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The subject of this paper is on generalized linear growth curve models. In the 
past, these types of growth curves have been studied by earlier authors including 
J. Wishart, G .E.P. Bax and C.R. Rao. Further attention was directed towards 
this subject ever since the publication of the seminal paper on the subject by R.F. 
Potthoff and S.N. Roy in 1964 which modeled the growth curve as a generalized 
multivariate linear model. However, the emphasis up until 1970 was on the estima­
tion and testing of parameters. In this paper we mainly review work on prediction 
within the context of these growth models over the last 25 years. 
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1 Introduction 

The subject of this paper is generalized linear growth curve models. In the past, these 

types of growth curves have been studied by many authors including Wishart (1938), 

Box (1950) and Rao (1958). Further attention was directed towards this subject since 

the publication of the seminal paper of Potthoff and Roy (1964) that modeled the growth 

curve as a generalized multivariate linear model. However, all of the attention up until 

Geisser (1970) was directed towards estimation and testing parameters. In this paper we 

mainly review work on prediction within the context of these growth curve models over 

the last 25 years. 

In Section 2 we shall briefly review the estimation of parameters of growth curve 

models. In subsequent sections we turn our attention to various problems associated with 

prediction. 

2 Covariance Structures and Parameter Estimation 

Let l'j be a Pix 1 vector of observations and 

(2.1) 

for i = 1, ... , n:; n: = n1 + · · · + n11 ; a= 1, ... , r 

where Xi is a known Pi x m design matrix, /311 is an m x 1 vector of unknown regression 

parameters, and Ei is a Pi x 1 vector of errors that are independently distributed as 

N(.; 0, ni). Let Ei be the covariance matrix of~, then the form of Ei depends on the 

assumptions regrading ni as well as /311 • For example, in the fixed effects model, /311 is 

assumed fixed but unknown, then Ei = ni. On the other hand, in the random effects 

model, if /311 is assumed to have E(/311 ) = r, cov(/311) = r, then Ei = XirXf + ni. 

The linear growth function as specified by (2.1) allows for unbalanced situations, i.e., 

individual }"i can have different design matrix Xi. However, we will restrict our attention 

to the balanced case, i.e., Xi = X, for the rest of the paper. 

In the balanced case for the general linear growth curve, the model can be specified as 

Y=XrA+f, 
pxN pxm mxr rxN pxN 

(2.2) 

where r is the unknown matrix of growth function parameters, X and A are known design 

matrices of ranks m < p and r < N, respectively. Furthermore, the columns off are each 
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independent and p-variate normal with mean vector 0 and common covariance matrix E. 

Hence, r is normally distributed with mean function X TA and covariance matrix E ® I, 

where ® denotes the Kronecker product. Usually p is the number of time points observed 

on each individual, m and r, which specify the degree of polynomial in time and the 

number of distinct groups respectively, are asmnned known. The design matrices X and 

A will therefore characterize the degree of the growth function and the distinct grouping 

out of N independent vectorial observations. For example, if each individual is observed 

at ti, ... , tp and there are two different linear growth functions, then A consists of N1 

columns of (1,0) and N2 columns of (0,1), N1 + N2 = N, and 

X=[l!l· (2.3) 

The model as specified by (2.2) with E assumed to be an arbitrary unkown positive 

definite (p.d.) matrix and with E = u2C, where C = (pla-bl), was proposed by Potthoff 

and Roy (1964). It was subsequently considered by many authors including Rao (1965, 

1966, 1967, 1987), Khatri (1966, 1973), Geisser (1970, 1980, 1981) Lee and Geisser (1972, 

1975), Fearn (1975), Zerbe (1979), Laird and Ware (1982), Lee and Tan (1984), Jenrich 

and Schluchter (1986), Lee (1988, 1991) and Keramidas and Lee (1990, 1995), among 

others. As indicated earlier, an arbitrary p.d. E arises when cov(~) = cov(t:i) = E in 

the model specified by (2.1). As for the serial covariance structure in which E = u2C, 

C = (pla-bl), it arises from the situation when the error terms fi = (t:u, ... , fip)' in the 

model specified by (2.1) follows the relationship Eii = /Jf.iJ-I +1/ii where 1/ii are uncorrelated 

errors with common variance 0-:-
Although the focus of this paper is the prediction of future observations assumed to 

have been generated from a growth curve model, we will still consider the estimation of 

parameters as they are needed in some instances. For an arbitrary p.d. E, the MLEs of 

the parameters are 

(2.4) 

where 

S - Y(I - A'(AA')-1 A)Y' 
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and 

E = (Y-XfA)(Y-XfA)'/N. (2.5) 

An alternative estimate for Eis the posterior expectation of E, when the prior p(-r, E-1) ex 

IEl(p+I)/2 is ~umed. Consequently, it can be shown that 

E(EIY) - (N-p-1)-1{(Y-XfA)(Y-XfA)' 

+ (N - m - r -1)-1 X(X's-1 X)X'[tr a-1 AA']}, (2.6) 

where 

T2 = Z'YA'(AA')-1
, (2.7) 

and Zpxp-m is any matrix of rank p - m such that X' Z = 0. 

Comparison of (2.5) and (2.6) shows that the difference E(EIY) - E is always non­

negative definite. 

The MLE of-r, as given in (2.4), was obtained by Khatri (1966) and was also derived 

by Rao (1967) as a covariance adjusted estimator. It can be shown that f is unbiased, 

i.e., E(f) = -r, although it is not a linear function of Y. Another unbiased estimator of 

-r, which is a linear function of Y, is 

(2.8) 

where 

Since E(T1) = E(f) = -r, the comparison of their covariance matrices would be instructive 

as to which would be a more desirable estimator for -r. Rao (1967) showed that T1 is 

preferable if and only if the following condition holds 

E = xrx'+Z6Z'+u21, (2.9) 

where r and 9 are arbitrary unknown symmetric matrices. Such a situation arises when 

the following mixed model is considered, 

(2.10) 

for i - 1, ... , n:; a = 1, ... , r 
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where a is a column of T, and /3, , and fi are all uncorrelated random vectors such that 

E(/3) = 0, cov(/3) = r, E('y) = 0, cov('y) = fJ, E(ei) = 0 and cov(ei) = a2 I. 

