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Abstract 

This article introduces some recent local smoothing methods in fitting one dimensional jump 

regression models. Their strengths and limitations are discussed from several directions includ­

ing: (1) their ability to get rid of the effect of slope or curvature of the regression curve on jump 

detection, (2) their ability to diminish the effect of noise, and (3) their ability to detect jumps 

in both the regression function itself and its derivatives. 
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1 Introduction 

Regression analysis provides a tool to build functional relationship between response variables and 

independent variables. For a long time, the nonparametric regression function is assumed to be 

continuous. This assumption is challenged by some statisticians recently, supported in part by 

many reallife applications in which jump regression models appear to be more appropriate. 

Figure 1.l(a) shows a rat sleep dataset. Several psychiatrists at The University of Wisconsin­

Madison were interested in statistical modeling of the percentage of time in each five-minute interval 

that a Lewis rat was in sleep (Qiu et al. 1997). The rat was exposed to light before 12:00pm and 

then the light was turned off. Rats are noctunal animals. They are expected to have more sleep 

under light. So 12:00pm should be a jump point of the response variable although it is not obvious 
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Figure 1.1: (a) The percentage of time a Lewis rat is in sleep in each five-minute interval. The 
dotted line at top indicates period of light . The solid line represents dark period . (b) T he December 
sea-level pressures during 1921-1992 in Bombay, India. (c) A noisy picture. 

in the plot. Figure 1.l (b) gives another data set about the December sea-level pressures during 

1921-1992 observed by the Bombay weather station in India. Meteorologists noticed a possible 

jump around year 1960 (Shea et al. 1994) and it was confirmed by us (Qiu and Yandell 1998). 

Figure l.l(c) presents a noisy picture. Its intensity function (representing the brightness at each 

pixel) has step edges at the outlines of the objects. Since much of the information in a picture is 

conveyed by the edges and our eye-brain system has evolved to extract edges by preprocessing that 

begins right at the retina (Chapter 5, Bracewell 1995), edge detection and edge-preserving image 

reconstruction are important research topics in image processing. This third example is rela ted to 

two dimensional jump surface fitting which is beyond the scope of t his article. 

Jump regression model fi tt ing is currently under rapid development . In one dimensional (1-D) 

case, most jump-preserving curve fitt ing methods in t he literature detect possible jump points first 

and then fit the regression curve as usual in design subintervals separated by the detected jump 

points. It is therefore essential to detect jumps by various criteria in fi t ting j ump regression models. 

Suppose that the regression model concerned is 

Yi = J (xi ) + Ei, i = 1, 2, · · ·,n, (1.1) 

where O ~ x 1 < x2 < · · · < Xn ~ 1 are design points, and { Ei} are i.i.d . random errors with 

mean zero and unknown variance a 2 . The regression function J(x) has jumps at positions {si,i = 
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1, 2, · · · , p} and it can be expressed by 

p 

J(x) = g(x) + L dil[si,Si+i)(x), (1.2) 
i=l 

: where g(x) is a continuous function, pis the number of jumps, {ldi-di-11,i = 1,2, · · · ,p} are jump 

magnitudes, do = 0 and sp+l = 1. 

The kernel-type methods (e.g., Miiller 1992; Qiu 1994; Qiu et al. 1991; Wu and Chu 1993a, b) 

, detect jumps based on criterion JDCvKE(x) which is defined by 

1 n [ (x· - x) (x· - x)] JDCvKE(x) := nhn ~ ~ K2 T -Ki T , for hn :5 x :5 1- hn, (1.3) 

I 

] where hn > 0 is a bandwidth parameter, K1 (x) and K2(x) are two density kernel functions (non-

negative functions with unit integrations) satisfying (i) K1(x) = K2(-x) and (ii) K2(x) has support 

[O, 1]. Intuitively, JDCvKE(x) is a difference of two weighted averages of the observations in 

' [x - hn, x) and (x, x + hn], respectively, as illustrated by Figure 1.l(a). If x is a continuous point 

