
: 

Random and Mixed Effects Macros for MacAnova 
Technical Report #624 

School of Statistics 
University of Minnesota 

Gary W. Oehlert 



Random and Mixed Effects Macros for MacAnova 
Technical Report #624 

School of Statistics 
University of Minnesota 

Gary W. Oehlert 

March 1998 

Abstract 

MacAnova is a freely available program for Macintosh, Windows, and Unix platforms with broad 
data analysis and linear algebra capabilities. The built in ANOVA facilities are generally quite good for 
fixed effects models, but there are no built in functions for random or mixed effects ANOVA. There are 
now three macros ( ems, varcomp, and mixed) available in the design. mac macro file. These 
macros compute expected mean squares, estimate variance components, and perform mixed effects 
ANOVA. This note announces the availability of the macros, gives background for when they can be 
used, and describes their use. 

1 Introduction 

The MacAnova program (http: //www.stat.umn.edu/-gary/macanova/macanova.home.html) 
has several functions for fitting linear models and generalized linear models. The anova { ) function com
putes an analysis of variance table with sources, degrees of freedom, sums of squares, and mean squares. 
For example, 

Cmd> anova("y =A+ C + A.C + B + A.B") 

computes and prints the ANOVA decomposition of the variation in y for the main effects of factors A, 
B, and C, and the two factor interactions AB and AC. Any variation and degrees of freedom not explained 
by the model are put in a final term labeled ERRORl. 

By default, anova {) computes no F-statistics or p-values. These can be requested by adding the 
keyword phase £stats: T to the anova {) command: 

Cmd> anova("y =A+ C + A.C + B + A.B",fstats:T) 

The output will now include columns for F-statistics and p-values. The denominator for any mean square 
is the next tenn labeled ERRORk in the model. For this model, there is only a single error term (ERROR!, 
the last term), so all F-statistics are computed using ERRORl in the denominator. This use of ERRORl is 
appropriate for fixed effects models. 

We may choose to label terms in the ANOVA as error terms. For example, 

Cmd> anova("y =A+ C + E(A.C) + B + A.B",fstats:T) 
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will compute the sums of squares and df exactly as before, but the line for the AC interaction will 
be labeled as ERROR], and the last line of the ANOVA (formerly labeled ERROR]) will now be labeled 
ERROR2. This would be appropriate for a split plot design, where factor A is the whole plot treatment and 
C is a blocking factor for whole plots. The tenn AC is then the whole plot error. F-statistics in anova ( ) 
are computed using the next error term in the model. Thus A would be tested against ERROR I (AC), and B 

would be tested against ERROR2. 
This is the extent to which errors can be specified using anova ( ) in MacAnova. (Any tenn may 

be specified as the source of error for the contrast () and secoefs () commands, which compute 
contrast estimates, standard errors, and sums of squares, and model coefficients and their standard errors 
respectively.) Clearly, this is inadequate for general random and mixed models. 

The macro file design. mac contains numerous MacAnova macros, three of which are relevant here: 
ems, varcomp, and mixed. These macros compute expected mean squares, estimate variance compo
nents, and perform general mixed effects ANOVA. The macro ems is the heart of all the approaches. Once 
the expected mean squares are known, variance components can be estimated and appropriate tests con
structed. The following three sections of this note describe the ems, varcomp, and mixed macros. 

2 ems 

2.1 Background 

Each line of an ANOVA table contains a mean square. This mean square is a random variable, because 
it depends on the random experimental error, and possibly on random effects that are in the model. The 
expected value of this random variable, averaging across all the potential values of the random effects and 
errors, is the expected mean square or EMS. 

The EMS for a term depends on how we compute sums of squares, the assumptions we make about our 
model, and the layout of the data (amount of replication, balance, and so on). The ems macro automatically 
accounts for replication, layout, and lack of balance. In fact, ems does not even look for balance; it uses the 
computations necessary for unbalanced data in all situations. 

When data are unbalanced, sums of squares can be computed in several ways. Since sums of squares can 
be computed in different ways, their expectations will also differ. MacAnova has two methods for computing 
sums of squares. First, and by default, sums of squares can be computed sequentially. This means that the 
sum of squares for a given term is the reduction in error sum of squares that is achieved when adding the 
given term to a model that already contains the terms that precede the given term in the model. Thus for a 
model II y=A+ B+C+A. B 11

, we have that A is adjusted for the constant; B is adjusted for the constant and A; 
C is adjusted for the constant A, and B; and AB is adjusted for the constant, A, B, and C. 

