AN EXTENSION OF A RESULT OF LEHMANN ON THE ASYMPTOTIC EFFICIENCY OF SELECTION PROCEDURES BASED ON RANKS

.

<u>ج</u>

G. G. Woodworth*

Technical Report No. 66

University of Minnesota Minneapolis, Minnesota

* This research was supported in part by the National Science Foundation under Grant No. GP-3813.

There are k populations $\pi_1, \pi_2, \ldots, \pi_k$ differing only in location. In fact the distribution of an observation from π_j is $F(x-\theta_j)$, where F is assumed to have density f.

Let $\theta_{[1]} \leq \ldots \leq \theta_{[k]}$ be the ordered values of $\theta_1, \ldots, \theta_k$ and let $\pi_{[j]}$ correspond to $\theta_{[j]}$. For fixed $\frac{1}{\binom{k}{t}} < P^* < 1$ and $\delta^* > 0$, the goal is to select the t best populations $\pi_{[k-t+1]}, \ldots, \pi_{[k]}$ subject to the following restriction on the P{CS} (probability of correct selection):

(1)
$$P{CS} \ge P^*$$
 when $\theta_{[k-t+1]} - \theta_{[k-t]} \ge \delta^*$.

Let $\{X_{ij}; i = 1, ..., k; j = 1, ..., n\}$ be k samples of size n, one sample from each population, where X_{ij} is the $j^{\underline{th}}$ observation from π_i . Let R_{ij} be the rank of X_{ij} in the combined sample.

Let $\{J_{n,j}; j = 1,...,n, n = 1,...\} = \mathcal{J}$ be a sequence of real numbers with $J_{n,i} \leq J_{n,j}$ $i \leq j, n = 1,2,...,$ and define functions $\{J_n; n = 1,2,...\}$ as follows:

$$J_n(u) = J_{n,i}$$
 $\frac{i-1}{n} < u \leq \frac{i}{n}$, $i = 1,...,n$.

We assume that there exists a function J, square integrable on (0,1) such that

(2)
$$\int_0^1 (J_n(u) - J(u))^2 du \to 0 \quad \text{as } n \to \infty.$$

We define the statistics T_{ni} i = 1, ..., k as follows:

$$\mathbf{T}_{\mathbf{n}\mathbf{i}} = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \mathbf{J}_{\mathbf{n}\mathbf{R}_{\mathbf{i}\mathbf{j}}} = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \mathbf{J}_{\mathbf{n}} \left(\frac{\mathbf{R}_{\mathbf{i}\mathbf{j}}}{\mathbf{n}\mathbf{k}+1} \right)$$

Lehmann [4] suggests the following procedure, which we shall call R_{j} : take a sample of fixed size n from each population and select the populations having the t largest values of T_{ni} i = 1,...,k, where n is the smallest integer such that (1) is satisfied.

Let $T_{n[i]}$ correspond to $\pi_{[i]}$ i = 1, ..., k, then under procedure R_{γ} ,

- 1 -

$$P\{CS\} = P\{\max_{1 \le i \le (k-t)} T_n[i] \le \min_{(k-t) < j \le k} T_n[j]$$

(3)

Let $\gamma(x_{11},...,x_{kn})$ be the indicator of the set on the right side of (3). γ is a non-increasing function of each $x_{[i]j}$ for $i \leq k-t$ and a non-decreasing function of each $x_{[i]j}$ for i > k-t because $T_{n[i]}$ is non-decreasing^{*} in $x_{[i]j}j = 1,...,n$ while $T_{n[i']}$ is non-increasing^{*} in $x_{[i]j}$ j = 1,...,n, $i \neq i'$. Since $F(x-\theta)$ is stochastically increasing, it follows from a slight generalization of Rizvi [5] Theorem 1, or Lehmann [3] Chapter 3 Lemma 2(i), that the probability of a correct selection (P{CS}) attains its minimum subject to $\theta_{[k-t+1]} - \theta_{[k-t]} \ge \delta^*$ when

(4)
$$\theta_{[1]} = \dots = \theta_{[k-t]} = \theta_{[k-t+1]} - \delta^* = \dots = \theta_{[k]} - \delta^*$$

It is clear that this minimum depends only on δ^* , n and \mathcal{J} , hence, we shall denote it by $P\{CS | \delta^*, n, \mathcal{J}\}$.

For fixed P^* and δ^* let $n(P^*,\delta^*,\mathcal{J})$ be the smallest sample size for which $P\{CS | \delta^*, n, \mathcal{J}\} \ge P^*$. Now consider the class C of all procedures $R_{\mathcal{J}}$ such that \mathcal{J} satisfies (2); a procedure $R_{\mathcal{J}}$ is asymptotically most <u>efficient in C</u> if lim inf $\frac{n(P^*,\delta^*,\mathcal{J})}{n(P^*,\delta^*,\mathcal{J}_0)} \ge 1$ for all $\frac{1}{\binom{k}{t}} < P^* < 1$ and all $R_{\mathcal{J}}$ in C.

