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Abstract 

A predictive-decision theoretic approach is developed for the Bayesian design prob
lem. The loss functions used are Fair Bayes (proper scoring rules) and are quadratic 
measures of distance between probability measures. The results are applied to certain 
normal regression models where explicit optimal designs are constructed. 
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1 Introduction 

Wald's decision theory provides a convenient framework in which to formulate some problems 
of experimental design-especially those with a Bayesian bent when a prior distribution 
is specified. Although the Bayesian design problem is easy to formulate in this way, the 
resulting minimization problem is often intractable so optimal designs cannot be obtained 
for concrete problems. In this paper, we present a Bayesian design problem in a decision 
theoretic framework for which optimal design can be found in some important cases. In 
essence, we consider a prediction problem which has a design aspect to it, and then cast the 
problem in a decision theoretic model. Incorporating the prior distribution into the problem 
leads to an objective function (namely, the Bayes risk) which is a function of the design. 
Finally, selecting the design to minimize the objective function leads to a solution to the 
design problem. 

Before introducing the prediction aspect of the problem, it is useful to first review a 
standard decision theoretic formulation of the Bayesian design problem. Suppose Y is an 
observable random vector whose distribution belongs to a family 

(I.I) {P(·IIJ,x)IIJ E 0,x EX} 

where IJ is an unknown parameter of the model, and x represents a design which the ex
perimenter can choose from the design set X. Next, consider a particular decision problem 
with an action space A and a loss function L defined on A x 0 x X. A decision rule 8 is a 
function of Y and x which takes values in A. The risk function of a decision rule 8 is 

(1.2) R(8,IJ,x) = Ee,:cL(8(Y,x),fJ,x) 

where Ee,z denotes expectation under the distribution P( · 18, x ). Given a proper prior distri
bution 1r on 0, the Bayes risk is 

(1.3) r1r(x) = inf I R(8, IJ, x )1r(dlJ) 
6 le 

where the inf ranges over all decision rules. Finally, any x0 E X which satisfies 

(1.4) r,r(xo) = inf r,r(x) 
zeX 

is a Bayesian optimal design for the decision problem at hand when the prior distribution is 
-1r. In other words, x0 is optimal if it minimizes the Bayes risk (1.3). 

In thi_s paper, the decision problem is a prediction problem, although our formulation of 
the prediction problem is somewhat unusual. It is based on work in Eaton (1982, 1992). 
This formulation is described in detail in Sections 2 and 3, and leads to a useful expression 
for the Bayes risk r,r(x) defined at (1.3). 

In Section 4, a prediction version of the normal linear regression model ( with known 
covariance) is treated in-detail. This leads to a criterion function (see 4.15) whose minimiza
tion yields an optimal design. Various specializations of this criterion give some well-known 
classical and Bayesian design criteria. 
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The prediction viewpoint in experimental design goes back to Lindley (1968), who as
sumes an ignorance prior, and is also employed in a series of papers by Brooks (1972, 1974, 
1976) who allows for use of prior knowledge. Piccinato {1980) sketches a useful outline. An 
important contribution to Bayes designs for linear models is Chaloner {1984), who deals also 
with designs for prediction at a point. The book by Pilz {1991) adopts a decision theoretic 
approach to designs for estimation, and employs several Bayesian optimality criteria, some 
of which can be thought of as specializations of the criterion of this paper. The same ap
plies to some of the well-known classical design criteria for linear models that can be found 
in the design literature, see for instance the books by Fedorov {1972), Silvey {1980), and 
Pukelsheim {1993). An overview of modern trends in Bayesian designs is given by Verdinelli 
{1992). 

2 Quadratic Forms in Probability Measures 

The loss functions for the prediction problem described in the next section are reviewed 
below. In essence, these loss functions are quadratic forms in bounded signed measures, and 
are natural analogues of quadratic forms on Euclidean spaces. Recall that for any n x n 
non-negative definite matrix A, the quadratic form 

{2.1) Q(x) = x'Ax,x E Rn 

can be used to define a pseudo-norm and hence a pseudo-metric on~- Namely, for x and 
yin Rn, set 
{2.2) llx - Yll2 = (x - y)'A(x - y). 

Then fix - vii = d(x,y) is a pseudo-metric on ~-but, not necessarily a metric since 
d(x, y) = 0 does not necessarily imply that x = y. 

Now, let p and q be probability vectors in~ so these specify probability measures (p.m.) 
on the finite set {1, 2, ... , n }. Further, IIP- qll is a "distance" between any two such p.m.'s. 
The extension of this construction to p.m.'s on infinite sets follows. 

Consider a measurable space (U, B) and let M (U) be the set of all bounded signed 
measures defined on B. In particular, if Pi and P2 p.m. 's defined on B, then Pi - P2 E M (U) . 