A second method for computing sums of squares is used when the phrase marginal: T (or just 
marg : T) is used in the anova ( ) command. In this case, each term is adjusted for every other term in 
the model. This is equivalent to determining the increase in error sum of squares that would occur if the 
given term was removed from the full model. This approach is sometimes called SAS Type m1• 

Model assumptions can also affect expected mean squares. We will consider two assumptions: mixed 
effects restrictions and hierarchy. In mixed effects models, we may have an interaction between a fixed 
factor A ( with a levels) and a random factor B ( with b levels). What should we assume about the interaction 

1 Please note that the marginal sums of squares produced by MacAnova may not equal the SAS 'lype III sums of squares when 
there are model degrees of freedom that are linearly dependent on other model degrees of freedom. This could happen, for example, 
when there are empty cells in a factorial structure. MacAnova determines which model degrees of freedom are linearly dependent 
on other model degrees of freedom only once. sequentially, with terms entered in the order specified in the model. The adjustment 
for other terms is then done with the set of columns chosen in the first sequential pass. 
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effects af3i;? The restricted model assumes that the mixed interaction effects a/3iJ are nonnal, with mean 
zero and variance a~8 ( a - 1) / a. These effects are independent for different values of j, but sum to zero 
across the levels of the fixed effect. That is, we have the restriction that 

a 

o = 1: a/3ij . 
i=l 

The alternative is an unrestricted model. For this model, the mixed interaction effects a/3ii are independent, 
nonnal, with mean zero and variance a!,0-

The choice between these models depends on what we believe about interactions. Consider repeating 
the experiment over and over; this involves random sampling for levels of the random factor B from some 
population of levels. Suppose that in these repeats of the experiment we choose the same level of B twice; 
that is, the kth element of the B population occurs in two of these experiments. If you believe that the 
interaction effects a/3ii corresponding to this kth element of B will be the same in both repeats of the 
experiment, then you would use the restricted model. If you believe that the two repeats of the experiment 
would have different, independent sets of interaction effects, then you would use the unrestricted model. 

The second assumption regards hierarchy. The MacAnova anova ( ) command enforces hierarchy. 
That is, for a model 

Cmd> anova("y =A+ B + C + A.B.C") 

the two factor interactions AB, AC, and BC will be included in the ABC interaction tenn. The three 
factor interaction implies the presence of main effects and two factor interactions. If these effects are not 
already present in the model, they will be included in the three factor interaction term. Some may wish to 
compute expected mean squares for nonhierarchical models. 

2.2 ems Syntax 

ems has two mandatory arguments, three optional keyword phrase arguments that alter how the EMS are 
computed, and two optional keyword phrase arguments that alter return values and what is printed. The 
basic form is 

Cmd> ems(Model,Randomvars) 

This computes the expected mean squares for the terms in the ANOVA for the model given in the 
CHARACTER scalar Model. Randornvars is a CHARACTER vector specifying the names of factors in 
the model that are random. Thus 

Cmd> ems(•y =A+ B + A.B + c•,•c•) 

requests expected mean squares for a three-way factorial model with main effects and AB interaction 
where factor C is random. Alternatively, Randornvars can also be REAL with integer elements giving the 
index of a factor in the model. In the previous example, '' C " could be replaced by 3, since C is the third 
factor in the model (factor, not term). If both A and C were random, we would use 

Cmd> ems("y =A+ B + A.B + C",vector("A","C")) 

or 

Cmd> ems("y =A+ B + A.B + c•,vector(l,3)) 

If there are no random factors, Randomvars should be NULL. Thus 

Cmd> ems("y =A+ B + A.B + C",NULL) 
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would compute EMS for a fixed effects model. 
In this default use, ems computes sequential (Type I) sums of squares for the the restricted (mixed 

effects add to zero across fixed factors) model, with hierarchy enforced. It prints these expected means 
squares for each term, and returns no value. Contributions from random terms are shown as multiples of 
the variance component (for example, 16V ( C) ); contributions from fixed terms are shown as a multiple of 
a quadratic function for the term, for example, 3 2 Q ( B) . In a balanced design, the Q ( ) function is the sum 
of the squared effects divided by degrees of freedom, for example, ~~=I (/3;)/(b - 1). In an unbalanced 
situation, Q ( c ) is a more complicated quantity. 

ems works only for factors - no variates are allowed in the model. ems works for both balanced and 
unbalanced data. 

ems assumes that if a factor first appears in an interaction, then that factor is nested in the other terms 
of the interaction. For example, if the first appearance of factor C is in the term A.B.C, then C is assumed 
nested in the A.B combinations. This nesting is assumed in the remainder of the model. That is, continuing 
the example, if there is a later term C.D, it will be interpreted as A.B.C.D even though A.B.C.D is not 
specifically in the model. 

When a tenn contains the first appearance in the model of more than one factor, ems assumes that the 
new factors are merged to make a single factor, whose number of levels is the product of the numbers of 
levels in the factors being merged. For example, if the first appearance of factors B and C with 5 and 3 
levels, respectively is in the term A.B.C, then Band C together are considered a single factor with 15 levels. 
This grouping is assumed in the remainder of the model. That is, continuing the example, if there is a later 
term C.D, it will be interpreted as B.C.D even though B.C.D is not specifically in the model. This grouped 
factor is interpreted as random if any of the factors in the group is random. 

We may use keyword phrases to alter the computation of expected mean squares. By default, ems 
computes expectations for mean squares based on sequential sums of squares. You may specify marginal 
(Type ill) computations by including the phrase marg : T in the ems command. For example, 

Cmd> ems("y =A+ B + A.B + A.B.C",vector("B","C"),marg:T) 

By default, ems uses the restricted model for mixed effects. You may specify the unrestricted model by 
including the phrase restrict: Fin the ems command. For example, 

Cmd> ems("y =A+ B + A.B","B",restrict:F) 

Finally, by default, ems enforces hierarchy. You may specify a nonhierarchical model by including the 
phrase nonhi er : T in the ems command. For example, 

Cmd> ems("y =A+ B + A.B + A.B.C","C",nonhier:T) 

In this model, the ABC interaction would not include the degrees of freedom from the AC or BC inter
actions. (Note, you cannot use anova ( ) to compute such an analysis, though it can be done (if you know 
how) using swp () ). 