The following theorem extends Lemma 2 of Lehmann [4] by weakening the restrictions on J.

<u>Theorem:</u> If $J_0(u) = -\frac{f}{f}$ (F⁻¹(u)) is square integrable on (0,1), then for fixed P^{*} $n(P^*,\delta^*,\mathcal{J}) \sim \left(\frac{v^*}{\delta^*}\right)^2 = \frac{\int_0^1 J^2(u)du - (\int_0^1 J(u)du)^2}{(\int_0^1 J(u)J_0(u)du)^2}$,

where v^* is the solution of

* Observe that $J_n(u)$ is non-decreasing in u for each n.

- 2 -

(5)
$$P^* = t \int \Phi^{k-t}(x+v^*) (1-\Phi(x)) d\Phi(x),$$

and Φ is the normal c.d.f.

Proof: Assume, without loss of generality, that

ten

$$\theta_{[1]} = \dots = \theta_{[k-t]} = -\delta^* \frac{t}{k} , \quad \theta_{[k-t+1]} = \dots = \theta_{[k]} = \delta^* (1 - \frac{t}{k})$$

Let $L_n = \sum_{i=1}^{k} \sum_{j=1}^{n} \log \left(\frac{f(x_{[i]j} - \theta_{[i]})}{f(x_{[i]j})} \right)$, where $x_{[i]j}$ is the jth

observation from the population with parameter $\theta_{[i]}$, let Q_n denote the distribution of $\{x_{ij}; i = 1, ..., k; j = 1, ..., n\}$ when (6) holds and let P_n denote the distribution when $\theta_{[1]} = \theta_{[k]} = 0$, and let

$$W_{n}^{*} = \sum_{i=1}^{k} \sum_{j=1}^{n} \theta_{i} \left[i \right] \left(-\frac{f'(x_{i})}{f(x_{i})} \right)$$

If we set $\delta^* = a/\sqrt{n}$ for some fixed a > 0, then by Hajek [2] (5.21)

(7)
$$P_n \lim_{n \to \infty} (L_n - E_{\underline{P}_n} L_n - W_n^*) = 0$$

where $P_n \lim_{n \to \infty} (Z_n)$ is the limit of Z_n in P_n -probability. Consequently, if $\mathcal{L}(Y_n, W_n^*)$ is asymptotically normal with correlation ρ under P_n then so is $\mathcal{L}(Y_n, L_n)$.

Let
$$\alpha_1, \dots, \alpha_k$$
 be arbitrary real numbers and let $T_n = \sum_{i=1}^{k} \alpha_i T_n[i]$.
Let $T_n^* = \frac{1}{\sqrt{n}} \sum_{i=1}^k (\alpha_i - \overline{\alpha}) \sum_{j=1}^n J_n(F(X_{[i]j}))$, where $\overline{\alpha} = \frac{1}{k} \sum_{i=1}^k \alpha_i$. It follows

from Hajek [1] Theorem 3.1 that

(8)
$$P_n \lim_{n \to \infty} \frac{1}{\sigma_{P_n}(T_n^*)} (T_n - E_{P_n} T_n - T_n^*) = 0$$

and from (8) and Hajek [2] Lemma 4.2 (1) that

(9)
$$Q_n \lim_{n \to \infty} \frac{1}{\sigma_{P_n}(T_n^*)} (T_n - E_{P_n} - T_n^*) = 0.$$

From Hajek [1] Theorem 4.1 and (8) we conclude that, under P_n , T_n is asymptotically normal with mean $\sqrt{n} \sum_{i=1}^{k} \alpha_i \int_0^1 J(u) du$ and variance

$$\begin{array}{c} k \\ \Sigma \\ i=1 \end{array} \left(\alpha_i - \overline{\alpha} \right) \left(\int_0^1 J^2(u) du - \left(\int_0^1 J(u) du \right)^2 \right) \quad \text{and from Hajek [1] Theorem 4.1, (9)}$$

and the remark following (7) that, under Q_n , T_n is asymptotically normal with

the same variance as above but with mean $\sqrt{n'} \sum_{i=1}^{k} \alpha_i \int J(u) du$ + $a \sum_{k=1}^{k} (\alpha_k - \overline{\alpha}) c_k \int I(u) (a \frac{f'}{k} (F^{-1}(u))) du$, where $c_k - \int \frac{t}{k} = 1, \dots, k-t$

$$\begin{array}{c} \mathbf{f} = \mathbf{\Sigma} \quad (\alpha_{i} - \alpha) \mathbf{c}_{i} \quad \int \quad \mathbf{J}(\mathbf{u})(-\frac{\mathbf{r}}{\mathbf{f}} \quad (\mathbf{F}^{-}(\mathbf{u})) \quad \mathrm{d}\mathbf{u} \quad , \quad \mathrm{where} \quad \mathbf{c}_{i} = \left\{ \begin{array}{c} \mathbf{i} \\ 1 - \frac{\mathbf{t}}{\mathbf{k}} \quad \mathbf{i} = \mathbf{k} - \mathbf{t}, \dots, \mathbf{k} \\ & 1 - \frac{\mathbf{t}}{\mathbf{k}} \quad \mathbf{i} = \mathbf{k} - \mathbf{t}, \dots, \mathbf{k} \end{array} \right\}$$

