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Abstract. We show that, for LP convergence of the mode of a nonparametric 

density estimator to the mode of an unknown probability density, finiteness of the 

p'th moment of the sampling distribution is both necessary and sufficient. The basic 

requirement of existence of finite variance has been overlooked by statisticians who 

have earlier considered mean square convergence of nonparametric mode estimators; 

they have focused on mean squared error of the asymptotic distribution, rather 

than on asymptotic mean squared error. The effect of bandwidth choice on the 

rate of LP convergence is analyzed, and smoothed bootstrap methods are used to 

develop an empirical approximation to the LP measure of error. The resulting 

bootstrap estimator of LP error may be minimized with respect to the bandwidth 

of the nonparametric density estimator, and in this way an empirical rule may be 

developed for selecting the bandwidth for mode estimation. Particular attention is 

devoted to the problem of selecting the appropriate amount of smoothing in the 

bootstrap algorithm. 
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1. Introduction. The study of nonparametric mode estimation is now three 

decades old, having its roots in Parzen's (1962) article on kernel density estima

tion. Romano (1988) has surveyed subsequent work, including that of Eddy (1980, 

1982) on kernel estimation, and of Grenander (1965) on alternative approaches. 

See also Tsybakov (1990). Recent work on estimating peaks nonparametrically in

cludes that of Muller (1989), in the context of nonparametric regression. Mammen, 

Marron and Fisher (1992) and Fisher, Mammen and Marron (1993) have discussed 

nonparametric estimation of the number of modes in a multimodal distribution. It 

is well-known that the asymptotically optimal bandwidth for mode estimation is an 

order of magnitude larger than that which is appropriate for point estimation of a 

probability density. 

In the special case where asymptotic mean squared error is used to describe 

performance of the mode estimator, the optimal bandwidth could in principle be 

estimated empirically using plug-in methods. These would require pilot estimators 

to be developed for a number of quantities in the formula for the optimal bandwidth, 

including the mode itself, the value of the density at the mode, and the value of a 

high-order derivative at the mode. However, this is a very complex procedure, and 

that unattractiveness is undoubtedly an important reason for the lack of information 

which exists about its theoretical and numerical properties. 

In the present paper we propose a much simpler approach to bandwidth selec

tion. We suggest a bootstrap method for estimating the mean squared error of the 

mode estimator, and propose selecting the bandwidth by minimizing this estimator. 

The simplicity of our procedure enables us to treat LP measures of error in mode 

estimation, not just mean squared error. Therefore, we introduce our techniques in 

this general context. We show in Section 2 that a necessary and sufficient condition 

for LP convergence of the mode estimator is the existence of finite p'th absolute 

moment of the underlying distribution. A reader who is familiar with classical 
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L2 theory for mode estimation may doubt the correctness of this claim, since the 

assumption of finite variance is never imposed in that work. However, one should 

remember that classical L2 theory is concerned only with asymptotic mean squared 

error - that is, with mean squared error of the asymptotic distribution of the mode 

estimator. By way of contrast, we study the actual mean LP error, for finite n and 

for general p ~ l. Hitherto, not even the problem of mean square convergence has 

been treated with the degree of explicitness and detail offered in the present paper. 

Section 3 describes a smoothed bootstrap estimator of mean LP error. Curi

ously, this work requires only finite e'th moment for some e > O; it does not need 

finite p'th moment. The apparent contradiction arises because extreme values from 

a bootstrap resample have properties quite unlike those of extremes from the actual 

population. The requirement of finite p'th moment in Section 2 arises because of 

properties of extreme values. 

Bootstrap methods have been used before to estimate mean squared error in 

the context of curve estimation. See for example Taylor (1989), Faraway and Jhun 

(1990), Hall (1990) and Hall, Marron and Park (1992). Unlike Hall (1990), but like 

Faraway and Jhun (1990), we use a resample size that is identical to sample size. 

One of our aims is to solve, at least theoretically, the difficult problem of selecting 

the correct bandwidth for the resampling part of the bootstrap algorithm. This 

problem is not addressed by Faraway and Jhun (1990), and requires significantly 

more detailed results about convergence rates than are available from classical liter

ature on mode estimation. The new results are derived in Section 2, in the general 

context of mean LP error, and in Section 3 for our smoothed bootstrap method. By 

combining the resulting formulae we show in Section 3 that if an r'th order kernel 

estimator J is employed when estimating the mode, and a second-order kernel es

timator j is used in the resampling operation, then the bandwidth for j should be 

taken to be of size n-1/( 2r+7 ) if our aim is to develop an empirical approximation to 

3 



the optimal bandwidth for J. This size is very much larger than that required for 

optimal point estimation using J. Hence, the bootstrap algorithm should involve 

substantial oversmoothing when resampling. The results of a simulation study, 

illustrating these conclusions, are summarized in Section 4. 