Geisser (1970) noted that 

and hence claimed that, without loss of generality, the special structure for E as given by 

(2.9) can be defined as 

E = xrx'+ZfJZ', (2.11) 

which was later termed Rao's simple structure (RSS) by Lee and Geisser (1972). They 

also showed that the likelihood ratio criterion for testing 

Ho: E = XrX' + ZfJZ' vs H1 : Eis p.d. 

is 

l(X's-ix)-11 
A = IBSB'I 

(2.12) 

and is distributed under Ho as Um,p-m,N-p+m-r, a product of independent beta vari­

ates. The two covariance structures considered so far are essentially the extremes for the 

growth curve model, one completely general and the other rather close to the independent 

situation. We will next consider a few other important structures. 

The uniform covariance structure is defined as 

E = a 2[(1 - p)I + pee'], (2.13) 

where e' = (1, ... , 1), -1/(p- I) < p < I. The uniform covariance structure arises from 

the situation when the error term fi = (eu, ... , lip)' in the model specified by (2.1) has 

the property that cov(ei;, fik) = a2p for j :/= k, and var(ei;) = a2. This indicates that the 

error components of fi are exchangeable. This covariance structure is very close to RSS. 

When X = (e, X 2), that is, if there is a constant term in the growth function, then the 

MLEs of r, o-2 , and pare, respectively, given by Lee (1988) as 

f - T1 = BY A'(AA')-1
, 

q2 - trS*/pN (2.14) 

p - (e' S*e - tr S*)/(p- l)tr S*, 
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where 

s• - S+ZDYA'(AA')-1AY'D'Z', 

D - (z'z)-1z 1
• 

(2.15) 

Thus, as long as the constant term is in the growth function, which is typical in practice, 

the MLEs of the parameters are expressed in explicit form. Also, the MLE of -r is T1 , 

exactly as in the RSS c~ and consequently does not require covariance adjustment. 

However, according to our experience, this covariance structure may not be very practical, 

as least as far as the prediction of future observations are concerned. The likelihood ratio 

criterion for testing this particular covariance structure can be obtained easily but will be 

omitted here. 

The covariance structure, which also caught the attention of Potthoff and Roy (1964), 

Lee and Geisser (1975) and Lee (1988, 1991), is the serial covariance structure which is 

defined as 

where 

c = (pla-bl). 

The MLEs of the parameters are given by Lee (1988) as 

f - (X'6-1x)-1X'6-1YA'(AA')-1 

a2 - [tr (X16-1x)-1X 16-1s6-1x +tr (Z'Gz)-1Z'YY'Z]/pN 

where 

c = (pla-bl), 

and pis obtained by maximizing the profile likelihood function 

(2.16) 

(2.17) 

(2.18) 

and o-2 (p) is the o-2 given by (2.17) with p replaced by p. We thus see that the MLEs of 

,,. and a2 depend on the MLE of p, which can be obtained by a one-dimensional search. 
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No iterations are needed and the computations are relatively easy. A likelihood ratio test 

for testing 

Ho : E = q 2C vs H1 : E is p.d. 

is -2ln.-\ which is distributed under Ho as x!, v = p(p+ 1)/2- 2 when N-+ oo, where 

This was obtained by Lee (1991). 

The other covariance structures included in this paper are obtained from the different 

assumptions on O = cov(fi) and /3a. in the model specified by (2.1). For example, when 

0 = u2C, and f3a. is considered as a random vector with mean vector E(/3a.) = r and 

covariance matrix cov(/3a.) = r, then 

(2.20) 

The estimation of the parameters for this model is quite complex as indicated by Kerami­

das and Lee (1995). Two somewhat more parsimonious models involve either the intercept 

random or the slopes random. The two resulting covariance structures are 

(2.21) 

and 

(2.22) 

where 

The above three covariance structures were considered by Chi and Reinsel (1989). 

In (2.20) if we set O = q 2 I, then we have the following covariance structure 

E = xrx'+u2I, (2.23) 

which was considered by Rao (1967) and later promoted by Fearn (1975) as a natural 

covariance matrix resulting from a two stage hierarchical model in which each individual 

has a separate growth curve and the parameters associated with each curve are exchange­

able, i.e., they are realizations of another normal distribution. It should be pointed out, 
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however, that although the model started out with a separate curve for each individual, 

there is still a common growth curve at the end. The only difference is the final covari­

ance structure of E which is different than cov(ei), i.e., E = xr X' + u2 I rather than 

E = cov(e,), as the fixed effects model assumes. 

The MLEs of the parameters for the covariance structures (2.20) through (2.23) are 

not available in closed form. However, using BMDV(BMDP, 1988), one can obtain these 

estimates. Hence the MLEs of the parameters can be obtained in principle. Neverthele~, 

convergence could be a problem at times. 

3 Prediction of Future Observations 

In this paper we will consider three types of prediction for the generalized growth 

curve model as specified by (2.2) when the covariance matrix E has different structures. 

Let V be a set of p x K future observations drawn from the generalized growth curve 

model, i.e., the set of future observations is such that given the parameters T and E, 

E(V) = XrF, (3.1) 

where Fis a known r x K matrix, usually formed by some columns of A, and the columns of 

V are independent and multivariate normal with a common covariance matrix E. Ge~er 

(1970, 1980) and Lee (1982) considered prediction of V, given Y as the sample, from a 

Bayesian viewpoint. 

The second type of prediction for the generalized growth curve model is to predict 

vc2> given vc1> and Y, if V is partitioned as 

[ 

y(1) ] 
V = y(2) ' (3.2) 

where y(i) is Pi x K(i = 1, 2) and p1 + P2 = p. Hp is interpreted as the number of 

times being observed, then this problem is concerned with the growth curves for future 

individuals for subsets of size P2, having observed subsets of size p1• This type of prediction 

is called conditional prediction of vc2> given y(I) and Y. When P2 < p and K = 1, it 

is also called conq.itional prediction of the unobserved portion of a partially observed 

vector. This type of prediction has been considered by many authors including Lee and 

Ge~er (1972, 1975), Fearn (1975), Rao (1975, 1987), Ge~er (1981), Rei (1984), Lee 

(1988, 1991), and Keramidas and Lee (1995), among others. 
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The third type of prediction is somewhat different. It is concerned with predicting 

future values for the observed individuals. Let y, of dimension q x n, be a set of n( < N) 

future observations whose previous 1rdimensional observations are a subset of Y. We are 

interested in predicting y given Y. This is time series type of prediction and thus is very 

important in practice as growth curve data are often time series in nature. However, E 

needs to be structured in order to predict y in a reasonable manner. For example, if E is 

assumed arbitrary p.d., then predictions can not be made simply because information is 

lacking in regard to the relationship between y and Y. This type of prediction is called 

extended prediction of y given Y, because the prediction is made beyond the observed 

time range of the sample Y. Extended prediction of y given Y has been considered by 

Rao (1977, 1987, 1984), Lee (1988, 1991) and Keramidas and Lee (1990, 1995). 

