
•

A New Autoload System for XLISP-STAT
By

Luke Tierney 1

Technical Report No. 623
School of Statistics

University of Minnesota
December 29, 1997

1Research supported in part by grant DMS-9303557 from the National Science Foundation.

December 29, 1997 1

1 Introduction

An autoloading system allows infrequently used data or procedures to be stored on disk
" until they are needed. At that time they are automatically loaded without requiring user

intervention. This report describes a new autoloading system for XLISP-STAT [4]. It also
introduces an enhancement to the require function that allows a search path for require
to be specified.

The new autoloading system and the modified require function are included in the
current development snapshot1 and will be part of the next release of XLISP-STAT.

This report is a literate literate program[l]. The file used to typeset this report also
contains the source code. The noweb literate programming system [3, 2] was used to produce
the manuscript and the source files.

2 The New System

Under the previous autoloading system, when XLISP-STAT started a session it would execute
the code in <library> I Auto load/ auto load. lsp. This file defined some utility functions and
then provided definitions for the symbols to be autoloaded. These definitions consisted of
macro calls of the form

(autoload foo 11 bar 11
)

This call would expand into (in simplified form)

(defun foo (&rest args)
(load 11 bar 11

)

(apply foo args))

This approach has several drawbacks. It works for functions, could be modified to work for
macros, but does not work for variables. Also, adding new code for autoloading requires
editing the autoload. lsp file.

The new approach uses the unbound-variable and undefined-function errors signaled
when a symbol's value or function cells are accessed and found to be unbound. 2 On startup,
XLISP-STAT searches for files named _autoidx. lsp (or _autoidx. f sl if compiled, but there
is no need to) in a specified set of directories and all its subdirectories and loads them. The
default search path contains only the <library>/Autoload directory. These files should

• define any packages that are needed

• export symbols as needed

• register symbols to trigger autoloading when their value or function cells are accessed.

1See URLhttp://www.stat.umn.edu/·luke/xls/projects/Snapshot.
2The undefined-function error was previously incorrectly named unbound-function; this has been

changed.

December 29, 1997 autoload.nw 2

It may also be useful to include a provide call for the module.
A new macro, system:define-autoload-package3 is provided for registering the func

tion and value cells of symbols that are to trigger autoloading. The macro is called with a
string naming the module and clauses listing the variables and functions/macros that are to
trigger autoloading. For example, if an _autoidx. lsp file contains the expression

(system:define-autoload-module 11 £00 11

(function bar1 bar2)
(variable baz))

then an attempt to access the function cells of bar1 and bar2 or the value cell of baz causes
the file foo. lsp or foo. fsl to be loaded from the directory containing the ingex file.

An important point to note is that symbol references are still constructed by standard
reader rules. Thus if a symbol is referenced as foo it will be looked up in the current package.
If a symbol is referenced as bar:foo then the package bar must already exist and contain the
exported symbol named foo, even if the function definition of the symbol is to be autoloaded.
This is why index files must contain appropriate package definition and export commands.

Here are some examples. The autoload index for a regular expression library might
contain

2a (autoloads for a regular expression library 2a)=
(defpackage 11 REGULAR-EXPRESSIONS 11

(:use "COMMON-LISP")
(:nicknames "REGEXP"))

(in-package 11 REGEXP 11
)

(export '(regexp regsub url-decode))

(system:define-autoload-module "regexp 11

(function regexp regsub url-decode))

The autoload specification for the glim module in the standard distribution is
2b (autoload specification for the glim module 2b)= (8)

(in-package 11 USER 11
)

(system:define-autoload-module 11 glim 11

(variable glim-link-proto identity-link log-link inverse-link sqrt-link
power-link-proto legit-link probit-link cloglog-link glim-proto
normalreg-proto poissonreg-proto binomialreg-proto gammareg-proto)

(function normalreg-model poissonreg-model loglinreg-model binomialreg-model
logitreg-model probitreg-model gammareg-model indicators
cross-terms level-names cross-names))

The remainder of the autoload specifications for the standard autoloaded modules is given
in the appendix.

3New system features will be placed in the SYSTEM package. At the moment, this is just a nickname for
the XLISP package, but this is likely to change. Exported symbols from the system package should thus
always be referenced with a system: prefix unless the current package explicitly uses the SYSTEM package.