By way of notation, X = { X 1, ... , X n} represents a random sample from a 

population with density f, which we assume has a unique largest mode, m. Write 

X for a generic Xi. Given a continuous kernel function K, and a bandwidth h 

satisfying O < h ~ 1, define the kernel estimator 
n 

}(x) = (nh)- 1 L K {(x - Xi)/h}. 
i=l 

Let m denote any quantity with the property 

l(m) = sup i(x). 
-oo<x<oo 

Section 2 will discuss the issue of ties for m. We assume throughout that kernel 

functions are supported on the interval ( -1, 1 ). This condition is imposed to sim

plify technical arguments, and may be removed at the expense of longer proofs. 

In particular, all our results are valid if we take all kernels to equal the Standard 

Normal density, which has order r = 2. 

2. Convergence in probability, and in LP, of the mode estimator. In the 

sense of large deviations, m converges to m at a geometrically fast rate, as our first 

result shows. 

THEOREM 2.1. Assume that f is bounded, continuous at a point m, and satisB.es 

sup f(x) < f(m) (2.1) 
x:lx-ml>11 

for all rJ > 0. Assume that K is of bounded variation, is supported on (-1, 1), is 

continuous, and satisB.es f K = 1; and that for some rJ > 0, 1 ~ h = h(n)-+ 0, 

sup (nh)- 1 (logn)2+71 < oo. 
n~O 
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Then for each r,, A> 0, 

as n--+ oo. 

Condition (2.1) defines f(m) as the "unique largest peak" off. 

Theorem 2.1 implies that, under the assumptions there, m--+ min probability. 

However, without additional regularity conditions on the tails of the sampling dis

tribution, there can be no guarantee that m will converge to m in any LP metric. In 

part, this problem is caused by ambiguities in how m should be defined when J has 

two or more modes at which J achieves the same height. While this is, in a sense, 

a pathological issue, the matter of whether m converges to m in LP is fraught with 

difficulties caused by pathological arrangements of the data. 

To appreciate this point, let us order the data values as X(l) ~ ... ::; X(n), 

and let x1 < ... < Xn denote real numbers such that Xi - Xi-1 - 2 > 0, Xn > 2 

and P{X E (xi - 1, Xi + 1)} > 0 for each i. Numbers Xi with these properties 

exist if the distribution of Xis unbounded to the right. Consider the event £n that 

x(i) E (xi - 1,Xi + 1) for 1 ~ i ~ n - 1, and X(n) > Xn - 1. Since for large n the 

bandwidth h employed to construct J is taken to be no greater than 1, and since 

I< vanishes outside (-1, 1), then when £n prevails, the kernel estimator j is simply 

a string of n non-overlapping "bumps", each with the shape of (nh)- 1 K(-f h) and 

centered at respective values X 1, ... , X n · Suppose that in such cases, when there 

is a tie for the mode of J, we agree to take as our mode estimator that candidate 

which is farthest to the right. Then, 

n-1 

~ E{(X - l)P I(X > Xn -1)} IT P{X E (xi -1,Xi + 1)}. 
i=l 

The right-hand side is infinite if E(X+)P = oo. Arguing thus, the condition 
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E(X+)P < oo is seen to be necessary for ElmlP < oo. Similarly, if we choose 

randomly among tied modes then EIXIP < oo is a necessary condition. The latter 

constraint is also sufficient for convergence in LP, as our next theorem points out. 

THEOREM 2.2. Assume the conditions of Theorem 2.1. If there are two or more 

modes of J with the same height, select among them randomly when denning in. 

Let p ~ 1. Then 

Elm - mlP -+ 0 

if and only if EIXIP < oo. Furthermore, if EIXIP < oo then for each 1J, A > 0, 

(2.2) 

Our final result in this section describes an asymptotic formula for Elm -

mlP. We assume that any tie for the mode estimator is broken at random. Let 

(N1 , N2 , N3 ) denote a trivariate Normal random vector with the same mean vector 

and covariance matrix as (f'(m), }"(m) - f"(m), }"'(m) - f"'(m)), and put a = 

IE}'(m)I, f3 = IE}"(m) - f"(m)I. 