These keywords can be used together. For example, 

Cmd> ems(Model,Randomvars,marg:T,restrict:F) 

provides answers equivalent to the EMS in SAS PROC GLM~ 
Using the phrase keep: T suppresses printed output but returns a structure (described below) containing 

the results. If you want the printed output too, use keep: T, print: T. 
When keep : T is an argument to ems , ems returns a structure with five components. These compo

nents are 

df REAL vector of degrees of freedom for all terms in model; 
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s s REAL vector of sums of squares for all terms in model; 

termnames CHARACTER vector of labels for each term; 

coefs REAL matrix with coefs[i,j] the coefficient for termj in the EMS of term i; 

rterms LOGICAL vector with T indicating that a term is random. 

Components ss and df are just those computed from a MacAnova anova () command (possibly with 
marg : T as needed), and may not be in conformance with the model as used by ems for the following 
reasons: 

1. anova ( ) computes only hierarchical models, while you may specify nonhierarchical models in ems 
by using nonhier: T. 

2. ems enforces nesting and grouping. If b first appears in a.b then b is nested in a and any appearance 
of b in a later term implies the presence of a. anova ( ) does no such enforcing. For example, in 
"y=a +a • b+c + b. c 11

, b.c would be interpreted by ems as a.b.c while an ova ( ) would not include 
a.b.c in the model. If band c first appear together, then "y=b. c+d+c. d" is interpreted in ems as 
"y=b. c+d+b. C. d". 

2.3 ems Examples 

The examples below are based on balanced two factor and three factor models with a total of 64 responses. 
All factors have 2 levels, so two factor and three factor models have 16 and 8 replications, respectively. In 
some examples, one of the responses is set to MISSING to destroy balance. 

Here is a fully nested model; d is nested in c, and e is nested in d. Factor c is fixed, and both d and e are 
random. 

Cmd> ems(ny=c/d/e",vector("d•,aen)) 
EMS(CONSTANT) = V(ERRORl) + BV(c.d.e) + 16V(c.d) + 64Q(CONSTANT) 
EMS(c) = V(ERRORl) + 8V(c.d.e) + 16V(c.d) + 32Q(c) 
EMS(c.d) = V(ERRORl) + 8V(c.d.e) + 16V(c.d) 
EMS(c.d.e) = V(ERRORl) + 8V(c.d.e) 
EMS(ERRORl) = V(ERRORl) 

Here is a 3 factor crossed model, with c and d fixed, e random. 

Cmd> ems("y=c*d*ea,3) # e is factor 3 
EMS(CONSTANT) = V(ERRORl) + 32V(e) + 64Q(CONSTANT) 
EMS(c) = V(ERRORl) + 16V(c.e) + 32Q(c) 
EMS(d) = V(ERRORl) + 16V(d.e) + 32Q(d) 
EMS(c.d) = V(ERRORl) + 8V(c.d.e) + 16Q(c.d) 
EMS(e) = V(ERRORl) + 32V(e) 
EMS(c.e) = V(ERRORl) + 16V(c.e) 
EMS(d.e) = V(ERRORl) + 16V(d.e) 
EMS(c.d.e) = V(ERRORl) + BV(c.d.e) 
EMS(ERRORl) = V(ERRORl) 

Here is a 2 factor crossed model with unbalanced data. Factor c is fixed and factor d is random. We 
create a new response with one missing value to illustrate ems for with unbalanced data. 
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Cmd> yl <- y[l]; y[l] <-?#make data unbalanced 

Cmd> ems(ny=c*dn,2) #dis factor 2 
EMS(CONSTANT) = V{ERRORl) + 0.0080645V{c.d) + 31.S0SV(d) + 

0.0079365Q(c) + 63Q(CONSTANT) 
EMS(c) = V(ERRORl) + 15.746V(c.d) + 0.0081925V(d) + 31.492Q(c) 
EMS(d) = V(ERRORl) + 0.0042316V(c.d) + 31.484V(d) 
EMS(c.d) = V{ERRORl) + 15.742V(c.d) 
EMS(ERRORl) = V(ERRORl) 

We see that a multiple of the c.d variance component appeared in the EMS for d; this would not occur 
for balanced data. 

In this example, we continue with the unbalanced data, but now we use marg: T. Note how the EMS 
for main effects differ from the preceding example. 

Cmd> ems(ny=c*dn,2,marg:T) # crossed with d random 
EMS(CONSTANT) = V(ERRORl) + 31.475V(d) + 62.951Q(CONSTANT) 
EMS(c) = V(ERRORl) + 15.742V(c.d) + 31.475Q(c) 
EMS(d) = V(ERRORl) + 31.475V(d) 
EMS(c.d) = V(ERRORl) + 15.742V(c.d) 
EMS(ERRORl) = V(ERRORl) 

In this example, we illustrate the unrestricted model. Now the c.d variance component appears with a 
much larger coefficient in the EMS for d. 

