An Introduction to MacAnova

by
Christopher Bingham and Gary W. Oehlert Department of Applied Statistics
School of Statistics, University of Minnesota
Technical Report \#600
September, 1994

An Introduction to MacAnova

by
Christopher Bingham
and
Gary W. Oehlert

University of Minnesota
School of Statistics
Technical Report Number 600

September 1994

Copyright © 1994 Christopher Bingham and Gary W. Oehlert

Table of Contents

1. Getting Started

1.1 What is MacAnova? 1
1.2 Launching Macanov

1.3 Quitting

41.4 Learning more about MacAnova 4

2. The Basics

2.1 MacAnova as numeric calculator 4
2.2 MacAnova as symbolic calculator 6
2.3 MacAnova as computing language -- functions and macros 7
2.4 More on Variables -- REAL, LOGICAL, and CHARACTER data 9
2.5 Comparisons of numbers and combining LOGICAL values 10
2.6 Variables with several values -- Vectors and Matrices 11
2.7 Missing values . 14
3. Building on the Basics
3.1 Combining vectors and matrices -- cat(), hconcat() and vconcat() . . 15
3.2 Creating patterned vectors -- run() and rep() 16
3.3 Assigning values to the elements of a vector or matrix 17
3.4 Simple summaries of data in vectors and matrices --
sum(), prod(), min(), max(), sort() and rank() 18
Simple descriptive statistics -- describe() 20
3.5 Simple descriptive statistics -- describe() 20
3.6 Getting help -- MacAnova command help() 21
4. Using files
4.1 General .
4.2 Recording your MacAnova session
4.2 Recording your MacAnova session -- spool() 25
4.3 Saving your work -- save(), and asciisave() 26
4.4 Reading data from files 26

5. Examples of statistical analyses

5.1 Introduction

29
5.2 Paired t analysis 29
5.2 Paired t analysis . 29
5.4 Simple linear regression
5.5 One-way Analysis of Variance 34
5.6 Randomized Block (Two-way) Analysis of Variance 36
5.7 Multiple Regression 38

Appendix A. MacAnova on a Macintosh A-1
Appendix B. MacAnova on an IBM Compatible B-1

An Introduction to MacAnova
by Christopher Bingham and Gary Oehlert

1. Getting Started

1.1 What is MacAnova?

MacAnova is an interactive computer program for statistical analysis of data. It features powerful commands for such things as regression analysis, analysis of variance, multivariate analysis and time series analysis. Moreover, it is an excellent tool for more elementary analyses, including graphical displays and computation of summary statistics.

Many statistical programs are primarily menu driven, with the user selecting what to do almost exclusively by choosing items from a menu. Although this can provide for an easy interface, it can restrict possible analyses to the specific set built in to the program.

MacAnova, by contrast, is primarily command driven, although the Macintosh version makes some use of menus. To do most things, you must use the keyboard to type commands into a command window or screen. Because MacAnova has a very wide set of commands and functions, as well as a means to combine them to make new commands (so called macros), you are not limited to a predefined set of analyses.

One attractive feature of MacAnova is that you can easily directly translate many statistical formulas to a form that MacAnova recognizes. For example, to compute a sample mean of data named x, you can type sum (x)/nrows (x) or, if n has earlier been set to the sample size, you can type sum $(x) / n$.

You can easily make high quality scatter plots and other graphs, for example, as simply astyping plot (x, y).

Although there is extensive built in help, MacAnova takes some getting used to. You need to have a certain minimum level of knowledge and practice before you can make full use of it. The purpose of this document is to introduce you to the most important features of MacAnova, illustrating them with examples. Probably a good way to proceed is to read this at the computer, trying out things as they are introduced and using the help () ${ }^{1}$ command to get more detailed information on each command as it is introduced. Some general help topics you may find useful later, but probably not at the start, are arithmetic, array, batch, comments, keywords, logic, macros, matrices, models, structures, subscripts, syntax, transformations, and vectors. Help on the special features of the different versions may be found in topics dos, launching, macintosh, and unix. Yet more complete information is available in
1 The parentheses are part of the name of the command. When you use a command, you will usually have stuff inside the parentheses.

An Introduction to MacAnova

the MacAnova User's Guide, the most recent version of which (dated March 1993) is for MacAnova 3.11.

The most recent version of MacAnova is Version 3.35, released September 1994. Although it has many new features that are not described in the MacAnova User's Guide, almost everything in the manual is still appropriate, except form some of the information in the Appendices. File Changes.txt distributed with MacAnova summarizes the changes.

MacAnova was originally designed for use on Macintosh computers and the Macintosh version is still the most convenient to use. Other versions, for DOS and Unix, have the same capabilities, but the interface is somewhat different. The principle differences are these:
(a) The Macintosh version makes some use of menus; other versions do not.
(b) On the Macintosh, what you type and MacAnova's responses go into an editable document in the command window. This can be scrolled back so you can see stuff that has disappeared off the top of the screen. It can also be saved on a hard or floppy disk for later printing or editing. On other computers, what scrolls off the screen is lost, although MacAnova pauses after every screenful so that you can read the output. You can write your input and output to disk using the spool () command (see Sec. 3.6 below).
(c) The Macintosh version has up to four windows for graphs and you can switch between them and the command window. In fact, you can have up to nine simultaneous command windows and switch between them. You can print any of the windows, graphic or command, or transfer their contents to a word processor. Non-Macintosh versions have a single graphics window whose contents are lost as soon as you switch back to command mode. There is no easy way to print graphs or import them into a word processor, although the protected mode DOS version allows you to save the contents of the graphics screen to disk.

All the examples here were done on a Macintosh, and the computer output, including high resolutions graphs, copied into a word processor document.

1.2 Launching Macanova

On a Macintosh, double click on the MacAnova Icon which looks like this
On DOS, if the default directory is the one with MACANOVA. EXE, simply type macanova at the DOS prompt. If MACANOVA. EXE is in a standard directory such as C: \BIN, you may be able to start it up by typing macanova in any default directory.

More details on launching MacAnova are in Appendix A (for Macintosh) and Appendix B (for DOS) and are given in help topic launching.

An Introduction to MacAnova

After launching, a start up message like the following appears

$$
\text { MACANOVA } 3.35
$$

An Interactive Program for Statistical Analysis and Matrix Algebra For information on major features, type 'help(macanova3)' For information on linear models and GLM's, type 'help(glm) For latest information on changes, type 'help (news) Version of 09/09/94 (Mac with Co-Processor) Type 'help(copyright)' for copyright and warranty info Copyright 1994, Gary W. Oehlert and Christopher Bingham
New keyword 'key' on help. Type 'help(key:"?")'

Cmd>
"Cmd>" is the standard prompt requesting that you type a command. On the Macintosh, you can use the mouse to put the cursor anywhere in the window and type in whatever you want, but Macanova obeys only what you type after the prompt (actually after 1 space after the prompt). With DOS you don't have any choice; you can only type after the prompt.

Commands are typed in as sequences of letters and symbols. You can use the delete or backspace keys to correct mistakes. On the Macintosh, you can use arrow keys or the mouse to reposition the cursor to edit a command before executing. Until Return or Enter is pressed, a command is not executed and may be edited.

On the Macintosh, if the cursor is not at the very end of the command line, pressing Return will just split the line, but MacAnova won't do anything. However, no matter where the cursor is, pressing Enter works the same as moving the cursor to the end of the command line and then typing Return.

Any information typed after a "\#" is considered to be a comment and is ignored by MacAnova. This feature is used in many examples below to explain what is being done.

Example
Cmd> x <- cat(1.2, 3.5, 2.3) \# entering 3 values of data<cr>
creates a variable named x with values $x_{1}=1.2, x_{2}=3.5$, and $x_{3}=2.3$. A convention that will be used throughout this document is to use italic courier font for what is typed by the user and non-italic Courier font for what the computer prints. The <cr> indicates a Return or Enter and will not appear in later examples. Often, just as here, example lines will have descriptive comments starting with '\#'. Comments that are not part of the MacAnova session will be in bold face.

If you need to type a command that is longer than the screen or window width, you can

An Introduction to MacAnova

just keep typing and it will wrap around to the next line. Alternatively, you can split it yourself at a convenient spot by typing a back slash " \backslash " followed by Return. Thus, as long as you don't type Return at the end of the first line,

Cmd> $y<-\operatorname{cat}(113.7,91.4,89,133.3,90.6,87.4,96.8,78.4,81,113.9$, $120,110,92.7,131.5,100.9,120.5,87.3,97.9,83.2,81.2)$
has the same effect as
Cmd> $y<-$ cat $(113.7,91.4,89,133.3,90.6,87.4,96.8,78.4,81,113.9, \backslash$
$120,110,92.7,131.5,100.9,120.5,87.3,97.9,83.2,81.2)$
where Return was typed after " \backslash ". To repeat, don't use Return without a backslash in the middle of a command, except inside quotes ". . ." or curly brackets \{. . .).

1.3 Quitting

It is just as important to know how to stop MacAnova as to how to start it. On all versions of MacAnova you can exit by typing quit, end, stop or bye. On the Macintosh, selecting Quit on the File menu also exits or closing the command window when there is only one such window. When you leave MacAnova, all the data and results in MacAnova's memory (the so-called workspace) will disappear. You can save them on disk to use later by using commands save () or asciisave () before quitting (see Sec. 4.3 below). The Macintosh version asks if you want to save the workspace and the output window when you quit.

Example

Cmd> quit \# you could also use "bye", "stop" or "end"

1.4 Learning more about MacAnova

Your first resource is probably command help () (see Sec. 3.6 below). The topics provide the most up-to-date information on functions, commands, and syntax. Get in the habit of using help ().

As of now (September, 1994) there is no comprehensive manual for MacAnova 3.35 or later. However, the MacAnova U'ser's Guide, University of Minnesota School of Statistics Technical Report 493 as revised March 1993, is a complete reference for MacAnova 3.11. Virtually everything there is still applicable with the exception of the appendices. Of course, it does not include the features and enhancements introduced with version 3.35 . File changes.txt distributed with MacAnova summarizes these changes.

2. The Basics

2.1 MacAnova as numeric calculator

By typing numbers and algebraic symbols you can use MacAnova as a simple calculator.

```
Cmd> 3 + 5 # space between items is o.k.; simply 3+5 is o.k
(1)
```

An Introduction to MacAnova

Cmd> $2+10$ \# but not spaces between digits in a number ERROR: problem with input near $2+10$


```
(1) 4.5 remainder when 14.5 is divided by 5
```

Cmd> sqrt (20); sq rt(20) \# space in name is an error
(1) $4.4721 \sqrt{20}$ "sqrt" means square root
ERROR: problem with input near sqrt(20); sq rt
Cmd> $\log (3) *(5+s q r t(6))$ \#combination of functions and arithmetic
(1) $8.1841 \quad \ln (3) \times(5+\sqrt{6})$

These lines illustrate several features (we'll explain about the " (1)" in the outpu later)

When you type a number or an expression at the Cmd> prompt you get immediate output.

Spaces are generally ignored, except that you can't embed them in numbers or names.

You can use parentheses to force addition or subtraction to be done before other operations.

You can do several things on a single line, separating them by " ; ". Each part can produce its own output on a new line as if they were typed after different prompts.

You can compute things like square roots by typing their names with a number in parentheses. Among other so called "transformations" available are exp (), $\cos (), \sin (), \tan (), \log 10()$, and $\operatorname{atanh}()$. Type help("transformations") for a full list.

You can enter numbers using computer scientific notation: 1.3 e 4 is $1.3^{* 1} 0^{4}$, $-3.231 e-17$ is $-3.231^{*} 10^{-17}$, etc.