December 29, 1997 autoload.nw 3

The easiest way to register a new set of functions for autoloading is to add a subdirectory
to <library> I Autoload that contains an appropriate _autoidx. lsp file. A more complex
alternative is to redefine the function system: create-autoload-path to add a new directory
to the search path. A third option is to directly call system: register-auto loads with a
directory containing an index file, or subdirectories with index files, as argument. When a
session is initialized, autoloading registration is handled by the expression

3a (register standard autoloads 3a)=
(mapc #'register-autoloads (create-autoload-path))

The require function plays a similar role to the autoloading process. It allows modules
to specify additional modules they need if they are loaded. The first argument to require is
a module name string that is looked up in the *modules* list. If the name is not registered
in the list then the optional second argument specifies a file or a list of files to load. The
default value for the second argument is the module name. The loading process searches for
the specified files by merging the pathnames for the files with the path names in the variable
system: *module-path*. This variable is initialized by

3b (initialize module search path 3b) =

3c

(setf *module-path* (create-module-path))

The system: create-module-path function creates a path consisting of the current direc
tory, the standard library directory and the Examples subdirectory of the standard li
brary directory. You can change this definition in a statinit. lsp file or by redefining
create-module-path. Assigning a new value to *module-path* and saving the workspace
will not work since this variable is reset at session startup. This allows the library directory
to be changed without requiring a new workspace to be built.

3 Implementation

3.1 The Autoload System

Autoloading is done by handling the unbound-variable and undefined-function errors.
There are two possible approaches. One is to handle them at the bottom of the handler
stack by redefining the default handler. This is less dependent on the details of the condition
system, but it means ignore-errors will not allow autoloading to work in its body. The
alternative is to handle these errors at the top of the handler stack by redefining the condition
hook function. This is the approach I have used.

The new condition hook function is autoload-condi ti on-hook.
(definition of autoload-condition-hook 3c)=

(defun autoload-condition-hook (&rest args)
(handler-bind

((unbound variable handler clause 3d)
(undefined function handler clause 4a))

(apply #'condition-hook args)))

The handler clause for unbound variables is

(5d)

3d

4a

December 29, 1997

(unbound variable handler clause 3d) =
(unbound-variable #'(lambda (c)

(autoload-variable (cell-error-name c))
(apply #'condition-hook args)))

and the undefined function handler clause is
(undefined function handler clause 4a) =

(undefined-function #'(lambda (c)
(autoload-function (cell-error-name c))
(apply #'condition-hook args)))

autoload.nw 4

(3c)

(3c)

The calls of condition-hook, the standard condition hook function, in the handlers handle
unbound variable or undefined function cases that are not resolved by autoloading. This
code uses handler-bind, not handler-case, since the handlers have to be called inside the
restart context established by the implicit cerror call that signaled the error.

The hook is installed by
4b (install the new condition hook 4b) =

(setf *condition-hook* 'autoload-condition-hook)

To load an undefined function, autoload-function looks up a module path in a database
and finds the continue restart that should have been established by the implicit cerror
that signaled the error. The *load-verbose* variable is bound to NIL to suppress loading
messages. If the module path and the restart are found, then the file is loaded. If the symbol
has a function definition after the load, then the restart is invoked. If any of these conditions
fails, then autoload-function returns and normal error processing resumes.

4c (definition of autoload-function 4c}= {5d)

4d

(defun autoload-function (name)
(let ((modpath (find-function-module-path name))

(restart (find-restart 'continue))
(*load-verbose* nil))

(when (and modpath restart)
(load modpath)
(when (fboundp name)

(invoke-restart restart)))))

Undefined variables are handled analogously by
(definition of autoload-variable 4d}=

(defun autoload-variable (name)
(let ((modpath (find-variable-module-path name))

(restart (find-restart 'continue))
(*load-verbose• nil))

(when (and modpath restart)
(load modpath)
(when (boundp name)

(invoke-restart restart)))))

The autoload database is maintained in two hash tables,

{5d)

•

4e

5a

5b

December 29, 1997

(autoload database 4e)=
(let ((function-modules (make-hash-table))

(variable-modules (make-hash-table)))
(defun find-function-module-path (name)

(gethash name function-modules))
(defun find-variable-module-path (name)

(gethash name variable-modules))
(defun add-function-module (name module)

(set£ (gethash name function-modules) module))
(defun add-variable-module (name module)

(setf (gethash name variable-modules) module)))

The macro for installing symbols in this table is
(definition of define-autoload-module 5a)=

