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As the true status of a test specimen is seldom known with certainty, it is necessary to 
compare the performance of new diagnostic tests with those of a current accepted but 
imperfect "gold standard". Errors made by the gold standard mean that the apparent 
sensitivity and specificity of the new test relative to the true status are biased, and do not 
estimate the new method's "true" sensitivity and specificity. The traditional resolution of this 
problem was "discrepant resolution", in which the cases in which the two methods disagreed 
were subjected to a third "resolver" test. Recent work has pointed out that this does not 
automatically solve the problem. A sounder approach would go beyond the discordant cases 
and test at least some concordant cases with the resolver also. This leaves some issues 
unresolved. One is the basic question of the direction of biases in various estimators. We 
point out that this question does have a simple universal answer. Another issue, if one is to 
test a sample of concordant cases rather than all cases, is that of how to compute estimates 
and standard errors of the measures of test performance, notably sensitivity and specificity of 
the test method relative to the resolver. Expressions for these standard errors are given and 
illustrated with a numeric example. It is shown that using just a sample of concordant cases 
may lead great savings in assays. The design issue of how many concordant cells to test 
depends on the numbers of concordant and discordant cases. The formulas given show the 
how to evaluate impact of different choices for these numbers and hence settle on a design 
that gives the required precision of estimates. 

Keywords: Bias, diagnostic test, misclassification, sensitivity, specificity, diagnostic 
performance, test evaluation. 
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Introduction 

A common problem faced in diagnostic testing is of determining the diagnostic performance of an "index 
test," that is, a test that yields a positive or negative result rather than a quantitative measurement. The 
performance of such a test is usually summarized by its sensitivity and specificity; sensitivity being the 
proportion of truly positive samples that yield positive test results, and specificity the proportion of truly 
negative samples that yield negative test results. · 

In an ideal world, one can estimate sensitivity-and specificity by applying the index test to a series of 
samples whose true disease status is known with certainty. Estimation of sensitivity and specificity is 
straightforward in this case; and likewise the associated confidence intervals are easy to calculate, see for 
example Fleiss, 1973. It is more often the case, however that perfect diagnosis of the samples is 
impossible, unethical, or impracticably expensive to obtain and one must settle for an imperfect reference 
method. Misclassification by the reference method introduces biases into the sensitivity and specificity 
estimates. These biases are usually downward and under some circumstances, can be severe: Valenstein 
(1990) offers a hypothetical example in which an index test's true sensitivity of 98% would appear to be 
67.1%, a downward bias of30.9 percentage pointsl 

One attempt to address these biases has been through classical "discrepant analysis," or "discrepant 
resolution," whereby samples yielding different test results by the index and reference method are retested 
by a third "resolving" method. Variations on this design have been discussed such as retesting only 
apparently false negatives or only apparently false positives. While discrepant analysis of any form is 
intended to yield additional information about potentially problematic samples, it introduces its own set of 
biases, always in an upward direction. There has been some debate concerning whether these biases more 
or less counteract misclassification biases, and whether discrepant resolution is the lesser of two evils (see 
Hadgu, 1997; and Green, 1998). In this paper, we explore the origins of the biases introduced by 
misclassification and classical discrepant analysis, and find that they do not permit simple summaries. 

A number of authors have proposed model-based estimates, or estimates that make use of prior 
information, to avoid misclassification bias without retesting any samples. The literature on one such 
method, Latent Class analysis (LCA) is large, and some who have applied LCA to diagnostic tests include 
Hui and Walter (1980), Joseph et. al. (1995), and Rindskopf and Rindskopf(1986). Others, such as 
Staquet et. al. ( 1981) have used mathematical adjustments using prior knowledge. All of these efforts 
assume that index and reference tests err independently, a highly questionable assumption in most cases. 
Recently Qu et. al (1996), Qu and Hadgu (1998), and Hadgu and Qu (1998) have generalized LCA in an 
effort to allow for the more realistic assumption of conditional dependence between the two methods 
being compared. 

Meier ( 1998) suggested a modified form of discrepant analysis whereby the resolving method is applied 
to a random sample of concordant samples in addition to the discrepant samples. This idea is appealing, 
however no method of statistical analysis for this design has been documented. We begin to fill this void 
by proposing a method for estimating sensitivity and specificity, and for calculating associated 
approximate confidence intervals. This method does not assume conditional independence, nor is it based 
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on a latent class model. We apply the method to a hypothetical example, and find that this study design, 
analyzed with our proposed method, makes efficient use of resolving tests. 