Cmd> ems("y=c*d",2,restrict:F) # crossed with d random 
EMS(CONSTANT) = V(ERRORl) + 15.762V(c.d} + 31.S0SV(d) + 0.0079365Q(c) 

+ 63Q(CONSTANT) 
EMS(c) = V(ERRORl) + 15.754V(c.d) + 0.0081925V(d) + 31.492Q(c) 
EMS(d) = V(ERRORl) + 15.746V(c.d) + 31.484V(d) 
EMS(c.d) = V(ERRORl) + 15.738V(c.d) 
EMS(ERRORl) = V(ERRORl) 

Here we use both Type m sums of squares and the unrestricted model. This is equivalent to the method 
used in SAS PROC GLIM. 

Cmd> ems("y=c*d",2,marg:T,restrict:F) # same as SAS PROC GLM 
EMS(CONSTANT) = V(ERRORl) + 15.738V(c.d) + 31.475V(d) + 62.951Q(CONSTANT) 
EMS(c) = V(ERRORl) + 15.738V(c.d) + 31.475Q(c) 
EMS(d) = V(ERRORl) + 15.738V(c.d) + 31.475V(d) 
EMS(c.d) = V(ERRORl) + 15.738V(c.d) 
EMS(ERRORl) = V(ERRORl) 

For the remaining examples, we restore the first response value so that the data are balanced. 

Cmd> y[l] <- yl # restore value for y[l] to regain balance 

The next two examples illustrate the role of hierarchy. We use a model with c and d crossed, e random, 
and the c.d.e interaction. By default, ems assumes hierarchy, so the c.de term includes the c.e and d.e 
interactions. In the fully crossed model, the c.e interaction would appear in the EMS of c, and the d.e inter
action would appear in the EMS of d, but c.d.e would not appear in either (under the restricted assumptions). 
However, since we have hierarchy, c.d.e includes c.e and d.e, so c.d.e appears in the EMS of both c and d. 

Cmd> ems(ny=c*d+e+c.d.e",3) 
EMS(CONSTANT) = V(ERRORl) + 32V(e) + 64Q(CONSTANT) 
EMS(c) = V(ERRORl) + SV(c.d.e) + 32Q(c) 
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EMS(d) = V(ERRORl) + 8V(c.d.e) + 32Q(d) 
EMS(c.d) = V(ERRORl) + 8V(c.d.e) + 16Q(c.d) 
EMS(e) = V(ERRORl) + 32V(e) 
EMS(c.d.e) = V(ERRORl) + 8V(c.d.e) 
EMS(ERRORl) = V(ERRORl) 

In contrast to the above example, consider what happens with a nonhierarchical model (still restricted). 
Here, c.d.e drops out of the EMS of both c and d, since it no longer contains the c.e and d.e terms that would 
appear in the c and d expected mean squares. 

Cmd> ems("y=c*d+e+c.d.e",3,nonhier:T) 
EMS(CONSTANT) = V(ERRORl) + 32V(e) + 64Q(CONSTANT) 
EMS(c) = V(ERRORl) + 32Q(c) 
EMS(d) = V(ERRORl) + 32Q{d) 
EMS(c.d) = V(ERRORl) + 8V(c.d.e) + 16Q(c.d) 
EMS(e) = V(ERRORl) + 32V(e) 
EMS(c.d.e) = V(ERRORl) + 8V(c.d.e) 
EMS(ERRORl) = V(ERRORl) 

The final example shows the fonn of the output structure that.can be returned by ems . We use a 22 

design with 16 replicates, with the second factor ( d) random. First, the table of expected mean squares. 

Cmd> ems(ay=c*d·,2) 
EMS(CONSTANT) = V(ERRORl) + 32V(d) + 64Q(CONSTANT) 
EMS(c) = V(ERRORl) + 16V(c.d) + 32Q(c) 
EMS(d) = V(ERRORl) + 32V(d) 
EMS(c.d) = V(ERRORl) + 16V(c.d) 
EMS(ERRORl) = V(ERRORl) 

Here is the structure that is returned. The first three components are the degrees of freedom, sum of 
squares, and names of the tenns in the model. The fourth component (coefs), is a matrix with element 
Xij; Xij is the coefficient of the representing element (either V() or Q()) oftenn j in the EMS for tenn i. For 
example, x 2,4 is 16, since V(c.d) appears with multiplier 16 in EMS(c); c is tenn 2, and c.d is term 4. The 
last component tells which tenns are random. It has one fewer element than df or ss, because the last term 
(an ERROR term) is always random. 

Cmd> ems(ay=c*d•,2,keep:T) 
component: df 
(1) 1 1 
component: ss 
(1) 0.76155 0.036871 
component: termnames 
( 1) n CONSTANT" 
(2) •c• 
<3> •a• 
(4) •c.da 
(5) •ERRORP 
component: coefs 
(1,1) 64 0 
(2 I 1) 0 32 
( 3, 1) 0 0 
(4, 1) 0 0 
(5,1) 0 0 
component: rterms 
( 1) F F T T 

1 

0. 31116 

32 
0 

32 
0 
0 

7 

1 

1.623 

0 
16 

0 
16 

0 

60 

56.318 

1 
1 
1 
1 
1 



2.4 ems Computational Method 

ems() uses the "synthesis" method of Hartley (1967), as explained in 10.5.2 of R. R. Hocking (1985). 
Roughly speaking, we set up basis vectors for each tenn in the model (call these X), and then we form 
X' X. We now calculate the change in the diagonal of X' X as we sweep out tenns (groups of columns). For 
example, if we sweep columns 2-6 for factor A, and the diagonal tenns of factor B in columns 7-10 change, 
then the total change in the diagonal tenns in columns 7-10 is the coefficient for V(B) in the EMS of A. 