Let x, of dimension q x m, be a design matrbc corresponding toy, Y =(Yi, ... , YN), 

A= (Ai, ... , AN), y = (Yi, ... , Yn), and assume that for i < n, 

E(!:) - ( !)rA., (3.3) 

E* - cov(!;)=(~j~ ~t)· (3.4) 

We note in passing that Ei1 = E. From (3.4) it is clear that in order to make an inference 

about y, the form of E21 has to be known, i.e., the covariance structure for E has to be 

extendable to future values. 

4 ~ is Arbitrary p.d. 

From a Bayesian viewpoint Geisser (1970) considered the estimation problem for ,,. 

and the predictive inference for V. Using a convenient prior, (Geisser and Cornfield, 

1963; Geisser, 1965), 

g( ,,., E-1) ex IEIC,,+1)/2' (4.1) 

Geisser (1970) showed that the predictive density of V given Y is 

J(VIY) ex IZ'[YY' + (V - Xf F)(V - Xf F)']zI-(N+K-m)/2 1a1Im/2 

X II+ Gi(V -XfF)'s-1X(X's-1 xr1x's-1(V - Xf F)l-(N+K-r)/2 , 

(4.2) 
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where 

ai-1 = [I - F'(HH')-1 FJ-1 + (Vi - Z'V)'(Z'Sz)-1(½ - Z'V) 

I,. ,. '( I -1 H=(A,F), Vi=BV, ½=ZV, V=YA AA) F. 

It is clear that the predictive density of V given Y is a product of three general de­

terminantal, or matrix T densities and is extremely complex. Drawings from the three 

general determinantal distributions can be accomplished as suggested by Zellner et al 

(1988). However, since the dimension of Vis p x k, the Monte Carlo method may be 

hard to use in practice for the predictive region of V. Instead, we will suggest the fol­

lowing. Geisser (1970) showed that E(VIY) = XfF. He also showed that XfF is not 

the mode of the predictive distribution of V given Y. However, numerical procedures, via 

two-dimensional search, for calculating the predictive mode when K = 1 were given by 

Lee and Geisser (1972). Geisser (1970) also showed that for 

Q - BY A'(AA'r1 + BSZ(Z'szr1 Z'(V - Y A'(AA')-1 F), 

U1 - II+ (X's-1x)(BV - Q)G1(BV - Q)'I (4.3) 

is distributed as Um,K,N-r and is independent of 

U2 = II+ V'Z(Z'YY'z)-1Z'VI (4.4) 

which is distributed as Up-m,K,N-m· Hence, U1 + U2 is distributed as the sum of two 

independent U variates. For an excellent approximation to this distribution and its special 

case, a linear combination of two independent F variates, see Lee and Hu (1995). · 

For conditional prediction of v<2> given v<1> and Y, we note that f(v<2>1v<o, Y) <x: 

f(VIY) and hence the predictive distribution of v<2> given v<1> and Y is at least as com­

plicated as the predicative distribution of V given Y. Therefore, some approximations are 

in order. Lee and Geisser (1972) showed that conditional on E-1 and Y, Vis distributed 

as normal with mean 

and covariance matrix 

:Ea - X(X':E-1X)-1 X' ® M-1 + [XB:EZ(Z':Ezr1 Z':EB'X' 

+ D'Z':EB'X' +XB:EZD+D'Z':EZD] ®Ik, 

10 

(4.5) 

(4.6) 



where 

M = 1-F'(AA' +FF')-1F. 

We thus see that the predictive distribution of V given Y is approximately N(.; µ~, Ea) 

where µ"'c,. and Ea are obtained by replacing E by its estimate, either the MLE or the 

posterior expectation as given by (2.5) or (2.6), respectively. Hence, a predictive region 

for V given Y as well as for v<2> given v<1> and Y can be obtained through standard 

normal theory, with appropriate rearrangement of V and the corresponding covariance 

matrix r::. 
As for extended prediction of y given Y, the prediction can not be made because there 

is no information concerning the dependence structure between y and the observations in 

the sample. Hence, other covariance structures need to be ~umed to facilitate extended 

prediction. 

5 E has RSS 

Using the convenient prior, 

g(r-1, 9-1, -r) ex 1ri<m+1)/2101(p-m+1)/2' (5.1) 

Geisser (1970) showed that the predictive density of V given the sample Y is 

f (VIY) ex IZ'[YY' + (V - XT1F) (V - XT1F)']z1-(N+K)/2 

x II+ (I - F'(HH')-1F)(V -XT1F)'B'(BSB')-1 B(V -XT1F)l-(N+K-r)l2. 

(5.2) 

It is clear that XT1F is the mean and the mode of J(VIY). It can also be shown that a 

posteriori 

and 

U2 = II+(V-XT1F)'Z'(Z'YY'Zt1Z'(V-XT1F)l-1 (5.4) 

are independently distributed as Um,K,N-r and U,-m,K,N, respectively. Hence a predictive 

region for V can be obtained through U1 + U2 which is distributed as the sum of two 
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independent U variates. For the special case in which K = F = r = 1, a predictive region 

for a future vectorial observation can be obtained from 

which is distributed as a linear combination of two independent F variates. It is noted 

that Q can be written free of Z by following identity 

Z(Z'YY'zr1z 1 = (YY'r1 - (YY')-1X[X'(YY')-1XJ-1X'(YY'r1
• (5.6) 

Accurate approximations to the above distributions have been obtained by Lee and Hu 

(1995). 