(x = xl in the plot), then IJDCvKE(x)I is relatively small. Otherwise, it is approximately equal 

to the jump magnitude (the case when x = x2 in the plot). Qiu et al. (1991) called these kernel 

• methods the difference kernel estimation {DKE} methods. 
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Figure 1.2: (a) Jump detection criterion of the DKE method. {b) Jump detection criterion of the 

1 

LLK method. (c) Fitted local LS lines at xl and x2 (the jump detection criterion of the LLS 
method is base on the slopes of the fitted local LS lines). The regression function (plotted by the 
solid curves) is continuous at x 1 and it has a jump at x2. 

Recently the local polynomial kernel smoothing method has been demonstrated to have some 

preferable properties in fitting regression curves (Fan and Gijbels 1996; Hastie and Loader 1993). 
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Loader (1996) showed that the detected jumps had some favorable properties too if the kernel esti­

mators were replaced by the local linear kernel {LLK) estimators in the construction of JDCnKE(x). 

The resulting jump detection criterion is defined by 

where hn ~ x ~ 1 - hn, and Tj = Ef=t K2(x1~x)(xi - x)J for j = 0, 1 and 2. The construction of 

JDCLLK(x) is also demonstrated by Figure l.2(b). 

Qiu and Yandell (1998) suggested detecting jumps based on estimated coefficients of the local 

least squares (LLS) estimation. If we are interested in detecting jumps in the m-th derivative 

j(m)(x), then a local polynomial function of order (m + 1) is fitted by the LS procedure in neigh­

borhood (x - hn/2, x + hn/2). The fitted polynomial can be expressed by 

y(i)(t) = Po(x) + Pt (x)t + · · · + fim+t (x)tm+l, fort E (x - hn/2, X + hn/2), x E [hn/2, 1 - hn/2]. 

Then {fim+t(x)} could be used to detect jumps in j(m)(x) based on the intuitivity that fim+t(x) 

approximates to f(m)(x) if xis a continuous point and it has an abrupt change around x otherwise 

(Figure l.2(c) demonstrates a case when m = 0). In order to exclude the effect of the continuous 

part of /(x) (which is g(x) in (1.2)) on jump detection, Qiu and Yandell (1998) suggested applying 

a difference operator on {Pm+1(x)}. When m = 0, the resulting jump detection criterion is 

{ 

P1 (x) - Pt (x - hn/2), 
JDCLLs(x) := ,. ,. 

/31 (x) - /31 (x + hn/2), 

if lfii(x) - fi1(x - hn/2)1 ~ IP1(x) - P1(x + hn/2)1 

if IP1(x) - P1(x - hn/2)1 > IP1(x) - P1(x + hn/2)1 
(1.5) 

Besides the three jump detection methods mentioned above, there exist many other jump de­

tection and jump-preserving curve fitting methods in the literature which include the "split linear 

smoother" algorithm (McDonald and Owen 1986) and its simplified version (Hall and Tittering­

ton 1992); the semiparametric method (Eubank and Speckman 1994); the wavelet transformation 

method (Wang 1995); and the smoothing spline method (Koo 1997, Shiau et al. 1986). 

In this article, we discuss the strengths and limitations of several jump detectors. This effort 

should be helpful for users in choosing an appropriate method for a specific application problem. 

To keep the presentation simple, our discussion will mainly focus on three jump detectors: D KE, 

LLK and LLS, which might be good representatives of local smoothing methods for jump detection. 
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The three jump detectors are investigated from several directions including (1) their ability to get 

: rid of the effect of the regression function derivatives on jump detection in the regression function 
1 

itself (Section 2); (2) their ability to diminish the effect of noise (Section 3); and (3) their ability 

to detect jumps in both the regression function itself and its derivatives (Section 4). Most jump 

detection methods in the literature assume that the number of jumps is known, which is hard to be 

satisfied in many applications. In Section 5, we introduce some jump detection procedures which 

• could work well without this assumption. Finally, several remarks conclude the article in Section 

. 6. 