(defmacro define-autoload-module (module &rest clauses)
'(let• ((dir (pathname-directory *load-truename*))

(mname (make-pathname :name ',module :directory dir))
(clist ',clauses))

(dolist (c clist)
(ecase (first c)

autoload.nw

(variable (dolist (n (rest c)) (add-variable-module n mname)))
(function (dolist (n (rest c)) (add-function-module n mname)))))))

5

(5d)

(5d)

The register-autoloads function recursively traverses the directory structure starting
at the specified argument and reads in any index files it finds.
(definition of register-autoloads 5b)=

(defun register-autoloads (dir)
(let ((idx (merge-pathnames 11 _autoidx 11 dir))

(dirlist (base-directory dir)))
#+(or unix msdos) (setf dirlist (delete 11

•
11 dirlist :test #'equal))

#+(or unix msdos) (setf dirlist (delete 11
••

11 dirlist :test #'equal))
(load idx :verbose nil :if-does-not-exist nil)
(dolist (d dirlist)

(let ((dpath (make-pathname :directory (list :relative d))))
(register-autoloads (merge-pathnames dpath dir))))))

(5d)

This function is called during system startup for each directory in the list returned by the
function create-autoload-path. The default definition of this function produces a list that
contains only only the Autoload subdirectory of the system library,

5c (definition of create-autoload-path 5c)= {5d)
(defun create-autoload-path ()

(list (merge-pathnames (make-pathname :directory '(:relative "Autoload"))
default-path)))

Currently this code4 is included in pathname. lsp.

4See URL http://www. stat. umn. edu;-luke/xls/projects/autoload/pathname. lap. frag.

"

5d

December 29, 1997

(pathname.lsp code 5d)=
(in-package 11 SYSTEM 11

)

(export '(define-autoload-module register-autoloads
create-autoload-path))

(definition of autoload-condi ti on-hook 3c)
(definition of autoload-function 4c)
(definition of autoload-variable 4d)
(autoload database 4e)
(definition of define-autoload-module 5a)
(definition of register-autoloads 5b}
(definition of create-autoload-path 5c)

3.2 Modified require Function

autoload.nw 6

The modified require function uses the *module-path* variable in the system package to
hold the module search path.

6a (definition of *module-path* variable 6a)- (7)
(defvar *module-path* nil)

The default value of this variable is computed by create-module-path.
6b (definition of create-module-path 6b}= (7)

6c

(defun create-module-path()
(list (make-pathname :directory '(:relative))

default-path
(merge-pathnames (make-pathname :directory '(:relative 11 Examples 11

))

default-path)))

Given a pathname from the second argument to require (supplied or default), the func
tion find-require-path searches the module path until it finds a file that matches the path,
possibly after adding a . lsp or . f sl extension. The path returned does not have an added
extension. If no file is found, NIL is returned.
(definition of find-require-file 6c)=

(defun find-require-file (path)
(let ((type (pathname-type path)))

(dolist (dir *module-path*)
(let ((p (merge-pathnames path dir)))

(when (or (probe-file p)
(and (not type)

(or (probe-file (merge-pathnames p 11 .lsp 11
))

(probe-file (merge-pathnames p 11 .fsl 11
)))))

(return p))))))

(7)

The require function uses find-require-file to locate the files to load. Loading is
done by calling the load function on the path. This allows the standard load code to examine
modification dates and determine whether a . lsp or a . fsl file should be loaded if both are
present and the path does not specify an extension. If no file is found by searching the path,
load is called with the original path argument and the : if-does-not-exist flag set to NIL.

This is to maintain backwards compatibility with the previous definition of require.

December 29, 1997 autoload.nw 7

6d (definition of require 6d) = (7)
(defun require (name &optional (path (string name)))

(let ((name (string name))
(pathlist (if (listp path) path (list path))))

(unless (member name *modules* :test #'equal)
(dolist (pathname pathlist)

(let ((rpath (find-require-file pathname)))
(if rpath

(load rpath)
(load pathname :if-does-not-exist nil)))))))

This code5 is included in common. lsp in place of the previous definition of require.

7 (common. lsp code 7) =
(export '(system::*module-path* system::create-module-path)

"SYSTEM")

(definition of *module-path* variable 6a)
(definition of require 6d)
(definition of find-require-file 6c)
(definition of create-module-path 6b}

4 Discussion

At present the index files for autoloading need to be prepared manually. It should be possible
to modify the compile-file top level to attempt to generate these files automatically. This
can't be done perfectly, but it should be possible to handle most cases.

