an extension of a result of lehmann on the asymptotic Efficiency of selection procedures based on ranks
 G. G. Woodworth*

Technical Report No. 66

University of Minnesota
Minneapolis, Minnesota
*This research was supported in part by the National Science Foundation under Grant No. GP-3813.

There are k populations $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ differing only in location. In fact the distribution of an observation from π_{j} is $F\left(x-\theta_{j}\right)$, where F is assumed to have density f.

Let $\theta_{[1]} \leqq \ldots \leqq \theta_{[k]}$ be the ordered values of $\theta_{1}, \ldots, \theta_{k}$ and let $\pi_{[j]}$ correspond to $\theta_{[j]}$. For fixed $\frac{1}{\binom{k}{t}}<P^{*}<1$ and $\delta^{*}>0$, the goal is to select the t best populations $\pi_{[k-t+1]}, \ldots, \pi_{[k]}$ subject to the following restriction on the $P\{C S\}$ (probability of correct selection):

$$
P\{C S\} \geqq P^{*} \quad \text { when } \theta_{[k-t+1]}-\theta_{[k-t]} \geqq \delta^{*} \text {. }
$$

Let $\left\{X_{i j} ; i=1, \ldots, k ; j=1, \ldots, n\right\}$ be k samples of size n, one sample from each population, where $X_{i j}$ is the j th observation from π_{i}. Let $R_{i j}$ be the rank of $X_{i j}$ in the combined sample.

Let $\left\{J_{n, j} ; j=1, \ldots, n, n=1, \ldots\right\}=\mathcal{H}$ be a sequence of real numbers with $J_{n, i} \leqq J_{n, j} i \leqq j, n=1,2, \ldots$, and define functions $\left\{J_{n} ; n=1,2, \ldots\right\}$ as follows:

$$
J_{n}(u)=J_{n, i} \quad \frac{i-1}{n}<u \leqq \frac{i}{n}, \quad i=1, \ldots, n
$$

We assume that there exists a function J, square integrable on (0,1) such that

$$
\begin{equation*}
\int_{0}^{1}\left(J_{n}(u)-J(u)\right)^{2} d u \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2}
\end{equation*}
$$

We define the statistics $T_{n i} \quad i=1, \ldots, k$ as follows:

$$
T_{n i}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} J_{n R_{i j}}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} J_{n}\left(\frac{R_{i j}}{n k+1}\right)
$$

Lehmann [4] suggests the following procedure, which we shall call $\mathrm{R}_{\boldsymbol{y}}$: take a sample of fixed size n from each population and select the populations having the t largest values of $T_{n i} i=1, \ldots, k$, where n is the smallest integer such that (1) is satisfied.

Let $T_{n[i]}$ correspond to $\pi_{[i]} i=1, \ldots, k$, then under procedure R_{y},
(3)

$$
P\{C S\}=P\left\{\max _{1 \leq i \leq(k-t)} T_{n[i]} \leqslant \min _{(k-t)<j \leq k} T_{n[j]}\right.
$$

Let $r\left(x_{11}, \ldots, x_{k n}\right)$ be the indicator of the set on the right side of (3). γ is a non-increasing function of each $x_{[i] j}$ for $i \leqq k-t$ and a non-decreasing function of each $X_{[i] j}$ for $i>k-t$ because $T_{n[i]}$ is non-decreasing ${ }^{*}$ in $x_{[i] j} j=1, \ldots, n$ while $T_{n[1!]}$ is non-increasing ${ }^{*}$ in $x_{[i] j} j=1, \ldots, n$, $i \neq i^{\prime}$. Since $F(x-\theta)$ is stochastically increasing, it follows from a slight generalization of Rizvi [5] Theorem 1, or Lehmann [3] Chapter 3 Lemma 2(i), that the probability of a correct selection ($\mathrm{P}\{\mathrm{CS}\}$) attains its minimum subject to $\theta_{[k-t+1]}-\theta_{[k-t]} \geqq \delta^{*}$ when

$$
\begin{equation*}
\theta_{[1]}=\ldots=\theta_{[k-t]}=\theta_{[k-t+1]}-\delta^{*}=\cdots=\theta_{[k]}-\delta^{*} . \tag{4}
\end{equation*}
$$

It is clear that this minimum depends only on δ^{*}, n and \mathcal{J}, hence, we shall denote it by $P\left(C S \mid \delta^{*}, n, \mathcal{Z}\right\}$.

