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1. Introduction and summary. Let xl' x2' . •. be independent N(µ,a2 ) 

with µ and a2 unknown, and let a,~' 6 be given positive constants. 

We wish to test the hypothesis 

in such a way that 

where is a given constant, 

for all o < a2 <co, 

for all· O < a2 < co • 

C. Stein [6] has given a bio-stage procedure for accomplishing this; it involves 

choosing an initial sample size n. If n is chosen poorly in relation to the 

unknown a2 , the expected sample size of Stein's procedure will be large in 

comparison to the sample size which could be used if a2 were known; moreover, 

two stage sampling is asymptotically inefficient as a ~co, irrespective of the 

choice of n. We give a sequential procedure which, while satisfying (1) and 

(2) only approximately, is asymptotically efficient and seems to be reasonably 

efficient (with expected sample size about the same as in Stein's .procedure when 

the optimal value of n is used) for all finite a2 • 

2. The case a2 known. For purposes of comparison we sketch the usual 

procedure to accomplish (1) and (2) when a2 is known. Let f(x) denote the 

normal (0,1) p.d.f. and define a, b, N
0 

by 

(3) J
a+b 

f(x)dx = 13, 
-a+b 

Reject H
0 

iff I~ - µ
0
1 > ~8 (for simplicity we ignore the fact that N

0 
0 

need not be an integer), where by definition 

1 n 
X = - .L. Xi 

n n i=l 
(n ~ 1). 

It is easily seen that (1) and (2) hold. Thus as a possible measure of efficiency 

for any test which accomplishes (1) and (2) when a2 is unknown, we may use the 

ratio of N
0 

to the expected sample size of the test in question. 
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- 3. Stein's procedure when a2 is unknown. 

of Student's t with n-1 d.f. and define 

a +b 

Let f (x) n 

b by n 

(4) 1
. n n 

fn (x)dx = f3; 
-a +b 

n n 

Let n be any fixed integer~ 2 and set 

(5) 

where 

N = least integer i!i max(n, bn::n
2

) 

s 2 = 
n 

.. 1 
n-1 

a s 
Reject H0 iff I~ - µ0 j > ,; n 

(n ~ 2). 

denote the p.d.f. 

It is well-known that (1) and (2) hold. However, from (4) and (5) 

(6) EN~ E 

NO 
hence EN < 1 for all a, and in particular 

(7) 
b2 

b 2 
n 

< 1. 

The expected sample size depends in a computable way on n and a/8; we shall 

later give a table showing this for 0: = .05, f3 = .025. It will be seen that if 

n is poorly chosen, ·:the ratio N0/EN may be quite small. 

(8) 

4. A sequential procedure. Let 

N = first odd integer ~ n0 such that sn 2 ~ d2.n 
a 2 

n 

with . n
0 

~ -3 a fixed odd integer, and where we have set 

(9) d = a8 
b 
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and let 

(10) * N = N + m, 

where m is any fixed integer~ 0. Reject H0 iff lxN* - µ0 1 > d. 

It follows easily from [1] and [2] that 

( 11) 

( 12) 

(13) 

N 
lim 0 
a-+oo EN* = 1 , 

lim P(Reject H0) = a 
a-+oo 

lim P(Accept H0) ~ ~ 
a-+oo 

if µ = µo 

if lµ-µol ~ 8 

(in fact, these asymptotic properties hold even if the common distribution of 

the x. is not normal), so that this procedure is asymptotically satisfactory 
i 

as a -+oo. It remains to examine its performance for finite values of a and 

to compare it·with the procedure of Section 3. 

We have by [3] and [5], 

(14) P(Accept H0 ) = P(jxN* - µ0 1 ~ d) = E P(N = n) 
n 

Jn+m ( d+µo-µ) 
a . . J f(x)dx 

Jn+m ( -d+µo-µ) . 
a 

where the summation is over all odd values of n ~ n0 • The probability distri­

bution of N depends on the parameter ~ = a/d and has been computed in [5] 

using a method given in [3]. Thus 

( 15) whenµ= µo, P(Reject H
0

) 
00 

= 2 E P(N = n) · 1 f(x)dx = ip(>..), 
n · Jn+m 

say, 

,:--

From computations in [5] for the case a= .05, ~ = .025, a= 1.96, b = 2a = 3.92, 

d = 8/2, n0 = 3, m = 4 it seems that 

(16) sup ~(~) = .05127. 
o<~<oo 
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(Actually, ~(A)= .05127 for A= 3.5, and from that value up to A= 6.75 

~(A) is increasing; its limit as A ~00 is from (12) equal to .05. A 

rigorous proof of (16) is lacking.) Thus presumably (1) holds almost exact--ly. 