. Definition 2.1 Let K( u, v) be a bounded measurable complex valued function defined on 
U x U. Then K is non-negative definite ( n.n.d.) if 

(i) K(u, v) = K(v, u) where" 

(ii) for all a E M(U). 

" denotes complex conjugate 

(2.3) Q(a) = fu fu"K(u, v)a(du)a(dv) > 0. 

The quadratic form Q defined by such a kernel K defines a pseudo-norm 

11°112 = Q(o) 
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and the pseudo-metric 
(2.4) d(o:,/3) = llo: -/311,o:,/3 E M(U). 

In particular, when o: = Pi and /3 = P2 are p.m.'s, IIPi - P2ll is a "distance" between Pi 
and P2. 

For our purposes, the following example is of special interest. 

Example 2.1 Consider U = R!1' and for each t E R!7', let 

(2.5) kt(u) = exp[it'u],u E Rm. 

For any probability distribution H on R!7', it is easy to check that 

(2.6) K(u, v) = f kt(u)kt(v)H(dt) }Rm 

is n.n.d. Obviously K(u, v) is just the characteristic function of H evaluated at u - v. 
Furthermore, kernels of the form (2.6) define "translation invariant" distances between p.m. 's 
on Rn, as the following discussion shows. 

Given a p.m. P on R!7' and a vector g E am, define the p.m. g P by 

(2.7) (gP)(B) = P(B - g) 

so g P is a "translate" of P. 

Lemma 2.1 When the kernel K in {2.6) is used to define the pseudo-norm II· II, then 

(2.8) 

for p.m. 's Pi and P2. 

Proof: This follows easily from the relation 

K(u,v) = K(u + g,v + g). D 

When K is given by (2.6), it is easily verified that 

IIPi - P2!12 = / l¢1(t) - <P2(t)l2 H(dt) }Rm 

where <Pi is the characteristic function of P., i = 1, 2. This completes Example 2.1. D 

Now, return to the general case of an n.n.d. kernel K and its resulting pseudo-norm 11 · I I 
on M(U). Consider a family of p.m.'s {P(·IB)IB E 0} _defined on (U,B) where (0,() is a 
measurable space and P(BI·) is a measurable function for each BE B. 

Lemma 2.2 For each p.m. 1r on (0, (), let 

(2.9) 

For each p.m. P, 

(2.10) 

P,. = le P(-IO)ir(d/1). 

I IIP - P(·IB)l121r(dB) > 
J Ill\ - P( · IB) ll21r( dB) = 
I IIP(-IB) 11 21r( dB) - 1l.P1rll2

• 
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Proof: The p.m. P1r is the mean of the family P( · 18) when 8 has the distribution 1r. Relation 
(2.10} simply asserts that 

(i) the mean minimizes mean squared error, and 

(ii) "variance" equals the second moment minus the square of the mean. 

The rigorous verification of (2.10) is little more than the proof when U is a finite set. The 
details are omitted. D 

3 Design and Prediction 

Consider again the decision theoretic description of the design problem described in Section 
1. The data available is a random vector Y E R!' whose distribution is P( · 18, x) where () is 
an unknown parameter and x E X is a design variable. 

In order to employ the design criterion introduced in Section 1, we now formulate a 
prediction problem. Suppose Z is a random vector in ~ to be predicted. It is assumed 
that given() and the design x,Z has a distribution S(·IO,x) and Z is conditionally (given 
(), x) independent of Y. The action space for this problem is taken to be M1 ( Rm )-the set 
of all probability distributions on Rm. Thus, given a design x and an observation Y = y, a 
decision rule c5(·1Y,x) is a probability distribution on Rm-namely, 6(·1y,x) is our guess at 
the distribution of Z when the design is x and Y = y is observed. 

To introduce a loss structure for this problem, let 11 · 11 be a pseudo-norm on M (Rm) 
defined by an n.n.d. kernel as described in Section 2. Consider a loss function given by 

(3.1) L(a,O,x) = (lo:- S(-10,x)ll2 

where o: E M1(R"'). An action o: is a p.m. on Rm and the loss for action o: is the "distance" 
squared of o: from the true distribution of Z when the parameter value is () and the design 
is x-namely, S(·IO,x). 

Now suppose 1r is a proper prior distribution for 0. To:derive a Bayes rule for our decision 
problem when the prior is 1r, we proceed as follows. The model assumptions for Y and Z 
together with the prior 1r determine a joint distribution for Y, Z and (). ( Assume the design 
used is x E X.) From this joint distribution, we can determine the conditional distribution 
of Z given Y = y when the design is x-say 

-(3.2) Q1r(·ly,x). 