2 Effect of f'(x) on Jump Detection in f(x) 

. The impact of f'(x) on jump detection in /(x) has not been well discussed yet in the literature. 

This impact might be negligible in large sample theory. But it could play an important role in 

finite sample situations. 

1 

Theorem 2.1 In model (LI), suppose that /(x) has continuous second order right and left deriva­

tives in a neighborhood of x E (0, 1). Then 

E(JDCvKE(x)) = [f+(x) - J_(x)] + [f~(x) + /~(x)]a1 hn + [f~(x) - f~(x)]
2
a

2 h; + o(h;) (2.1) 
ao ao 

2 

E(JDCLLK(x)) = U+(x) - f-(x)] + [f~(x) - /~(x)]
2
t2 

- aia3
2)h! + o(h!) 

aoa2 - a1 
(2.2) 

,.. [ ( ) ] 3 1 /~ ( x) + J!... ( x) [ 11 ( ) 11 ( )] 3 ( ) E(/31(x)) = f+ x - J_(x) 2h;; + 
2 

+ f + X - f _ x 
16

hn + o hn (2.3) 

1 . 
where ai = fo xiK2(x) dx for i = 0, 1, 2 and 3. 

In Theorem 2.1, if we use the Epanechnikov kernel function K2(x) = !{I - x2)I[o,11(x) (which 

is optimal in minimizing MSE of the conventional LLK estimator, see e.g., Section 3.2.6, Fan and 

Gijbels 1996), then 

E(JDGvKE(x)) = [f+(x) - f-(x)] + :[f~(x) + f~(x)]hn + l~ (mx) - J.'.'.(x)]h! + o(h!) 

and 

E(JDCLLK(x)) = [J +(x) - f-(x)] + 
1
1
;
0

[/~(x) - J~(x)]h! + o(h!). 

The above equations indicate that the first order derivatives affect the mean of JDCvKE(x) in 

order of hn. But they do not affect the mean of JDCLLK(x). The impact of the second or higher 
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order derivatives is relatively negligible and will not be discussed here. It is possible to modify 

JDCvKE(x) such that the resulting criterion can get rid of the effect of the first order derivatives 

' to some degree. For example, JDCvKE(x)-[/t(x)+ /!....(x)]~hn is one possibility, where /t(x) and 

/!....(x) are the conventional consistent estimators of Jt(x) and /!....(x), respectively (see e.g., Section 

2.3.2, Fan and Gijbels 1996). But we may not want to pursue this idea since the LLK procedure 

can accomplish this automatically as indicated by (2.2) and it has some other good properties as 

well (see the related discussion in Hastie and Loader (1993)). 

Both the DK E and LLK procedures detect jumps based on consistent estimators of the jump 

magnitude. The LLS criterion makes use of the property of /J1 (x) that it tends to infinity if x is a 

jump point and approximates to the slope of the regression curve otherwise. To diminish the effect 

of the first order derivative, it is constructed by applying a difference operator defined by (1.5) on 

{/J1 (x)}. From (2.3), it is not hard to check that when xis a jump point, 

E(JDCLLs(x)) = [f+(x) - J_(x)]~h;;-1 + P [ J!i.(x); f'...(x) _ f!i.(x - hn/2); f'...(x - hn/2)] 

+ (l - P) [J!i.(x); J'...(x) _ J!i.(x + hn/2); J'...(x + hn/2)] + O(hn), (2.4) 

where P = Pr(IP1(x) - P1(x - hn/2)1 < IP1(x) - P1(x + hn/2)1). If /(x) is continuous in a 

neighborhood of x, (2.4) is still true except that the first term on the right hand side of the 

equation disappears. As indicated by (2.4), E(JDCLLs(x)) does not depend on the first order 

derivative if the derivative is continuous in the design space. When the first order derivative has 

jumps itself, it does affect E(JDCLLs(x)). 