THEOREM 2.3. Assume that f has a "unique largest peak" at m; that /" exists 

in a neighborhood of m and is continuous at m; that f"(m) "IO; that EIXIP < oo; 

and that K is supported on (-1, 1), has four bounded derivatives, and satisfi.es 

f K = 1 and J yK(y) dy = 0. Suppose too that h = h( n) -+ 0, and that for some 

1] > 0, 

Then for each p ~ 1, r ~ 3, 

sup (nh5
)-

1 (logn)1+11 < oo. 
n~O 

(Elm - mlP)l/p = {EIN1 - N1N2 f"(m)-1 + N1Ni, f"(m)-2 IP}l/p lf"(m)l-l 

+O[{(nh3
)-

1l 2 +a}{(nh3
)-

1!2 +(nh5
)-

3l2 +a+f33 }], (2.3) 
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and for each p ~ 1, r ~ 2, 

(Elm - mlP)lfp = { EIN1 - N1N2 J"(m)-1 + N1Ni J"(m)-2 

+ ½ N; J"'(m)f"(m)- 2 + ½ N; N3 f''(m)- 2 IP} 1IP lf"(m)l-1 

+o[{(nh3
)-

1l2 +a}{(nh3
)-

1 +(nh5
)-

3l2 +a2 +,B3 }(logn)
2

] (2.4) 

as n-+ oo. 

Formula (2.4) implies that 

(Elm - mlP)1IP,..., [El{var /'(m)}112 N + E/'(m)IP] l/p If" (m)l-1 , 

where N denotes a Standard Normal random variable. This weaker form of (2.4) 

may be used to derive first-order asymptotic properties of the bandwidth that is 

optimal for minimizing Elm - mjP. To appreciate this point, suppose that K is an 

r'th order kernel; i.e., for some r ~ 2, 

j yi K(y)dy = { ~ 
(-lf r! K-/= 0 

if j = 0 

if 1 ~ j ~ r -1 

if J = r . 

(2.5) 

Assume, in addition to the conditions of Theorem 2.3, that f(r+l) exists in a neigh

borhood of m and is continuous at m. Then, 

var f'(m) = (nh3
)-

1 f(m) j (K')2 + o{(nh3r 1
}, 

E/'(m) = Khr J<r+l)(m) + o(hr). 

If we define Ci = f(m) J (K')2 and c2 = ln.J(r+l)(m)I, we have 

(2.6) 

It follows that the bandwidth ho that minimizes A1(h) = {Elm - mlP}1IP, over 

values of h in the range prescribed by Theorem 2.3, satisfies ho ,..., u0 n-1/(2r+3), 

where u0 minimizes 
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and that for this choice of h, 

Elm - mlP ~ n-pr/(2r+3) G(uo) lf"(m)l-p. 

The form of the remainder terms in (2.3) and (2.4) is carefully chosen so as 

to capture as much as possible of the effect of bootstrap estimation of mean LP 

error. This point will be elucidated in Section 3. For that purpose we provide now 

a high-order approximation to ho. 

LEMMA 2.1. Assume the conditions of Theorem 2.3, and let K be symmetric. 

Then, for r ~ 2, 

ho = uo n-1/{2r+3) {1 + o(n-2/(2r+7))}. (2.7) 

The proof for even r ~ 4 is outlined below. It follows directly from (2.3). The 

case of odd r ~ 3 may be treated similarly, but requires more care. For r = 2 the 

remainder term "O( ... )" in (2.3) is not sufficiently small to yield the desired result, 

and that case should be treated separately. However, using (2.4) instead of (2.3) 

we may show that when r = 2, (2.7) follows as before. 

Proof of Lemma 2.1. We show (2.7) for even r ~ 4. For symmetric K, the 

distribution of (N1 , N2) may be elucidated relatively easily. It may be shown 

that the quantity h~ that minimizes A2(h) = { EIN1 - N1N2 f"(m)-1 + N1N?, 

f"(m)-2 lp}l/p satisfies h~/(uon-1/( 2r+3 )) = l+O(n-2/(2r+5)) = l+o(n-2/(2r+7)). 

Similarly, noting the usual quadratic Taylor expansion in the neighborhood of a 

minimum, 

(2.8) 

Write ho = hri(l + 8), where 8 = 8(n) ---+ 0. Again noting the quadratic Taylor 

expansion in the neighborhood of a minimum, we see that 

(2.9) 
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where C > 0. When h is of size n-l/(2r+3), the quantity ( nh3 )-112 + ( nh5 )-312 + 
a+ (33 appearing in (2.3) is of size n-r/(2r+3) + n-3(r-l)/(2r+3) ·= O(n-r/(2r+3)). 

By this fact and (2.3), 

A1(h~) = A2(h~){l + O(n-rf(2 r+3
))} 

= A2(h~){l + o(n-4!<2r+1))}, 

the last identity requiring only r 2:: 3. Hence, by {2.8), 

which in view of {2.9) implies 

Since the left-hand side is minimized with 8 = 0, the right-hand side must be too, 

which entails 8 = o( n-2/(2r+7) ). This proves (2. 7). D 

We conclude this section by outlining proofs of Theorems 2.1-2.3. 