( 17) 

Concerning (2), we have from (14) 
yn+m. (d+6) 

a. . 
when Iµ - µ01 ·~ 6, P(Accept H0) ~ E 

n 
), . 1·f(x)d~· P(N = n . 

00 

~; P(N = n) • Jf(x)dx 
~n+1~ ( ;:,d+6) 

(j . 

vn+m' ( -d+5) 
(j 

For the case under consideration, in which 6 = 2d, we therefore have by (16), 

{18) when Iµ - µ0 j ~ 8, 
00 

P{Accept H0) 
1 ~ E P(N = n) 1 f{x)dx = ~(A) /2 

n Jn+m 
-">-.-

~ ½sup ~(A) = .02564. 
O<A<00 

(A more exact computation, using the first sum in (15) gives .02545 as the upper 

bound.) Thus presumably (2) holds almost exactly. 

It remains to consider the expected sample size EN* of this procedure, 

which depends on the parameter A= a/d. This is given in the accompanying 

table, reproduced from [5], for values of A up to 5.0. A more exhaustive 

(N ·)-1 
table of EN* and E~* may be found in [5]. 
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"-=aid 1.0 

241 241 

121 121 

81 81 

61 61 

51 51 
n 

41 41 

31 31 

i 21 21 

11 11 

6 7.9 

EN* 10.6 

NO 3.8 .. 

-

Expected sample size using Stein's two~stage 
procedure, condensed and revised from [4"] • 
EN-3~ and No are included for comparison with 
the sequential method and the fixed sample 
size case, respectively. 

a= .05, e = .025, d = 8/2, no= 3, m = 4 

1.25 1.667 2.0 2.5 3.333 I 5.0 
I 

241 241 241 241 241 241 

121 121 121 121 121 121 
'( 

81 81 81 81 81 101 

61 61 61 61 61.1 100 

51 51 51 51 52.6 101 

41 41 41 4Ll 47.9 102 

31 31 31 32 46.6 104 

21 21 21 28.2 48.4 109 

11 15.1 · 20.2 31.1 55.L 124 

10.9 18.5 . 46.4 41.3 73.4 165 

12.4 16.5 · 20.7 29.0 47.5 101.1 

~ 

lj 

6.0 10.7 ·15.4 24.0 42.7 96.o 

N 5 -

co 

b2a2 
IV~ 

52 

b2a2 
N-

52 

b2a2 
=-

52 



-

5. An alternative sequential procedure. Let 

(19) N = first odd integer n ~ n
0 

such that sn2 ~ i2g 
n , 

_ . aN*sN* 
and reject H0 if£ I~ - µ0( ~ ~ where again N* = N + m, m a fixed 

'1.N* 
integer~ O. (This is a natural modification of the test of Section 3, just as 

the test of Section 4 was a natural modification of the test of Section 2.) We 

remark that since 

we have 

(20) 

2 n-2 1 
s -- -n - n-1 • n-2 

n-1 
E 

i=l 

(x -i )2 

- )2 n n (xi-x + 1 n n- (n~ 3), 

, 

where the left-hand inequality holds only for N > n
0

• 

JN*<¥-1.t> 
Since ---- is N(0,1) given N = n, when H0 is true we have 

a 

{JN*I ~*-µo I aN* sw ) 
P(Rejec~ ;H0 ) = ~ P(N = n) • P \ a £!i c:t N = n 

(
~1¥-~1 aN*JN*-2 8 ) 

~ P(N=no) + I: P(N = n) • p ---- ~ b N = n 
n>no a a ~*-1 

(21) 

P(N = n).J;(x)dx 
an+m 8 J-n+_m __ ...... 2 

, 

c,bn+m-1 

nnd when Iµ - µ.01 ~ 5 we have 

(22~ P(A H ) ( ) 
(-

.,.a_N* __ sN_* + (1to-11l JNa* ~ JNa* (-~*-µ.) ccept O. = t P N = n • P ~ ~ ~ 
n a 

c!_ . _aN* sN* ( ) [rT ) 
sa + I-lo-µ -;- N = n 

a 

~ E P(N = n) 
n 

a,Jii+m ~n+m +l' 
a \bn+m. } . J f(x)dx 

8Jn-fm (-;ni1a J 
a n+m 1 
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The asymptotic relations (11) - (13) hold for this test also. The performance 

for finite values of a2 is being computed, and results will be available shortly. 

It should be observed that the tests of this and the preceding section are 

sequential only in fhat they merely attempt to estimate sequentially the 

nuisance parameter a2 of the test of Section 2, and not in the sense of Wald's 

sequential probability ratio test, which has an entirely different motivation. 

The ultimate sequential test that will satisfy (1) and (2) while reducing the 

expected sample size as much as possible remains to be devised • 
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