We would like to point out the difference between the ways the first order derivative affecting 

the DKE and LLS procedures. In the DKE procedure, the derivative affects E(JDCnKE(x)) 

through Jt(x) + J!....(x). It could cause false jump detection even if J'(x) is continuous in the entire 

design space but large at some places. For E(JDCLLs(x)), the derivative plays the role through 

its jump magnitudes. In other words, its impact on jump detection should be taken into account 

only when its jump magnitudes are large. Furthermore the detected false jumps because of this 

reason are most probably the jumps of the first order derivative itself, which will be discussed in 

some detail in Section 4. 

Example 2.1 Consider a regression function f(x) = ex - Ic.s,11(x). It has a jump at x = .5 

with magnitude 1 and slope cat the continuous points. If n = 256, hn = 21/256, c = IO, the 
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i Epanechnikov kernel function is used, and the noise is ignored, then the jump detection criteria 
i 
' JDCLLs(x), JDCLLK(x) and JDCDKE(x) are presented in Figures 2.l(b), 2.l(c) and 2.l(d), 

• respectively. The regression function itself is shown in Figure 2.l(a). As indicated by the plots, the 

value of c affects JDCDKE(x) dramatically. The values of JDCDKE(x) at most continuous points 

are even larger than its value at the real jump point. Both criteria JDCLLs(x) and JDCLLK(x), 

however, depend little on c. Their values are large around the true jump point and zero otherwise. 
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Figure 2.1: (a) The regression function f(x) = lOx - Ic.s,11(x); (b) JDCLLs(x); (c) JDCLLK(x); 
(d) JDCDKE(x). The dotted line in plot (d) indicates y = 0. 

We next add i.i.d. noise with u = .25 to the data and let c change from 1 to 10 as well. It is 

assumed that the number of jumps is known beforehand, which is 1 in this case. The detected jumps 

are defined by the maximizers of IJDCDKE(x)I, IJDCLLK(x)I, and IJDCLLs(x)I, respectively. 

(The case when the number of jumps is unknown will be discussed in Section 5.) For each c value, 

the simulation is repeated 1000 times. A jump detection is flaged as "correct" if the distance 

between the detected jump point and the true jump point is less than hn. The number of correct 
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jump detections by each method is shown in Figure 2.2. We can see that the LLK and LLS methods 

perform stably with respect to c. Results of the DKE procedure get worse when c increases. 
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Figure 2.2: Numbers of correct jump detections of the three jump detection procedures out of 1000 
replications when the slope of the regression function changes from 1 to 10. 

3 Effect of Noise on Jump Detection 

In the previous section, we investigated the three jump detection criteria by analysing their means. 

It could be concluded that the DK E procedure is most sensitive to the slope of the regression curve 

among the three methods. In this section, the three criteria are studied by their variances. We will 

explain that the DKE procedure is most capable to smooth away the noise. 

Theorem 3.1 Under the conditions stated in Theorem 2.1, we have 

V (JDC ( )) 
_ 2a2 fl K 2(x) dx 

ar DKE X - 2 h a0n n 

V (JDC ( )) 
= 2a2 fl K 2(x)(a2 - a1x)2 dx 

ar LLK X ( 2)2 h aoa2 - a1 n n 

18a2 

Var(JDCLLs(x)) ~ -h3 n n 

where { ai H=o are defined in Theorem 2.1. 

If the Epanechnikov kernel function is used in the DK E and LLK procedures, then 

2 4a2 4.49a2 

Var(JDCvKE(x)) = _:__h , Var(JDCLLK(x)) = h . 
n n n n 

8 

(3.1) 

(3.2) 

(3.3) 



The variance of JDCLLK(x) is about 2 times the variance of JDCvKE(x). Therefore in regions 

where f(x) is quite flat such that its derivatives do not affect the jump detection much, the DKE 

procedure could outperform the LLK method by detecting some jumps of small magnitudes, which 

will be further explained by Example 3.1 below. 

The variance of JDCLLs(x) is of higher order than the variances of the other two criteria. Ifwe 

look at their standard deviations and means ( which are expressed by (2.1 )-(2.4)) simultaneously, 

then we can notice that both the mean and standard deviation of JDCLLs(x) are of h;1 higher 

order than the means and standard deviations of the other two criteria. In other words, the LLB 

criterion makes its mean tend to infinity at the jump points by increasing its standard deviation. 