An alternative representation for the predictive density of V given Y, when K = 1, 

was obtained by Lee and Geisser (1972) as 

f (VIY) = f J(VIY, t)g(tlY)dt (5.7) 

where 

F(VIY, t) - St(.; XT1F, (1 + ,yt)(2N + 2 - r - p)-11-1
, 2N + 2 - r), 

1 - t'YMX(X'SX)-1 X' + Z(Z'YY'z'r1 Z', 

M - 1- F'(AA' + FF')-1 F, (5.8) 

'Y - (N + 1-p+m)-1(N + 1-r-m), 

G(tlY) - F(.;N + 1-r-m,N + 1-p+m), 

and St(.;µ, E, v + p) is a multivariate Student t distribution with density 

where T is p x 1 and v = N - p. 

Thus, the predictive density of V given Y is expressed as an average of a multivariate 

Student t density over an F density. As noted in Lyung and Box (1980), since F is nearly 

symmetric and well concentrated, a reasonable approximation for the predictive density 

of V given Y is 

F(VIY) - F(VIY, i) 

- St(.; XT1F, (1 + 'Yt)(2N + 2 - r - p)-11-1(£), 2N + 2 - r), (5.10) 
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where i is either the mean or the mode of the F dsitribution and they are (N + 1 - p + 
m)/(N-1-p+m) or (N-r-m-l)(N +1-p+m)/(N +1-r-m)(N +3-p+m), 

respectively, and J(i) is the value of J evaluated at t = i. From (5.10) we have 

where 

µr2-1 - xC2>T1F - J2/J21(VC1> - xC1>T1F), 

b - 1 + 'Yf + (V(l) - xC1>T1F)' J11.2(v<1> - x<1>T1F), (5.12) 

( 
x<1

> ) i • X - X(2) , x< ) 1S Pi x m, P1 + P'J = P, 

J ( 
Ju J12 ) 7 • f dim · J J J J.-1 J. - J21 JZJ. , &1ij IS o ens1on Pi x P;, 11-2 = 11 - 12 22 21-

Thus, an approximate point estimate of v<2> given v<1> and Y is ~ 2.1 (t) and an approxi­

mate predictive region for v<2> can be obtained through 

(5.13) 

which is distributed as (2N +2-r-P'J)-1P'JFUJ2, 2N +2-r-P'J). A better approximation 

for the predictive density of V given Y is 

J(VIY) == .!. E,cv1Y, tCi)) 
L i=l 

(5.14) 

where f (VIY, tCi)) is a multivariate Student t density as given in (5.10) and tCi) is the ith 

draw from F(N + 1- r - m, N + 1-p + m). It is noted that (5.14) will clearly be better 

than the approximation given by (5.10) as L = 1 with tCi) = i will be a special case, see 

e.g., Liu (1995). However, an average of L multivariate Student t densities is no longer a 

multivariate Student t density and hence a predictive region based on the approximation 

(5.14) will be harder to obtain in practice. 

For the conditional distribution of v<2> given v<1> and Y, we also have 

where 

F(VC2>1vc1>, Y, t) - St(.; µs2-1, b(2N + 2 - r - P'Jr1Ji}, 2N + 2 - r), 

µ82•1 - x<2>T1F - J;l J21 (V(l) - x<1>T1F), (5.16) 
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b - l + ,t + cv<1> - x<1>T1F)' J11.2(v<1> - x<1>T1F), 

g(tjV(l), Y) _ [/(V(l) IY)J-l,rP2/2t(N+l-r)/2-1 

X I'[½(2N + 1- r -P2))b-(2N+2-•-1>2l/2colJ221-½, (5.17) 

Co - 1r-Pl2Mm/2 IBSB'l-½IDYY'D'I-½ 
1 _ 1 

X r-1[2(N+l-r-m)]r 1[2(N+l-p+m)] 

x mod I ( ~ ) I (5.18) 

1cv<1>1Y) - f' /(V<1>1Y, t)g(tlY)dt, (5.19) 

F(V<1>IY,t) - St(.;x<1>T1F, (1 +,yt)(2N +2-r-pt1Jii2 , 

2N + 2 - r - Poi), (5.20) 

G(tlY) = F(.;N + 1- r-m, N + 1-p+m). 

As in (5.10), a reasonable approximation for the conditional predictive distribution of v<2> 

given v<1> and Y is 

F(v<2> 1v<1>' Y) - F(v<2> 1v<1>' Y, to) 

- St(.; µ.2.1(to), b(to)(2N + 2 - r - P2r1 J;}(to), 

2N+2-r) (5.21) 

where to maximizes g(t1v<1>, Y). Similar to (5.14), a better approximation for the condi­

tional predictive density of v<2> given v<1> and Y is 

(5.22) 

where tCi) is the ith draw from g(tlV<1>, Y). A comparison among (5.11), (5.15), (5.21) 

and (5.22), via a real data set, will be given in Section 12. 

It is also noted that numerical prodecures are given for K = 1 by Lee and Geisser 

(1972) for obtaining the predictive mode of v<2> given y(t) and Y and an exact solution 

for the particularly interesting special c~e p2 = 1. As in the arbitrary p.d. c~e, extended 

prediction for y given Y is not available for the RSS c~. This is due to the fact that the 

dependence between y and its previous observations is not defined. 
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6 :E has Uniform Covariance Structure 

For the rest of this paper we will restrict our attention to the special case in which 

K = l, i.e., there is one future vectorial observation to be predicted. When E has the 

uniform covariance structure, it has the form as given in (2.13). The predictive distribution 

of V given Y can be approximated as 

F(VIY) _:_ F(VIY, f, P, a-2). 

Thus, the predictive distribution of V given Y is approximately 

F(VIY) ..:.. N(.; XT1F, a-2[(1 - p)l + pee']) 

and the conditional distribution of v<2> given v<1> and Y is 

where 

X c2>T, F P ' (v<1> x<1>T, F) - 1 + 1 + (pl - 1) p t?,,2ep1 - 1 , 

- ~2[(1 '"')L p(l - p) I ] 
er - p P2 + 1 + (pl - l)i/P2ep2. 

(6.1) 

(6.2) 

(6.3) 

Hence, the approximate means, XT1F and µu2-1, can be used as the point predictors for 

V given Y, and v<2> given v<1> and Y, respectively, and the corresponding predictive 

regions can be obtained through standard normal theory. 