The full set of arithmetic operators consists of " + ", " - ", " \star " (multiplication), " $/$ " (division), "^" (exponentiation), and " 8% " (modular division: 14.5 \%\% 5 computes 4.5, the remainder of 14.5 when divided by 5).

MacAnova more or less follows the normal rules of algebra in evaluating expressions For example $3+4 * 3$ is evaluated as $3+12$, while $(3+4) * 3$ is evaluated as $7 * 3$. Exponentiation is a little tricky in that $2^{\wedge} 4^{*} 3$ is interpreted as $16 * 3$, while $2^{\wedge}(4 * 3)$ is evaluated as $2^{\wedge} 12$. Also * and / are evaluated step by step from left to right so that

An Introduction to MacAnova
$3 * 4 / 5 * 6$ is evaluated as $((3 * 4) / 5) * 6$.
2.2 MacAnova as symbolic calculator

Besides simple arithmetic such as $3+$ sqrt (2) involving only numbers, you can create named variables with numerical values and do arithmetic and other computations on them as illustrated by the following example

$$
\begin{aligned}
& \text { Cmd> } x<-10 ; a<-1101.1 ; b<--2 \text { \# store values in variables } \\
& \text { Cmd> } a+b * x \text { \# use variables in an expression } \\
& \text { (1) } 1081.1
\end{aligned}
$$

Here we have created variables x, a, and b with specific values and then used them in an algebraic formula or expression. These values remain available under these names until you change them, delete them, or you quit MacAnova. Expressions can be almost arbitrarily complicated and can contain transformations as well as other MacAnova functions.

The combined symbol "<-" (less than followed by minus) is the assignment operator. The value of the number or expression to the right of it is saved in the variable to the left. Its use is analogous to the use of " $=$ " in certain computer languages such as Fortran and C or to " $:="$ in Pascal. A very common mistake is to use " $=$ " when you mean " $<-$ ".

A few variables such as PI and E, are predefined although their values can be changed Cmd> PI; E \# E is base of natural logarithms
(1) $\quad 2.7183$

The names of variables must begin with a letter, but subsequent characters may be numbers or letters or the underscore character '_'. Variable names are case sensitive, which means that residuals, Residuals, and RESIDUALS are all different names. It is a good idea to avoid names with all capital letters, as MacAnova deletes and creates certain variables with all capital names (for example, RESIDUALS). You can get an alphabetized listing of all active variables using commands listbrief () or list ().

A variable's name may also start with the character ' $@^{\prime}$ ' (as in @mean). Such a variable is called a temporary variable because it will be automatically deleted at the next "Cmd>" as in the following example

> Cmd> @xbar <- sum $(x) / n ;$ var <- sum $\left((x-@ x b a r)^{\wedge} 2\right) /(n-1)$
> Cmd> @xbar \# MacAnova has automatically deleted @xbar UNDEFINED

Sometimes you may want to remove a variable from computer memory, perhaps because you have gotten the warning message

ERROR: not enough memory, try deleting variables

An Introduction to MacAnova

Command delete () does the trick.
Cmd> delete (x, n) \#deletes variables x and n
Cmd> $x \# x$ is no longer defined UNDEFINED

You can delete as many variables as you like in a single use of delete ().
2.3 MacAnova as computing language -- functions and macros

In a technical sense, MacAnova commands are functional. Transformations such as sqrt () or $\log 10$ () are particular cases of functions. When they are used they have inputs called arguments (in log 10(3.145), 3.145 is an argument), and they return (produce as output) results which can be saved in a variable, combined with other values in an expression, or printed.

Many functions have several arguments, separated by commas, the whole list being contained between parentheses as in the following examples
Cmd> round $(17 / 3,3)$ \# round to three decimals
(1) 667
Cmd> hypot $(3,4)$ \# computes sqrt $\left(3^{\wedge} 2+4^{\wedge} 2\right)$
(1)

Some functions just do things, but don't return any value that can be assigned to a variable. We usually call such functions simply commands. For example print () is a command that can be used to print several variables or expressions, perhaps with an increased number of significant digits, as in the following example.

The argument nsig: 12 for print () is an example of a keyword phrase of the form name : value, and is typical of the syntax used to control the behavior of many commands and functions. Because print () does not return a value, we get an error message if we try to use it as if it does:
Cmd> z <- print (sqrt (3)) \# erroneous try to assign print value
NUMBER:
(1) 1.7321 Produced by print()
ERROR: assignment from null operation Because of use of <-

A few functions or commands can be used with no arguments. They still need a pair of parenthesis, but with nothing between them. For example

An Introduction to MacAnova

Cmd> listbrief() \# list all MacAnova objects						
boxcox	colplot	console	coNSOLE	DATAFILE	DEGPERRAD	
DELTAT	E	fcolplot	frowplot	getdata	getmacros	
MACROFILE	makecols	makefactor	model	PI	readcols	
regs	resid	resvsindex	resvsrankits resvsyhat	rowplot		
twotailt	yhat					

Commands that do not return a value usually produce what we call side effects. For example, the side effects of print () are the printed values of its arguments and one side effect of regress () is a printed regression analysis. In addition, some commands like regress () create, as side effects, variables with standard names such as SS, DF, RESIDUALS or COEF containing quantities related to the analysis.

In addition to functions, MacAnova has what are known as macros. Their usage is almost indistinguishable from that of functions. To use a macro, you type its name followed by arguments separated by commas and enclosed in parentheses. Like functions, macros may return values or have side effects. Macros do differ from functions in some important ways, but most of the time you can treat them the same. Here is an example of the use of the useful macro boxcox which takes two arguments, here cat $(3.03,3.01,3.32,3.65,4.42)$ and .5 .

$$
\begin{array}{cc}
\text { Cmd> boxcox (cat (3.03, 3.01, 3.32,3.65,4.42),.5) } \\
\text { (1) } 2.7514 & 2.73 \\
\hline
\end{array}
$$

Probably the most important difference between functions and macros is their availability. A function can always be used. There is nothing you can do to delete it. Macros, on the other hand, are more like variables -- they can be predefined, deleted, read in from a file, entered at the keyboard and printed. Predefined macros like boxcox, getmacros and resvsrankits are automatically available. Others such as hist must be read from a file on a floppy or hard disk using getmacros or macroread (). When you have some experience with using MacAnova, you can create your own macros to extend the range of what MacAnova can do (see Sec. 7.7 of the User's Guide). File MacAnova. mac, usually in the same Folder or directory as MacAnova, contains dozens of macros you may find useful. You can get a list of all the macros already in MacAnova by command listbrief (macros: T).

Cmd> listbrief(macros:T)

boxcox	colplot	console	fcolplot	frowplot	getdata
getmacros	makecols	makefactor	model	readcols	regs
resid	resvsindex	resvsrankits resvsyhat	rowplot	twotailt	

resid
resvsindex model readcols rowplot twotailt

You may already have spotted one of the conventions of this document -- when a MacAnova function is referred to by name, it always has a pair or parentheses attached, as in print (). On the other hand, when a macro is referred to by name, just its name is given, as in boxcox. Whenever you use it, a functions or a macro must be followed by parentheses enclosing the arguments, or if there are no arguments, by an empty pair of parentheses.

An Introduction to MacAnova

A function or macro returning a value can be used anywhere a simple number or variable name can be used -- in expressions and as an argument to another function or macro. A simple example is sqrt (a + 3*boxcox ($\mathrm{x}, .5$)).
2.4 More on Variables -- REAL, LOGICAL, and CHARACTER data

Named variables can contain several types of data. The most common are numbers such as $2.4,-1$, or 3.1478×10^{-8}. In MacAnova this type is called REAL. Almost as common are variables which have only two possible values, True and False. In MacAnova these are called LOGICAL, and True and False are typed or printed simply as T and F.

The values of some variables are strings of characters. In MacAnova they are called CHARACTER variables. When typing CHARACTER data on the keyboard, the strings must be enclosed in double quotes, for example,
cmd> string <- "This is a character string"
In some MacAnova output, LOGICAL and CHARACTER are abbreviated to LOGIC and CHAR. Some more advanced data types are STRUCTURE and GRAPH. Function list () may be used to list the names of variables, together with their data types and their dimensions, while listbrief () just lists their names. If you use one of the keyword phrases real:T, char:T or logic:T as an argument to list () or listbrief (), only variables of the specified type are listed.

Here are some examples.

An Introduction to MacAnova

Cmd> 1 ist (real : T)		
data	REAL	8
DEGPERRAD	REAL	1
DELTAT	REAL	1
E	REAL	1
PI	REAL	1
\mathbf{x}	REAL	1

As in this usage, LOGICAL values T and F are often used to represent "yes" and "no" in keyword phrases specifying function options. Other examples are silent:T (suppresses output on regress ()) and lines:T (makes plot () draw lines between points).
LOGICAL values can even be used in arithmetic expressions and a few functions (but not as arguments to functions like sqrt () or \log ()), with True being treated as 1 and False as 0 .

```
Cmd> cat (T,F) + + # # same as cat (1,0) + < + 
```

Any character is allowed inside a CHARACTER variable, even a Return character. One common source of trouble is forgetting to add the closing double quote to a character string and hitting Return. You expect MacAnova to respond but it doesn't. Without the closing double quote, MacAnova is just waiting for you to put more characters inside the string variable. Type the closing double quote or nothing will ever happen.

You may include a double quote in a CHARACTER variable by preceding it with a backslash.

Cmd> print("Hello");print("\"Hello\"")
Hello
"Hello"

2.5 Comparisons of numbers and combining LOGICAL values

One place where LOGICAL values naturally arise is when you want to compare the value of one variable with another as in the following example

Ma> $a<b ; a>b ; a==c$ \# less than greater than equal to
(1) T True because a is less than b
(1) F Ealse because a is not greater than b

An Introduction to MacAnova

Note that " $==$ " means "is equal to", " $>=$ " and " $<=$ " mean "greater than or equal to" and "less than or equal to," and "! $!=$ " means "not equal to." On a Macintosh you can use " \leq ", " \geq " and " \neq " instead of " $>=$ ", " $<=$ " and " $!=$ "

There are three logical operators, "!", "\&\&" and " 11 ".
" $!$ " is the not operator, changing True to False and vice versa.
Cmd $>{ }^{\text {(1) }} \mathbf{F} \quad=\operatorname{cat}(2,3) ;!(3<=\operatorname{cat}(2,3))$
(1) $F \quad T \quad 3 \leq 2$ is False, $3 \leq 3$ is True
(1) $T \quad F \quad \operatorname{not}(3 \leq 2)$ is True, $\operatorname{not}(3 \leq 3)$ is False
" $\& \&$ " is the and operator. $c \& \& d$ has value True if and only if both c and d have value True:
" $I \|$ " is the or operator. $\mathrm{c} \| \mathrm{d}$ has value True if and only if either c or d or both have value True:

$$
\underset{(1)}{\text { Cmat }} \operatorname{cat}\left(T\|T, T\|_{T} F, F\|\underset{F}{ } T, F\| F\right)
$$

2.6 Variables with several values -- Vectors and Matrices

In most of the examples so far, a MacAnova variable contains only a single value, whether REAL, LOGICAL, or CHARACTER. Such variables are usually called scalar variables or simply scalars. Obviously, this does not get you very far in statistics. What we need are variables that can contain several numbers, perhaps an entire sample of data. The simplest such variable in MacAnova is a vector, a variable containing several numbers, several True/False values, or several character strings.

The basic function for creating a vector is cat ($)$, which can have any number of arguments, all of the same type. There have been a number of usages of cat () presented without comment above. Consider the following simple examples.

Cmd> dakotas <- cat("South Dakota", "North Dakota"); dakotas
(1) "South Dakota"
(2) "North Dakota"

Individual elements of a vector may be "extracted" using subscripts, values enclosed in square brackets (. . .) , as in the following examples.