Although the ratio of its mean and standard deviation is of the same order as the ratios of the 

other two methods, the difference between its mean and standard deviation tends to infinity at 

the jump points while the corresponding differences of the other two methods tend to the jump 

magnitudes. This amplification property might be helpful to visualize the jump structure and to 

select the threshold values (which will be formally defined in Section 5) of the jump detection 

criteria as well. 

Example 3.1 For the regression function used in Example 2.1, let us assume that c = 1. As 

indicated by Figure 2.2, the impact of slope on jump detection is limited in such case for all three 

jump detectors. When a = .25, the three jump detection criteria are shown in Figure 3.1 along 

with the true regression function. 

We then let a change from .1 to 1. The numbers of correct jump detections of the three 

methods out of 1000 replications are presented in Figure 3.2. As indicated by the plot, all three 

methods detect the jump well when a is small. When a gets larger, it becomes more obvious that 

the DKE method outperforms the other two methods. 

4 Detect Jumps in Both f(x) and f'(x) 

The criteria JDCvKE(x) and JDCLLK(x) defined by (1.3) and (1.4) are designed to detect jumps 

in f(x). If jump detection in f'(x) is also our concern, then estimators of f-(x) and f +(x) in the 

definitions of JDCvKE(x) and JDCLLK(x) need to be replaced by the corresponding estimators 

of f!_(x) and f~(x), respectively. The local slope estimators {,B~i)} on which JDCvKE(x) is based, 
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Figure 3.1: {a) The regression function f(x) = x - J(.s,i](x); {b) JDGLLs(x); (c) JDGLLK(x); {d) 
JDGvKE(x). The error standard deviation u = .25. The dotted lines in plots {b)-{d) indicate 
y=O. 

however, could be used to detect jumps in both f(x) and f'(x), which will be demonstrated in 

some detail in this section. 

As we pointed out in Section 2, after the difference operator {1.5) being applied to {.Bii)}, the 

resulting criterion JDGLLs(x) could detect jumps inf (x) and some jumps with large magnitudes 

in f' ( x) as well. If we apply the following difference operator to {.Bi i)}, 

(4.1) 

then JDGILs(x) could be used to detect jumps in f'(x) because .81(x + hn/2) and .81(x - hn/2) 

are good estimators of f ~ ( x) and f '_ ( x), respectively. 

In the local linear kernel regression, we know that slope of the fitted local line in a neighborhood 

of a given point could also be used as an estimator of the value of the first order derivative at that 
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Figure 3.2: Numbers of correct jump detections out of 1000 replications when a changes from .1 
to 1. 

point (Chapter 3, Fan and Gijbels 1996). It does not need much extra computation to calculate 

this slope (see related formulas given by Fan and Gijbels 1996). By this idea, the slopes of the 

fitted one-sided local lines, which are obtained at the time when we construct JDCLLK(x) by (1.4), 

could be used as estimators of f!_(x) and f~(x). Then a criterion to detect jumps in f'(x) can be 

constructed as follows: 

* E~=l l'i [K2(xh~x) (-r1 + (xi - x)ro) - K1(xh~x) (r1 + (xi - x)ro)] 
JDCLLK(x) = 2 , (4.2) 

ror2 -r1 

for hn :::; x :::; 1 - hn. If the kernel functions used in (4.2} are the uniform functions, namely 

i K 2 (x) = K 1(-x) = I[o,i](x), then the slopes of the fitted LLK lines are the same as the slopes of 

the fitted LLS lines. Consequently, JDC'iLK(x) and JDCiLs(x) are equivalent to each other. 