Instead of the approximate mean as the point predictor for v<2> given v<1> and Y, an ad 

hoc predictor can be obtained by the weighted average of two independent predictors, one 

based on v<1> alone and the other based on Y, with the weights being the estimates of the 

relative precisions. This type of predictor was first proposed by Lee and Geisser (1975). 

The ad hoc predictor, when the uniform covariance structure is assumed, is 

(6.4) 

where 

m1 - x<2>T1F, 

ffi2 - x<2>rvF + Eu21E;;A cv<1> - x<1>rvF), 

Tv - cx<l)'E-1 x<1>r1 x<1>'E-1 v<1> F' (FF'>-ull ull (6.5) 

Eu a-2[(1- P)I +pee']= ( ~ull Eu12) - Eu22 ' u21 
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and 

Sm1 - Eu22 +xC2>BEuB'X(2>
1
F'(AA')-1F, 

Sm2 - Eu22 + (b1B2 + Eu21)'E~l1 (b1B2 + Eu21) 

(b1B2 + Eu21)E;;A Eu12 + Eu21E;;A (b1B2 + Eu21)', 

b1 - F'(FF')-F, 

B2 - (XC2> - Eu21E;;fixCl>)(XC1>'E;;fixC1>)-1 xC1>', 

where Euii is Pi x P;, P1 + P'J = p, (FF')- is the. generalized inverse of FF' and can be set 

as FF' in the special ~e F = (l, O)' or F = (0, 1)'. Note that F'(AA')-1 F is a scalar 

and Smi is the covariance matrix of the forecast error when mi is the predictor for vc2>. 
An alternative formula for Smi was given by Lee and Geisser (1975). A justification for 

the ad hoc predictor is the fact that it is the optimum combination of two independent 

forecasts. 

Next, consider extended prediction of y, given Y. This is a time series type of pre­

diction. To make this type of prediction the covariance structure generally has to be 

extendable to future values of the individuals observed. 

Let x, q x m, be a design matrix corresponding to y, Y = (Yi, ... , YN), A = ( A1, •.. , AN), 

Y = (Y1, .•. , Yn), and assume that for i < n, 

(6.6) 

and 

E* = cov ( ~ ) = ( E!1 E!2 ) = <12 ( Vi.1 Vi2 ) = <12 ( ~ ~ : : : ; ) .(6.7) 
Y, E21 E22 ¥21 V22 : : : 

p p 1 

Similar to (6.1), the predictive distribution of Yi given Y can be approximated as 

F(YilY) = F(YilY,f,I',a2). (6.8) 

Thus, the predictive distribution of Yi given Y is approximately 

(6.9) 

where 

(6.10) 
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and T1 , p, and a2 are given in (2.14). 

7 Serial Covariance Structure for ~ 

When E has the serial covariance structure it takes the form E = a2C as given. in 

(2.6). The predictive distribution of V given Y can be approximated as 

F(VIY) .:. F(VIY, f, p, a-2) (7.1) 

where f, jJ and o-2 are given in (2.17). Thus, the predictive distribution of V given Y is 

approximately 

F(VIY) .:. N(.;XfF,a2C(p)) (7.2) 

and the conditional distribution of v<2> given v<1> and Y is 

(7.3) 

where 

µ.2-1 - x<2>f F + (0, ij)(v<1> - x<1>f F), 

fJ - (" if'2)' P, ... ' (7.4) 

E. - u2C(P) = ( E,11 
E.21 

Ea12) 
E.22 ' 

E.22-1 - E.22 - E.21 E;A E.12 • 

Hence, the approximate means, Xf F and µ.2.1, can be used as the point predictors for V 

given Y, and v<2> given v<1> and Y, respectively, and the corresponding predictive regions 

can be easily obtained through standard norm.al theory. 

The ad hoc predictor, when the serial covariance structure holds, is 

P. (s-1 + 8 -1)-1(8 -1 • + 8 -1 *) "" = m• m• m• m1 m• 77½ , 1 2 1 2 
(7.5) 

where mi, m; and Sm; are defined as in m1, f'n:2 and Sm2 , respectively, except that T1 is 

replaced by f and Euij is replaced by E.,i;, and 

Smi = E.,22 + x<2> (X'E;-1 X)-1 x<2>' F' (AA'>-1 F. (7.6) 

H the covariance structure is appropriate for the growth curve data at hand, the ad 

hoc predictor should be a very strong competitor as a point predictor for the unobserved 
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protion, v<2>, of the partially observed vector V. This is due to the fact that it utilizes 

all the available data in a very reasonable fashion. This observation has been borne out 

in studies such as Lee (1988) for several real data sets. One disadvantage of the ad hoc 

predictor is that the predictive region is not available in a natural manner. However, 

since the covariance matrix of the forecast error, when Paa. is the predictor for v<2> ~ is 

approximately 

(7.7) 

we have approximately, 

(7.8) 

Hence, an approximate predictive region for v<2> given v<1> and Y can be obtained through 

standard normal theory. 

We next consider extended prediction of Yi given Y. As in the previous section, assume 

for i < n, 

and 

where 

( 
Cu C12 ) ( lei-bl) b _ 1 + 
C21 C22 - P ' a, ' - ' ... 'P q' 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

Cu is p x p, C12 is p x q, C22 is q x q, and C21 = C~2 - Similar to the predictive distribution 

of V given Y, the predictive distribution of Yi given Y can be approximated as 

(7.13) 

Thus, the predictive distribution of Yi given Y is approximately 

(7.14) 
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where 

µ:2.1 - X f Ai + (0, ij*)(l'i - X f Ai), 

ij* - (p, ... 'p9)', 
~- ~- ~-1•~· 

- £J s22 - £J s21 £J sll £J s12, 

E* 2c( ") _ ( C'u C'12 ) 
B - (1 p - 621 622 • 

(7.15) 

(7.16) 

The approximate mean µ:2•1 can be used as the point predictor for Yi and the predictive 

region for Yi can be obtained through standard normal theory. 

8 Other Covariance Structures 

In this section we consider the situation in which the covariance structures are obtained 

from the consideration of random (and mixed) effects for the regression parameters. They 

include the covariance structures given in (2.20) through (2.23). In addition to the ran­

dom effects for the regression parameters, the growth curve models associated with these 

covariance structures rely heavily on numerical solutions for the estimation of parameters. 