For fixed P^{*} and δ^{*} let $n\left(P^{*}, \delta^{*}, \mathcal{Y}\right)$ be the smallest sample size for which $P\left(C S \mid \delta^{*}, n, \mathcal{Y}\right\} \geqq P^{*}$. Now consider the class C of all procedures ${ }^{\mathrm{R}} \mathrm{y}$ such that \mathcal{J} satisfies (2); a procedure ${ }^{\mathrm{R}} \mathcal{Y}_{0}$ is asymptotically most efficient in $\underline{\text { c }}$ if $\operatorname{limimf}_{\delta^{*} \rightarrow 0} \frac{\mathrm{n}\left(\mathrm{P}^{*}, \delta^{*}, \mathcal{Y}\right)}{\mathrm{n}\left(\mathrm{P}^{*}, \delta^{*}, \mathcal{F}_{0}\right)} \geqq 1$ for all $\frac{1}{\binom{k}{\mathrm{t}}}<\mathrm{P}^{*}<1$ and $a l 1 \mathrm{Ry}$ in C.

The following theorem extends Lemma 2 of Lehmann [4] by weakening the restrictions on J.
Theorem: If $J_{0}(u)=-\frac{f^{\prime}}{f}\left(F^{-1}(u)\right)$ is square integrable on $(0,1)$, then for fixed $P^{*} n\left(P^{*}, \delta^{*}, \mathcal{Y}\right) \sim\left(\frac{v^{*}}{\delta^{*}}\right)^{2} \frac{\int_{0}^{1} \cdot J^{2}(u) d u-\left(\int_{0}^{1} J(u) d u\right)^{2}}{\left(\int_{0}^{1} J(u) J_{0}(u) d u\right)^{2}}$,
where v^{*} is the solution of

[^0]\[

$$
\begin{equation*}
P^{*}=t \int \Phi^{k-t}\left(x+v^{*}\right)(1-\Phi(x)) d \Phi(x), \tag{5}
\end{equation*}
$$

\]

and Φ is the normal c.d.f.
Proof: Assume, without loss of generality, that

$$
\begin{gather*}
\theta_{[1]}=\ldots=\theta_{[k-t]}=-\delta^{*} \frac{t}{k}, \theta_{[k-t+1]}=\cdots=\theta_{[k]}=\delta^{*}\left(1-\frac{t}{k}\right) \tag{6}\\
\text { Let } L_{n}=\sum_{i=1}^{k} \sum_{j=1}^{n} \log \left(\frac{f\left(x_{[i] j}-\theta_{[i]}\right)}{f\left(x_{[i] j}\right)}\right), \text { where } x_{[i] j} \text { is the } j \text { th }
\end{gather*}
$$

observation from the population with parameter $\theta_{[i]}$, let Q_{n} denote the distribution of $\left\{x_{i j} ; i=1, \ldots, k ; j=1, \ldots, n\right\}$ when (6) holds and let P_{n} denote the distribution when $\theta_{[1]}=\theta_{[k]}=0$, and let
$W_{n}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n} \theta_{[i]}\left(-\frac{f^{\prime}\left(x_{[i] j}\right)}{f\left(x_{[i] j}\right)}\right)$.
If we set $\delta^{*}=a / \sqrt{n}$ for some fixed $a>0$, then by Hajek [2] (5.21)

$$
\begin{equation*}
P_{n} \lim _{n \rightarrow \infty}\left(L_{n}-E_{P_{n}} L_{n}-W_{n}^{*}\right)=0, \tag{7}
\end{equation*}
$$

where $P_{n} \lim _{n \rightarrow \infty}\left(Z_{n}\right)$ is the limit of Z_{n} in P_{n}-probability. Consequently, if $\mathcal{L}\left(Y_{n}, W_{n}^{*}\right)$ is asymptotically normal with correlation ρ under P_{n} then so is $\mathscr{L}\left(Y_{n}, L_{n}\right)$.