An Introduction to MacAnova

As the first example shows, subscripts can be variables as well as numbers. The second example shows that you can extract several values at once, in several different ways.

If a subscript is itself a vector of positive integers such as cat $(3,4)$, the corresponding elements of the variable are extracted as if you had typed, say, cat ($x[3], x[4]$). There can even be duplicates in the subscript vector -$x[\operatorname{cat}(1,1,3)]$ is the same as cat ($x[1], x[1], x[3]$).

If the subscript is a vector of negative integers, you extract all the other elements. Thus $\times[$ cat $(-1,-2)]$ extracts all the elements of x except the first and the second. You cannot have duplicate negative subscripts nor can you mix them with positive subscripts.

If the subscript is a LOGICAL vector, the values whose positions correspond to True are extracted and the remaining values omitted. A LOGICAL subscript vector must be the same length as the vector it is subscripting.

Sometimes a data set consists of several variables. It is often convenient to combine them in a single MacAnova variable in a sort of table form, with rows corresponding to different cases and columns corresponding to variables. Such a rectangular array is called a matrix. Here is a very simple example, which also contains our first example of a command that reads data from a data file (see Sec. 4.4 below).

An Introduction to MacAnova

Cmd> data \# see what values were read		
$(1,1)$	0.34	2.8
$(2,1)$	0.35	1.9
$(3,1)$	0.39	3.3
$(4,1)$	0.39	5.6
$(5,1)$	0.41	4.2
$(6,1)$	0.41	5.6
$(7,1)$	0.49	4.2
$(8,1)$	0.68	7.9

There are 8 observations on bivariate data and we require two subscripts to extract a particular value. The numbers in parentheses (for example (3,1)) are the row and column number of the first value in the line.

As you can see, an empty subscript selects all the values of that subscript. You can also use negative subscripts or LOGICAL vectors as subscripts:

$(1,1)$	0.39	5.6
$(1,1)$	0.39	5.6

You can create a matrix from a vector by function matrix (). For example, to create matrix data at the keyboard you can type

$$
\begin{aligned}
& \text { Cmd> data<-matrix (cat }(.34, .35, .39, .39, .41, .41, .49, .68,1 \\
& 2.8,1.9,3.3,5.6,4.2,5.6,4.2,7.9), 8)
\end{aligned}
$$

The general form is matrix $(v, n r)$, where v is a vector and $n r$ is the number of rows. It is an error if the length of v is not divisible by $n r$. The values in v are entered into the result column by column.

You would create vectors corresponding to the columns of data by

An Introduction to MacAnova

(1)	0.34	0.35	0.39	0.39	0.41
(6)	0.41	0.49	0.68		
Y :					
(1)	2.8	1.9	3.3	5.6	4.2
(6)	5.6	4.2	7.9		

Here cat () has changed each column to a vector with only 1 subscript. The numbers in parentheses ((1) and (6)) are the subscripts of the first number on that line. Thus x [6] has value 0.41

The comparison operators introduced in Sec. 2.5 can be used to compute LOGICAL vectors which can be used as subscripts. For example, suppose you want to select only the elements y of corresponding to values of $x>.35$ and $x \leq .45$. You can use comparison operators and the " $\& \&$ " operator.

2.7 Missing values

Missing values are a common occurrence when you are dealing with real data. You may have measurements of both the height and weight of each of 19 people, but for one reason or another, for two other people, you have only their weights so that two heights are missing. Or, when entering data for computer analysis, you may notice a value is impossible (for example, a human height of 61 feet). MacAnova has a special value, MISSING, that can be used to replace such values. When typed from the keyboard, the code for MISSING is a question mark, "?", but printed, it prints as MISSING.

$$
\begin{aligned}
& \text { Cmd> } \\
& \text { (1) }
\end{aligned} \text { a }<-\operatorname{cat}(3, ?,-7, ?, 4) ;{ }_{3}^{a} \text { MISSING }
$$

$$
-7 \quad \text { MISSING }
$$

Many commands do something fairly sensible with values of MISSING. A few give you a warning:

Cmd> $5+a$
WARNING: arithmetic with missing values (s
$\begin{array}{llllll}(1) & 8 & \text { MISSING } & -2 & \text { MISSING } & 9\end{array}$
This illustrates that a value of MISSING combined arithmetically with anything else gives a missing value.

LOGICAL values of MISSING are also possible, although the only way to create them is by a comparison of a number with MISSING:

```
cmd> a > 0
WARNING: arithmetic comparison with missing values(s)
(1) T
MISSING
MISSING T
```


An Introduction to MacAnova

Function ismissing () can be used to find which values in a REAL or LOGICAL data set are MISSING. ismissing (x) returns a LOGICAL variable with the same size and shape (dimensions) as x whose values are True where x is MISSING, and False where x is not missing.

```
(1) Fma ismissing(cat (1,?,3))
```


3. Building on the Basics

3.1 Combining vectors and matrices -- cat(), hconcat() and vconcat()

We learned above in Sec. 2.6 how to use cat () to create vectors from several individual values. You can also use cat () to combine several vectors to make a longer vector.

Function cat () can also be used to change a matrix to a vector.

| Cmd> | cat (data) \# data is the 8 by 2 matrix read from a file | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| (1) | 0.34 | 0.35 | 0.39 | 0.39 | 0.41 |
| (6) | 0.41 | 0.49 | 0.68 | 2.8 | 1.9 |
| (11) | 3.3 | 5.6 | 4.2 | 5.6 | 4.2 |
| (16) | 7.9 | | | | |

First we get all the values in column 1 of data, followed by the values in column 2.
Sometimes you will want to make a larger matrix by combining together side by side two or more vectors or matrices. Obviously all the pieces must have the same number of rows. For example, suppose you want to put vectors x and y back together in a matrix, together with a column containing the case numbers.

Cmd> datal<-	hconcat (cat $(1,2,3,4,5,6,7,8), x, y) ;$ datal		
$(1,1)$	1	0.34	2.8
$(2,1)$	2	0.35	1.9
$(3,1)$	3	0.39	3.3
$(4,1)$	4	0.39	5.6
$(5,1)$	5	0.41	4.2
$(6,1)$	6	0.41	5.6
$(7,1)$	7	0.49	4.2
$(8,1)$	8	0.68	7.9

This has produced the 8 by 3 matrix data1. The general usage of hconcat () is

An Introduction to MacAnova

hconcat (a, b, c, \ldots), where each argument is a vector or matrix with the same number of rows.

If you want to combine two or more matrices all with the same number of columns by stacking them one above the other, you can use vconcat ():

Cmd	vconcat (data[cat $(5,6,7,8)$,], data (cat $(1,2,3,4)$,])	
$(1,1)$	0.41	4.2
$(2,1)$	0.41	5.6
$(3,1)$	0.49	4.2
$(4,1)$	0.68	7.9
$(5,1)$	0.34	2.8
$(6,1)$	0.35	1.9
$(7,1)$	0.39	3.3
$(8,1)$	0.39	5.6

This reorders the rows of data, putting the rows 5 through 8 ahead of rows 1 through 4.
3.2 Creating patterned vectors -- run() and rep()

Suppose you want a vector with values $1,2,3,4$, and 5 . You learned in Sec. 2.6 that this could be done by $y<-\operatorname{cat}(1,2,3,4,5)$. You could enter a vector with values $1,2,3$, ..., 100 the same way but it would be tedious and easy to make a mistake. Function run () provides a short cut. Here is the simplest usage of run ():

5

Here are other, fairly self explanatory, uses of run ():

Sometimes you may want a vector consisting of all 1's or some other value. You could use cat ($1,1,1,1,1,1,1$), say, to get seven 1 's, but function rep () is easier.

```
\begin{tabular}{lllll} 
Cmd> & rep \((1,7)\) & \(\#\) vector of & 7 & 1 's \\
\((1)\) & 1 & 1 & 1 & 1 \\
\((6)\) & 1 & 1 & &
\end{tabular}
```

1

Instead of repeating a single number, you can repeat a vector:

An Introduction to MacAnova

Cmd $>$	$\operatorname{rep}(r u n(4), 2)$	$\#$ like cat (run(4), run (4))		
(1)	1	3	4	
(6)	2	3	4	4

There is a more elaborate use of rep () that is sometimes useful:

Each of the numbers in run (3) is repeated 2 times. The second argument of rep () here is the same length as the first and provides the number of repetitions. Here is an even fancier usage:
(1) $\operatorname{rep}(\operatorname{run}(3), \operatorname{cat}(2,3,4)$)
$\begin{array}{llll}(1) & 1 & 1 & 2 \\ (6) & 3 & 3 & 3\end{array}$
2

This repeats 1 two times, 2 three times, and 3 four times.
3.3 Assigning values to the elements of a vector or matrix

If you want to change one or a few elements in a vector or matrix, you can assign new values directly using subscripts. For example, suppose you learned the value in row 8 of column 2 of the matrix data was incorrect and that the correct value should have been .58 instead of .69 . You could make the change by

Cmd $)$ data[8, 1] $<-.58 ; ~ d a t a ~$		
$(1,1)$	0.34	2.8
$(2,1)$	0.35	1.9
$(3,1)$	0.39	3.3
$(4,1)$	0.39	5.6
$(5,1)$	0.41	4.2
$(6,1)$	0.41	5.6
$(7,1)$	0.49	4.2
$(8,1)$	0.58	7.9

You would make the same change in vector x by

Cmd $>x[8]<-.58 ; x$				0.39	0.41
(1)	0.34	0.35	0.39		
(6)	0.41	0.49	0.58		

You can change several values at once:

$\begin{aligned} & \text { Cmd> } \\ & (1) \\ & \text { (} \end{aligned}$	2	3	4	5
$\begin{gathered} \text { Cmd> } w[r u n(2)] \\ (1) \\ -10 \end{gathered}$		3	$\begin{aligned} & w \\ & 17 \end{aligned}$	17

An Introduction to MacAnova
In this last command line, we first replace elements 1 and 2 (run (2)) of w by-10 and a missing value, and then replace elements 4 and 5 (all except elements 1,2 , and 3) by 17 For future use we change back data $[8,1]$ and $\times[8]$ to their original values.

$$
\text { Cmd> data }[8,1]<-.68 ; x[8]<-.68
$$

3.4 Simple summaries of data in vectors and matrices $-\operatorname{sum(}), \operatorname{prod}(), \min (), \max ()$, sort() and rank()
Functions sum (), prod ($), \min (1)$, and $\max ()$ compute the sum of, the product of, the minimum of, and the maximum of the values in a vector.

$$
\begin{array}{lccc}
\text { Cmd> } \operatorname{cat}(\operatorname{sum}(y), & \operatorname{prod}(y), \min (y), & \max (y)) & \\
\text { (1) } & 35.5 & 76723 & 1.9
\end{array}
$$

For comparison, here are the sum and product as computed "by hand":

$$
\begin{aligned}
& \text { Cmd> } \operatorname{cat}(2.8+1.9+3.3+5.6+4.2+5.6+4.2+7.9 .1 \\
& 2.8 * 1.9 * 3.3 * 5.6 * 4.2 * 5.6 * 4.2 * 7.9)
\end{aligned}
$$

Function sum () is useful for computing means, variances and standard deviations from the basic formulas $\bar{y}=\sum_{i=1}^{n} y_{i} / n$ and $s_{y}^{2}=\left(\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right) /(n-1)$.