Theorem 3.1 Given the prior 1r and the design x, the conditional distribution Q1r(·IY, x) 
for Z given Y = y is a Bayes solution to the prediction problem for any loss function given 
by (9.1). 

Proof: A Bayes solution to the prediction problem is found by minimizing the posterior 
expected loss. This is 

(3.3) i/,o(a) = le Ila- S(·IO,z)ll2Q,,(dOly,z) 
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where Q1r(·fy,x) denotes the conditional distribution of I) given Y = y and the design x. A 
direct application of Lemma 2.3 shows that 1/Jo(a) is minimized by 

(3.4) &.,(·ly,x) = le S(·l6,x)Q .. (d6ly,x). 

A moment's reflection shows that (3.4) is just the conditional distribution (3.2). D 

Remark 3.1 There are other interesting loss functions in the prediction problem for which 
Q1r( • IY, x) is also a Bayes solution to the prediction problem. For example, if the loss function 
IS 

L1(a, z) = Ila - fzfl2 

where II · 112 is a non-negative definite quadratic form and fz is the p.m. with mass 1 at z, 
then Q1r( ·IY, x) remains a Bayes solution to the prediction problem. See Eaton (1986) for the 
details of this argument and other examples of loss functions for which Q1r(·ly,x) is a Bayes 
solution. D 

Theorem 3.2 When the prior is 1r and the design is x, let M,r( ·Ix) denote the marginal 
distribution of Y. A 1r-optimal design for the prediction problem is found by minimizing the 
Bayes risk 

(3.5) r1r(x) = I IIS(·IO,x)ll21r(d6)- I IIQ1r(·fy,x)lf2M1r(dyfx). Je ]Rn 

Proof: A direct application of the equality portion of equation {2.10) and the definition of 
the Bayes risk gives 

(3.6) 

which is just (3.5). 0 

In some situations, the first term in the final expression for r1r(x) in (3.6) does not depend 
on x. In this case, the criterion for finding a 1r-optimal design for the prediction problem is 
the maximization of 
(3.7) 

This will be the case in the normal regression example considered in the next section. 

Remark 3.2 In the prediction literature (see e.g. Aitchison and Dunsmore (1975)), Q1r(·fy,x) 
is called the predictive distribution of Z given Y = y. On a priori grounds, Q,r is the Bayes 
solution to the prediction problem since it incorporates all we know about Z after seeing 
Y = y (given the model assumptions and the priori). The decision theoretic formulation of 
the prediction problem provides another method for finding a Bayes solution-namely one 
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minimizes the integrated risk. From the point of view of inferential consistency, it seems es
sential to require that the two arguments yield the same solution to the prediction problem. 
It is this desired consistency (established in Theorem 3.1) that prompted our formulation 
of the prediction problem, and in particular, the choice of loss function (3.1). Loss func
tions which yield such consistencies were introduced in Eaton (1982)-called Fair Bayes Loss 
Functions, and are obviously related to proper scoring rules (see Savage (1971) for example). 
Further discussion and related issues can be found in Eaton (1982, 1992). 

4 A Normal Regression Example 

4.1 Basic Theory 

In this section, we analyze the Bayesian design problem for a normal regression model with 
known covariance. It is assumed that the data vector Y E Rn satisfies 

(4.1) 

where X is an n x p design matrix of rank p, the parameter vector 8 is in RJ' and f has 
an Nn(O, :E1) where :E1 is a full rank known covariance matrix. Therefore, the conditional 
distribution of Y given 8 is 
(4.2) .C(Yl8) = Nn(XfJ, E1)-

For this problem, the set of designs is just the set of all possible X matrices under consider
ation. In the calculations that follow, X remains fixed. Particular design sets are introduced 
in the next section where some special linear models are considered. 

Remark 4.1 The rows of the matrix X will typically be row vectors of the form f(x) = 
(/1 (x), ... , /,,(x) ), where x is a point in a suitable design space, S say, usually a subset of 
Rk, and the /; are known functions. A design is given by a finite collection of s~ch points 
Xi ( called the support points), with respective multiplicities ni such that Li ni = n. When 
observations are uncorrelated (i.e. E1 = ul I) it is common practice not to restrict the ni 's to 
be integers, but to approximate them by non-negative real numbers. The non-integer design 
can then be rounded to an integer design in some systematic way (Pilz, 1991, page 183). D 

The variable Z E R"" to be predicted is assumed to have a normal distribution 

(4.3) 

where T is a known m x p matrix, 8 is the vector of unknown parameters and :E2 is a known 
m x m covariance matrix (possibly singular). The prior distribution for 8 is assumed to be 

(4.4) 1r = .C(O) = N,,(80, :E3) 

where 80 is known and :E3 is a known p x p non-singular covariance matrix. The variables Y 
and Z are assumed to be conditionally independent, given 6. 
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Given the model assumptions ( 4.2) and ( 4.3) and the prior distribution ( 4.4 ), the condi
tional distribution of Z given Y = y ( and the design X) is needed. To this end, let E be the 
(n + m) x (n + m) matrix 

{4.5) 

Next partition E as 

(4.6) 

where 

(4.7) { 

Eu = E1 + XE3X' 
E22 = E2 + TE3T' 
E12 = XE3T' = E;1. 