In other words, the MLEs are difficult to obtain numerically and the convergence to the 

MLEs may not always be assured. Newer procedures such as Markov chain Monte Carlo 

maximum likelihood methods may alleviate the situation, Geyer and Thompson (1992). 

Once the numerical estimates, f and E, of the parameters, rand E, are obtained, the 

predictive distributions of V given Y, and vc2> given vc1> and Y can be approximated as 

and 

where 

F(VIY) _:_ N(.;XfF,E), (8.1) 

(8.2) 

(8.3) 

(8.4) 

As for extended prediction of y given Y, the predictive distribution of y given Y can be 

approximated by 

J(ylY) - F(ylY, f, E). 
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Thus, the predictive distribution of Yi given Y is approximately 

where 

and Et; are defined in (3.4). 

(8.6) 

(8.7) 

(8.8) 

9 A Predictive Sample Reuse Approach for Condi­
tional Prediction 

This is a data analytic aparametric method which simulates the predictive process 

within the sample, given a complete lack of any distributional assumption. It is termed 

predictive sample reuse (PSR) by Geisser (1974, 1975) because each vector in the sample 

of size N will be utilized ( N - 1) times in the prediction process. 

In this secion we are concerned with predicting one future vectorial observation, i.e., 

K = 1. Also, for ease of presentation let V = YN+1 = ( Yi{1 
) where YS!1 is Pix 1 

YN+l 
and p1 + PJ = p. Suppose from the first N vectors Yi, ... , YN, we generate a data-based 

predictor of Y};J1 , denoted as Ye~~- Further, suppose another predictor of Yt2J1, denoted 

as Y}lJ1, depends only on the observed Yt1J1• The two independent predictors are then 

combined to produce a new predictor 

" (2) _ " (2) " (2) 
YN+l - f(Yc_N)' YN+l; 9) (9.1) 

for 9 E 0, 0 being the admissible domain of 9 and fan assumed predictive function. A 

particularly interesting case is 

o (2) ,_ (2) A (2) 
YN+l = 91cN) + (I - 9)YN+l (9.2) 

where 9 is P2 x f>'l such that both 9 and/ - 0 are non-negative definite. Let 

t<2> = 9~<2> + (I - 6)Y.<2> o (N-1~) o (9.3) 

where a= 1, ... , N and Yc~-l,o) is the predictor ofYJ2> based on Yi, ... , Y0 _ 1, Y0 +1, ••• , YN 

and of the same functional form as fc~~ and YJ2> is the predictor of YJ2> and of the same 
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functional form as Yjf; 1• Further, define the discrepancy measure 

N 

D(B) = L d(YJ2>, YJ2>) 
a=l 

(9.4) 

which is then minimized w.r.t. 0 E 0. H 6 is the unique solution then the final predictor 

is 

A natural discrepancy measure, as utilized by Geisser (1975, 1980), is 

N 
D(8) = L(YJ2) _ yJ2))'(YJ2) _ yJ2>). 

a=l 

(9.5) 

(9.6) 

With D(0) given in (9.6) and P1 > m = 2 and P2 = 1, a solution for combining predictors 

based on simple least square predictors, appears in Geisser (1975) where 

Yc~ = xc2>T1 and yffJ1 =xc2>(xc1>'xc1>)-1xc1>'y~1!1-

A general solution may be obtained for other forms of Ye~ and Yt2_l1, when m < p1 and 

P2 is arbitrary as 

N 

O - [L (Yc~-1,a) - YJ2>)(Yc~-l,a) - YJ2>)'] 
a=l 

N 
X ["(:f':(2) _ y(2))(:f':(2} _ y(2))']-l 

L..,,, (N-1,a) a (N-1,a) a ' 
a=l 

provided it exists and satisfies the constraints. 

10 Transformations on Y 

(9.7) 

Motivated by real data considerations for forecasting technological subsitutions, Kerami­

das and Lee (1995) considered the following power transformations: 

y (A) - X T A+ f ' (10.1) 
pxN pxmmxrrxN pxN 

where 

y(A) - (Y,(A1} y;(AN )) 
1 , • • •, N 

and 

y;(A.) - (YP-> Y.(~.})' 
' 

b , ... , pl , 
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with 

when Ai-:/= 0, 
when Ai= 0, 

(10.2) 

and 'Y is ~ed to be a known constant such that 1'i; + 'Y > 0 for all j and i, Ai is an 

unknown parameter. Furthermore, the columns off are each independent and p-variate 

normal with mean vector O and common covariance E = u2C, as defined in (2.16). 

The MLEs of the parameters T, u2
, p and A are 

f - (X16-1x)-1X 16-1y<i>A1(AA')-1 (10.3) 

fr - P~[tr (X'{;-1 X)-1X'6-1s6-1X + tr (Z16zr1 Z'(yCA>)(YCA>)'Z], (10.4) 

where 

.. .. I 

S - y<~>(J - A'(AA')-1 A)Y<~> , 

C _ (pla-bl), 

and p and .X are obtained by maximizing the profile likelihood function 

where J, the Jacobin of the transformation from y(~) to Y, is defined as 

N P 

J = II Il~f-1 

j=l i=l 

(10.5) 

(10.6) 

(10.7) 

and u2 (p, A) is the i,2 given by (10.4) with p and .X replaced by p and A, respectively. 

We thus see that the MLEs of r and u2 are expressed in explicit forms and require no 

iteration. The MLEs of p and A can be obtained by a numerical search. Once p and .X 

are obtained, the joint MLEs of T, u2, p and A are established. Hence the most important 

step is to carry out the maximization of the profile likelihood function Lmax(P, A) as given 

in (10.7), which is an extension of (2.18). It is noted that in practice the maximization 

is easier than it looks, because the number of power transformations is less than N 

in practice. It was proposed by Keramidas and Lee (1990) that the number of power 

transformations be identical to the number of groups, that is, that there be only r different 

A's, even though there are N independent vectors. This means that the same power 

transformation will be applied to each of the observations in the same group. Also, since 
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p is usually quite small, the MLEs of.-\ is very hard to obtain if N different .-\ 's are allowed. 

Thus, in (10.7) we are dealing with a (r + !)-dimensional search only. 