Cmd> $n<-$ nrows (y); ybar <- sum(y)/n \# mean
Cmd> yvar <- sum $\left((y-y b a r)^{\wedge} 2\right) /(n-1)$ \# variance
(md) cat (ybar, yvar) \# mean and variance

You can compute the range $\left(y_{\text {max }}-y_{\text {min }}\right)$ by

$$
\begin{aligned}
& \text { Cmd> } \\
& (1) \\
& \max (y)-\min _{6}(y) \\
& \hline
\end{aligned}
$$

unction sort () allows you to reorder the elements in a vector in increasing order:

Of course, these also give you another way to compute the minimum and the maximum:

An Introduction to MacAnova

$\begin{array}{cc}\text { Cmd> } \\ (1) & \text { cat }(\operatorname{sort}(y)[1], \\ 1.9 & \operatorname{sort}(y, \text { down:T) [1]) }\end{array}$

This last also shows that you can use subscripts directly on the values of functions.
One important way of summarizing a vector of numbers, is to compute the ranks within the vector of each of the elements, with the smallest value getting rank 1 , the next smallest getting rank 2, etc. You can do this in MacAnova using function rank ():

$$
\begin{equation*}
\left.\underset{(1)}{\text { Cmd }} a<-\operatorname{cat}_{4} 14.7,13.1,16.6,12.9,12.5\right) ; \operatorname{rank}_{2}(a) \tag{1}
\end{equation*}
$$

Since 14.7 is the 4th number in order of size (there are $4-1=3$ numbers less than 14.7) it gets rank 4, etc. When there are ties, the ranks of the tied values are the averages of what would be the ranks of any tied values if they were very slightly changed so as to break the tie:
$\underset{(1)}{\text { Cmd }} b<-\operatorname{cat}(14.7,13.1,16.6,12.5,12.5) ; \underset{5}{\operatorname{rank}(b)}$
1.5

If the second 12.5 were modified, say to 12.500001 , the two last ranks would be 1 and 2 which average to 1.5 .

All these functions can have matrices as arguments. In the case of sum (), prod (), $\min ()$, and $\max ()$ the result is a row vector, a matrix with only one row, containing the result of applying the function to each column. Both sort () and rank () compute a new matrix, the same size as the argument, with the ordered values or ranks of each column. Let's apply these to the matrix data:

Cmd> sum(data); prod(data) ; min(data); max(data)				
$(1,1)$	3.46	35.5	Sums	
$(1,1)$	0.0010138	76723	Products	
(1,1)	0.34	1.9	Minima	
$(1,1)$	0.68	7.9	Maxima	
Cmd> hconcat (sort (data), rank (data))				
$(1,1)$	0.34	1.9	1	2
$(2,1)$	0.35	2.8	2	1
$(3,1)$	0.39	3.3	3.5	3
$(4,1)$	0.39	4.2	3.5	6.5
$(5,1)$	0.41	4.2	5.5	4.5
$(6,1)$	0.41	5.6	5.5	6.5
$(7,1)$	0.49	5.6	7	4.5
$(8,1)$	0.68	7.9	8	8

In the last, the first two columns are the ordered values in each column of data, and the last two columns are the ranks of each column of data.

Other descriptive descriptive statistics that are computed from the ordered values in a

An Introduction to MacAnova

sample are the lower and upper (first and third) quartiles and the median (second quartile). The median is the central value in order of size if n is odd, and is the average of the two central values if n is even. A common way to define the lower and upper quartiles is the medians of the lower and upper halves of the data, putting the middle value in both halves if n is odd. As an an example we compute the 3 quartiles of y, as well as the inter-quartile range (IQR), a measure of the spread or dispersion of the sample:

$$
\begin{aligned}
& \text { Cmd> q1 <- sum(sort (y) \{cat (2,3)])/2 \# lower quartile } \\
& \text { Cmd> g2 <- sum(sort (y) [cat }(5,6)]) / 2 \text { \# median } \\
& \text { Cmd> } q^{3}<- \text { sum(sort (y) (cat (6,7)])/2 \# upper quartile } \\
& \text { Cmd> cat (q1, g2, q3) } \\
& \begin{array}{llll}
\text { (1) } & 3.05 & 4.9 & 5.6
\end{array} \\
& \underset{(1)}{\text { Cmd> }} \text { iqr }<-\underset{2.55}{q 3}-q 1 ; i q r \text { \# Interquartile range }
\end{aligned}
$$

3.5 Simple descriptive statistics -- describe()

In the previous section you learned how to compute some basic descriptive statistics from their definitions using basic MacAnova functions such as sum (), max () and min (). In fact, if you try hard enough, practically any statistical analysis that you might do using MacAnova can be accomplished this way. But, as promised at the outset, for most analyses there are built-in commands and functions that do complete analyses without you having to know computing formulas.

Function describe () enables you to compute in one line almost all the descriptive summaries we have seen above. It is best introduced by an example:

(1) 8	Sample size
component: min	
(1) 1.9	Minimum
component: q1	
(1) 3.05	Lower quartile
component: median	
(1) 4.2	Median
component: q3 $^{\text {a }}$	
(1) 5.6	Upper quartile
component: max	
(1) 7.9	Maximum
component: mean	
(1) 4.4375	Mean (average)
component: var	
(1) 3.6027	Variance

An Introduction to MacAnova

As printed output this is pretty self-explanatory. It looks just like a side-effect of describe (). However, what is printed is actually the value that describe () returns. The value can, in fact be saved in a variable.

```
Cmd> results <- describe(y); results$mean; results$var
(1) 4.4375 Compare with mean above
(1) 3.6027 Compare with variance above
```

Variable results is an example of a new type of variable called a structure (sometimes abbreviated "STRUC" in MacAnova).

```
Cmd> list(results)
results STRUC 8
```

Structures are made up of several named components. Here there are eight of them, n, min, q1, median, q3, max, mean, and var. Individual components can be extracted as shown, by appending \$cname to the name of the structure, where cname is the component name. You can find all names of all the components in a structure by function compnames ().

Cmd> compnames (results)
(1) "n"
(2) "min"
(3) "q1"
(4) "median"
(5) "q3"
(6) "max"
(7) "mean
(8) "var"

If all you want is one summary value, say the median, you can follow this example:
$\underset{(1)}{\text { Cmd> }}$ describe (y) \$median \# or describe (y, median: T)
or to compute just the mean and variance
Cmd> describe (y, mean : T, var: T)

$$
\begin{aligned}
& \text { component: mean } \\
& \text { (1) } 4.4375 \\
& \text { component: } \mathrm{var} \\
& \text { (1) } \\
& 3.6027
\end{aligned}
$$

You can use describe () with a matrix argument, too:

An Introduction to MacAnova

Cmd> describe(data)component: n	
(1) 8	8
component: min	
(1) 0.34	1.9
component: q1	
(1) 0.37	3.05
component: median	
(1) 0.4	4.2
component: q3	
(1) 0.45	5.6
component: max	
(1) 0.68	7.9
component : mean	
(1) 0.4325	4.4375
component: var	
(1) 0.012079	3.6027

Each component is now a vector with one value for each column of the argument matrix.

Several other MacAnova functions, including split (), coefs (), secoefs (), cellstats (), and regpred (), compute structures as their values. See Sec. 7.2 in the User's Guide for information about functions makestr() and changestr () which allow you to create or modify structures directly.
3.6 Getting help -- MacAnova command help()

If you need to refresh your memory about any function or command or about general topics like syntax, you can use MacAnova's help() command. Suppose you wanted more detail on the function round () used in one of the examples above.

Cmd> help (round)
round (x) rounds the elements of the numerical variable x to the nearest integer, producing a vector, matrix, or array with the same shape as x.
round (x, n) where n is an integer is equivalent to
$10^{\wedge}(-n)$ round $\left(x^{*} 10^{\wedge} n\right)$. If n is a positive integer, this rounds to n decimal places.

If x is a structure, so is round (x) or round (x, n). If $x i$ is the $i-t h$ component of x, the $i-t h$ component of round (x) or round (x, n) is round (xi) or round $(x i, n)$.

Example: round $(3141.593 .2)$ is 3141.59 and round $(3141.593,-2)$ is 3100.

See also floor(), ceiling(). structures.
Typically, as here, the first line gives the most standard usage, with more complex usages given later. Often, as in the last line, there are cross references to related topics.

An Introduction to MacAnova

There are hundreds of help topics. Here is how you get a list of all the topics:

Cmd> help() \# help() with no argument				
addchars	cumgamma	if	nameof	setoptions
addlines	cumnor	inforead	nbits	setseeds
addpoints	cumpoi	invbeta	ncols	shell
addstrings	cumstu	invchi	ncomps	showplot

On the Macintosh, selecting Help from the menu or pressing $\mathscr{H H}$ is equivalent to typing help (). See Appendix A.

The topics available include all the commands and functions, plus some more general topics such as matrices, subscripts, and transformations. To get help on a particular topic, use help () with one or more topics as arguments. You have to quote any topic names longer than 12 characters (for example, "transformations"), or the names of syntactic elements (while, for, break, breakall, if, else, elseif). On the Macintosh, if you use the mouse to select a topic is selected in the command window,
Help from the menu or $\mathscr{H} \mathrm{H}$ gets help on the selected topic. Chapter 8 of the User's Guide largely overlaps the help information. Command help() reads the information it prints from a file, MacAnova.hlp.

Sometimes you may remember only part of the name of a topic, but not the full name. You can use the "wild card" character " \star " in a string to get a list of topics matching certain patterns. The three types of patterns recognized are "part*", " *part", and "*part*" which match topic names starting with, ending with, or containing part.

Especially when you're new to MacAnova, you may not even know enough commands intelligently to use the pattern matching just described. All you know is you want to compute some descriptive statistics, or make a graph, or do some sort of residual analysis. You can look for help topics by keys. Here is an example:

> Cmd> help(key: "residuals") \# find some topics about residuals The following help topics concern Residuals
> resid resvsindex resvsrankits resvsyhat
> For help on topic foo, enter help(foo) or help("foo")

MacAnova found four topics. You could now get help on topic resid, say, by typing

An Introduction to MacAnova

help(resid). If you have no idea of the keys available, just do this:

Cmd> help(key:"?")		
Type 'help(key: "heading")', where heading is in following list :		
ANOVA	Input	Probabilities
Categorical Data	LOGICAL Variables	Random Numbers
CHARACTER Variables	Macros	Regression
Combining Variables	Matrix Algebra	Residuals
Complex Arithmetic	Missing Values	Structures
Control	Multivariate Analysis	Syntax
Descriptive Statistics	Operations	Time Series
Files	Ordering	Transformations
GLM	Output	Variables
General	Plotting	

When you specify a key, you only need as many letters as will make it unique. This help (key: "des") is as good as help(key: "descriptive statistics") (upper and lower case doesn't matter here).

If you learn how to use help (), it isn't that important to have a manual, since most of the details of commands are summarized in their help entries.

4. Using files

4.1 General

Although you can do a lot of work without using any of the commands that have to do with external (disk) files, commands that read or write files add a lot of capability to MacAnova. You can record your session in a file on disk using spool (), save all your variables in a file using save () and asciisave (), read data from a file using vecread () or matread (), and write data and results to a file using print () and matwrite().

In all these commands, you need to specify a file name in quotation marks, for example, matread ("mydata. dat "). MacAnova has no special conventions for file names as long as they are legal for the system on which it is running. File names used in examples below, are just that, examples. There is no need to use the same names, or end them the same same way (like .dat).

Things are a little easier on a Macintosh, since you can always use the null file name "" (two double quotes with nothing between them). This brings up the usual Macintosh scrolling dialog box to let you select or specify a file.

On most commands except save () and asciisave (), if a file you are writing already exists, whatever you write to the file goes at the end of the information there, leaving what is there intact. If that is not what you want, use the keyword phrase new: T as an argument, as in matwrite ("mydata", x, new: T). (On a Macintosh, when you save the command window, it always as if you specified new: T.)

