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Abstract 

Standard convex optimization techniques are applied to the analysis of 
interval censored data. These methods provide easily verifiable conditions for 
the self-consistent estimator proposed by Turnbull (1976) to be a maximum 
likelihood estimate and for checking whether the maximum likelihood estimate 
is unique. A sufficient condition is given for the almost sure convergence of the 
maximum likelihood estimator to the true underlying distribution function. 
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1 Introduction 

Three data collection schemes have been referred to as interval censored. Following 
Peto (1973) we use this term only to refer to the following situation. For each 
individual i there is a sequence of inspection times ti,t, ti,2, .... The exact failure 
time Xi of the individual is not observed. All that is known is which inspection times 
immediately preceded and followed the failure (the j such that ti,j-t < Xi < ti,;). 
Such data have been considered by Peto (1973), Turnbull(1976), and Finkelstein 
(1986), among others. A generalization of this situation has been considered by 
De Gruttola and Lagakos (1989), but they refer to it as doubly-censored data. 
Interval censored data, as we have defined it, differs substantially from grouped 
data (Heitjan, 1989) and the doubly-censored data of Chang and Yang (1987). 

2 The Likelihood 

Suppose that survival times, X, arise frorri a distribution F0 , that each individual 
has a possibly infinite sequence of inspection times arising from some stochastic 
process Q, and that the inspection times and failure times are independent ( so the 
censoring is noninformative). Also suppose that no time point occurs with positive 
probability under the inspection time process. This assumption is made to ensure 
that failures cannot coincide with inspection times. The observed data consist of 
the last inspection time prior to failure and the first inspection time after failure for 
each individual, i. e., the data are {Ai}f=t where Ai = (Li, Ri) is the open interval 
known to contain the unobserved failure time. 

These assumptions ensure that the probabilities of inspection times do not in
volve any of the parameters of interest and hence we may consider the likelihood 
conditional upon the observed intervals, 

n 

L = Il{.Fo(Ri-)-Fo(Li)}. 
i=l 

Let {si}T=o denote the unique ordered elements of {O, {Li}?=t, {Ri}?=1 }. Then as 
noted in Peto (1973)~ Turnbull (1976), and Finkelstein (1986) the likelihood depends 
on F0 only through the values {F0 (s;)}i=1 and not on how F changes between the 



s;. Let O.ij be the indicator of the event {s;-1 , s;) E Ai a1_1d Pi= F0(s;-)- F0(s;_i) 
then the likelihood can be written 

L = fl [t a;;P;] 
s=l J=l 

and the log likelihood as 
n m 

l(p) = Elog(Lo.i;P;). 
i=l i=l 

Also let 

where 
m 

T/i = E O:ijPi. 
i=l 

The terms T/i correspond to the sum of probabilities associated with the ith individual 
and hence dk is the sum of l/TJi for all individuals whose intervals, Ai, intersect the 
interval (sk-1, s1c). 

2.1 The Kuhn-Tucker Conditions 

To find the maximum likelihood estimate of the vector p we maximize l (p) with 
respect top subject to the constraints 

m 

1- LP;,= 0 {1) 
j=l 

Pi~ 0, j = 1, ... ,m (2) 

For a concave programming problem with linear constraints, the Kuhn-Tucker con
ditions are necessary and sufficient for optimality (Rockafellar, 1970, Theorem 28.1 
and Corollary 28.2.2). A point p is an MLE if and only if there exist Lagrange 
multipliersµ;, j = 0, ... , m such that the Kuhn-Tucker conditions (1) through (5) 
hold. 

µi ·Pi= 0, 

µi ~ 0, 

a°, (l(p) + f p;(µ; - µo)) =di+µ; - µo = 0, 
P, i=t 

Multiplying Equation 5 by Pi and summing yields 

o:i;P; T/i 
µo = E diPi = E- = E - = n 

i i,j T/i i T/i 

2 

j = 1, ... ,m 

j = 1, ... ,m 

j = 1, ... ,m, 

(3) 
{4) 

(5) 



(since µ;p; = 0 by Equation 3). If Pi > 0 then Equation 3 implies thatµ;= 0, and 
Equation 5 then implies that d; = µ0 = n. Conversely, if Pi = 0 then Equation 5 
implies that µ; ~ 0 so d; = µ0 - µ; implies d; ~ n. At a solution all of the T/i are 
strictly positive, since otherwise the dk would not be finite. 