Example 4.1 Consider a regression function f (x) = 3x when x E (0, .5); and/ (x) = c(x - .5) + 1.5 

when x E (.5, 1]. Then f'(x) has a jump at x = .5 with magnitude c-3. If the noise is ignored (by 

setting a= 0) and c = 4 (the jump magnitude is 1), then the criteria JDCvKE(x), JDCLLK(x), 

JDC'iLK(x), JDCLLs(x), and JDCiLs(x) are shown in Figure 4.1 along with the true regression 

function. 

Next we let the jump magnitude of f'(x) vary from Oto 20 by changing c from 3 to 23. We also 

add noise with a = .25 to the data. The numbers of correct jump detections out of 1000 replications 

by the related criteria are shown in Figure 4.2. As indicated by the plot, the criteria JDCvKE(x) 

and JDCLLK(x) could hardly detect the jump in /'(x}; JDCLLs(x) detects the jump in f'(x) well 

only when the jump magnitude is large; the criteria JDCiLK(x) and JDCiLs(x) perform much 
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Figure 4.1: (a) The true regression function J(x) (J'(x) has a jump with magnitude 1 at x = .5); 
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line in plot {d} indicates y = 0. 

better than the other three. 

The LLB method is based on the fitted LLB slopes {.B1{x}}, which can be easily computed by 

most statistical softwares. Hence its computation is simple. Users do not need any nonparametric 

regression knowledgement to apply this procedure. The LLB slope .81 (x) is a good estimator of 

J'(x). So the LLB procedure detects jumps in f(x) based on local estimation of f'(x). This idea is 

intuitively appealing since estimators of j(m+l)(x) could often be used in detecting jumps in j<m>(x) 

for any non-negative integer m (Qiu and Yandell 1998). In this section, we have shown that jump 

detectors can be obtained for both f (x) and f'(x) by applying different difference operators to 

{,B1{x)}. The LLB procedure is therefore flexible in detecting jumps in /(x) and its derivatives. 

12 



1000 

800 

en 
C 
0 u 600 
i ,, 
i 400 0 u 
=II: 

200 

0 

0 

- .IDC_UK ,,, .,.... .-••••••••••••••••• 
••••• .IDC_I.LK" , 

- - .IDC_LlS / / •• • 

-- ~:~ I / 

,//// 
I / 

/ / 
I ./ 

I / 
I . ..-

/ .. •·· 
(. ..... 

...._ 

,, 
,,," 

,, 
I 

I ,, 

,, 
I 

I 

,, ,, ,, ,, 

,, ,, 
,,, ,,, 

......_ ___ _ 
---------

5 10 15 20 

Jump magnitude of f'(x) 

Figure 4.2: The numbers of correct jump detections out of 1000 replications when the jump mag­
nitude of J'(x) changes from Oto 20. 

5 When the Number of Jumps Is Unknown 

In the previous sections, we assume that the number of jumps is known beforehand. In many appli­

cations, however, this kind of prior information is not available. In the Bombay sea-level pressure 

example (c.f. Figure 1.l{b)), there is no convincing scientific evidence that a jump exists around 

year 1960, as indicated by the plot. In the rat sleep example (c.f. Figure 1.l{a)), psychiatrists 

expect a jump at 12:00pm. But it is not obvious in the plot. Therefore visual perception is not 

always dependable to know the jump structure of the related model. 

The nonparametric regression analysis can be regarded as a generalization of the linear regres­

sion analysis because the former can be applied to fitting both linear and nonparametric regression 

models, although we should use the linear regression analysis if we know beforehand that the true 

regression model is indeed linear. Similarly it might not be appropriate to say that the jump re­

gression methods generalize the conventional nonparametric regression methods if the former can 

only deal with the situation in which the number of jumps is known. To handle more applications 

and to give the word "generalization" some real meaning, it is important to suggest some jump 

, regression methods which do not require any prior information about the number of jumps. 

Wu and Chu {1993a) proposed an algorithm to detect jumps when the number of jumps was 

unknown. Their method was based on JDCDKE(x) and function S(x) defined by: 

S(x) = m3(x) - m4(x), (5.1) 
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where m3(x) and m4(x) were two kernel estimators of /{x) defined similarly to the two kernel 

estimators used in {1.3) except that a new bandwidth 9n and two new kernel functions K3(x) and 

K4(x) were used in defining m3 (x) and m4(x). They also provided some guidelines for choosing 

hn, 9n, and the kernel functions. 