An Introduction to MacAnova

4.2 Recording your MacAnova session .. spool()

Often when you use MacAnova you want some sort of record of what you have done or at least a permanent copy of those answers you want. Command spool () makes this quite easy in MacAnova -- as long as you remember to use it.

Command spool () keeps a record of some or all of your MacAnova session on a hard disk or floppy. As soon as you want to start saving stuff, you need to type something like

Cmd> spool("spool.txt") \# start spooling on file spool.txt
This starts recording (spooling) on file spool.txt. From now on, everything you type and everything MacAnova replies except high resolution plots will be written in the file. Of course, this includes any mistakes you make and your false starts. On a Macintosh, you don't need to type the file name but can type

Cmd> spool("") \# Null file name allowed only on Macintosh
If at some point, you want to suspend spooling, simply type

> Cmd> spool() \# with no file name
> Spooling on spool.txt suspended

When you want to start recording again, you can again type
Cmd> spool() \# again with no file name
Resume spooling on spool.txt
Effectively, once you have started spooling, spool (), with no argument, toggles it off and on.

When you are done with your session, you can read the spool file into almost any word processor or text editor, edit out what you don't want to keep and add your commentary. One tip -- if your word processor allows a choice of fonts, use a font that has equal width characters such as Courier or Monaco. If you don't, things that lined up on the MacAnova screen will not line up in your document and may be hard to read.

On a Macintosh the use of spool () is less necessary since all your input and MacAnova's output remain in the command window. At any time you can select Save Window ($\%$ S) or Save Window As... on the File menu and the entire contents of the window are written to disk for later editing. After the first time, the name of the file becomes the window title and you can re-save the window just by pressing $\& \$$. When you quit, you are given a chance to save the command window on disk. A dialog box asks Save Changes to Шindoш "ннннн" before closing? To save, just click on the OK button (or the Don't Save button if you don't want to).

An Introduction to MacAnova

You can also use commands print (file: "fileName", ...) and write (file: "fileName", ...) to list individual variables in a file. See the Users' Guide or type help (print, write).

4.3 Saving your work -- save(), and asciisave()

Sometimes you may not have time to do everything you want or need to in one session, and still have more to do when you have to quit. Commands save () and asciisave() are specifically designed to help you in this situation. They allow you to save all the current variables and macros in a file so that they can be restored (by command restore (1) at the start of a later MacAnova session. Here is a typical use of save ():

cmd> save("savework.sav")
 Workspace saved on file savework.sav

You can now quit MacAnova. Later, when you restart, everything can be restored to the way it was by

```
Cmd> restore("savework.sav") # restore("") on Macintosh
Restoring workspace from file savework.sav
Workspace saved Fri Sep 16 16:00:03 1994
```

On a Macintosh, instead of save () you can use either Save Workspace (8 K) or Save Workspace As... on the File menu. When you next start up you can just double click on the saved file and MacAnova will be launched with everything restored.

If you use MacAnova on more than one type of computer, you might like to start on on computer, say a Macintosh, save your work, and then finish it later on another type, say a PC compatible computer. The file produced by save () isn't any good for this.
Instead, use command asciisave ():
Cmd> asciisave("savework.asc")
Workspace saved on file savework.sav
This produces a text file which can be restored by MacAnova on any computer (by restore ("savefile.asc")) or even sent via E-mail.

Command save () can also be a life saver if your computer is unstable and prone to crashing. If you save your work from time to time, you never will lose much if the computer goes down. After using save ("savework. sav") or asciisave ("savework. sav") once, you can update the save file simply by save () or asci isave (1), without a file name. On a Macintosh, simply press 28 K .
4.4 Reading data from files -- functions vecread() and matread() and macro readcols Except when analyzing small amounts of data that can easily be typed in at the keyboard, you will probably want to work with data that is in a file on disk. The data

An Introduction to MacAnova

may have been provided by someone else, entered by you using a word processor or editor or possibly exported from a spreadsheet.

The simplest type of data file readable by MacAnova consists of just numbers. Here is a listing of file rabbit. dat containing 12 determinations of the survival time in minutes under anaerobic conditions of certain rabbit nerves:

$$
\begin{array}{llllll}
16.2 & 22.5 & 21.4 & 19.6 & 24.8 & 21.4 \\
19.0 & 14.7 & 13.3 & 23.0 & 16.8 & 20.1
\end{array}
$$

You can read these data into MacAnova by
Cmd> $x<-$ vecread("rabbit.dat") \# form is vecread(fileName)

Cmd x	\# print out what	you've read in			
(1)	16.2	22.5	21.4	19.6	24.8
(6)	21.4	19	14.7	13.3	23
(11)	16.8	20.1			

Function vecread () reads the numbers in the file sequentially, line by line to the end, and returns them as a vector. A question mark (?) is interpreted as MISSING. If vecread () finds anything it can't read, it skips it, printing a warning message. The one exception to this is that an exclamation point " $!$ " in the file stops the reading right there. Suppose rabbit. dat actually was of the following form:

$$
\begin{aligned}
& \text { Data on twelve rabbit nerves } \\
& 16.2 \\
& 22.5 \\
& 19.0
\end{aligned} 14.7=13.4 \quad 19.6
$$

Then, after $x<-$ vecread ("rabbit. dat "), Macanova will read the data correctly but will also print out:

WARNING: nonnumeric character (s) ignored on standard input
If, instead the first line read "Data on 12 rabbit nerves", the 12 would be read as a number and vecread() would return 13 numbers, the 12 followed by the actual data. So, to be on the safe side, a file to be read by vecread () should contain only numbers.

Often a data file consists of several columns, with each column corresponding to a variable and each line to the data for a case. Consider the following file crops. dat:

1926	20.1	7.2
1927	23.6	7.1
1928	26.3	7.4
1929	19.9	6.1
1930	16.7	6.0
1931	23.2	7.3
1932	31.4	9.4
1933	33.5	9.2
1934	28.2	8.8
1935	35.3	10.4
1936	29.3	8.0
1937	30.5	9.7

An Introduction to MacAnova

The column 1 is a year and columns 2 and 3 are the average yields of wheat and potatoes, respectively, in each year. You can use macro readcols to read crops . dat into three MacAnova variables:

Cmd> print (year, wheat, potatoes)					
year:					
(1)	1926	1927	1928	1929	1930
(6)	1931	1932	1933	1934	1935
(11)	1936	1937			
wheat:					
(1)	20.1	23.6	26.3	19.9	16.7
(6)	23.2	31.4	33.5	28.2	35.3
(11)	29.3	30.5			
potatoes:					
(1)	7.2	7.1	7.4	6.1	6
(6)	7.3	9.4	9.2	8.8	10.4
(11)	8	9.7			

Since readcols uses vecread (), it recognizes "?" as MISSING, skips everything that is not a number and is terminated by "!".

Command vecread () is useful only when a file contains a single data set. Another MacAnova command, matread ($)$, is designed to read data sets from files containing many data sets, all in a special format. It cannot read files that vecread () can read, and vice versa. See the Users' Guide or type help (matread) for details on the actual format. Here is a listing of file crops .mat containing the same data as crops. dat but in a format readable by matread () as a data matrix named yields. It is not readable by vecread () because it has a header line giving the number of rows and columns and several comment lines starting with ")".

An Introduction to MacAnova

Here is how you read read the data in crops . mat:

```
Cmd> data<-matread("crops.mat", "yields")
yields 12 3
col. 1: year
) col. 2: wheat = wheat harvest
) Col. 3: potatoes = potato harvest
```

$\underset{12}{\text { (1) }} \underset{12}{\text { \# dim }}$ data is a matrix with 12 rows and 3 columns

To get each column in a separate variable, you can either to it "by hand"

$$
\text { Cmd> year <- data\{,1\}; wheat<- datal,2]; potatoes <- datal,3] }
$$

or use macro makecols:
Cmd> makecols (data, year, wheat, potatoes)

Cmds list (year, wheat, potatoes) \# now we have 3 vectors		
potatoes	REAL 12	
wheat	REAL	12
year	REAL 12	

The header line and descriptive comments are echoed to the screen.

5. Examples of statistical analyses

5.1 Introduction

This section includes some examples of statistical analyses using MacAnova. There is very little discussion of the analyses or explanation of the commands illustrated. Use help () or see the Users' Guide to get details of the general use of these commands. See a statistics textbook for information about the statistical techniques illustrated.

5.2 Paired t analysis

Table 6.3.1 of Snedecor and Cochran (7th Edition, Iowa State Press 1980) gives the number of lesions on each of two halves of eight tobacco leaves. One half of each leaf was exposed to one preparation of a virus extract and the other half was exposed to another preparation. A paired analysis, based on the differences between the two halves of each leaf, is appropriate.

Cmd> x1<-cat $(31,20,18,17,9,8,10,7)$ \# Data for preparation 1
Cmd> x2<-cat (18, 17, 14, 11, 10, 7,5,6) \# Data for preparation 2
$\begin{array}{lcccc}\text { Cmd> } d<-x 1-x 2 ; d ; n<-n r o w s ~(d) & \# \text { differences } \\ \text { (1) } & 13 & 3 & 4 & 6 \\ (6) & 1 & 5 & 1\end{array}$
-1

An Introduction to MacAnova

```
Cmd> stemleaf(d) # make stem and leaf display
    -0*11
    +0* |11
    +0t13
    +0fl45
    +0s16
High 13
1*|1 represents 11 Leaf digit unit = 1
```

Cmd> describe (d, $n: T$, mean:T, var:T)
component: n
(1) 8
(1) $\quad 4$
component: var
(1) 18.571

You could use MacAnova as a calculator to compute a paired t-test and a confidence interval for the mean difference from these values. Instead, you can use functions tval () and tint () which are specifically designed for this problem. You can use macro twotailt to compute P-values. Of course, they assume a random sample of differences and normality for validity.

Cmd> tt <- tval (d-0) \# sample size and t-statistic
Cmd> cat(tt, twotailt(tt, n-1))
(1) $\quad 2.6253 \quad 0.034144$ t-atatistic and 2 tail p-value

Cmd> tint (d,.95) \# compute 95% confidence interval
(1) $0.3972 \quad 7.6028$

The Student's t-statistic computed by tval () tests the null hypothesis H_{0} that the expected difference is zero. Since the $0.034144<.05$ you can reject H_{0} at $\alpha=.05$. With confidence 95% the expected difference is between .03982 and 7.6028 .
5.3 Two-sample t-test

We analyze data on the weight gains in grams of 19 female rats, 12 on a high protein diet and 7 on a low protein diet, from Table 6.9.1 of Snedecor \& Cochran:

[^0]
An Introduction to MacAnova

Cmd> describe (makestr (high,low), n:T, mean:T, var:T)
component: n
(1) component: high
(1) 12
(1) $\begin{aligned} & 7 \\ & 7\end{aligned}$
component: mean

1) component: high
(1)
component: low
(1) 101
component: var
component: high
(1) 457.45
(1) 425.3

Now you can use t2val () and t2int () to do a two-sample t-test and compute a twosample confidence interval for the difference between the means.

Cmd> tt <- t2val(high, low) \# test statistic to test H0: $\mu 1=\mu 2$
Cmd> cat (tt, twotailt (tt, $n 1+n 2-2$)) \# value of t and p-value (1) $1.8914 \quad 0.07573$ Not significant at 5% level Cmd> t2int (high, low, .95) \#95\% confidence interval for $\mu 1-\mu 2$ (1) $-2.1937 \quad 40.194$ Includes 0

5.4 Simple linear regression

Here we analyze data from Table 9.7.1 of Snedecor and Cochran which gives the percentage of wormy fruit (pewormy) and the number of apples harvested, in 100 's, (cropsize) for 12 apple trees. The goal is to predict or explain the amount of wormy fruit in terms of the number of applies on the tree by a simple linear regression of pcwormy on cropsize.