Proof of Theorem 2.1. Observe that 

P(lm - ml> 11) = P{ sup ](x)::; sup ](x)} 
x:lx-ml~'1 x:lx-ml>11 

::; P{ sup E](x) - sup lf(x) - E](x)I 
x:lx-ml~'7 x:lx-ml::;11 

::; sup E](x) + sup lf(x)- E](x)I} 
x:lx-ml>11 x:lx-ml>11 

::; P{2 sup 1/(x) - E](x)I 
-oo<x<oo 

> sup E](x) - sup E/(x)}. 
x:lx-ml~11 x:jx-ml>11 

(2.10) 

For each 17 > 0 there exists 171 > 0 such that 

sup Ef(x) - sup E}(x) 2:: 171 (2.11) 
x:jx-ml~11 x:lx-ml>11 
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for all sufficiently large n. Therefore, it suffices to prove that for all rJ, .A > 0, 

P{ sup lf(x) - E}(x)I > 1]} = O(n-.\). 
-oo<x<oo 

This may be achieved by applying the so-called "Hungarian embedding" (Komlos, 

Major and Tusnady 1975), and modifying arguments of Silverman (1978). o 

Proof of Theorem 2.2. We may assume without loss of generality that m. = 0. 

The proof of "necessity" was outlined earlier. It is enough to show that EIXIP < oo 

is sufficient for (2.2). To this end, observe that for any a, rJ, ,\ > 0, and sufficiently 

large n, 

E{lmlP I(lml > 1])} ~ 2p-l n°'P P(lml > rJ) + 2p-l E{lmlP I(lml > n°')} 

= O(n-,\) + 2p-l E{lmlP I(lml > n°')}, 

the last identity following from Theorem 2.1. Let Yn denote the second-largest value 

of IXil, and note that for large n and f3 = a - 1, 

2-p E{jmjP I(n°' < 1ml ~ Yn + 1)} 

~ 2-p E{(Yn + l)P I(Yn + 1 > na)} 

~ n 2 r xP P(IXI ~ xr-2 P(IXI > x)dP(IXI ~ x) 
Jx>n/3 

~ n2 r xP (x-p EIXIP)dP(IXI ~ x) 
Jx>n/3 

= n2 EIXIP P(IXI > n/J) ~ n2-pf3 (EIXIP)2 = O(n-.\), 

provided a>{(..\+ 2)/p} + 1. It remains only to show that for all,\> 0, 

Let Xy1, ... ,Xy,n-1 be independent, and independent of X 1 , ... ,Xn, with the 

{conditional) distribution of X given that IXI ~ y, and put Zn= maxi:~n IXil, 

n-1 

1-ly,n = { sup L K{(x -Xy,i)/h} ~ supK}. 
-oo<x<oo i=l 
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Since Im I :'.5 Zn + 1 then 

tn $ ["' P('h'.y,n) E(lfr'ijP IZn = y) dP(Zn $ y) 

$ [
0 

P('h'.y,n)(Y + l)P dP(Zn $ y). 

The methods used to prove Theorem 2.1 may be employed to show that for all 

A> 0, 

Hence, 

tn = O(n-.\) E{(Zn + l)P} 

~ O(n-.\)nE{(IXI + l)P} = O(n-.\+l), 

as had to be shown. 0 

Before passing to a proof of Theorem 2.3, we note the following lemma. The 

first part of the lemma may be derived using methods employed to establish Theo

rem 2.1. The second part follows via Bernstein's inequality. 

LEMMA 2.2. Assume the conditions of Theorem 2.3. Then for 'TJ > 0 sufficiently 

small, and all~' .X > 0, 

P{ sup lf111 (x) - E/111 (x)I > Oogn} = O(n-.\), 
x:lx-ml~'1 

and for j = 1, 2, 

Proof of Theorem 2.3. By Taylor expansion, 

0 = /'(m) = /'(m) + (m - m) i"(m) 