Estimating Sensitivity and Specificity When Sample Status Is Known 

Suppose an index test is applied to a group of subjects whose true disease status was known. Setting up 
the 2 x 2 cross-classification of the subjects test result by their true disease status leads to the unbiased 
estimation of the test's sensitivity and specificity. Under a binomial sampling ~odel, this also yields 
standard errors of the estimates. Confidence intervals can also be cal~ated in several different ways. 

In symbols, write the 'true' classification table 

Table 1: 

Index test 

Positive 

Negative 

Total 

True status 

D N 

n+o n+N 

Total 

n++ 

The estimated sensitivity and its estimated standard error are given by 

and the corresponding formulas for specificity are 

(1) 

(2) 

In reality, it is seldom possible to rely completely on subjects whose true disease status in known. There 
are two common reasons for this. One reason is that it is sometimes possible but difficult or expensive to 
establish a subject's true disease status. The implication of this is that at most, some of the subjects can be 
diagnosed exactly. The second reason is that there may be no generally accepted and/or definitive way of ~ 
determining whether a subject does or does not have the disease. 

In both cases, one is forced to use an imperfect gold standard as the reference. This contaminates the 
'true table', giving the observed table. 
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Table 2: Observed Table 

Reference test 

Index test Positive Negative Total 

Positive Dn n12 n1+ 

Negative D21 D22 D2+ 

Total D+1 n+2 D++ 

The 'apparent' or 'relative' sensitivity and specificity of the index test are 

Apparent sensitivity= nn ln+1 
Apparent specificity = n22 I n+2 

4 

The contamination of the true table by errors in the reference method results in biased estimates of 
sensitivity and specificity. These biases however are not at all simple to characterize - even as to the 
direction of the bias. The difficulty in determining the potential biases can be illustrated by subdividing 
the true table's columns by the reference diagnosis as shown in Table 3. 

Table 3: 
Truth 

D N 

Reference Reference 

Positive Negative Positive Negative Total 

Positive nm-a a nm C nlN-C DIN D1+ 

Test Negative Dm-b b Dm d D2N-d D2N D2+ 

Total n+o-(a+b) a+b D+D c+d D+N-(c+d) D+N D++ 

The letters a, b, c and d represent errors by the reference method; a and b are false negatives, c and dare 
false positives. Rearranging the table according to true diagnosis within reference result gives the 
following table. 
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Table 4: 
Reference 

Positive Negative 

Truth Truth 

D N Total D N Total 

Positive n10-a C nm-a+c a n1N-C nu-r+a-c 

Test Negative nm-b d nm-b+d b n:w-d n~b-d 

Total n+o-(a+b) c+d n+o-a+c-b+d a+b n+~(c+d) n+~a-c+b-d 

Collapsing over the true disease status results in this observed table as shown in Table 5. 

Table 5: 
Reference Total 

Positive Negative 

Test Positive n11=n10-a+c n12=n1N+a-c n1+ 

Negative n21=n20-b+d n22=n~b-d n2+ 

Total n+1=n+o-( a+b )+( c+d) D+2=n+w( a+b )-( c+d) n++ 

5 

Total 

D1+ 

n2+ 

n++ 

Using the results from Table 5, the apparent sensitivity and specificity of the index test can be written 

Apparent sensitivity = (nm-a+c) I [n+D-a+c-b+d] 
Apparent specificity= (n2N+b-d) I [n+N+a-c+b-d] 

(3) 

These expressions show that the connections between the true and the apparent sensitivity and specificity 
are not straightforward. Depending on how errors in the reference method distribute among the four 
cells, the apparent sensitivity and specificity may be biased either upward or downward. It is also 
possible for the net errors c-aand b-d to be zero, resulting in unbiased apparent sensitivity and specificity 
estimates. Sweeping generalizations about the bias in the original relative sensitivity and specificity, 
therefore, require considerable caution. 
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Using a resolver in classical 'discrepant analysis'. 

The presence of bias in the apparent sensitivity and specificity leads to the idea of using a further test to 
locate and correct the errors in the reference method. In its classic form, 'discrepant analysis' tests the 
cells where the index was positive and the reference negative and uses this to calculate a 'resolved' 
sensitivity. A similar resolution of the cases ~here the test as negative and the reference positive is used 
in the same way to get a 'resolved' specificity. 

As has been pointed out recently, this traditional approach to discrepant analysis does not remove all 
biases in the apparent sensitivity and specificity. If a perfectly specific test is used to resolve the cases in 
the top right cell, only the a cases in which the reference method gave a false negative will be corrected. 
It will not identify the c cases in which the reference method gave a false positive, or the b+d cases where 
the index test was falsely negative. Because the bias involves all four quantities a, b, c and d, knowing 
the value of only one of these quantities cannot lead to an unbiased estimate of sensitivity. 