Cmd> cropsize<-cat $(8,6,11,22,14,17,18,24,19,23,26,40)$
Cmd> pcwormy<-cat $(59,58,56,53,50,45,43,42,39,38,30,27)$

An Introduction to MacAnova

First we make a scatter plot of cropsize against pcwormy:
Cmd> plot(pcwormy, cropsize,ymin: 0
xlab:"Percent Wormy Apples", ylab: "Crop size",title:
xlab: "Percent Wormy Apples", ylab: "Crop size", title:
"plot of crop size in 100 's vs percent wormy for 12 apple trees")

There is a fairly strong negative relationship between pcwormy and cropsize. Notice the use of keyword phrases with keywords title, xlab,ylab and ymin to control the appearance of a plot. Keyword phrase lines : T would connect successive points with lines, or you could use command lineplot (). You can select the plotting symbols used with command chplot ().

Now we do the actual regression analysis

To see the ANOVA table type 'anova()'
Cmd> twotailt (cat (17.832, -5.8842), 10)
(1) $6.5683 \mathrm{e}-09 \quad 0.00015431 \quad \mathrm{P}$-válues for t -stats

An Introduction to MacAnova

Both coefficients, the intercept or CONSTANT and the slope, the coefficient of cropsize, are significantly different from zero at the 5% level.

The general form of regress () for simple linear regression is regress (" $\mathrm{y}=\mathrm{x}$ "), where x and y are the names of vectors containing the independent and dependent variables, respectively.

Once the regression has been computed, you can retrieve the coefficients and their standard errors using function secoefs () which computes a structure. To get just the coefficients you can use secoefs (se:F) as an argument, while to get just the standard errors, you can use secoefs (coefs :F):

Cmd> secoefs () \# this gets both coefficients and std. errors component: CONSTANT
component: coefs
(1) 64.247
(1) $\quad 3.6029$
component: cropsize
component: coefs
(1) -1.013
(1) $\quad 0.17215$

Cmd> beta<-secoefs (se:F); ses<-secoefs(coef:F) \#get separately
Cmd> \# beta contains coefficients, ses contains standard Errors
Cmd> \# Now compute lower and upper 958 confidence limits
Cmd> n <- nrows (cropsize) \# sample size
Cmd> critval<-invstu(1-.025, n-2) \# Student's t critical value
Cmd> beta-critval*ses \# lower confidence limits
component: CONSTANT
(1) 56.219
component: cropsize

Cmd> beta+critval*ses \# upper confidence limits
component: CONSTANT
(1) 72.275
component: cropsize
(1) -0.62941

An Introduction to MacAnova

5.5 One-way Analysis of Variance

Here is a table of yields of four varieties of wheat, each grown on several plots with similar soils (Table 48 of Biometricheskiye Metodi of V. Yu. Urbakh, Science Press, Moscow 1964):

Variety 1	Variety 2	Variety 3	Variety 4
17.0	15.8	17.4	15.7
17.2	17.0	16.6	16.8
16.1	16.4	16.2	15.1
17.0		15.6	15.2
16.8		15.5	
		17.2	

Here is a partial analysis of these data using the tabs (), boxplot () and anova () commands.

Cmd> yield <- cat(17,17.2,16.1,17,16.8) \# enter yield data,
Cmd> yield <- cat (yield, 15.8,17,16.4) \# making one long vector
Cma> yield <- cat (yield, 17.4,16.6,16.2,15.6,15.5,17.2)
Cmd> yield <- cat (yield, 15.7,16.8,15.1,15.2)
Cmd> \#Now enter variety numbers in another long vector
Cmd> variety<-factor (cat (rep (1,5), rep (2, 3), rep (3, 6), rep (4, 4)))

Cmd>	hconcat (variety, yield)	
$(1,1)$	$\#$	
$(2,1)$	1	17.2
$(3,1)$	1	17
$(4,1)$	1	17
$(5,1)$	1	16.8
$(6,1)$	2	15.8
$(7,1)$	2	17
$(8,1)$	2	16.4
$(9,1)$	3	17.4
$(10,1)$	3	16.6
$(11,1)$	3	16.2
$(12,1)$	3	15.6
$(13,1)$	3	15.5
$(14,1)$	3	17.2
$(15,1)$	4	15.7
$(16,1)$	4	16.8
$(17,1)$	4	15.1
$(18,1)$	4	15.2

An Introduction to MacAnova

Cmd> list (variety, yield) \# variety is a factor
variety
yield

Cmd> tabs (yield, variety) \# compute variety means and variances component: mean

(1) $(16.82$	16.4	16.417	15.7
component: var			
(1) 0.182	0.36	0.63367	0.60667
component: count			
(1) 5	3	6	4

Although the sample sizes are rather small, a box plot shows what is going on as well as the numbers do:

Cmd> boxplot(split(yield, variety), I
title: "Yield of wheat by variety",
xlab: "Yield", ylab: "Variety number")

There is some apparent difference between varieties. To test for its reality, you can compute an analysis of variance.

Cmd> anova("yield=variety") \# form of anova() for one-way ANOVA Model used is yield=variety
WARNING: summaries are sequential

	DF	SS	MS
CONSTANT	1	4821.6	4821.6
variety	3	2.8237	0.94122
ERROR1	14	6.4363	0.45974

ERROR1

An Introduction to MacAnova

For one-way ANOVA, the argument to anova () is a string of the form "response $=$ factor", where factor was created using function factor ().

A "side effect" of anova () is the creation of two vectors, SS and DF, containing the sums of squares and their degrees of freedom, respectively.

Cmd>	hconcat (DF, SS, SS/DF) $\#$ compare with ANOVA table		
$(1,1)$	1	4821.6	4821.6
$(2,1)$	3	2.8237	0.94122
$(3,1)$	14	6.4363	0.45974

Cmd $\quad \mathrm{f}<-(S S[2] / D F(2]) /(S S[3] / D F[3])$ \# compute F-statistics
Cmd> cat (f,1-cumF(f,DF[2],DF(3])) \#F statistic and P-value (1) $2.0473 \quad 0.15348$ Not Bignificant at 10 level

5.6 Randomized Block (Two-way) Analysis of Variance

Here is a table of data from Table 14.2.1 of Snedecor and Cochran, from an experiment in which four seed treatments and a check (no treatment) were compared in a randomized block design with 4 replicates. The response is the percentage of seedlings in each plot that failed to emerge.

Treatment	Replicate \#					
	1	2	3	4	5	
Check	8	10	12	13	11	
Arasan	2	6	7	11	5	
Spergon	4	10	9	8	10	
Semasan, Jr	3	5	9	10	6	
Fermate	9	7	5	5	3	

First, enter the data as one long vector, treatment by treatment, and then the replicate numbers and treatment numbers as factors:

$4,10,9,8,10,3,5,9,10,6,9,7,5,5,3)$
Cmd> reps<-factor(rep(run(5),5))

An Introduction to MacAnova			
$(5,1)$	5	1	11
$(6,1)$	1	2	2
$(7,1)$	2	2	6
$(8,1)$	3	2	7
$(9,1)$	4	2	11
$(10,1)$	5	2	5
$(11,1)$	1	3	4
$(12,1)$	2	3	10
$(13,1)$	3	3	9
$(14,1)$	4	3	8
$(15,1)$	5	3	10
$(16,1)$	1	4	3
$(17,1)$	2	4	5
$(18,1)$	3	4	9
$(19,1)$	4	4	10
$(20,1)$	1	5	6
$(21,1)$	2	5	9
$(22,1)$	4	5	7
$(23,1)$	5	5	5
$(24,1)$		5	3

Cmd> anova("failures=reps+treatment") \# do analysis of variance Model used is failures=repstreatment

CONSTANT	DF	SS	MS
reps	1	1413.8	1413.8
treatment	4	49.84	12.46
ERROR1	4	83.84	20.96
	16	86.56	5.41

Cmd> f <- (SS[3]/DF(3])/(SS[4]/DF(4]) \# Compute F-statistic Cmd> cat (f,1-cump(f,DF[3], DF[4])) \# F-statistic and P-value (1) cat $\quad 3.8743 \quad 0.021886 \quad$ Significant at 5% level

The form of anova () for a randomized block command is anova ("response = blocks + treatment "), where response is the variable being analyzed, and blocks and treatments are vectors of block number and treatment number created by function factor ().

An Introduction to MacAnova

5.7 Multiple Regression

As an example we analyze some data in file MacAnova. dat distributed with MacAnova (it may not be in the file named macanova. dat on the computer you are using).

Cmd> hald <- matread("macanova.dat", "halddata")			
) Hald data from A. Hald, Statistical Theory with Engineering			
) Applications			
) Wiley, New York, 1960, p. 647			
) Col. 1: X1 = percent tricalcium aluminate			
) Col. 2: X2 = percent tricalcium silicate			
) Col. 3: X3 = percent tetracalcium alumino ferrite			
) Col. 4: X4 = percent dicalcium silicate			
$\text {) col. 5: Y = } \begin{gathered} \text { cumulative heat of hardening after } 180 \text { days } \\ \text { (calories/gm) } \end{gathered}$			
Cmd> makecols (hald, x1, $x 2, x 3, x 4, y$) ; list ($x 1, x 2, x 3, x 4, y$)			
$\times 1$ REAL 13			
$x 2$ REAL 13			
$x 3$ REAL 13			
x4 REAL 13			
Y REAL 13			
Cmd> regress (" $y=x 1+x 2+x 3+x 4$ ")			
Model used is $\mathrm{y}=\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4$			
	Coef	StdErr	${ }^{t}$
CONSTANT 62.405	62.405	70.071	0.8906
$x 1$ 1.5511	1.5511	0.74477	2.0827
$\times 2$ (0.51017	0.51017	0.72379	0.70486
$x 3$ (0.10191	0.10191	0.75471	0.13503
$x 4$-0.14406	0.14406	$0.70905-0$.	0.20317
Cmd> anova() \# also look at the sequential ANOVA table Model used is $\mathrm{y}=\mathrm{x} 1+\mathrm{x} 2+\times 3+\times 4$			
WARNING: summaries are sequential			
	DF	SS	MS
CONSTANT	1	1.1837e+05	$1.1837 e+05$
$\times 1$	1	1450.1	1450.1
x2	1	1207.8	1207.8
x3	1	9.7939	9.7939
$\times 4$	1	0.24697	0.24697
ERROR1	8	47.864	5.983

Cmd> $f<-(\operatorname{sum}(\operatorname{SS}(r u n(2,5)]) / 4) /(S S[6] / D F[6])$ \# regression F stat.
Cmd> cat (f, 1-cumF (f, 4, DF(6])) \#F and P-value; highly signif (1) $111.48 \quad 4.7562 \mathrm{e}-07$

Cmd> beta<-secoefs (se:F); ses<-secoefs (coef:F)

An Introduction to MacAnova

Cmd> critval<-invstu(1-.05/2, DF[6])
Cmd> beta - critval*ses \# lower limits component: CONSTANT
(1) $\quad-99.179$
(1) -99.17
$\begin{array}{ll}\text { component: } \\ \text { (1) } & -0.16634\end{array}$
component: $\times 2$
$\begin{array}{ll}\text { component: } \\ \text { (1) } & -1.1589\end{array}$
component: $\times 3$
$\begin{array}{ll}\text { (1) } & -1.6385\end{array}$
component: $\times 4$
$\begin{array}{ll}\text { (1) } & -1.7791\end{array}$
Cmd> beta + critval*ses \# upper limits component: CONSTANT
(1) 223.99
(1)
$\begin{array}{ll}\text { (1) } & 3.2685\end{array}$
component: $\times 2$
(1) 2.1792
component: $\times 3$
(1) 1.8423
(1) component: $\times 4$

An Introduction to MacAnova

Cmd> resvsrankits (dumb:T,

title: "Rankit plot of residuals from Hald data") Rankit plot of residuals from Hald data

Note the use of dumb: T as an argument to the graphing macro. This caused the plot to be completely composed of printed characters. Although not as nice as the high resolution plots, a "dumb" blot has the advantage that it can be spooled to a disk file (see Sec. 4.2) and easily included in a word processor document on any computer.