+ ½ ( m - m )2 f 111 { m + 8( m - m)} ' 
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where O ~ 8 ~ 1. From this formula we may conclude that if Im - ml~ 17 and, for 

a constant C1 > 0, 

sup If"' (x)I ~ C1 logn and lf'(m)l f"(m)- 2 ~ (20C1 logn)-1 , 
x:lx-ml511 

then for a random variable T satisfying ITI ~ C1 log n, 

m - m = f"(m) [{1 - 2f'(m) f"(m)- 2 T} 112 - 1] T- 1 

= -J'(m)f"(m)-1 
- ½ ]'(m)2 ]"'(m)f"(m)-3 + R1, (2.12) 

where 

Hence, if f"(m)-/= 0 and lf"(m) - f"(m)I ~ ½ lf"(m)I then 

where 

m - m = - !'(m) J"(m)- 1 + f'(m) {f"(m) - f"(m)} J"(m)-2 

- f'(m) {f"(m) - J"(m)}2 f"(m)- 3 

- ½ ]'(m)2 J"'(m) J"(m)-3 

- ½ ]'(m)2 {f"'(m) - f"'(m)} J"(m)-3 + R2, 

IR2I ~ C2 {lf'(m)l3 + lf'(m)l 1/"(m) - /"(m)l3}(logn)2 

and C2 depends only on C1 and IJW(m)I, j = 2,3. In view of Lemma 2.2, if C1 is 

sufficiently large and 17 sufficiently small then for all A > 0, 

P{ sup If"' (x)I > C1 logn} 
x:lx-ml511 

+ P{IJ'(m)I /"(m)-2 > (20C1 logn)-1
} 

+ P{l]"(m) - J"(m)I > ½ 1/"(m)I} = O(n-.x). 

Therefore, 

l{Elm - mlP I(lm - ml~ 17)} 1/p 
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[El/'(m)f"(m)-1 -/'(m) {}"(m)- J"(m)} J"(m)-2 

+ /'(m) {f"(m) - f"(m)} 2 J"(m)-3 
- ½ f'(m)2 f"'(m) J"(m)- 3 

- ½ l'(m)2 {}111 (m) - f 111 (m)} J"(m)-3 lp I(lm - ml~ 11)] 1IP1 

= O[{Elf'(m)J3P} 11P + {Elf'(m)J 2P Elf"(m) - J"(m)l6P(logn)4P} 1l<2P>] 

= O[(nh3)-3/2 +a?+ {(nh3)-I + a?}I/2 {(nhs)-1 + /32}3/2 (logn)2] 

= O[{(nh3)-1/2 + a} {(nh3)-I + (nhs)-3/2 + a2 + /33} (log n)2]. 

In view of Theorem 2.2, and the fact that for j ~ 3 and q ~ 1, ElfU>(m)lq is 

bounded inn, the indicator function may be dropped throughout the left-hand side 

above. Therefore, 

(Elm - mlP)Ifp - [Elf'(m) J"(m)-1 
- f'(m) {f"(m) - J"(m)} J"(m)-2 

+ }' ( m) { j" ( m) - J" ( m)} 2 J" ( m )-3 
- ½ f' ( m )2 f 111 

( m) f" ( m )-3 

- ½ }'(m)2 {f111 (m) - f 111 (m)} f"(m)- 3 IP] 1IP 

= O[{(nh3)-1/2 + a} {(nh3)-1 + (nhs)-3/2 + a2 + /33} (logn)2]. 

The proof of (2.4) may be completed by applying a result on the rate of conver

gence of moments in the bivariate central limit theorem; see Theorem 15.1, p.145 

of Bhattacharya and Rao (1976). 

Formula (2.3) may be proven by the same technique, just using fewer terms in 

the Taylor expansion for m - m in (2.12). We omit the details. o 

3. Bootstrap estimation of mean LP error. In Section 2 we discussed the 

convergence to zero of 

We showed that if K is an r'th order kernel then this quantity is asymptotically 

minimized by taking h = u0 n-l/(2r+3) in the definition of m. Here, u0 minimizes 

the function G(u), u > 0, which depends on the unknowns f(m) and f(r+l)(m). 
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Both these quantities are unknown, and so this prescription for selecting h is not 

really practical. In the present section we show that bootstrap methods may be em

ployed to estimate µp( h ), and thus to empirically select a bandwidth for estimating 

m. 

Let K, used in the construction of J, denote a compactly supported r'th order 

kernel; see (2.5) for a definition of the "r'th order" property. Let L be a compactly 

supported, symmetric density with r + I derivatives. Define 

n 

](x) = (nh1)-1 L L{(x - Xi)/hi}. 
i=l 

Our bootstrap sampling will be from the distribution that has this density. The 

assumption that L is a density, in particular that it is nonnegative, is necessary if 

the sampling part of the operation is to be feasible, since we cannot easily sample 

from a "distribution" whose density takes negative values (although, see Hall and 

Murison 1991). The quantity J is, in a sense, a pilot estimator off, with its own 

bandwidth h1 • We shall discuss choice of h1 later in this section. 