It follows that the vector $(T_{n[i]}, T_{n[2]}, \dots, T_{n[k]})$ is asymptotically normal with mean vector given by:

$$T_{n[i]} = \sqrt{n} \int_{0}^{1} J(u) du + \begin{cases} 0 & \text{under } P_{n} \\ a C_{i} \int_{0}^{1} J(u) J_{0}(u) du, \text{ under } Q_{n}, \end{cases}$$

where $J_0(u) = -\frac{f}{f}(F^{-1}(u))$, and covariance matrix given by:

$$\sigma(T_{n[i]}, T_{n[j]}) = (\delta_{ij} - \frac{1}{k}) (\int_0^1 J^2(u) du - (\int_0^1 J(u) du)^2)$$

under P_n and under Q_n .

1

Let
$$\xi_{i} = ((T_{n[i]} - T_{n[k]}) - d_{i})/A$$
, $i = 1, ..., n-1$, where
 $d_{i} = \begin{cases} -a \int JJ_{0} & i = 1, 2, ..., k-t \\ & & & \\ 0 & i = k-t+1, ..., k \end{cases}$ and $A^{2} = \int_{0}^{1} J^{2}(u) du - (\int_{0}^{1} J(u) du)^{2}$

(10)
$$P\{CS\} = P\{\max_{i \leq k-t} \xi_i - \frac{a}{A} \int_0^1 J(u) J_0(u) du \leq \min_{k-t \leq k \leq k-1} (\xi_j, 0)\}.$$

If ξ_1, \ldots, ξ_n are independent N(0,1) random variables, then the right side of (10) converges to

$$P\{\max_{i \le k-t} (\xi_{i} - \xi_{n}) - \frac{a}{A} \int_{0}^{1} J(u) J_{0}(u) du \le \min_{k-t < j \le k-1} ((\xi_{j} - \xi_{n}), 0)\}$$

$$= P\{\max_{i \le k-t} \xi_{i} - \frac{a}{A} \int_{0}^{1} J(u) J_{0}(u) du \le \min_{k-t < j \le k} \xi_{j}\}$$

$$= t \int \Phi^{k-t}(x + \frac{a}{A} \int JJ_{0}) (1 - \Phi(x))^{t-1} d\Phi(x).$$
Thus if $P\{CS\} = P^{*}$, then $\frac{a}{A} \int JJ_{0} = v^{*}$, where v^{*} is the solution of
1) $P^{*} = t \int \Phi^{k-t}(x+v) (1 - \Phi(x))^{t-1} d\Phi(x).$

Recall that $\delta^* = \frac{a}{\sqrt{n}}$; consequently, the sample size required to satisfy (1) is given by:

(12)
$$n(P^*,\delta^*,\mathcal{J}) \sim \left(\frac{v^*}{\delta^*}\right)^2 \frac{\int J^2(u)du - (\int J(u)du)^2}{[\int J(u) J_0(u)du]^2}$$

for $\delta_{-}^{*} \sim 0$. QED

(

If \mathcal{F}_{0} is any sequence with limit $J_{0}(u) = -\frac{f}{f}(F^{-1}(u))$, then $n(P^{*},\delta^{*},\mathcal{F}_{0}) \sim (\frac{v^{*}}{\delta^{*}})^{2} \frac{1}{\int J_{0}^{2}(u)du}$. Thus $\lim_{\delta^{*}\to 0} \frac{n(P^{*},\delta^{*},\mathcal{F}_{0})}{n(P^{*},\delta^{*},\mathcal{F}_{0})} = \frac{(\int J^{2}-(\int J)^{2})(\int J_{0}^{2})}{(\int J \cdot J_{0})^{2}}$

and we have the following

<u>Corollary</u>: Under the conditions of the theorem above, the procedure $R_{\mathcal{J}_{O}}$ is asymptotically most efficient among all procedures of the $R_{\mathcal{J}}$, with \mathcal{J} satisfying (2).

Bibliography

ĩ

1.00

1

1-22

- [1] Hajek, Jaroslav, "Some extensions of the Wald-Wolfowitz-Noether theorem," Ann. Math. Statist. 32 (1961), 283-288.
- [2] Hajek, Jaroslav, "Asymptotically most powerful rank-order tests,"
 <u>Ann. Math. Statist. 33 (1962), 1124-1147.</u>
- [3] Lehmann, E. L., <u>Testing Statistical Hypotheses</u>, John Wiley and Sons, New York (1959).
- [4] Lehmann, E. L., "A class of selection procedures based on ranks," <u>Math.</u> Ann. 150 (1963), 268-275.
- [5] Rizvi, M. H., "Ranking and selection problems of normal populations using the absolute values of their means: fixed sample size case," University of Minnesota, Department of Statistics Technical Report No. 31 (1963).