Appendix A MacAnova on a Macintosh

A. 1 Command Windows

On the Macintosh, all input and non-graphics output occurs in an editable, scrollable window, referred to below as a command window. In fact, you can have up to nine such windows, the front most one being the active one.

The line or lines immediately after the last Cmd> prompt in the active command window is the command line. You execute the command line by hitting Return when the insertion point (the "I-beam" cursor) at its end, or by hitting Enter when the insertion point is anywhere else. In fact, hitting Enter is the same as using the mouse or arrow keys to move the insertion point to the end of the line and then hitting Return. Up until you hit Enter or Return at the end of the line, you can go back and edit the line. Because of the behavior of Enter, you don't need to move back to the end of the line to execute it.

You can move around the command window using your mouse or the arrow keys or by certain command key combinations. See the Windows menu below.

All command windows have a close box and a zoom box. If you close a window or quit, a dialog box similar the following appears

Don't Save

If you click on Save, the usual scrolling dialog box appears allowing you to select a folder and specify a file name. If you click on Don't Save, nothing is saved, while Cancel stops the closing or quitting.

A command window holds up to about 28,000 characters, but the larger the contents of active window the more slowly MacAnova will print. For this reason, you may wish periodically to clean up the command window by deleting unwanted material or to open new ones; see the שindows menu below. When the active command window gets too full, the following alert box appears:

Output window contents are too long; saving window

OK

You are given an opportunity to save it. Whether or not you do, a new window is opened to continue your session.

A. 2 Files

All files associated with MacAnova should be in the same folder as the MacAnova application itself. The most important of these are the help file MacAnova. hlp and the initialization file MacAnova. ini (type help (customize)). In addition, the macro files distributed with MacAnova, MacAnova.mac, Design.mac and Tser.mac, normally belong in this same folder. In order to use macros getdata and getmacros which read from files whose names are in variable DATAFILE and MACROFILE, respectively, it is a good idea to have lines like the following in MacAnova.ini.

> DATAPATH <- "HardDisk:MacAnova Folder:"
> DATAFILE <- paste(DATAPATH, "MacAnova.dat", sep:"")
> MACROFILE <- paste(DATAPATH, "MacAnova.mac", sep:" $)$

A. 3 Launching MacAnova

If your Macintosh does not have a hard disk, you will need two 800 K (double density) or 1.44M (high density) floppy disks, one for the MacAnova application, together with the help file and macro file, (MacAnova.hlp and MacAnova.mac), and if there is room a data file. On the other disk should be a System Folder and any other files you need. First, of course, you will have to turn on the computer, and then, if necessary, open the disk icon to find and open the folder containing the MacAnova application.

MacAnova may be started up in several ways.

1. Double clicking the MacAnova application icon

2. Double clicking on a Save File icon
 created by save () or asciisave () or by Save Workspace on the Flle menu. This restores the workspace previously saved.
3. Double clicking on an Output Window icon \square created when you save the
command window using Save Window or Save Window As... on the File menu. This initializes the command window with commands and output from a previous run.
4. Selecting both a Save File icon \square and an Output Window icon \square and then double clicking restores both the previous workspace and previous output. This means you can end a session and restore things exactly to how they were at the point you quit.
5. There is also a non-interactive mode. If you hold down $\%$ (the command key) while MacAnova is starting, you will be asked to select a file of commands and a spool file for the output. MacAnova will not open a command window but will take all its commands from the command file and write all its output to the spool file.

If running under System 7, you may want to put an alias of MacAnova in the Apple Menu Items folder in the System folder.

A. 4 Menus

There are 6 menus, the ${ }^{\boldsymbol{\omega}}$, File, Edit, Windows, Command and Options menus.

A.4.1 The \& menu

About Macfnova displays a dialog box giving the version and copyright information.
Help is roughly equivalent to typing help (). You will get a complete listing in the Command Window of all topics available. When a topic name in the window is selected using the mouse, Help gives you help on that topic. If your keyboard has a help key, hitting help is equivalent to selecting Help. See Sec. 3.6.

The rest of the items are either Desk Accessories, or under System 7, applications. These have no effect on MacAnova, but launch other programs that can run at the same time. Note, however, at the current time, MacAnova does not "background"; when it is not the front most application, it does nothing.

A4.2 The File menu

Open... allows you to load the contents of a previously saved output window into a new window. It becomes the active window. You use the usual scrolling dialog box to select the file.

Save Window writes the active command window to a file overwriting anything already in the file if it exists. If there is no file already associated with the window, you are asked to provide a name and select a folder using a scrolling dialog box. This file may be printed or edited using any word processor, including MacWrite and Microsoft Word, or Desk Accessory editor such as MockWrite or MiniEdit. See Sec. 4.2.

An Introduction to MacAnova

Appendix A
Save Window fis... writes the active command window in a new file.
Page Setup... brings up a standard page setup dialog box. If a command window is the front window, the options chosen will affect the printing of command windows. If a graphics window is in front, they will affect printing of any graphics window. If you don't select Page Setup..., the page setup dialog box will be displayed the first time you print a command or graphics window.

The Print Selection menu item can also be Print Window or Print Graph. Selecting it initiates printing of text selected in the active command window, the entire window, or the frontmost graphics window.

Interrupt breaks off output and most commands. ***** Interrupt ***** is printed followed by a new Cmd> prompt. It is usually selected by \mathscr{H}. or \mathscr{H}.

Go On is active only after a plotting command with pause: T as an argument which causes MacAnova to pause, allowing you to Copy a plot to the clipboard or print it. When you select Go On (or press any key) MacAnova continues.

Restore Шorkspace... allows you to restore a workspace previously saved by save() or asciisave (). Selecting Restore Workspace is equivalent to typing restore (" "). It brings up a scrolling dialog box for you to select the file. See Sec. 4.3.

Save Workspace... saves the current workspace containing all your variables and macros. If the workspace has not been saved previously on the current run, Save Workspace is equivalent to typing save (" ") and you will be presented with a scrolling dialog box to select the save file. If the workspace has been saved previously on this run, it will be saved again to the same file, without asking you to select a file, as if you had simply typed save (). Since Save Workspace can be selected by $\not \mathscr{K}$, this provides a quick and easy way to play it safe, saving your workspace every few minutes to minimize your losses in case of a crash. See Sec. 4.3.

Save Workspace As... always asks you for a file name before saving your variables and macros.

Quit terminates MacAnova. Alternatively you can type quit, stop, bye or end, or, if there is only a single command window, click in its close box. You will be asked whether you want to save the workspace or the command window. To bypass these requests, hold the option key down.

An Introduction to MacAnova
Appendix A
A.4.3 The Edit menu

Instead of Undo Typing, the first item may be Undo Paste, Undo Output, Redo Typing or Redo Output. All of these provide a useful capability for undoing or redoing your previous action as long as nothing in the window has changed. Undo Output is active immediately after the output from executing a command line. If you select it, output is deleted back to the end of the previous command line. This is useful if you made a typing error. Hit $\not \& 2$, make the correction, and hit the Enter key to redo the command. If instead of changing the command, you immedately select Redo output, the deleted output is restored.

When the Command Window is in front, Cut, Copy, and Paste do just what you expect on a Macintosh. When a graphics window is in front, only Copy is effective, copying the entire graph to the Clipboard.

Copy to End When text is selected in the output window, Copy to End copies the selected text to the end of the command line, leaving the insertion point after the copied text. You can then edit it, if necessary, before executing it. In the same circumstance, simply hitting the Enter key copies the selected text to the command line, but also adds a Return, thus (usually) executing the copied text immediately.

A.4.4 The Windows menu

Hide and Close are operative except when there is only one command window and it is in front. Hide hides the frontmost window, but the window can be made visible again by selecting its name on the Windows menu. Selecting Close is equivalent to clicking in the Close box of the window; it removes the window entirely. If it is a command window that has changed since it was opened, you are asked if you want to save it.

New Window opens a new command window with the name Untitled-n where n is an integer. A prompt Cmd> is printed and the window becomes the active command window. You can have no more than 9 command windows at any one time.

Graph 1, Graph 2, Graph 3, and Graph 4. Selecting any of these makes the indicated graphics window the front window. If a graph window does not exist, the corresponding item is not highlighted.

Panel MacAnova maintains a fifth graphics window, the Panel of Graphs window, with miniature copies of the other four windows in its corners. Selecting Panel makes it the front window. Here is an example of a Panel of Graphs window when graphs have been drawn in Graph 1 and Graph 2.

An Introduction to MacAnova
Appendix A

Clicking on any of the small copies brings the full sized window forward. The Panel of Graphs window can be copied to the clipboard or printed just like the other graphics windows.

Hitting Return when any graphics window is in front, brings forward the active command window.

Untitled-1 There can be up to 9 command window names listed here. Selecting one makes it the active window. In the run from which this snapshot was taken there was only one command window named Untitled-1.

Go To Top scrolls to the start of the text in the active command window, but does not change the selection point. If there is a Home key, it does the same.

Go To End scrolls to the end of the text in the active command window and moves the selection point there. If there is a End key, it does the same.

Page Up and Page Down scroll the active command window up or down without moving the insertion point.

An Introduction to MacAnova

Appendix A

A.4.5 The Command menu

Edit Commands brings up the following dialog box so that you can change any or all of the commands in the last 8 lines of the Command menu.

Check the box at the right if a Return should automatically be added to the command.
The last 8 items in the Command menu are predefined commands that are copied to the command line by selecting them with the mouse. A in the left margin indicates that the command will be followed by a Return, resulting in immediate execution. If * is absent, no Return is added and you can edit the command before it is executed. The
selection point will be inside a set of empty parenthesis (describe()) or empty quotation marks (anova(" ")). Thus selecting resusrankits() results in an immediate residuals versus rankits plot, while selecting anova(" ") allows you to specify a model. You can replace or modify any of these commands using item Edit Commands. If you want to do anything complicated you should probably write a macro to do what you want and have only the macro invocation in the menu.

A4.6 The Options Menu

会	File	Edit	Windows	Command	Options
				Untit	Signific
					Output Formats Bandom \# Seeds
An Interactive Program for Statist					Random \# Seeds
For information on major featur					Angle Units
	For information on linear model				Batch Options
For latest information on c Version of 09/01/94 (Ma					with ${ }^{\text {co }}$
Uersion of 09/01/94 (Ma					right

Each of the items on the 0ptions menu opens a dialog box allowing you to set various options that would otherwise have to be set by command setoptions(). For example, if you select Significant Digits, the following dialog box appears:

Clicking OK executes the command setoptions (nsig:5), specifying that the default output format will be floating point with 5 significant digits. Output Formats allows you more control over the default format. Random \# Seeds allows you to set values to initialize the built in random number generator. Angle Units allows you to select which will be the default units of angles assumed by trigonometric functions and other commands -- radians, degrees, or cycles ($360^{\circ}=2 \pi$ radians $=1$ cycle). Batch 0ptions allows you to set certain options pertaining to command batch ().
A. 5 Graphics windows

When one of the plotting commands is executed, a new graphics window is created, up to a maximum of four, not counting the Panel of Graphs window. When all the windows are in use, MacAnova prints

ERROR: graph windows full - delete a graph and type showplot()
Before any more plots can be made, you will have to close one or more graphics window. When you have freed up a slot, type showplot () and the graph you wanted will appear.