Conditional on the sample X = {X1, ... ,Xn}, draw a sample {Xi, ... , X~} 

from the distribution with density J. We may take x; = Xi + h1~, where 

Xf, ... , X~ are drawn randomly, with replacement, from X; Yi, ... , Yn are indepen

dent and identically distributed with density L; and conditional on X, the variables 

Xf, ... , X~, Yi, ... , Yn are stochastically independent. Put 

n 

f*(x) = (nh)- 1 L K {(x - Xl)/h}; 
i=l 

let m* and m denote the modes off* and J, respectively, defined by breaking ties 

randomly when necessary; and set 

,.. ,.. (h) E'I-* -ip µp = µP = m -m , 

where here and below, E' denotes expectation conditional on X. Note particularly 

that m, not m, is employed in the definition of [Lp. 
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Our main result in this section follows. It provides bootstrap versions of por

tions of Theorems 2.2 and 2.3. Note particularly that, in terms of moment condi

tions, we assume only that EIXle: < oo for some€> 0, not that EIXIP < oo. 

Conditional on X, let ( N{, N~, N~) denote a trivariate Normal random vector 

with the same conditional mean and conditional variance matrix as (f * ' (iii), j *" (in.)-

f" ( m ), !*"'(in) - !"'(iii)). Put a'= IE' f*'(m)I, /3' = IE' ]*"(iii) - i"(iii)I-

THEOREM 3.1. Assume that f has a "unique largest peak" at m; that f is uni

formly continuous on (-oo, oo ), and f"' exists and is continuous in a neighborhood 

of m; that f"(m) 'I O; that EIXle: < oo for some€ > O; that JI< = 1; that L 

is a symmetric probability density; and that I<, L a.re of bounded variation, a.re 

supported on (-1, 1), and have three derivatives. Suppose too that O < h, h1 ::s; 1, 

h + h1 ~ 0 and that for some 7J > 0, 

sup { (nh5
)-

1 + (nhI)-1} (logn)1+71 < oo. 
n~l 

Let p ~ 1. Then for each TJ, A> 0, 

with probability one, and for r ~ 3, 

(E'lm* - mlP)1fp = {E'IN~ - N~N~ f"(m)-1 + N~N? f"(m)-2IP}1fp 

x lf"(iii)l-1 + O[{(nha)-1/2 + a'} 

x {(nh3)-1f2 + (nhs)-3/2 +a'+ /3'3}] 

with probability one. For r ~ 2, 

(E'lm* - mlP)1fp = { E'IN~ - N~N~ i"(m)- 1 + N~N? i"(m)-2 

+ ½ N? i"'(iii) f"(m)- 2 + ½ N? N~ i"(m)-2 IP} l/p 

x l/"(m)l-1 + O[{(nh3)-1f2 + a'} 

(3.1) 

(3.2) 

x {(nh3
)-

1 + (nh5
)-

3l2 + a'2 + /3'2} (log n)2] (3.3) 

15 



with probability one. 

Our proof of Theorem 3.1 remains valid if we take h to be a function of the 

data, X. In this case, the conditions imposed on h in the statement of Theorem 3.1 

should be interpreted as asking that O < h :5 1, h ~ 0 with probability one, and 

sup(nh5 )-1 (logn)1+ 77 < oo with probability one. 

The principal application of the bootstrap estimator JJ,p ( h) is to calculating 

an empirical version of the bandwidth ho that minimizes µp(h). We discussed ho 

briefly in Section 2, where we showed that if K is an r'th order kernel (see (2.5) for 

a definition of kernel order), and if f has r + 1 derivatives, then 

ho = uo n-1/(2r+a) {1 + o(n-2/(2r+7))}. (3.4) 

In this formula, uo is defined to be that quantity which minimizes 

u > 0, 

where c1 = {f(m) J (K1)2}1l2 and c2 = l~J(r+I)(m)l- An almost identical argu

ment, based on (3.2) and (3.3) rather than (2.3) and (2.4), shows that the bandwidth 

ho which minimizes JJ,p(h) is given by 

(3.5) 

with probability one, where u0 minimizes 

u > o, 

and C1 = {/(m) f (K1)2}1l2
, C2 = ,~ j(r+l)(ffi)I- In this formula, we take N' to be 

a Standard Normal random variable independent of X. A formal derivation of this 

result requires j(r+l) to be strongly consistent for f(r+l) in a neighborhood of m, 

and for that we ask that sup(nhir+3
)-1 (logn)1+11 < oo for some T/ > O. 
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We claim the following consequences of (3.4) and (3.5): if we choose the 

bandwidth h1 , employed to construct j, such that it minimizes the relative er

ror (ho - ho)/ho, then h1 is asymptotic to a constant multiple of n-l/( 2r+7>, and 