Similarly, the use of a perfectly sensitive resolver on the lower left cell of the table does not lead to an . 
unbiased estimate of specificity. 

While classical discrepant analysis leads to 'resolved' sensitivity and specificity estimates that are always 
higher than the apparent sensitivity and specificity, it is not automatically true that it is more biased than 
the apparent figures. In different circumstances either of these potentially biased estimates may be closer 
to the true sensitivity and specificity and neither is guaranteed to be the less biased. 

Using an exact resolver to produce unbiased sensitivity and specificity estimates 

Classical discrepancy analysis can not be relied upon to produce unbiased estimates of the index method's 
true sensitivity and specificity. As the expanded table (Table 3) shows, producing unbiased estimates of 
the index method's sensitivity and/ or specificity requires either the exact values or estimates of, at a 
minimum, the differences (c-q) and (b-d). These can be found most directly from the full 2x2x2 table 
showing the subject's true status along with the classification by the index and the reference tests. Note 
that this may be thought of as 'resolving' not just the discordant cells of the original 2x2 table, but also 
the concordant cells. 

Write P iJk for the true probabilities in the 2x2x2 table. The index i refers to the index test,j to the 
reference test, and k to the true status. Use the value 'l' for i, j and k to indicate as positive test, or a 
diseased status; and the value '2' to indicate a negative test, or a non-diseased status. Use a'+' sign in 
place of a subscript to indicate a marginal total over that subscript. For example P if+ refers to the cross 
tabulation by the index and reference tests, without regard to the true disease status. 

The prevalence is given by P ++1, the marginal probability that a subject is diseased. The index test has a 
true sensitivity of P1;1/P ++1 and a true specificity of P2+2IP ++2. 

Estimates of the 8 probabilities in the 2x2x2 table can be found by taking n subjects and testing them 
using the index and reference tests and also the exact resolver. Write ny1c for the number of subjects in the 
i, j, k cell of the table. Estimates of PiJk and its corresponding standard error are given by 
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niik se = P1j1c (1- Pu1c) 
pijk=n, n (4) 

We get estimates and standard errors of the true sensitivity and specificity by margining out the reference = 

test. 

Sampling approaches 

This whole scenario as detailed above, however is unrealistic. If the exact resolver could reasonably be 
used on all cases, it would likely be used as the reference method. Often it is not used is because it is 
difficult or expensive. In this case, it cannot be used on all n cases but it could reasonably be used on a 
subset of the cases. This raises the possibility of subsampling some or all of the cells of the 2x2 table and 
evaluating those cases with the exact resolver. 

Returning to the collapsed 2x2 table defined by the index and reference tests, the observed frequencies 
are: 

r····························· Reference Test i 

Positive Negative ! Total 
Positive nu+ n12+ I n1++ I Index Test .. N~gative n21+ n22+ i n2++ 
Total n+1+ n+2+ In 

The estimates of the 2x2 marginal probabilities P ij+ and standard errors are give by: 

se= 
Pu+ (1- Pij+) 

n 
(5) 

We now test some possibly smaller number mu of these nij+ subjects using the exact resolver, and find that 
a proportion, r,1 of these are diseased. Then ru estimates the conditional probability that a subject is 
diseased given that the subject is classified in cell iJ by the index and reference tests. Its standard error is 
given by 

(6) 

This estimate of the conditional probability of disease given classification iJ and the estimate of the 
marginal probability P if+ can be multiplied to get an estimate of the joint probability P ui .· The standard 
error of this estimate can be found approximately using the 'delta' method by 
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Var(XY) = [E(X)]2Var(Y) + [E(Y)]2Var(X) 

as 

( )2 _ (p )2 r;/l-'9-) + ( )2 Pti+(l- Pif+) 
setil - ii+ T;i 

miJ n 
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(7) 

From these estimates and standard errors, we can derive those of the true sensitivity and specificity. The 
probability P1+1 of the index method giving a correct positive is then estimated as 

(8) 

The probability P2+1 of the index method giving a false negative is estimated as 

(9) 

The true sensitivity can then be estimated by 

(10) 

Standard errors for derived quantities 

While the estimates of true sensitivity and specificity can be derived in a straightforward manner, 
derivation of their standard errors is more complicated because it is necessary to take into account the 
correlation between the different cells in the table. Turning to the original 2x2 table, the four cell 
frequencies follow a joint multinomial distribution, with the covariance between any two cells is given by 

(11) 

The resolver frequencies ru involve separate tests of the four cells and can be expected to be statistically 
independent of each other. Ifwe consider two generic terms involved in the estimates of true sensitivity 
and specificity, Pu+r ii and P1an+r1an, their covariance is estimated by 

(12) 

Using these pairwise covariances, we can calculate the standard error of the estimates of true positives, 
that of true negatives, and their covariance. Likewise, the variances of prevalence and (I-prevalence) can 
be calculated. In general, the form of the variance of a sum of the Pu+ru is given by Equation 13. 