For extended prediction of y given Y, we assume that for i < n, 

(10.8) 

(10.9) 

where Ci; is specified in (7 .11). From the conditional expectation of Yi given Y we obtained 

the following predictor for Yi, 

Yi = {e + ~i[xfAi + (O,ij*)(l'i(l.) - xf Ai)]}1/l, when Ai:/; 0 

= exp[xf Ai+ (0, ij*)(Yil.> - xf Ai)] when Ai = 0, 
(10.10) 

where e' = (1, ... , 1), ij* = (p, ... , pl)', and O is a q x (p- 1) matrix with all O elements. 

In (10.10) we use the convention that b0 =(bf, ... ,~)'. 

The model described in this section has been successfully applied to forecasting pen­

etrations of telephone switching systems by Keramidas and Lee (1988), (1990). 

11 Model Selection and Classification 

The prediction problems considered so far can be useful in model selection for the 

growth curve data. Let M1, ... , M9 be the g possible growth curve models that could 

have generated the growth curve data at hand. Then the selected model, say M0 ., is 

the one that yields the best predictive accuracy when the sample reuse procedure is 

used. This approach was utilized by Lee and Geisser (1975), Fearn (1975), Geisser (1981), 

Rao (1987), and Lee (1988, 1991), among others for the comparison of models based on 

the performance of the conditional prediction of v<2> given v<1> and Y. For more detailed 

discu.s&on of model selection based on PSR, see Geisser and Eddy (1979). 

The discrepancy measure by the PSR method is 

(11.1) 

where 

Y&~>(o:) - x<2>fc;>(o:)A; + E21w(o:)E11c;>(o:)(Y&~> - x<1>fc;>(o:)A;), (11.2) 

A - (A1,•••,AN),X=u:::),Y;=rn:::),~=[~: ~], 
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xca) is Pa X m, ~(A) is Pa X 1, l::41, is PBX Pb, and f(j){o) and Eab(j)(a) are the estimates 

of T and r:ab under the model Mo with sample Yu> = (Yi, ... , Y;-1, Y;+1, ... , YN)- The 

model M0 • corresponding to the minimum discrepancy is chosen as the most appropriate 

for the data. It is noted that in the prediction process, Y}2> is viewed as v<2> and yp> as 

v<1> and Yw as Yin the conditional prediction of v<2> given v<1> and Y. 

This procedure can be applied to any number of competing models, nested or not. One 

possible drawback is that the choice of P1 and P2 may not be unique. A different choice 

of p1 and P2 could produce a different selection result. However, for most growth curve 

problems, the responses are time series in nature, and hence the most practical choice of 

P2 is 1, i.e., v<2> represents the last component of the vector V (for K = I). This choice 

of P2 is particularly appealing if the ultimate goal in the modeling effort is the prediction 

of future values for each of the N vectors. 

Instead of conditional prediction of v<2> given v<1> and Y, prediction can be made on 

the entire vector V. For this purpose, the discrepancy measure by the PSR procedure is 

Do = IN f)Y; - X f(;)(a)A;)'(Y; - Xf(;)(a)A;), 
p ;=l 

Again, the selected model M0 • corresponds to the roinim1rm discrepancy measure. 

(11.3) 

An advantage of this discrepancy measure is that the prediction is made on the whole 

vector. Hence there is no indeterminacy in the selection of P2 as encountered in {11.1). 

However, the prediction of V given Y may not be as sensitive to the appropriateness of 

the covariance structure as conditional prediction of v<2> given v<1> and Y, or extended 

prediction of y given Y, which is the subject of the next discussion. 

The discrepancy measure for extended prediction of y, when q = 1 and n = N, is 

D0 = (Y<2> - Y<2>) (Y<2> - Y<2> )' / N {11.4) 

where Y<2> = x<2>f(a)A+E21 (a)Ei""l(a)(Y<1> -x<1>f(a)A). Eab is defined as before with 

p1 = p - 1, P2 = 1, f{a) and Eab(a) are estimates of T and Eab with the sample y<1> 

under model Mo, y = (Y<1>', y<2>')', y(l) is (p-1) X N, y<2> is 1 X N, X = (x<1>',x<2>1
)', 

x<1> is (p - 1) x m, and x<2> is 1 x m. The model M0.corresponding to the minimum 

discrepancy measure is chosen as the most appropriate for the data. It is noted that y<2> 

is viewed as y and y<1> as Y in extended prediction of y given Y. When p > m + 2, 

the following pseud<:>-cross-validation procedure advocated by Keramidas and Lee (1990), 

which is prequential in nature (see Dawid, 1984), can be used. The discrepancy measure 
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for this procedure is 

l p 

Do - (p- - l)N . L (Y;-Y;)(Y; - Y;)'. 
m 3=m+2 

(11.5) 

where Y = (Y{, ... , Y,:)', Y; is the prediction of Y; and is obtained in exactly the same 

manner as y<2> in (11.4) with the sample (Y{, ... , YJ_1)'. Thus, the prediction is still 

extended in nature except it is done in a sequential manner. In the prediction of Y;, 
p1 = j - 1, P'l = 1, and x<2> is the first j - 1 rows of X, if all the available data are used 

as the sample in the prediction proc~. In case only a sbuset of available data is used as 

the sample, the choice of the design matrix x<2>, p1 and 1J-J should be self-evident. As in 

the previous case, the model M0 • corresponding to the minimum discrepancy measure is 

chosen as the most appropriate for the data. 

When the data involve samples from two or more populations, model selection can 

be based on the ability to classify the data at hand. The model selected is the one that 

produces the smallest probability of misclassification using the PSR procedure. 

Here we consider the situation where g growth curves, as defined by (2.2), have been 

observed and a future observation matrix V, of dimension p x K, is known to be drawn 

from one of g populations, 1r1, ••• , 1r9 , with prior probability q1, ••• , q9 , respectively. It is 

also assumed that 

where Fi is a known design matrix formed by some columns of Ai, if Vis from 1ri. For 

the selection of a model using the PSR procedure, we will set K = I. 