Lemma 4.1 The conditional distribution ·of Z given Y = y ism-dimensional multivariate 
normal with mean vector v(y) and covariance matrix E22.1 where 

(4.8) { 
v(y) = TOo + E21E1i1(Y - XOo) 
E22-1 = E22 - E21E1lE12-

Proof: This is a standard multivariate calculation whose details are omitted. D 

Lemma 4.2 In terms of E1, E2, E3, X and T, the conditional covariance matrix of Z given 
Y = y is 
(4.9) E22-1 = E2 + T(E31 + X'E11 Xt 1T'. 
Proof: Routine matrix calculations using ( 4. 7) and ( 4.8) establish ( 4.9). D 

Finally, the loss function for the prediction problem is assumed to be of the translation 
invariant type discussed in Example 2.1. In other words, the pseudo-norm 11 · 11 defined on p 

M ( R"') is generated by a kernel J( of the form 

( 4.10) I<( u - v) = I exp[it'( u - v )]H( dt) }Rm 

where His some fixed distribution on R!". Fore E M(R!"), 

(4.11) 11!112 = j j K(u - v)!(du)!(dv) 

which in turn defines the loss function for the prediction problem via (3.1). With this loss 
function, it is now possible to describe explicitly the optimal design criteria. 

Theorem 4.1 Consider the normal regression model and the prediction problem described 
above. When the loss function is specified by {9.1) via the pseudo-norm {4.11), the Bayesian 
optimal design is that X 0 in the design space which maximizes 

(4.12) C(X) = I exp[-t'E22.1t]H(dt). 
}Rm 

Here, E22.1 (as a function of X) is given in (4.9) and H is the distribution which defines 

II· II-
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Proof: Since the conditional distribution of Z given 6 does not depend on the design, 
an optimal design is found by maximizing s1r in (3.7). From Lemma 4.1, the conditional 
distribution of Z given Y = y is 

(4.13) Q1r(·IY, X) = Nm(v(y), E22-1). 

Because II · 11 in ( 4.11) is translation invariant, 

(4.14) IIQ1r(·ly,X)ll2 = IINm(v(y),E22-1)ll2 = IINm(0,E22-1)ll2 = C(X). 

The final equality is established from Fubini's Theorem and the form of the kernel in (4.10) 
which defined II· II- Since C(X) does not depend on y, the integral in (3.7) defining s1r is 
equal to C(X). Thus, the Bayesian optimal design is the one which maximizes C(X). D 

A particularly convenient choice for H in ( 4.12) corresponds to a Nm{O, E4 ) distribution 
where E4 is a known non-singular covariance matrix. 

Theorem 4.2 When H in {4.12} is the N(O, E4 ) distribution, the Bayesian optimal design 
is obtained by minimizing ( over X 's) 

{4.15) 

Proof: For H equal to the N(O, E4 ) distribution, the function C(X) in ( 4.12) is given by 

(4.16) 

From equation (4.9) for E22-1, maximizing (4.16) is clearly equivalent to minimizing {4.15). D 

For the remainder of this section, we focus on the criterion function ( 4.15) for various 
special cases. 

Case 1 By taking p = m, T = Ip and E2 = 0, we see that Z = () so the prediction problem 
becomes an estimation problem. In this case, the Bayesian optimal design is found by 
minimizing 
{ 4.17) 

Formally setting E41 = E31 = 0, ( 4.17) yields the classical D-optimality criterion in a linear 
regression problem. 

Case 2 By taking m = 1 and E31 = 0, · the criterion becomes the minimization of 

(4.18) 

This is the classical c-optimality criterion (with T playing the role of c). 
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Remark 4.2 With M =· X'E11 X (the so-called moment matrix of the design), the function 

( 4.19) 

is just the criterion function ( 4.15). In Appendix I, the convexity of '11 and some related 
results are established. D 

Remark 4.3 The formal device of setting E41 and/or E31 to O is just that-a formal device. 
Of course, the criteria obtained in Cases 1 and 2 are continuous functions of E31 and E41 so 
one can certainly argue that ( 4.17) and ( 4.18) are limits of criteria obtained by proper Bayes 
arguments. However, it appears to not be possible to take either H(dt) or the prior for fJ to 
be "flat" (i.e. Lebesgue measure) at the outset, since some of the relevant expressions are 
not well defined. D 