Clearly, setting up the columns is the major issue. This is reasonably straightforward for purely random 
and/or purely fixed tenns, though some care is needed to get the scaling right. The tedious bits arise for 
mixed tenns when using the restricted model assumptions, and for fixing up nonstandard nesting and/or 
hierarchy. 

3 varcomp 

3.1 Background 

One common goal when analyzing data with random effects is to estimate the variance components. There 
are many estimating techniques available, including maximum likelihood, restricted maximum likelihood 
(reml), MINQUE, and the method of moments. The so-called ANOVA estimates for variance components 
are method of moments estimators: we set the observed mean squares equal to their expectations and solve 
for the unknown variance components. The varcomp macro implements method of moments (ANOVA) 
estimates of variance components. 

ANOVA estimates of variance components are linear combinations of the observed mean squares that 
give unbiased estimates of the variance components. Coefficients in these linear combinations may be 
negative, so the resulting estimates may be negative. 

Each individual mean square for a random term is assumed to follow a multiple of a chi square distri
bution. Thus, the mean square for term i is distributed as Aiwi/vi, where Ai is the expected mean square 
for term i, Vi is the degrees of freedom for term i, and Wi is a chi square random variable with Vi degrees of 
freedom. This mean square has expected value Ai and variance 2A~ /vi. 

The estimate for variance component k is a linear combination of mean squares: 

J 

al = Ezk;MSj 
j=l 

J 

= L zk;A;w;/v; 
j=l 

where J is the total number of terms in the model. Many of the Zkj parameters are O; in particular, those 
corresponding to fixed effects are zero. The expected value of ai is E; ZkjAj = of The variance of ul is 

J 

V(ai) = L 2zl;AJ/v;. 
j=l 

Again, we estimate this by replacing Ak by M Sk obtaining 

J 
..... ..... 2 ~ 2 2 
V(uk) = L- 2zk;M SJ /v; . 

j=l 

Important Notes: 
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• varcomp assumes that the EMS for random tenns have no contributions from fixed factors. This 
happens naturally for balanced data and some special cases. and may be guaranteed in general by 
using marg : T as an option to ems . 

• varcomp uses the SS and DF returned in the output of ems . As discussed in the ems section above. 
these SS and DF may not match the EMS if the nesting and/or grouping patterns assumed by ems are 
not followed in the model. 

3.2 varcomp Syntax 

var comp may be called with two kinds of arguments. First, varcomp can take a single structure argument 
that contains the output from an ems ( . . . , keep : T) command. For example, 

Cmd> varcomp(emsstuff) 

The second form is that varcomp can take the arguments that you would ordinarily give to ems and 
use them directly. For example, 

Cmd> varcomp ( ny = A/B/Cn, vector ( nBn, en)) 

If you are going to do ems , and varcomp , and mixed, it is generally most efficient to do ems once, 
using keep: T, print: T to save the results and print them as well. Then the saved results of ems can 
be used as an argument to varcomp and/or mixed . This is more efficient because the vast majority of the 
calculation required is in computing the expected mean square information. 

The output from varcomp is a matrix with two columns. The first column is the estimate variance 
component, and the second column is the ( estimated) standard error of the variance component estimate. 
The rows are labeled with the term names. 

3.3 varcomp Examples 

This example is synthetic data. There are three populations of a species of plant Four random males are 
chosen from each population and crossed with four random females from the same population. From each 
cross, we get six seeds. These six seeds are randomly split into three groups of two and grown in three 
different environments. Thus we have males and females random and nested separately in population, and 
then crossed with each other. This whole structure is then crossed with environment. 

Here are and analysis of variance and the expected mean squares for this experiment: 

Cmd> anova(ny=(pop+m.pop+f.pop+m.f.pop)*envn) 
Model used is y=(pop+m.pop+f.pop+m.f.pop)*env 

CONSTANT 
pop 
pop.m 
pop.f 
pop.m.f 
env 
pop.env 
pop.m.env 
pop.f.env 
pop.m.f.env 
ERRORl 

DF SS MS 
1 5.4299 5.4299 
2 2091.4 1045.7 
9 112.5 12.5 
9 370.02 41.113 

27 56. 774 2.1027 
2 206.15 103.08 
4 0.16527 0.041316 

18 3.4185 0.18992 
18 8.2354 0.45752 
54 17.117 0.31698 

144 30.448 0.21144 
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Cmd> emsstuff<-ems("y=(pop+m.pop+f.pop+m.f.pop)*env",vector("m","f"), 
keep:T,print:T) 

EMS(CONSTANT) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) + 

288Q(CONSTANT) 
EMS(pop) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) + 96Q(pop) 
EMS(pop.m) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.m) 
EMS(pop.f) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.f) 
EMS(pop.m.f) = V(ERRORl) + 6V(pop.m.f) 
EMS(env) = V(ERRORl) + 2V(pop.m.f.env) + 8V(pop.f.env) + 