Let $\alpha_{1}, \ldots, \alpha_{k}$ be arbitrary real numbers and let $T_{n}=\sum_{i=1}^{k} \alpha_{i} T_{n[i]}$.
Let $\quad T_{n}^{*}=\frac{1}{\sqrt{n}} \sum_{i=1}^{k}\left(\alpha_{i}-\bar{\alpha}\right) \sum_{j=1}^{n} J_{n}\left(F\left(X_{[i] j}\right)\right)$, where $\quad \bar{\alpha}=\frac{1}{k} \sum_{i=1}^{k} \alpha_{i} . \quad$ It follows
from Hajek [1] Theorem 3.1 that

$$
\begin{equation*}
P_{n} \lim _{n \rightarrow \infty} \frac{1}{\sigma_{P_{n}}\left(T_{n}^{*}\right)}\left(T_{n}-E_{P_{n}} T_{n}-T_{n}^{*}\right)=0 \tag{8}
\end{equation*}
$$

and from (8) and Hajek [2] Lemma 4.2 (1) that

$$
\begin{equation*}
Q_{n} \lim _{n \rightarrow \infty} \frac{1}{\sigma_{P_{n}}\left(T_{n}^{*}\right)}\left(T_{n}-E_{P_{n}} T_{n}-T_{n}^{*}\right)=0 \tag{9}
\end{equation*}
$$

From Hajek [1] Theorem 4.1 and (8) we conclude that, under P_{n}, T_{n} is asymptotically normal with mean $\sqrt{n} \sum_{i=1}^{k} \alpha_{i} \int_{0}^{1} J(u) d u$ and variance $k \sum_{i=1}^{k}\left(\alpha_{i}-\bar{\alpha}\right)\left(\oint^{1} J^{2}(u) d u-\left(\int_{0}^{1} J(u) d u\right)^{2}\right)$ and from Hajek [1] Theorem 4.1, (9) and the remark following (7) that, under Q_{n}, T_{n} is asymptotically normal with the same variance as above but with mean $\sqrt{n} \sum_{i=1}^{k} \alpha_{i} \int J(u) d u$
$+a \sum_{i=1}^{k}\left(\alpha_{i}-\bar{\alpha}\right) c_{i} \int_{0}^{1} J(u)\left(-\frac{f^{\prime}}{f}\left(F^{-1}(u)\right)\right.$ du , where $c_{i}= \begin{cases}-\frac{t}{k} & i=1, \ldots, k-t \\ 1-\frac{t}{k} & i=k-t, \ldots, k .\end{cases}$

It follows that the vector $\left(T_{n[i]}, T_{n[2]}, \ldots, T_{n[k]}\right)$ is asymptotically normal with mean vector given by:

$$
T_{n[i]}=\sqrt{n} \int_{0}^{1} J(u) d u+ \begin{cases}0 & \text { under } P_{n} \\ a c_{i} \int_{0}^{1} J(u) J_{0}(u) d u, & \text { under } Q_{n}\end{cases}
$$

where $J_{0}(u)=-\frac{f^{\prime}}{f}\left(F^{-1}(u)\right)$, and covariance matrix given by:

$$
\sigma\left(T_{n[i j}, T_{n[j]}\right)^{\prime}=\left(\delta_{i j}-\frac{1}{k}\right)\left(\int_{0}^{1} J^{2}(u) d u-\left(f_{0}^{1} J(u) d u\right)^{2}\right)
$$

under P_{n} and under Q_{n}.
Let $\xi_{i}=\left(\left(T_{n[i]}-T_{n[k]}\right)-d_{i}\right) / A, \quad i=1, \ldots, n-1$, where $d_{i}^{\prime}=\left\{\begin{array}{ll}-a \int J J_{0} & i=1,2, \ldots, k-t \\ 0 & i=k-t+1, \ldots, k\end{array}\right\}$ and $A^{2}=\int_{0}^{1} J^{2}(u) d u-\left(\int_{0}^{1} J(u) d u\right)^{2}$,
then $E_{Q_{n}} \xi_{i} \rightarrow 0, \sigma_{Q_{n}}^{2}\left(\xi_{i}\right) \rightarrow 2, \quad \sigma_{Q_{n}}\left(\xi_{i}, \xi_{j}\right) \rightarrow \frac{1}{2}$ and
10)

$$
\begin{equation*}
P\{C S\}=P\left\{\max _{i \leq k-t} \xi_{i}-\frac{a}{A} \int_{0}^{1} J(u) J_{0}(u) d u \leqq \min _{k-t<k \leq k-1}\left(\xi_{j}, 0\right)\right\} \tag{10}
\end{equation*}
$$