the relative error is of size n-2/(2r+7). Now, the value of the best constant in the 

formula h1 ~ const · n-1 /< 2r+7) depends on the unknowns J<i>(m), for j ~ 2r + 3, 

and also on the metric in which the error (ho - ho)/ho is measured (e.g. whether 

it is asymptotic mean squared error, or some other asymptotic Lq metric). Hence, 

there seems to be little point in being more specific about the constant, and so we 

shall not pursue that matter further here. However, knowing that the optimal size 

is n-l/(2r+7) does indicate that the bandwidth for constructing j for our present 

purpose should be substantially larger than that for point estimation off. As is 

well-known (see e.g. Silverman 1986, Chapter 3), the latter is of size n-1 / 5 . 

To verify our claim, observe that the quantities j - f, j<r+i) - f(r+l) and 

m - mare respectively of size (nh1)-1/2 + hi, (nhr+3
)-1!2 + hi, (nhv- 112 + h?, 

Therefore, c1 - c1 and c2 - c2 are of sizes (nht)- 1!2 + hf and (nhir+3
)-1/ 2 +hf, 

respectively. Comparing the formulae for G and G we see that u0 - u0 is of the 

same size as c2 - c2, and that the size of this error is minimized at n-2/(2r+7) by 

selecting h1 to be of size n-1/(2r+7). For example, when p = 2 we have 

so that the asymptotically optimal bandwidth h1 is that which minimizes the mean 

squared error of j< r+ 1) ( m). 

We conclude this section with a derivation of Theorem 3.1. 

Proof of (3.1). The conditions imposed on I<, L, f, h and h1 are sufficient 

to enable us to prove, via the "Hungarian embedding" ( see Komlos, Major and 

Tusnady 1975, Silverman 1978) that for each 17, A > 0, 

P{ sup li(x) - f(x)I > 11} = O(n-,\), 
-oo<x<oo 

(3.6) 
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P'{ sup l}*(x) - E' }*(x)I > 11} = O(n-A), 
-oo<x<oo 

(3.7) 

where P' denotes probability conditional on X, and the latter identity is interpreted 

as holding with probability one. From (3.6) it follows, via the Borel-Cantelli lemma, 

that 

sup lf(x) - f(x)I ~ 0 
-oo<x<oo 

with probability one. Therefore, 

sup l](x) - f(x)I ~ 0 
-oo<x<oo 

with probability one. Replacing (I<, h, }) by (L, h1 , ]) in Theorem 2.1, we deduce 

that m ~ m with probability one. Noting the remark that contains (2.11) we 

conclude that for each 17 > 0 there exists 77' > 0 such that with probability one, for 

all sufficiently large n, 

sup E' }*(x) - sup E' }*(x) ~ 171
• 

x:lx-;;;1~11 x:lx-;;;1>11 

Arguing as at (2.10) we may now deduce that with probability one, and for all 

sufficiently large n, 

P'(lm* - ml > 77) ~ P'{2 sup l}*(x) - E' }*(x)I 
-oo<x<oo 

> sup E' }*(x) - sup E' }*(x)} 
x:lx-ml~11 x:lx-ml>11 

~ P'{ sup l}*(x) - E' }*(x)I > ½ 11'} 
-oo<x<oo 

= O(n-A), 

the last line following from (3. 7). 

Observe that, since h, h1 ~ l and I<, L vanish outside (-1, 1), 
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Therefore, if a> 0, ,\>a+ 1 and P'(lm* - ml> 77) = O(n-.x), 

00 

L n° E'{lm* - mlP I(lm* - ml> 77)} 
i=l 

with probability one. Since EIXIE < oo then with probability one, IXn I $ n2/E for 

all sufficiently large n. Therefore, if,\ >a+ (2p/€) + 2, 

00 

L n° E'{lm* - mlP I(lm* - ml> 77)} < 00 

i=l 

with probability one. It follows that 

Since a> 0 may be chosen arbitrarily large then (3.1) is proved. D 

Proof of (3.2) and (3.3}. The proof is similar to that of Theorem 2.3, and so 

we give it only in outline. Note that in the former proof, (f, /) should be replaced 

by (f, /*), and probability measures and expectations should be interpreted condi

tionally on X. Our assumption that /" exists and is continuous in a neighborhood 

of m, and that ( nhI)-1 (log n )1+11 is bounded for some rJ > 0, ensures that for some 

77 > 0 and all e,,\ > 0, and for j = 0, ... ,3, 

P{ sup 1JU>(x) - t<i>(x)I > e} = O(n-A). 
x:lx-ml~11 

This result may be proved much as in Silverman (1978). The version of Lemma 2.2 

for this setting asks that for 77 > 0 sufficiently small, and for all e, ,\ > 0, 

P' { sup lf* 111 (x) - E' j*"'(x)I > e} = O(n-A)' 
x:lx-ml~11 
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and for j = 1, 2, 

both identities holding with probability one. Proofs of these results are little more 

than conditional versions of the arguments employed to establish Lemma 2.2. From 

this point the proof of (3.2) and (3.3) may be conducted straightforwardly, using 

conditional versions of arguments in the proof of Theorem 2.3. 