8V(pop.m.env) + 96Q(env) 
EMS(pop.env) = V(ERRORl) + 2V(pop.m.f.env) + 8V(pop.f.env) + 

8V(pop.m.env) + 32Q(pop.env) 
EMS(pop.m.env) = V(ERRORl) + 2V(pop.m.f.env) + 8V(pop.m.env) 
EMS(pop.f.env) = V(ERRORl) + 2V(pop.m.f.env) + 8V(pop.f.env) 
EMS(pop.m.f.env) = V(ERRORl) + 2V(pop.m.f.env) 
EMS(ERRORl) = V(ERRORl) 

From the EMS, we see than (MS(pop.m.f.env)-MS(ERRORl))/2 is an unbiased estimate of o-~.f.env; 
here, we have (.31698 - .21144)/2 = .05277. Similarly, (MS(pop.f.env)-MS(pop.m.f.env))/8 is an unbiased 
estimate of o-J.env; here, we have (.45752 - .31698)/8 = .01757. varcomp automates these calculations, as 
well as providing the standard error. 

Cmd> varcomp(emsstuff) 
Estimate 

pop.m 
pop.f 
pop.m.f 
pop.m.env 
pop.f.env 
pop.m.f.env 
ERRORl 

0.43323 
·1.6254 
0.31521 

-0.015883 
0.017568 
0.052766 
0. 21144 

SE 
0.24668 
0.80788 

0.095472 
0.010989 
0.020532 
0.032948 
0.024919 

Note that variance component estimates can be negative; varcomp does not truncate the estimates at 0. 
To illustrate what can happen with unbalanced data, we make a new response vector with one missing 

value. The EMS are now much more complicated, as seen below. 

Cmd> ems(ny2=(pop+m.pop+f.pop+m.f.pop)*env",vector("m","f")) 
EMS(CONSTANT) = V(ERRORl) + 0.0034722V(pop.m.f.env) + 

0.0025253V(pop.f.env) + 0.0025253V(pop.m.env) + 0.00087108Q(pop.env) + 
0.0017422Q(env) + 5_.9792V(pop.m.f) + 23.917V(pop.f) + 23.917V(pop.m) + 
0.0017422Q(pop) + 287Q(CONSTANT) 

EMS(pop) = V(ERRORl) + 0.0035088V(pop.m.f.env) + 0.0025518V(pop.f.env) + 
0.0025518V(pop.m.env) + 0.00088025Q(pop.env) + 0.0017605Q(env) + 
5.9792V(pop.m.f) + 23.917V(pop.f) + 23.917V(pop.m) + 95.749Q(pop) 

EMS(pop.m) = V(ERRORl) + 0.0036486V(pop.m.f.env) + 0.0026535V(pop.f.env) + 
0.0026535V(pop.m.env) + 0.00091533Q(pop.env) + 0.0018307Q(env) + 
5.9792V(pop.m.f) + 0.0028257V(pop.f) + 23.917V(pop.m) 

EMS(pop.f) = V(ERRORl) + 0.0038946V(pop.m.f.env) + 0.0028324V(pop.f.env) + 
0.0028324V(pop.m.env) + 0.00097704Q(pop.env) + 0.0019541Q(env) + 
5.9792V(pop.m.f) + 23.914V(pop.f) 

EMS(pop.m.f) = V(ERRORl) + 0.0044788V(pop.m.f.env) + 0.0032573V(pop.f.env) + 
0.0032573V(pop.m.env) + 0.0011236Q(pop.env) + 0.0022472Q(env) + 
5. 9792V(pop .m. f) 
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EMS(env) = V(ERRORl) + 1.9918V(pop.m.f.env) + 7.9667V(pop.f.env) + 
7.9667V(pop.m.env) + 0.0012605Q(pop.env) + 95.7Q(env) 

EMS(pop.env) = V(ERRORl) + 1.9918V(pop.m.f.env) + 7.9666V{pop.f.env) + 
7.9666V(pop.m.env) + 31.924Q{pop.env) 

EMS(pop.m.env) = V(ERRORl) + 1.9916V(pop.m.f.env) + 0.0030327V(pop.f.env) + 

7.966V(pop.m.env) 
EMS(pop.f.env) = V(ERRORl) + 1.9914V(pop.m.f.env) + 7.963V(pop.f.env) 
EMS(pop.m.f.env) = V(ERRORl) + 1.9905V(pop.m.f.env) 
EMS(ERRORl) = V(ERRORl) 

In particular, the EMS for male, female. and male.female all include quadratic effects of environment. 
The variance components estimates produced by varcomp assume that the EMS for random effects have 
no contributions from fixed effects. Thus this set of expected mean squares cannot be used appropriately by 
varcomp . If so used, varcomp prints a warning. 

Cmd> varcomp("y2=(pop+m.pop+f.pop+m.f.pop)*env",vector("m","f")) 
WARNING: fixed effects contribute to some random terms 

pop.m 
pop.f 
pop.m. f 
pop.m.env 
pop.f.env 
pop.m.f.env 
ERRORl 

Estimate SE 
0.44839 0.25251 
1.6396 0.81325 

0.30377 0.092456 
-0.016848 0.010589 
0.016768 0.020114 
0.049917 0.032691 

0.21253 0.025134 

To fix this, compute the marginal (Type ID) expected mean squares. 