Remark 4.4 The classical D-optimality criterion is invariant under non-singular transfor
mations. However our criterion of minimizing ( 4.15) is not invariant since it involves a 
prior distribution (via E3). Of course, non-trivial criteria involving proper prior distribu
tions cannot be invariant under all non-singular transformations since prior assessments are 
necessarily coordinate dependent. D 

4.2 Moment Matrix Considerations 

We now return to a discussion of (4.19). Observe that in working with \Jl(M) there is no 
need to invert the matrix E31 + X'E11 X since, writing for simplicity W = ½E41 + E2 and 
R = E31

, 

(4.20) \Jl(M) - det(W + T(M + Rr1T') 
- det(W) det(M + R + T'W-1T)/ det(M + R) 

so minimization of \II ( M) means finding 

(4.21) min det(M + R + T'W-1T)/ det(M + R). 
MeM 

where M indicates the set of all moment matrices. 
The optimization problem is in general too hard to be solved directly, but the search for 

optimal designs can be simplified using properties of \II. In Appendix I the convexity of '11 in 
Mand some related results are established. This enables us to apply the well-known theory 
of convex design criteria (see Pukelsheim, 1993), and in particular the Equivalence Theorem 
(Whittle, 1973). 

Theorem 4.3 Assume M is convex. For M1,M2 E M let Fq,(M1,M2) be th~ directional 
derivative of \JI at M 1 in the direction of M2 • The following conditions are equivalent: 

{i) \Jl(M*) = min li(M); 
MeM 
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where Me denotes the extreme points of the set M. 

Proof: This is a consequence of Corollary A.2 and Theorem A.2 of Appendix I and the 
Equivalence Theorem of Whittle (1973). D 

Condition (ii) above simplifies when E1 = u~ I since the extreme points of M are the 
moment matrices of one point designs, i.e. M = nf(x)'f(x). Then (ii) of Theorem 4.5 
becomes 

( 
4 22

) If E1 = u? I the points of support of an optimal design with moment matrix 
· M* are among those points x for which F'11[M*, f(x)'f(x)] = 0. 

This is a useful tool for finding the design since it restricts the choice of potential design 
points in the design region. 0 bserve that 

(4.23) F'11[M, f(x)'f(x)] - det(W + T(M + Rt1T') 
x trace[(M + R)-1T'(W + T(M + Rt1T')-1 

T(M + Rt1(M - f(x)'f(x))]. 

Together with convexity, invariance w.r.t. a group g of tranformations of the design space S 
can be used to find optimal designs. The group Q induces a transformation of designs over 
S and consequently of the moment matrices: V g E g denote by Mg the transformed matrix. 
We shall be interested in cases for which the following is true. 

( 4.24) V g E Q3 a non-singular p x p matrix Q g such that M9 = Q~M Q g 't/ M. 

A typical case of ( 4.24) is with Mg a permutation of the rows and columns of M. Sometimes 
also the following can be assumed 

(4.25) Q~RQg =Rand Q~T'W-1TQ9 = T'W-1T't/g e Q. 

Then 

Theorem 4.4 If there is a group g such that (4.24) and (4.25) hold, the search for an· 
optimal design can be restricted to designs which are invariant w.r.t. that group. 

Proof: (4.20), (4.24) and (4.25) imply that \}, is G-invariant i.e. '11(M9 ) = '11(M) V g E Q, 
V M. The result follows from combining invariance with convexity; the idea is essentially 
Kiefer's (1959, §2E): see also Giovagnoli, Pukelsheim and Wynn (1987) for more detailed 
applications of those ideas to designs. D 

In the next section these results will be applied to finding designs for particular regression 
problems. 

5 Some special linear models 

Case 1: Multiple Linear Regression Assume a normal model satisfying ( 4.2) with 

(5.1) E(YzlB) =Bo+ 81x1 + ... + 8kxk 

where x = (x1, ... , Xk) is a point in a suitable design space, usually assumed to be a closed 
rectangle of Rk. · It is easy to see 
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Theorem 5.1 If ~1 = o'f I there is an optimal design for (5.1) whose support points are 
among the extreme points of the design region. 

Proof: The rows of the matrix X are row vectors of the form f(x) = (I, x1 , .•. , xk) = (I, x). 
Simple algebra shows that ( 4.23) can be rewritten as: 

(5.2) F'11[M, f(x)'f(x)] = c1 - c2(1,x)[(M + R)-1 

T'(W + T(M + Rt1T')-1T(M + Rt1](1,x)' 

where ci, c2 do not depend on x, and this is a concave function of x (see Marshall and Olkin, 
1979, Ch.16, E.7.a). The proof follows from (4.22). D 
If the design region is a hyperrectangle, w.l.o.g. we can take it to be the cube [-1, I]k, since 
a non-singular linear transformation iJ = B-19 of the parameter space leads to: 

x - XB 
t - TB 
M - B'MB 
R - B'RB 

and 
W + T(M + R)-1T' = W + T(M + Rt1t'. 