Var(L L Pti+,,i) = L LVar(pif+rii) + 2L L Cov(pif+rii, pkm+r 1rm) (13) 
i j i j iSk jSm 

Specifically, the estimate of the variance of probability of true positive is given by: 
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Var(P11'i1 + Pt2'i2) = Var(Pt1'i1)+Var(p12'i2)+2Cov(Pt1'i1,Pt2'i2) 

= (p )2 'i 1 (1 - 'i 1) + (r. )2 P11 (1 - P11) + (p )2 'i2 (1 - 'i2) 
11+ 11 12+ 

mu mu m12 
(14) 

+ ('i
2 

)2 P12 (1 - P12) _ 2 P11+P12+'i 1'i2 
m12 n 

These terms are necessary for computing that standard errors for sensitivity and specificity that are used .. 
in generating confidence intervals for the estimates. Variances for sensitivity and specificity can be 
computed using the by using the delta method to generate an expression for the variance of the ratio of 
two correlated variables (A,B). 

var(AJ = Var(A) + [E(A)]
2 

Var(B)- 2 E(A) Cov(A B) 
B [E(B)]2 [E(B)]4 [E(B)]3 ' 

In terms of sensitivity, this becomes: 

Tr. (True Positives) Var(True Positives) [E(True Positives)]2 
Tr. (P al ) yar ----- =-------+-------yar re~ ence -

Prevalence [E(Prevalence )]2 [E(Prevalence )]4 

E(True Positives) .. 
2 3 Cov(True Pos1t1ves, Prevalence) 

[E(Prevalence )] 

A (1-a)*100% confidence interval can be generated for sensitivity (specificity) using a normal 
approximation. 

Example 

(15) 

(16) 

A numeric example may help to clarify the forest of symbols. The following numbers are not from any 
actual data set, but are chosen to illustrate the methods of calculation. Consider a condition with a 
prevalence of 65% and classified by an index test and an imperfect resolver, leading to the data 

Reference test 
.. ~ii+ Positive l Negative Total 

Index test Positive 1800 l 600 2400 
.. N~gative 200 / 400 600 

································· 
Total 2000 ! 1000 3000 

yielding the table of proportions 
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Table 7: 
Reference test 

.P..1;+ Positive Negative 
Index test Positive 0.600 0.200 

Negative 0.067 0.133 

Suppose we decide to test 200 randomly selected specimens from each of the four cells in this table with 
a perfect resolver, and get the following positives by the resolver:-

Table 8: 
Resolver Test Positive 

Reference test 

Index test Positive 
Ne ative 

Using the probabilities computed in Tables 7 and 8, the joint probabilities (pi/1 = Pt.i+ r,.i) can be computed. 
This leads to the estimates of the probabilities of the full 2x2x2 table. We show only the ij+ cells in 
Table 9 - those in which the truth is that the subject is diseased since P iJ2 = P fi+ - P u1, the omitted cells 
(true negatives) can be found by simple subtraction of Table 9 from Table 7. 

Table 9: 

t" ........... Reference test 

i.P.tl.11 Positive Ne~ative 
l Index test l Positive 0.570 0.080 r ......... 

I Ne~ative 0.010 0.020 

Using the in Table 9, the following parameters can be estimated: 

True positive by the index test 
False negative by the index test 
Prevalence 
True sensitivity of the index test 

0.57 + 0.08 = 0.65. 
0.01 + 0.02 = 0.03. 
0.65 + 0.03 = 0.68 
0.65/0.68 = 0.956, or 95.6%. 

