory monitoring data 

0 

Week SBP DBP MAP HR Week SBP DBP MAP HR 
161 122.96 74.26 93.63 81.35 162 127. 77 76. 71 96. 68 86.08 
163 124.54 75.01 96.51 82.10 164 123.06 73.81 94.44 81. 33 
165 125.73 76.03 95.82 81.82 166 129.08 77. 58 98.16 85. 62 
167 130.24 78.81 100.59 87.31 168 129.03 78.10 99.24 86.94 
169 129.31 78.90 100.02 85.19 170 128.07 77.78 97. 64 84.41 
171 130.24 78.58 99.91 85.67 172 128.50 76. 72 98.62 85.33 
175 128. 62 78.75 98.98 83.08 176 130.70 78.94 100.16 85.02 
177 126.65 77.28 96.96 84.61 178 128.82 77.13 98.24 87.00 
179 124.40 73.42 94.81 84.19 180 125.71 75. 97 96.32 84.34 
181 125.50 76.02 96.57 86. 72 182 123.44 75.58 96.44 83.98 
183 122.31 73.38 93.04 80.14 184 122.08 73.00 92.58 81. 60 
185 124.25 75.68 94.96 80.71 186 124. 50 75.12 95.33 80.83 
187 125.02 76.72 97.74 81. 65 188 125.28 76. 26 96.10 82.14 
189 126. 75 77.08 97.81 80.47 190 124.55 76. 73 96.25 81. 35 
191 132.39 80.23 101.23 87.75 194 128.52 78. 75 99.45 83.38 

Table 12. FEWMA of ambulatory monitoring data 

Week Components of y vector T2 
161 -0.167 -0.164 -0.168 -0.157 6.613 
162 -0 .167 -0 .164 -0.171 -0.146 10.436 
163 -0 .257 -0.253 -0. 257 -0.230 7.188 
164 -0.396 -0.391 -0.394 -0.359 10.412 
165 -0.449 -0.441 -0.447 -0.408 11. 933 . 166 -0.386 -0.380 -0.388 -0.341 11.066 

'• 
167 -0. 265 -0.259 -0.265 -0.213 9.037 
168 -0.194 -0.187 -0.193 -0.133 9.945 
169 -0.126 -0.115 -0.122 -0.062 9.877 
170 -0.120 -0.108 -0 .119 -0.052 11. 818 
171 -0.050 -0.038 -0.049 0.020 11.488 
172 -0.042 -0.034 -0.041 0.033 10.787 
175 -0.027 -0.014 -0.025 0.047 11.005 
176 0.040 0.052 0.041 0.112 10. 722 
177 0.002 0.019 0.003 0.083 13.546 
178 0.023 0.037 0.023 0.113 15.163 
179 -0.106 -0.096 -0.107 -0.003 15.303 
180 -0.164 -0.152 -0.164 -0.050 17 .267 
181 -0.194 -0.180 -0.193 -0.063 21.173 
182 -0.276 -0. 254 -0. 267 -0.129 24.111 
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