Furthermore observe that for estimating the parameters we can let T = I w .l.o.g. by changing 
the E4 matrix to B'E4B, since det( ·) is invariant w.r.t. non-singular linear transformations. 

The extreme points of the cube [-1, l]k are the 2k vertices, which give rise to the row 
vectors Vi = (1, ±1, ±1, ... , ±1) for the X matrix. The problem reduces to calculating the 
optimal number of observations ni (ni ~ 0) to take at each vertex. Let M = Ei niv;vduf 
and write for simplicity uf R = R = (ri;) and ufT1w-1T = A = (ai;), i,j = 0, ... , k. 
Minimization of '11 ( M) in this case becomes 

(5.3) mill{n,} det(L nivivi + R + A)/ det(L nivivi + R) 

subject to L ni = n 

ni > 0. 

An explicit solution can be found in the following case: 

Example 5.1 (Simple linear regression): Assume (4.2) with E1 = uf I and 

(5.4) E(Yzl8) = Bo+ x81. 

By theorem 5.1 the support points of the optimal design are -1 and 1. Let n1 and n2 be the 
number of observations at -1 and 1, and put Cii = n + Tii, i = 0, 1, b = eooa11 + c11a00 + 
(aooau - a~1 ) and fl.= b2 

- 4a~1eoocu. It is easy to show that 

Theorem 5.2 An optimal design for model (5.4) is obtained by taking n1 observations at 
-1 where n1 = median{0, (n - /3* + ro1)/2, n} and 

p• _ { (b- .J&)/(2ao1) 
- 0 
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Proof: Let P = n + rot - 2nt; (5.3) reduces to 

minp 
subject to 

(b - 2/3aot)/(eoocu - /32
) 

-n + ro1 ~ /3 ~ n + rot 

whose solution is median{-n + rot, /3*, n + rot}- 0 

Theorem 5.2 shows that for simple linear regression one point designs at either +I or 
-1 are possible optimal designs. For instance, if aot < 0 and rot > n then an optimal 
design puts n observations at -1, if aot > 0 and rot < -n then an optimal design puts n 
observations at + 1. ff A is diagonal then nt = median { 0; ( n + rot) /2; n} which turns out to 
be the Bayes A-, D-, and E-optimal design (Pilz 1991, page 173). This happens for instance 
for estimation of 8 with E4 diagonal. 

If we want to predict Z at x0 , T = (I, x0 ) and the solution is the Bayes c-optimal design 
which does not depend on E4 and E2. Simple algebra shows that the design depends on R 
and on x0 as follows: 

(i) if lxol ~ Jcu/Coo then nt = median{0, (n + rot - xoeoo)/2,n}; 

(ii) if lxol > Jcu/Coo then nt = median{0, {n + ro1 - cu/xo)/2, n} 

Observe that if r00 = r11 then (i) and (ii) correspond respectively to interpolation and ex
trapolation (see Chaloner, 1984). 

There does not seem to be a simple way of obtaining a general solution of (5.3), but if 
both the prior covariance matrix of the parameters and the matrix A have a high degree of 
symmetry then an explicit solution can be found as follows: 

Theorem 5.3 If both A and R are invariant w.r.t. the group of all the permutations and 
sign changes which leaves the first row and column fixed then a design that solves (5.9} is 
the one with the same number of observations n/2k at each point Vi i = 1, ... , 21:. 

· Proof: Taking the group of all the permutations and sign changes of {x1 , ••• ,x1;} as the 
group g acting on the design space, conditions ( 4.24) and ( 4.25) are satisfied with Q9 a 
block diagonal matrix Q9 = diag(l, II) and II a ±I-permutation matrix. Thus Theorem 4.6 
can be applied. An optimal design. is the unique one invariant under all permutations and 
sign changes of the coordinates x;'s. D 

This ends Example 5.1. D 

Note that the optimal design found in Theorem 5.3 is the classical D-optimal design for 
multiple linear regression. Two interesting cases_ covered by Theorem 5.3 are the following: 

Example 5.2 (Estimation of 8: m = k + I, E2 = O,T = 11:+1)- H 

(i) the parameters Bo, 91, ... , 91: are a priori independent with R = diag(r00, r11 , ••• , r11), and 
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(ii) E4 = diag(soo, s11, ••• , sn) 

then it is straightforward to show that the hypotheses of Theorem 5.3 hold with A= 2uiE4 

so that the design of Theorem 5.3 is optimal. D 

Example 5.3 Assume that the aim of the experiment is the prediction of an observation Z 
at the centre of the design region, i.e. T = (1, 0, 0, ... , 0). If {i) of Example 5.2 holds, then 
the same design of Theorem 5.3 is optimal. D 