Their procedure consisted of several steps. For j ~ 0, let dj+I be the supremum of IS(x)I 

in [<5, 1 - <5] - U{=1[sk - 2hn, §k + 2hn], where <5 > 0 was an arbitrarily small number and Bk 

was the k-th maximizer of JDCvKE(x) (see Wu and Chu {1993a) for definition). They then 

derived an asymptotic distribution for d.i+I under the assumption that p ~ j where p was the 

true number of jumps. With this distribution, a series of hypothesis tests were performed for 

Ho : p = j vs Ha : p > j, for j ~ 0, until an acceptance, from which p (an estimator of p) could 

be defined. Then p maximizers {sj}1=l of JDCvKE(x) were defined as estimators of the jump 

positions. Finally, they used rescaled {S(sj)}1=i to estimate the jump magnitudes. 

Qiu (1994) suggested an alternative procedure by using a threshold value and a modification 

procedure to estimate the number of jumps and the jump positions. If x is not a jump point, then 

it is not hard to check that JDCvKE(x) is asymptotically normally distributed with mean O and 

variance 2a2 Ja1 K 2(x) dx/(aijnhn)- A natural threshold value for JDCvKE(x) is then 

(5.2) 

where Zatn/2 is the 1- an/2 quantile of the standard normal distribution and a is some consistent 

estimate of a. Design points {xii : IJDCvKE(Xii )I > un,j = 1, 2, · · ·, ni} can be flagged as 

candidate jump positions. But if Xii is flagged, its neighboring design points will be flagged with 

high probability. Qiu {1994) defined tie sets of the flagged candidates and suggested using the middle 

point of each tie set to replace the entire set as a new jump candidate. After this modification 

procedure, the current jump candidates are assumed to be b1 < b2 < · · · < bq. Then q and {bi}f=1 

are used as estimators of the number of jumps and the jump positions, respectively. Qiu and 

Yandell (1998) applied this idea to the LLS procedure to estimate the number of jumps. We think 

that it could be applied to most existing jump detectors including JDCLLK(x) to get rid of the 

required prior information about the number of jumps. 

Example 5.1 Consider the regression function used in Example 2.1 and let n = 256 and hn = 
21/256. The Wu and Chu (W-C) (1993a} and Qiu and Yandell (Q-Y) (1998} procedures are used 

to estimate the number of jumps (the true number is l}. The W-C procedure gives a correct 
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estimation if it rejects Ho for Ho : p = 0 vs Ha : p > 0 and accepts Ho for Ho : p = 1 vs Ha : p > 1 

as well. We first let c change from 2 to 3 and fix a at .25. The numbers of correct estimations by 

the two methods out of 1000 replications are presented in Figure 5.l(a). We then fix cat 2 and 

change a from .1 to 1. The corresponding simulation results are given in Figure 5.1 (b). In the W-C 

procedure, 9n is chosen 2hn and the related kernel functions are selected by the Remark 3 in Wu 

and Chu (1993a). 
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Figure 5.1: (a) The numbers of correct estimations of the number of jumps out of 1000 replications 
when c changes from 2 to 3 and a= .25. (b) The corresponding results when a changes from .1 to 
1 and c = 2. 

As indicated by Figure 5.l(a), the W-C procedure is sensitive to the slope of the regression 

curve while the Q-Y procedure performs stablely when c changes, which is consistent with what 

we found in Figure 2.2 about the DKE and LLS criteria on which the W-C and Q-Y procedures 

are based. From Figure 5.l(b), the W-C procedure performs better than the Q-Y procedure when 

a is larger than a certain number, which might be explained by the fact that the LLS criterion is 

noisier than the DKE criterion as we found in Figure 3.2. The performance of the W-C procedure 

is not good when a is small. That may be related to the effect of J'(x) on jump detection in /(x) 

which is relatively large when a is small. Qiu and Yandell (1998) proved that the estimated number 

of jumps by the Q-Y procedure was almost surely consistent. The Q-Y procedure was generalized 

to 2-D case by Qiu and Yandell (1997). 