Alternatively, you can always specify a window number on any graphing command by keyword phrase window: n, where n is an integer from 1 to 4 or 0 . window: 0 reuses the most recent used graphics window.

If pause: T is an argument to any plotting command, MacAnova pauses after the plot allowing you to Copy the graph to the clipboard or print it. When you select Go On on the File menu or press any key, MacAnova continues. Using pause: T together with window: 0 is particularly effective if you use a for or while loop to make a sequence of plots with differing data or parameters.

When a graphics window is the front window, selecting Copy on the Edit menu (\% C) copies the entire graph to the Clipboard. From there it can be pasted into the Scrapbook, or into a word processor or graphics editor window.

When file:fileName is an argument to a plotting command, PostScript commands, recognized by many Apple LaserWriters and some other printers, are written to the named file. Be sure to use keyword phrase new: T the first time you write PostScript to a file. With the right programs, the file can be printed directly on a LaserWriter. It may be possible, if you know how, to include it as encapsulated PostScript in a word processor document. If both file: fileName and ps:F are arguments to a plotting command, instead of PostScript, a "dumb" type plot that can be printed on a line printer is written to the file.

A. 6 Other features

Interrupting MacAnova. Some operations such as listing the values in a long vector or a large analysis of variance may take a long time to complete. If you wish to interrupt MacAnova during a long operation, select Interrupt from the File menu or press \%. or $\not \%$. MacAnova may take a few moments to respond but will eventually stop what it is doing, print ***** Interrupt $* * * * *$, followed by a cmd> prompt. Not all commands respond to Interrupt, but most do.

Executing other programs while in MacAnova Although command shell () is not implemented on the MacIntosh, you can run other programs without quitting MacAnova if you are running under Multifinder or System 7. Just click on the desk top to return to the finder or (under System 7) use the Applications menu at the far right end of the Menu bar, and then start another application up in the usual manner. If you are not using Multifinder or System 7, you are limited to executing Desk Accessories (DA's) installed in your \& menu. One type of DA that is particularly useful is a DA text editor. Two of the most popular of these are MockWrite and MiniEdit.

Editing Macros This can be done at least two ways.

(a) You can write out the macro to a file using command macrowrite (). If you are running under Multifinder or System 7, you can then switch to an editor or word processor to edit the file. Be sure to save it as a text file when you are done and to update the first line if the number of lines in the macro has changed. When you are done, return to MacAnova (or restart it if necessary) and read the macro back in using macroread (). It is a good idea to print it out to make sure it all got read. If some lines are missing from the end, it means the number of lines on the header was wrong.
(b) You can edit a macro right in the command window. First display the current version of the macro by typing its name. It will be printed, complete with enclosing quotation marks, and with any internal quotation marks preceded by ' $\$ '. Make the necessary changes. Then, moving the insertion point to the cmd> prompt, type

```
name <- macro(
```

without a closing parenthesis or Return, where name is the name of the macro or perhaps a new name. Use your mouse to select the entire text of the edited macro, including the enclosing quotation marks, and then select Copy to End on the Edit menu or press 88/. This will copy the macro to the end of the Command Window immediately aftrer macro (. Then type the closing ')' and hit Return or Enter to recreate the edited macro.

A. 7 Miscellaneous information

MacAnova for the Macintosh was compiled using MPW C. It comes in two versions, one using a 68881 math coprocessor and 68020 instructions, and one that will run on a vanilla Macintosh without a coprocessor. They work identically, but the coprocessor version is much faster except on a Power PC for which you should use the version without a coprocessor. See the file Readme. txt distributed with MacAnova. Bother versions require System 4.2 or later and at least 1 megabyte of ram. Although you could run MacAnova on a two floppy Macintosh, a hard disk is strongly recommended. MacAnova works well under Multifinder and under System 7 but does not take advantage of all their features. In particular, at present MacAnova does no computations in the background.

As distributed, the co-processor version has name of the form
MacAnova3 35. YYMMDDC, where YYMMDD is the date (for example 940909) of compilation, and the non co-processor version has name MacAnova3 35. YYMMDDn. For information on obtaining a disk, contact

Department of Applied Statistics
University of Minnesota
352 Class Room Office Building
1994 Buford Avenue
St. Paul, MN 55108

Appendix B MacAnova on an IBM Compatible

B. 1 Introduction

This appendix summarizes features special to the DOS versions of MacAnova. There is as yet no Windows version. There are two DOS versions, a real mode one that should run on any PC compatible with sufficient memory, and a protected mode version that requires at least a 386 . See B. 6 below for a list of differences between them. The most important difference is in the maximum allowed size of variables: The real mode version is limited to variables taking no more than 65,000 bytes of memory (8,125 REAL numbers), while the protected mode version has no such limit, and can use any available extended memory or even the hard disk to work with large data sets. Under Windows, both must be run from the DOS prompt

There are no menus and once a line has scrolled off the screen it is lost unless you previously had used spool () (see Sec. 4.2).
B. 2 Initialization file

The initialization file (see help topic customizing) is named MACANOVA. INI and should be in the same directory as MACANOVA. EXE and MACANOVA. HLP.
B. 3 Launching MacAnova under DOS

MacAnova is started up by typing
macanova [-q] [file options] [screen options]
at the DOS prompt, where items in [. .] optional.
If -q is present, no startup message will be printed.
The possible file options are -f initFile, -r saveFile, -b batchFile, -h helpFile, -m macrofile, and -d dataFile, where each must be a valid file name.

If - E initFile is specified, file initrile is executed silently as a batch file at startup instead of MACANOVA. INI (see help topic customizing).

If $-r$ saveFile is specified, the equivalent of restore ("saveFile") is executed at startup and the initialization file is not read. See Sec. 4.3.

If -b batchFile is specified, the equivalent of batch ("batchFile") is executed after initialization (see help topic batch).

If -h helpFile is specified, MacAnova will use helpFile as the default file of help documentation rather than the standard help file MACANOVA. HLP.

An Introduction to MacAnova
If -d datafile is specified, MacAnova CHARACTER variable DATAFILE will have "dataFile" as value. DATAFILE is used by pre-defined macro getdata to make it easy to read data from a standard file of data sets. If -d dataFile is not specified, DATAFILE will have default value "path MACANOVA. DAT", where path specifies the directory where MACANOVA. EXE is located, for example, C: \MACANOVA\.

If -m macrofile is specified MacAnova, CHARACTER variable MACROFILE will have "macrofile" as value. MACROFILE is used by pre-defined macro getmacros to make it easy to read macros from a standard library of macros. If -m macrofile is not specified, MACROFILE will have default value "path $M A C A N O V A . M A C$ ", where path specifies the directory where MACANOVA. EXE is located.

Even if $-d$ or $-m$ is not used, the default values of DATAFILE and macrofile can be changed in the initialization file MACANOVA. INI. The help file can be changed by help(file: "fileName") which command could also be in MACANOVA. INI.

The permissible screen options are - 1 nlines and -w ncols, where nlines and ncols are integers greater than 5 and 20, respectively. These set the default number of screen lines and columns, respectively. The default values are 25 and 80 . If your monitor has a different size, say with 24 lines, you will want to use -1 24 on the command line or put setoptions (lines :24) in your MACANOVA. INI file.

If input.txt is a file which contains MacAnova commands to do an entire analysis,

```
macanova < input.txt > output.txt
```

will run MacAnova and save all the results in file output.txt.

B. 4 Graphics under DOS

The real mode version of MacAnova under DOS supports CGA, EGA, VGA, 8514, and Hercules graphics adaptors. Drivers for these are available in files CGA. BGI,
EGAVGA. BGI, HERC. BGI, and IBM8514. BGI which are distributed with MacAnova.
They are copyrighted by Borland and cannot be resold. They should be placed in the same directory as MACANOVA. EXE. After each plot, MacAnova pauses with the plot on the screen until you hit Return, at which point the plot is erased, the text window is refreshed, and you are returned to the $\mathrm{Cmd}>$ prompt.

The protected mode version is currently limited to VGA graphics. Moreover, it cannot make high resolutions plots when Windows is active (we hope this restriction will soon disappear). Currently it also has fewer and less satisfactory line types available for high resolution plotting.

To be able to print a MacAnova high resolution plot when running the real mode version, you need a special TSR (Terminate and Stay Resident) program which must be executed prior to launching MacAnova. Then, when a MacAnova plot is on the screen, the PrintScreen button on the keyboard should print the plot. The standard one that
comes with DOS, GRAPHICS.COM, may work only with IBM printers. There may be others distributed with MacAnova.

When using the protected mode version when Windows is not running, keyword phrase screendump: "filename" on any graphics command will save a copy of the graphics screen in PCX format. This can be used by various graphics and word processing programs. This is not available in the real mode version, although it may be possible to capture graphic images in a disk file for incorporation in a word processor using a TSR program. One may be distributed with MacAnova. The TSR GRAB. COM distributed with Word Perfect is one option you may already have available.

The file: fileName option on the plotting commands by default writes PostScript to the named file. PostScript is a page description language recognized by some printers, including Apple LaserWriters,. Be sure to use keyword phrase new: T the first time you write PostScript to a file. If both file: fileName and ps: F are arguments to a plotting command, the plot written to the file is a "dumb" type that can be printed on a line printer.

B. 5 Other features

You can execute DOS commands directly from MacAnova by prefixing the line to be executed with ' $!$ ' in the first position after the Cmd> prompt or by using the command shell(). Type help (shel1). Under the real mode version, you are limited to DOS commands that require relatively little memory. These include most of the standard things like DIR, CD, TYPE, and MORE. Under the protected mode version, you can execute almost any program. In this version there is a pre-defined macro edit that uses shell () to invoke an editor (default is EDIT) allowing you to edit macros and data sets without quitting MacAnova. Type help(edit). If you have a very small editor, you can do the same in the real mode version. You will have to read in edit from the distributed macro file MacAnova.mac and probably need to edit it.

Command putascii() permits output arbitrary codes to your terminal. For example, putascii (7) rings the bell.
B. 6 Differences between versions

Here is a short table comparing the two versions:

	Real Mode Version	Protected Mode Version
Maximum size of objects	65,000 bytes $==8,125$ REALS	Limited only by memory and disk space
Interrupt key	Control C or Control Break	Control Break only
High resolution plots	White on black	Black on white
Graphics modes supported	CGA, EGA, VGA, 8514, and Hercules	VGA
High resolution plots when Windows is active	Yes	No
Full range of high resolution line types	Yes	Only two
screendump: T available on high resolution plots	No	Yes
Has pre-defined macro edit	No	Yes
Memory available for shell()	Very restricted	Quite large programs can be run

B7. Other information

MacAnova is written in the C programming language. The real mode DOS version of MacAnova is compiled under version 4.0 of Borland $\mathrm{C}++$. The protected mode version is compiled under a version of the Gnu C++ compiler, adapted for DOS by D. J. Delorie. Both are distributed as self extracting archives along with a self-extracting archive of auxilliary files such as MACANOVA.HLP.. For information on obtaining a copy of MacAnova, contact

University of Minnesota
Department of Applied Statistics
352 Classroom Office Building
1994 Buford Avenue
St. Paul, MN 55108

[^0]: Cmd> high <- cat (134, 146, 104, 119, 124, 161, 107, 83, 113, 129, 97, 123)
 Cmd> low <- $\operatorname{cat}(70,118,101,85,107,132,94)$
 Cmd> n1<- nrows (high); n2<-nrows (low); cat (n1,n2
 (1)

 12