If ξ_{1}, \ldots, ξ_{n} are independent $N(0,1)$ random variables, then the right side of (10) converges to

$$
\begin{aligned}
& P\left(\max _{i \leq k-t}\left(\xi_{i}-\xi_{n}\right)-\frac{a}{A} \int_{0}^{1} J(u) J_{0}(u) d u \leqq \min _{k-t<j \leq k-1}\left(\left(\xi_{j}-\xi_{n}\right), 0\right)\right\} \\
& =P\left\{\max _{i \leq k-t} \xi_{i}-\frac{a}{A} \int_{0}^{1} J(u) J_{0}(u) d u \leqq \min _{k-t<j \leq k} \xi_{j}\right\} \\
& =t \int \Phi^{k-t}\left(x+\frac{a}{A} \int J J_{0}\right)(1-\Phi(x))^{t-1} d \Phi(x) .
\end{aligned}
$$

Thus if $P\{C S\}=P^{*}$, then $\frac{a}{A} \int J J_{0}=v^{*}$, where v^{*} is the solution of

$$
\begin{equation*}
P^{*}=t \int \Phi^{k-t}(x+v)(1-\Phi(x))^{t-1} d \Phi(x) \tag{11}
\end{equation*}
$$

Recall that $\delta^{*}=\frac{a}{\sqrt{n}}$; consequently, the sample size required to satisfy
(1) is given by:

$$
\begin{equation*}
n\left(p^{*}, \delta^{*}, \gamma\right) \sim\left(\frac{v^{*}}{\delta^{*}}\right)^{2} \frac{\int J^{2}(u) d u-\left(\int J(u) d u\right)^{2}}{\left[\int J(u) J_{0}(u) d u\right]^{2}} \tag{12}
\end{equation*}
$$

for $\delta^{*} \sim 0$. QED
If \mathcal{J}_{0} is any sequence with limit $J_{O}(u)=-\frac{f^{\prime}}{f}\left(F^{-1}(u)\right)$, then
$n\left(P^{*}, \delta^{*}, \mathcal{J}_{0}\right) \sim\left(\frac{v^{*}}{\delta^{*}}\right)^{2} \frac{1}{\int J_{0}^{2}(u) d u} \ldots$ Thus $\lim _{\delta^{*} \rightarrow 0} \frac{n\left(P^{*}, \delta^{*}, \mathcal{J}_{0}\right)}{n\left(P^{*}, \delta^{*}, \mathcal{J}\right)}=\frac{\left(\int J^{2}-\left(\int J\right)^{2}\right)\left(\int J_{0}^{2}\right)}{\left(\int J \cdot J_{0}\right)^{2}}$
and we have the following
Corollary: Under the conditions of the theorem above, the procedure R_{O} is asymptotically most efficient among all procedures of the $R \mathcal{H}$, with \mathcal{F} satisfying (2).

Bibliography

[1] Hájek, Jaros lav, "Some extensions of the Wald-Wolfowitz-Noether theorem," Ann. Math. Statist. 32 (1961), 283-288.
[2] Hájek, Jaroslav, "Asymptotically most powerful rank-order tests;" Ann. Math. Statist. 33 (1962), 1124-1147.
[3] Lehmann, E. L., Testing Statistical Hypotheses, John Wiley and Sons, New York (1959).
[4] Lehmann, E. L., "A class of selection procedures based on ranks;" Math. Ann. 150 (1963), 268-275.
[5] Rizvi, M. H., "Ranking and selection problems of normal populations using the absolute values of their means: fixed sample size case;" University of Minnesota, Department of Statistics Technical Report No. 31 (1963).

[^0]: *Observe that $J_{n}(u)$ is non-decreasing in u for each n.