Cmd> emsstuff2<-ems("y2=(pop+m.pop+f.pop+m.f.pop)*env", 
vector("m","f"),keep:T,print:T,marg:T) 

EMS(CONSTANT) = V(ERRORl) + 5.9627V(pop.m.f) + 23.838V(pop.f) + 
23.838V(pop.m) + 286.0lQ(CONSTANT) 

EMS(pop) = V(ERRORl) + S.9628V(pop.m.f) + 23.838V(pop.f) + 
23.838V(pop.m) + 95.507Q(pop) 

EMS(pop.m) = V(ERRORl) + 5.9635V(pop.m.f) + 23.842V(pop.m) 
EMS(pop.f) = V(ERRORl) + 5.9635V(pop.m.f) + 23.842V(pop.f) 
EMS(pop.m.f) = V(ERRORl) + 5.9652V(pop.m.f) 
EMS(env) = V(ERRORl) + 1.9896V(pop.m.f.env) + 7.9474V(pop.f.env) + 

7.9474V(pop.m.env) + 95.507Q(env) 
EMS(pop.env) = V(ERRORl) + 1.9897V(pop.m.f.env) + 7.9477V(pop.f.env) + 

7.9477V(pop.m.env) + 31.878Q(pop.env) 
EMS(pop.m.env) = V(ERRORl) + 1.99V(pop.m.f.env) + 7.9499V(pop.m.env) 
EMS(pop.f.env) = V(ERRORl) + 1.99V(pop.m.f.env) + 7.9499V(pop.f.env) 
EMS(pop.m.f.env) = V(ERRORl) + 1.9905V(pop.m.f.env) 
EMS(ERRORl) = V(ERRORl) 

Here no random tenn has an EMS including a quadratic in fixed effects. Thus we could use 

Cmd> varcomp(emsstuff2) 

pop.m 
pop.£ 
pop.m.f 
pop.m.env 
pop.f.env 
pop.m.f.env 
ERRORl 

Estimate 
0.43597 
1. 6377 

0.31197 
-0.016186 

0.017346 
0.049917 

0.21253 

SE 
0.24764 
0.81335 

0.094699 
0.010769 
0. 020313 
0.032691 
0.025134 
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since these estimates of variance components are free of quadratic terms in the fixed effects. 

3.4 varcomp Computational Method 

varcomp uses the output of ems to find linear combinations of observed mean squares that are unbiased 
estimates of variance components. The coefs component of the output of ems shows the coefficients 
for the contribution of every tenn to every expected mean square. The rows and columns of this matrix 
corresponding to random terms are extracted; call this matrix A. Observed mean squares for random tenns 
are extracted; call this vector y. varcomp then computes x = A-1y; xis then vector of estimated variance 
components. The standard errors for estimated variance components are computed as explained in the 
Background section. 

4 mixed 

4.1 Background 

A standard part of the analysis of a mixed effects model is to test the null hypotheses that the various terms 
in the model are zero (either Ho : u! = 0 for a random effect or Ho : /3i = 0 for a fixed effect). This is 
accomplished by computing an F-ratio from two mean squares whose EMS's differ only by a multiple of 
the null hypothesis term of interest. 

For example, consider the first ems illustration of the last Section. Suppose that we wish to test the 
null hypothesis that the environment by male (nested in population) interaction variance component is zero. 
Inspection of the table of EMS reveals the following two lines: 

EMS(pop.f.env) = V(ERRORl) + 2V(pop.m.f.env) + SV(pop.f.env) 
EMS(pop.m.f.env) = V(ERRORl) + 2V(pop.m.f.env) 

These lines differ only by a tenn in V(pop.f.env), so MS(pop.f.env)/MS(pop.m.f.env) is an appropriate 
F test. 

For unbalanced data, and in some cases for balanced data, there can be hypotheses to be tested for which 
there are no two terms in the ANOVA, the EMS's of which differ only by the component of interest. In 
this case, we must construct a denominator that has the same expectation as the numerator when the null 
hypothesis is true. This denominator is some linear combination of other mean squares in the ANOVA table. 
One complication here is that this new denominator will not be distributed as a multiple of a chisquare. We 
therefore use an approximate degrees of freedom obtained via the Satterthwaite approximation (see, for 
example, Kuehl 1994). 

Again from the first ems illustration of the last Section, consider testing the effect of population. The 
table of EMS includes the following: 

EMS(pop) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.f) + 24V(pop.m) + 96Q(pop) 
EMS(pop.m) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.m) 
EMS(pop.f) = V(ERRORl) + 6V(pop.m.f) + 24V(pop.f) 
EMS(pop.m.f) = V(ERRORl) + 6V(pop.m.f) 

Furthermore, we find that no term in the ANOVA has EMS equal to V(ERRORl) + 6V(pop.m.f) + 
24V(pop.t) + 24V(pop.m). However, EMS(pop.m)+EMS(pop.f)-EMS(pop.m.f) does equal V(ERRORl) + 
6V(pop.m.f) + 24V(pop.f) + 24V(pop.m), so we can use this combination of three MS as a denominator 
for MS(pop). Note that MS(pop.m)+MS(pop.f)-MS(pop.m.f) could be negative. Thus the Satterthwaite 
approximation as a multiple of a chisquare could be quite inappropriate. 