It would be useful to explore adding more features to the minimal module system that
require and provide make available. One useful addition would be versioning, perhaps
along the lines of the versioning system in Tel 8.0 [5]. Integrating name space management
and modules would also be useful, as would better support for separate compilation and
syntax management. Some of the newer Scheme module systems need to be examined.

It might also be useful to allow search paths to be initialized from environment variables
· on systems where those make sense (i.e. UNIX and Windows).

References

[1] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, May
1984.

[2] Norman Ramsey. Noweb home page.

[3] Norman Ramsey. Literate programming simplified. IEEE Software, 13(9):97-105,
September 1994.

5SeeURLhttp://www.stat.umn.edu/-luke/xls/projects/autoload/common.lsp.frag.

December 29, 1997 autoload.nw 8

[4] Luke Tierney. LISP-STAT: An Object-Oriented Environment for Statistical Computing
and Dynamic Graphics. J. Wiley & Sons, New York, NY, 1990.

[5] Brent B. Welch. Practical Programming in Tel and Tk. Prentice-Hall, Upper Saddle
River, NJ, 2nd edition, 1997.

A Standard Autoloads

The file _autoidx. lsp6 in the Autoload directory provides for autoloading of certain modules
in the standard distribution.

8 (_autoidx.lsp 8)=
(in-package "USER")
(system:define-autoload-module "nonlin"

(variable nreg-model-proto)
(function nreg-model))

(in-package "USER")
(system:define-autoload-module "oneway"

(variable oneway-model-proto)
(function oneway-model))

(in-package "XLISP")
(export '(nwngrad numhess newton.max nelmeadmax))
(system:define-autoload-module "maximize"

(function nwngrad numhess newton.max nelmeadmax))

(in-package 11USER 11
)

(system:define-autoload-module 11 bayes 11

(function bayes-model)
(variable bayes-model-proto))

(in-package "XLISP")
(export 'step)
(system:define-autoload-module "stepper"

(function step))

(in-package 11 XLISP 11
)

(export '(compile compile-file))
(system:define-autoload-module "cmpload"

(function compile compile-file))

(auto load specification for the glim module 2b)

(in-package 11 XLISP 11
)

6SeeURLhttp://www.stat.umn.edu/-luke/xls/projects/autoload/_autoidx.lsp.

December 29, 1997

(export 1 xlisp::symbol-macrolet 11 XLISP 11
)

(system:define-autoload-module 11 symaclet 11

(function symbol-macrolet))

B Indices

Chunk Index

(_autoidx. lsp B) ~
(autoload database 4e) 4e, 5d
(auto load specification for the glim module 2b) 2b, 8
(auto loads for a regular expression library 2a) 2a
(common. lsp code 7) 1
(definition of autoload-condi ti on-hook 3c) 3c, 5d
(definition of autoload-function 4c) 4c, 5d
(definition of autoload-variable 4d) 4d, 5d
(definition of create-autoload-path 5c) 5c, 5d
(definition of create-module-path 6b) 6b, 7
(definition of define-autoload-module 5a) 5a, 5d
(definition off ind-require-file 6c) 6c, 7
(definition of *module-path* variable 6a) 6a, 7
(definition of register-autoloads 5b) 5b, 5d
(definition of require 6d) 6d, 7
(initialize module search path 3b) 3b
(install the new condition hook 4b) 4b
(pathname. lsp code 5d) 5d
(register standard autoloads 3a) 3a
(unbound variable handler clause 3d) 3c, 3d
(undefined function handler clause 4a) 3c, 4a

Identifier Index

add-function-module: 4e, 5a
add-variable-module: 4e, 5a
autoload-condition-hook: 3c
autoload-function: 4a, 4c
autoload-variable: 3d, 4d
condition-hook: 4b
create-autoload-path: 3a, 5c, 5d
create-module-path: 3b, 6b, 7
define-autoload-module: 2a, 2b, 5a, 5d, 8
find-function-module-path: 4c, 4e
find-require-file: 6c, 6d
find-variable-module-path: 4d, 4e

autoload.nw 9

11

December 29, 1997

module-path: 3b, 6a, 6c
register-autoloads: 5b, 5d
require: 6c, 6d

autoload.nw 10