Note the difference between the estimated true sensitivity of the index test as computed using the perfect 
resolver information and the sensitivity of the index test relative to the [imperfect] reference test of 90% 
(1800/2000*100). In order to calculate a confidence interval for sensitivity, we need to calculate the 
standard error based on (15). The intermediate calculations for the standard error are shown in Appendix 
1. The calculated value is found to be 0.007. A 95% confidence interval for sensitivity (using a normal 
approximate) is: 

Sensitivity= 0.955 ± 2*0.07 = 0.955 ± 0.014 

This confidence interval width matches what could be found from a sample of 940 true positive 
specimens assayed by the index test. With a prevalence of 65%, if we had validated the index test directly 
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against the resolver, to attain this precision would have required n=1450. The actual number of resolver 
assays used, 800, is little more than half this number. This represents a substantial saving in resolver 
assays. If the resolver were a more difficult or expensive assay than the reference, this could lead to a 
major simplification and saving. The source of this saving is the stratification that the original 2x2 table 
provides so that relatively little investment in the resolver will produce high precision in the final 
estimates. 

Approaches where there is no exact resolver 

In the majority of applications, there is no exact resolver. There may however be a third and perhaps 
fourth and further test(s) that could be applied in an effort to improve the picture of the true status of the 
subjects. 

The same approach of sampling can be followed to produce estimates of the 2x2x2 table. Here however 
the use of the table is less clearcut than it was in the case where the third test provided an unambiguously 
correct classification. Possible uses of the table include the fitting of latent class models, and more 
complex 'voting' rules involving multiple reference tests. Latent class models would require an 
accounting for repeated testing, as well as a provision for conditional dependence of assay errors. These 
further steps lie outside the scope of this note. 

Summary 

Evaluating the perfonnance of a qualitative index test is not a trivial problem. Errors made by the 
reference but imperfect gold standard translate into artificially low estimates of the test's diagnostic 
performance. Using a resolver method on the discrepant cases at first sight gives one a way to cure these 
discrepancies, but on closer inspection this does not clear up, or necessarily even ameliorate, the problem. 
Proper resolution requires some testing of concordant, as well as discordant, samples. 

This raises the possibility of subsampling, and applying the resolver to just some of the samples. We 
derive estimators and standard errors for the resulting diagnostic performance figures. A numeric 
example illustrates that this approach allows precise estimates to be found with substantial saving in the 
number of resolver assays used. 
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Appendix 1: Computation of Var(sensitivity) for the example data 

As shown in the text, the expression for the variance of the sensitivity is given by: 

Yar ----- =-------+-------yar re¥ ence -T7 (True Positives) Var(True Positives) [£(True Positives)]2 
Tr. (P al ) 

Prevalence [£(Prevalence )]2 [£(Prevalence )]4 . 
E(True Positives) .. 

2 
3 

Cov(True Positives, Prevalence) 
[£(Prevalence)] 

In order to get an estimate of the variance, we need estimates of Var(prevalence), Var(True Positive) and 
Cov(True Positives, Prevalence) along with the proportion of true positives, E(True Positives) and the 
estimated prevalence, £(Prevalence). 

The estimated proportion of true positive results by the index test was found to be 0.65. The estimated 
prevalence was found to be O .68. Equation 13 provides the form for calculating the variances of true 
positives and prevalence. Equations 7 and 12 give the forms for computing the variances and covariances 
of the Pijrij terms. 

Estimated standard errors for the joint probabilities, Pij+rij are shown in Table Al: 

Table Al: 

1 Index test 

Reference test 
! Se;;+ Positive ! Negative 
LPositive 0.0126 ! 0.0075 
I Negative 0.0018 l 0.0035 

Estimated covariances for the Pijfij,Pbn+rbn are given in Table A2: 

Table A2: 
Tenn i,i 7 

Term k,m ............. 1, 1 I 1,2 2, 1 .J 
1,2 -1.52E-5 i 
2, I -1.9E-6 l -2. 7E-7 . 

i 2,2 -3.SE-6 ! -5.3E-7 6.7E-8 1 

Using (13) and the corresponding standard error and covariance estimates from Tables Al and A2, 
variances for the proportion of true positives and the prevalence can be computed. Note that for 
calculating the variance of prevalence, we need to compute the covariance of true positives and the 
prevalence. Since the prevalence is the sum of true positives and false negatives, the covariance term can 
be written as: 
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Cov(True Positives, Prevalence) = Cov(True Positives, Prevalence) 

= Cov(True Positives, True Positives+ False Negatives) 

= Cov(True Positives, False Negatives) + V ar(True Positives) 

The various sub-calculations are not shown here, however, the following terms were calculated to match ; 
the format of Equation 16: 

Var(True positives)= 0.014 
Var(Prevalence) = 0.0136 
Cov(True positives, Prevalence)= l.8E-4 

Combining these result, the estimated standard error is found to be: 

se(Sensitivity) = 0
·
0142 

+ 0.652 0·
01362 

-1.31.SE- 4 = 0.007 
0.682 0.684 0.683 
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