An alternative that avoids the possibility of negative denominators also modifies the numerator. In 
the preceding case, we add MS(pop.m.t) to the numerator instead of subtracting it from the denominator. 
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More generally, anywhere we would subtract some multiple of an MS from the denominator we instead add 
the corresponding (positive) multiple of the MS to the numerator. This makes the F-ratio smaller, but the 
approximate degrees of freedom in the denominator tend to be bigger, and the Satterthwaite approximation 
tends to be more accurate. 

4.2 mixed Syntax 

Syntax for mixed is similar to that of varcomp. mixed may be called with two kinds of arguments. 
First, mixed can take a single structure argument that contains the output from an ems ( ... , keep : T) 
command. For example, 

Cmd> emsstuff<-ems(ny = A/B/Cn,vector(nB",C•),keep:T) 

Cmd> mixed(emsstuff) 

The second fonn is that mixed can take the arguments that you would ordinarily give to mixed and 
use them directly. For example, 

If you are going to do ems , and varcomp , and mixed , it is generally most efficient to do ems once, 
using keep: T, print: T to save the results and print them as well. Then the saved results of ems can 
be used as an argument to varcomp and/or mixed . This is more efficient because the vast majority of the 
calculation required is in computing the expected mean square information. 

mixed has two optional keyword arguments. By default, mixed adds appropriate multiples of an MS 
to the numerator to be tested rather than subtracting a multiple of an MS in the denominator. If the phrase 
useneg: T is included as an argument, then mixed will instead subtract the multiple of the MS from the 
denominator. 

By default, mixed prints out a table giving each line of the ANOVA with its (approximate) df and 
MS, the error MS and (approximate) error df, the F statistic and its p value. In this case, mixed returns a 
NULL value. If the keyword phrase keepmixed: T is used, the table will not be printed, but will instead 
be returned as the value of mixed. (The table is returned as a labeled matrix.) 

4.3 mixed Examples 

We illustrate mixed with the balanced plant breeding data used in the varcomp examples. For the full 
data set (note, emsstuff is the output from ems for the full data set), 

Cmd> mixed(emsstuff) 
DF MS Error DF Error MS F P value 

CONSTANT 1.914 7.533 14.01 53.61 0.1405 0.8617 
cf 2.008 1048 14.01 53.61 19.54 8.745e-0S 
cf .m 9 12.5 27 2.103 5.945 0.0001412 
cf.f 9 41.11 27 2.103 19.55 l.242e-09 
cf .m. f 27 2.103 144 0. 2114 9.945 0 
env 2.012 103.4 30.75 0.6474 159.7 0 
cf.env 56.12 0.3583 30.75 0.6474 0.5534 0.9729 
cf .m.env 18 0.1899 54 0.317 0.5991 0.8844 
cf.f.env 18 0.4575 54 0.317 1.443 0.1496 
cf .m. f .env 54 0.317 144 0.2114 1.499 0.03044 
ERROR! 144 0. 2114 0 0 MISSING MISSING 
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The test used here for environment is (MS(env)+MS(m.f.env))/(MS(f.env)+MS(m.env)) which equals 
159.7. Both the numerator and the denominator have approximate degrees of freedom, in this case, 2.01 and 
30.75. 

If we wished to use the negative coefficients in the denominator, we get 

Cmd> newmixed(emsstuff,useneg:T) 
DF MS Error DF Error MS F P value 

CONSTANT 1 5.43 12.92 51.51 0.1054 0.7506 
cf 2 1046 12.92 51.51 20.3 0.0001028 
cf.m 9 12.5 27 2.103 5.945 0.0001412 
cf.f 9 41.11 27 2.103 19.55 1.242e-09 
cf .m. f 27 2.103 144 0.2114 9.945 0 
env 2 103.1 7.048 0.3305 311.9 1.322e-07 
cf.env 4 0.04132 7.048 0.3305 0.125 0.9688 
cf .m.env 18 0.1899 54 0.317 0.5991 0.8844 
cf.f.env 18 0.4575 54 0.317 1.443 0.1496 
cf .m. f .env 54 0.317 144 0. 2114 1.499 0.03044 
ERRORl 144 0. 2114 0 0 MISSING MISSING 

Now the test for environment is MS(env)/(MS(f.env)+MS(m.env)-MS(m.f.env)) which equals 311.9. 
Only the denominator has an approximate degrees of freedom, 7.048 (numerator has 2 degrees of freedom). 

mixed computes its denominators on the assumption that no fixed tenn makes a contribution to the 
EMS of a random tenn. mixed will print a warning if any fixed tenn appears in the EMS for a random 
tenn. 

4.4 mixed Computational Method 

mixed first uses the coefs component of the output of ems to find the linear combination of variance 
components that should be used as denominator for a given tenn. This is the row of c oe f s corresponding 
to the tenn, modified by setting the entries for any fixed tenns and the term itself to zero. Call this modifed 
row y'. mixed then uses the rows and columns of coefs corresponding to random tenns (call this A) 
to find a linear combination of mean squares that has as its expectation the desired linear combination of 
variance components. This linear combination is A-1y. When useneg is false (the default), any mean 
squares with negative coefficients for the denominator are instead added to the numerator. Approximate 
degrees of freedom for both numerator and denominator are found using Satterthwaite's approximation. 
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