4. Numerical results. We applied the methods in Section 3 to three different 

distributions, denoted by D1 , D2 and Da. With D( a,µ, u2) representing the Normal 

mixture aN( -µ, u2
) + (1 - a) N(µ, u2 

), the three distributions were the Standard 

Normal, D1 = D(l, 0, 1); D2 = D(0.4, 1, un; and Da = D(0.4, 0.75, ui)- We chose 

u2 = 0.6 and ua = 0.8, which are the unique values such that D 2 and D 3 have unit 

variance. With this selection D2 is markedly bimodal, with the unique largest peak 

being on the right at 0.98; and Da is unimodal and skewed to the right, with a 

relatively flat top and the mode at 0.50. 

We took n = 50, 100 or 200 for all three distributions. The bootstrap pro

cedure from Section 3 was implemented with the oversmoothing bandwidth h1 = 

cn-1!<2r+7 ), for a variety of values of c. We used the Standard Normal kernel, so 

that r = 2. 

From the point of view of mode estimation, the distributions D1 , D2 and Da 

are increasingly sensitive to choice of the value of c in the oversmoothing bandwidth, 

and the modes are increasingly difficult to estimate. These features are reflected in 

our simulation study. 

[Insert Table 4.1 about here] 

We found that the amount of oversmoothing which gives good performance 

for D1 is significantly more than is appropriate for either D2 or Da. In particular, 

in the case of D 1 , mean squared error decreases monotonically with increasing 
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oversmoothing, over quite a wide range. The value c = 2.5 or 3 provides performance 

close to the best obtainable. The favorable effect of strong oversmoothing can be 

explained by D 1 being symmetric and unimodal; mode and median coincide. Since 

kernel estimators with large bandwidth tend to have their mode near the sample 

median, large values of c produce (smooth) resampling distributions with modes 

usually close to the true mode. 

For skewed and/ or multimodal distributions, such as D2 and D3, the choice of c 

is much more delicate. Strong oversmoothing may shift the mode of the resampling 

distribution towards the median, away from the true mode. Another effect, even 

more severe, showed in the simulations for distribution D2. If we smooth too much 

then the heights of the two peaks in the empirical study are quite close to each other, 

and the positions of the highest and the lowest peaks in the bootstrap resample may 

occasionally interchange, leading to a serious degradation of performance of the 

mode estimator. The distribution D3 is even more sensitive to smoothing, owing 

to its "flat top" characteristic. Even a small degree of smoothing can result in 

changing the estimated mode location by a significant amount. In the case of D 2 

and D3 , the optimum value of c is near 1 or 1.5, much lower than for D 3 • Values 

larger than 2.5 lead to a dramatic increase in the mean squared error. 

Even with careful choice of c, the mean squared error of the mode estimator 

increases steadily as we pass from D1 to D2 and then to D 3 • These properties are 

apparent from Table 4.1, which summarizes our numerical results. The fact that the 

mean squared error does depend on the choice of h1 indicate~ that a good adaptive 

procedure is required. For now, we leave this as an open problem. 
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TABLE 4.1. Mean squared error of mode estimator. The table gives Monte Carlo 

approximations to mean squared errors, and also their standard deviations 

(in parentheses). These quantities were computed as the sample mean and 

standard deviation, respectively, of M independently simulated values of 

the squared error of the mode estimator, where M = 1,000 for n = 50 and 

M = 500 for n = 100 and 200. The number of bootstrap simulations was 

B = 50 in each case. The distributions D2, D2 and D3 are defined in the 

text. 

n D1 D2 D3 
C = 2.5 c=3 c=l C = 1.5 c=l C = 1.5 

50 0.0240 0.0235 0.1473 0.1411 0.1899 0.1183 
(0.0012) (0.0012) (0.0173) (0.0081) (0.0084) (0.0049) 

100 0.0162 0.0141 0.0865 0.0595 0.1465 0.1073 
(0.0012) (0.0009) (0.0171) (0.0041) (0.0090) (0.0060) 

200 0.0079 0.0078 0.0613 0.0255 0.0963 0.0728 
(0.0005) (0.0006) (0.0139) (0.0018) (0.0057) (0.0095) 
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