Case 2: One-way analysis of variance: Assume a normal linear model satisfying ( 4.2) 
with 
(5.5) E(~;l8) = Bi, i = 0, ... , k,j = 1, ... , ni 

and E1 = uf I as in case 1. The design problem is finding the optimal number of observations 
ni for each treatment Bi. Minimization of \Jl(M) becomes 

(5.6) min 
{ni} 

det( diag(n0, ... , nk) + R + A)/ det( diag(no, ... , nk) + R) 

subject to .E ni = n 
i 

ni ~ 0. 

HR and A have a special structure, (5.6) can be easily solved. Note that the problems of 
estimation and prediction of the treatment effects are essentially equivalent: in both cases 
T = I. 

Example 5.4 Estimation/prediction of the effects of exchangeable treatments If 
the treatments are exchangeable then the matrix .R is permutation invariant. If E4 is permu
tation invariant too, then by Theorem 4.6 we can restrict the search of the optimal design 
to designs invariant w.r.t. permutations of all the treatments and hence an optimal design 
is the one with the same number of observations n/(k + 1) at each treatment. The solution 
is the classical "universally" optimal design (Kiefer 1959, §4). D 

Example 5.5 Assume 
(5. 7) R = diag(roo, ru, ... , ru). 

( 5. 7) will hold, for instance, if the experiment involves k new test treatments B;, j = 1, ... , k 
which are a priori exchangeable and uncorrelated and a control Bo, which is assumed to be 
uncorrelated with the treatments. Furthermore, assume 

(5.8) E4 = diag{s00 , s11 , ••• , s11 ), and E2 = u~l, where u~ can be 0. 

R and A are invariant under permutations which leave the first row and column fixed. 
Thus by Theorem 4.6 there exists an optimal design which is invariant under the group of 
permutations of the test treatments, and hence an optimal design will have n0 observations 
at Bo and n1 observations at each B;, j = 1, ... , k. 
Let 

. ( 2soouf 2snuf ) . ( ) A= d1ag 
2 2 1

, 
2 2 1 

J = d1ag aoo,au, ... ,a11 • 
S000'2 + 8110'2 + 

Define t = trace(R), b = a11 [2k(n+t) +a00(k+ l)] and~= b2 +4a11(aoo-k2a11 )(n+t)(n+ 
t + a00). 
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Theorem 5.4 If T = I and (5. 7) and (5.8} hold, an optimal design for estimating the 
treatment effects has n1 = median{0,,8* -ru,n/k} at each O;, j = 1, ... ,k where 

• _ { (-b + v'K)/[2( aoo - k2au)] 
,8 - (n + t)[(n + t) + a]/[2k(n + t) + a(k + 1)] 

if aoo ~ k2au 
if aoo = k2a11 = a 

Proof: Let ,8 = n1 + r11 • Then (5.6) reduces to 

(5.9) mmp (1 + aoo/(n + t - k,B)][l +au/Pt 
subject to ru < ,8 ~ n/k + ru 

whose solution is median{rn,,8*,n/k + ru} 0 

Note that if s00 = s11 , and thus we use a uniformly weighted distance, then n1 = median{O; (n+ 
r00-r11 )/(k+l); n/k} which is the Bayes D-optimal design for the estimation of 8 (Verdinelli, 
1992). D 

Example 5.6 Assume E4 = q 41 and that the aim of the experiment is the estimation of the 
differences between 00 , the control, and the other treatments, so that T = (-1 : 11,:). Then 
the matrix A is invariant under permutations which leave the first row and column fixed. 

Assume also that R is invariant under the same permutation group, e.g. assume Bo and 
O; uncorrelated Vj and O; (j = 1, ... , k) exchangeable, so that R = diag(r00, (r11 - p)I + pJ)). 
Then a similar argument to that of example 5.5 implies that an optimal design is the one 
which has n0 and n1 observations at 00 and at each O;, where n0 and n1 can be found by 
minimizing (5.6) subject to no+ kn1 = n. 

If t = trace(..R), h = 2qlql and ,8 = n1 + r11 - p, then (5.6) becomes 

(5.10) minp (1 + h/,Bl-1 (1 + h/(,8 + kp) + hk/(n + t - kp- k,8)] 

subject to ru - p ~ ,8 < n/ k + r11 - p 

H k = l, the criterion reduces to Bayes c-optimality and the solution is n0 = median{O, [n -
(r00 - r 11)]/2, n}. The number of observations to put at 00 and 01 depends on the differ~ 
ence between their prior precisions: the greater the precision, the smaller the number of 
observations. D 

Example 5. 7 Assume all the treatments are a priori uncorrelated, i.e. 