Let Y = (Yi, ... , Yg) = (111, y2, ••• , YN ), where N = EJ=i N; and 8 is the collection of 

parameters. Then Yi is classified as 1r a if 

In case g = 2 and 8 is known, (11.6) is equivalent to clas&fying Yi into 1r1 if 

(Yi - Xr2F2)'E21(Yi - Xr2F2) + log(IE21) 

> .(Yi - X-r1F1)'E11 (Yi - Xr1F1) + log(IE1I) + 2log(q2/Q1). (11.7) 

H E1 = E2 = E, then (11.7) is further reduced to 

!Y;-½(r1F1 +r2F2)l'X':r:-1X(r1F1 -r2F2) > log(q2/q1) (11.8) 
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which is an extension of equation (5) of Anderson (1984, p.205). 

This procedure is quite practical, because the ability to classify the data correctly is 

very important. However, the procedure cannot be applied if there is no clear partitioning 

of the data into several distinct groups. Also, the sample size for each subgroup could 

be greatly reduced if the number of groups is large. For more detail of growth curve 

cl~ification the reader is refered to Lee (1982). 

12 Applications to Real Data 

Several data sets have been used in the literature for the three types of prediction con­

sidered in this paper. The illustrative examples can be found in Lee and Geisser (1975), 

Fearn (1975), Rao (1977, 1984, 1987), Lee (1988,1991), Keramidas and Lee (1988, 1990, 

1992). The data are all from biological applications with the exception of those in Kerami­

das and Lee (1988, 1990) in which the model was useful in technological substitutions. 

Here we will restrict our attention to conditional prediction of v<2> given v<1> and Y 

for the dental data, as reported by Potthoff and Roy (1964). Dental measurements were 

made on 11 girls and 16 boys at ages 8, 10, 12 and 14 years. Each measurement is the 

distance (in mm) from the center of the pituitary to the pteryomaxillary fissure. As noted 

in Lee and Geisser (1975), individual 20 ( the 9th boy) is suspected to be an aberrant 

observation and will be excluded in this illustration. Since the measurements are taken 

once every two years, the design matrix X is 

X _ ( 1 1 1 1 )' 
- -3 -1 1 3 (12.1) 

The design matrix A is a 2 x 26 matrix composed of 11 (1,0) columns, followed by 15 (0,1) 

columns when both girls and boys are assumed to have a common covariance matrix. If 

the covariance matrices are distinct for girls and boys, the design matrix A is a 1 x 11 

vector for girls and a 1 x 15 vector, both consisting of all ls. 

Let Y =(Yi, ... , Yi1, Yi2 , ••• , Y26 ) where Yi through Yi1 represent the dental measure­

ments of the girls and Yi2 through 1';6 are those of the boys. In conditional prediction of 

v<2> given v<1> an~ Y we will consider the special case in which V = (v<1>', v<2>'y, v<1> 

is (p-1) x 1 and v<2> is 1 x 1. The discrepancy measure given by (11.1) will be applied 

withP2 = 1. 

We will first apply the results (5.11), (5.15), (5.21) and (5.22) to the case in which 
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y(1) = (26, 25, 29)' [corresponding to the first boy] and vc1> = (24.5, 25, 28)' [correspond­

ing to the last girl]. The exact and approximate predictive densities of vc2> given vc1> 

• 
"¥(1~ 

• 

(A) Boy's Dental Data• (8) Pooled Dental Data• 

II • • • • • • • • 
0 V(tJ,,4211,21,117' 

(C) Girl Dental Data• (D) Girl Dental Data 

I====. I 

II • • • • II • • • 
F9n 1. ~DerlillMcfV(2)Gn1V(t)andY 

and Y are shown in Figure 1. The difference between Figures 1 (A) and 1 ( C) is in the 

treatment of the covariance matrix. In Figure 1 (B) the dental data for both girls and 

boys are assumed to have an identical covariance matrix while in Figure l(A) girls and 

boys are assumed to have different covariance matrices for their dental measurements. 

From Figures l(A)-l(C) it is clear that the approximations given by (5.11) and (5.21) are 

quite adequate, at least as far as the predictive region is concerned. Meanwhile, even for 

the worst situation as shown in Figure 1 ( C), vast improvement can be accomplished via 

(5.22) as evidenced in Figure l(D), which is a tremendous improvement over Figure l(C) 

even for L = 50. As noted earlier, however, that an average of L multivariate Student 

t densities is no longer a multivariate Student t density. Hence, an approximation such 

as (5.11) or (5.21) still has its place in our development unless the random variable of 

interest is one-dimensional in which (5.22) should be preferred. 
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We next compare the predictive accuracy for conditional prediction of v<2> given v<1> 

and Y by the approximate means under four different covariance structures : Arbitrary 

p.d., RSS, Uniform and Serial. The approximate mean for arbitrary p.d. Eis obtained 

from (4.5) and (4.6) and the approximate means for RSS, Uniform and Serial structures 

are µr2.1(t), µu2-1, and µs2.1, as given in (5.12), (6.3) and (7.4), respectively with i being 

the model of the F distribution. The comparison is summarized in Table 1. The entries 

of this table are obtained from Lee and Geisser (1975) and Lee (1988). It appears that 

the serial structure is most appropriate for this data set. 

Table 1. The MSD and MAD Between the Predicted and Actuals: Dental Data 

Arbitrary p.d. RSS Uniform Serial 
MSD 2.128 2.035 2.196 1.354 
MAD 1.144 1.127 1.206 0.940 

13 Concluding Remarks 

We have reviewed predictive methods for many of the growth curve models with vary­

ing covariance structures. It is noted that none of these models will represent a true 

description of the underlying process for most rather complex data. However, for a par­

ticular data set what is usually required is that model be adequate for predictive purposes. 

Hence, estimates of predictive error can be made by randomly dividing the data into a 

construction sample and a validation sample and predicting the validation sample from 

the construction sample for a large sample. For a small sample, one can delete an obser­

vation and predict it from the rest and calculate the error and then cycle through all the 

observations yielding an average predictive error. Although this will underestimate the 

actual predictive error, it should prove useful as a gauge of the adequacy of the particular 

model for prediction in any real problem and serve to discriminate between alternative 

models. It is also to be noted that in many of these complex situations we have suggested 

use of "plug in estimates" and large sample normal approximations. Since the multi­

variate Student t distribution is somewhat more diffuse than the multivariate normal, it 

might be better to use the multivariate Student t distribution when the sample size is not 
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overly large. Another inferential mode that may prove useful is the method of predictive 

likelihood, e.g., Butler (1986). However, it has not as yet been applied to growth curves. 
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