Example 5.2 In Example 5.1, let c = 2 and a = .25. After the number of jumps and the jump 

positions are estimated by the Q-Y procedure, we fit /(x) by the conventional local linear kernel 

smoothing procedure in each design subinterval separated by the estimated jump positions. The 
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true jump magnitude d changes from 0 to 2 {the regression function is J(x) = 2x - dl(.S,l](x)). 

For each d value, the averaged MSE value of the fitted J(x) out of 1000 replications is presented 

in Figure 5.2(a) by the solid curve. As a comparison, we also fit J(x) by the conventional local 

linear kernel method without considering the jump structure. Its averaged MSE values are plotted 

in Figure 5.2(a) by the dotted curve. Figure 5.2(b} shows a noisy version of f(x) when d = 1 and 

the LLK estimators of f(x) with and without considering the jump structure. 
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Figure 5.2: (a) Averaged MSE values out of 1000 replications of the LLK estimators of f(x) with 
and without considering the jump structure of the model when the true jump magnitude changes 
from Oto 2. (b} A noisy version of f(x) and its LLK estimators with and without considering the 
jump structure. 

Figure 5.2(a) shows that the jump-preserving procedure does not loss much accuracy when 

the regression function is continuous (d = 0) or when dis too small to be detected. When d gets 

larger, it becomes more obvious that the jump-preserving procedure outperforms the conventional 

procedure. As indicated by Figure 5.2(b}, the jump structure is smoothed away by the conventional 

smoothing procedure. It is not hard to check that the conventional smoothing estimator of J(x) is 

not statistically consistent at the jump position. 

6 Concluding Remarks 

We have discussed several jump detection and jump-preserving curve fitting methods. Generally 

speaking, the LLK and LLS procedures perform better than the DKE procedure at places where the 

regression curve is steep but continuous. On the other hand, the DKE procedure is more capable 
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to smooth away the noise in data. Regarding the computational complexity, the LLS procedure is 

the simplest one and the LLK procedure requires the most extensive computation. 

Many problems are still open in this area. For example, in some applications it is hard to 

know in which derivative the regression function has jumps. It can also happen that the regression 

function itself and some of its derivatives have jumps simultaneously. We have not seen much 

discussion in the literature about these issues. The bandwidth selection is always a problem for 

local smoothing procedures. The variable bandwidth idea is natural for jump curve fitting. It 

needs further theoretical research and simulation studies for us to give some practical guidelines for 

practitioners to choose bandwidths in finite sample situations. (Some interesting discussions can be 

found in Wu and Chu (1993b) about fixed bandwidth selection by the cross validation procedure.) 

Another problem that has not been well discussed in the literature is how to detect jumps in border 

regions of the design space. In large sample case, this might not be a problem since most jump 

detectors can detect jumps a small distance away from the boundary of the design space and this 

distance tends to O when the sample size increases. In finite sample case, however, the border 

regions could be relatively large and some methods need to be developed to detect jumps efficiently 

in those regions. 

Two-dimensional problems are much complicated and many important issues have not been well 

addressed yet in the literature. Some existing methods in jump location curves estimation include 

the "maximin" procedure (Korostelev and Tsybakov 1993; Miiller and Song 1994), the "contrast 

statistic" algorithm based on smoothing spline (O'Sullivan and Qian 1994), the "rotational differ­

ence kernel estimation" proposal (Qiu 1997), the local least squares estimation algorithm (Qiu and 

Yandell 1997), and the "change curve estimation via wavelets" method {Wang 1998), among many 

others. Hall and Raimondo {1997, 1998) studied special features of the case where design variables 

were on a regular grid. For jump-preserving surface fitting methods, see Chu et al. {1998), Qiu 

{1998), and the references cited there. 
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