(5.11) R = (roo, ru, ... , rkk) 

and let E4 = ql I. The proof of the following theorem is straightforward. 

Theorem 5.5 An optimal design is found by 

(5.12) 
1' 

mill{n;} IT (1 + h/(n; + r;;)) 
j=l 

subject to En;= n 
j 

n; ~ 0, 

15 



where h = 2o}qlf(qlu~ + 1). If 

(5.13) 
n + trace(R) 

mfxr;; < k + l 

the solution is n; = (n + trace(R))/(k + l) - r;;-

Note that in this case the optimal design does not depend on E4 , as expected, since we 
are assuming that E4 = ull and hence we use a uniformly weighted distance. If (5.13) does 
not hold, then the solution of (5.12) is on the boundary of the constraint region so that a 
numerical search is needed. D 

Appendix 

We denote by W(m x m) ~ 0 a non-negative definite matrix, and by M(p x p) > 0 a positive 
definite one. Matrix concavity of a matrix function</> is defined by </>(..\A1 + (1 - ..\)A2) >L 

(,,\</>(At)+ (1 - ,,\)</>(A2 )) for all A1 , A2 and O < ,,\ ~ 1 where ~L is the Loewner ordering of 
symmetric matrices, namely A ~LB ~ A - B ~ 0. Similarly for matrix convexity. Let 
T be an m x p matrix of rank m. Define 

(A.1) 

A Convexity and a Monotonicity Result 

Theorem A.I If W(m x m) ~ 0, then q, defined by ( A.1} over a convex set of p x p positive 
definite matrices, is a concave matrix function of M 

. Proof: This result generalizes the one by Olkin with W = 0 ( see Marshall and Olkin, 1979, 
p.469) and the proof is essentially the same. For given M1 , M2, and O < ,,\ < 1 define 

and 
Q(..\) = W + TM(..\t 1T'. 

It is enough to show that Q(,,\t1 is a concave matrix function of,,\ for any given M1 and 
M2 , or equivalently that the second derivative is non-positive definite. Now 

so that 

iff 
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Furthermore 

and 
tPQ-1 /d>..2 = 2T M-1(dM /d>..)M- 1 (dM /d>..)M- 1T' 

since d2 i{-1 / d).. 2 = 0 . Thus we want to show that 

TM-1(dM/d>..)[M- 1T'Q-1TM-1 - i1-1](dM/d>..)M-1T' < o. 
In order to prove the last statement, we put X = i{-1l 2T' and show that 

i1-1T'Q-1T il-1 - if-1 < 0, 

i.e. X Q-1 X' <L Ip, with Ip the p x p identity matrix. This is equivalent to 

Q-1/2 X' XQ-1/2 < 1 _L m 

which is true since Q - X' X = Q - T i1-1T' = W ~ 0, thus completing the proof. D 

Corollary A.1 Let 

(A.2) W(m x m) ~ 0,M(p x p) > 0,R(p x p) > 0. 

Then (11(M) = (W + T(M + R)-1T')-1 is matrix-concave in M. 

Theorem A.2 Under assumptions (A.2) 

{i) \Jl(M) = det(W + T(M + R)-1T') is a convex function of M. 

{ii} \Jl(M) is decreasing w.r.t. the Loewner ordering, i.e. A ~LB=> '11(A) :5 w(B). 

Proof: (i) Since the real function logdet(·) is concave and increasing w.r.t. the Loewner 
ordering, by Corollary A.1 - log det(W + T(M + Rt1T') = log det(W + T(M + R)-1T')-1 

is a concave function of M, thus det(W + T( M + Rt1 T') is log-convex and hence convex in 
M. -

The proof of (ii) follows from well-known facts about det(·) and the matrix inverse, see 
for instance Marshall and Olkin (1979), Ch.16 Sect.E. D 

Theorem A.3 \JI ( M) is differentiable. 

Proof: Given any two moment matrices M1 and M2 the directional derivative of \JI at M1 

in the direction of M2 exists, because of convexity, and can be shown to be: 

(A.3) lim[w(M1 + e(M2 - M 1 )) - '11(M1)]/e 
f-0 

- trace[T(M1 + Rt1(M1 - M2)(M1 + Rt1 

T'(W + T(M1 + Rt1T't1
] det(W + T(M1 + R)-1T') 

and thus it is linear in M2• D 

Corollary A.2 If M = M(v) is a linear function of the vector v, then w(M(v)) is convex 
in v. 

Proof: This statement is straightforward. D 
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