We will later use another way of phrasing the Kuhn-Tucker conditions in a more 
descriptive terminology. For any p that satisfies the constraints (1) and (2), set 
µi = n - di, if Pi = 0, and µi = 0, if Pi > 0. Then the "complementary slackness" 
condition (3) is always satisfied. We call the µ; Lagrange multipliers whether or not 
they satisfy the dual constraints (4). The left hand side of Equation 5), di+ µi - n · 
is called the reduced gradient, because it is the gradient with respect to the free 
variables. The Kuhn-Tucker conditions are satisfied if the Lagrange multipliers are 
nonnegative and the reduced gradient is zero. 

The parameterization in terms of the Pi is often an overparameterization. Peto 
(1973) and Turnbull (1976) point out that Pi can be nonzero only if s;-t is a left 
endpoint Li for some individual i and s; is a right endpoint Rk for some possibly 
different individual k. However, some of the p; satisfying this criterion may also be 
zero. Determination of which of the Pi are zero is discussed in Section 4. 

2.2 Uniqueness of the Maximum Likelihood Estimate 

The MLE need not be unique. Turnbull (1976) gives the example where Ctii = Ctik 

for all i. The maximum likelihood estimate will be unique if the log likelihood is 
strictly concave, that is if the Hessian His strictly negative definite. Let A denote 
then by m matrix with elements Ctij, then 

H = A'DA, 

where Dis the diagonal matrix with elements -l/11?- Hence, H will be of full rank 
and the MLE will be unique if the rank of A is equal to m. 

There may be situations in which the likelihood .is concave, but not strictly 
concave, and the MLE is unique nevertheless. Theorem 9.3.2 of Fletcher (1987) 
specialized to our problem states the following. Let p be a solution to the Kuhn
Tucker equations with suitable Lagrange multipliersµ. Define 

W = { W E 1Rm : Wi = 0, if µ; > 0; Wj ~ 0, if Pi = 0; 'Eiwi = 0}. 

Then the MLE p is unique if 

w'Hw < 0, whenever w E W and w :/= 0. (6) 

We can get a condition much easier to verify if we drop some of the constraints and 
verify the condition (6) with the set W replaced by 

W' = {WE JRm: Wj = 0, ifµ;> 0 }. 

Since we check a larger set, this condition implies the other and is sufficient. 
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From the structure of H this can be further simplified. Let A = (A1 A2 ) be a 
partition of A into the columns for j such that µi > 0 (At) and the rest (A2). Also 
partition vectors w = (w1 w2) in the same way. The sufficient condition involving 
W' can then be stated as 

where one direction of the inequality comes from (6) and the other from concavity. 
Since D is negative definite, this occurs if and only if A2w 2 :f:. 0, which proves the 
following. 

Theorem 1 A sufficient condition for uniqueness of the MLE is that the matrix A2 

consisting of the columns of A corresponding to j such thatµ; = 0 has rank equal 
to its number of columns. 

3 Consistency 

Maximum likelihood estimation for interval censored data is strongly consistent. 
The MLE converges almost surely to the the truth (in a topology to be described 
presently). For simplicity we assume that F0 (0) = 0, and that all of the inspection 
times are greater than zero. We also assume that with probability one there are only 
a finite number of inspection times in any finite interval so that each realization of 
the inspection time process can be written t = (to, t1 , ••• , tm(t)) where 

0 = to < t1 < · · · < tm(t) = +oo 

and m(t) is either finite or oo. (The assumption that all times are positive serves 
merely to avoid doubly infinite sequences here.) 

The log likelihood for our problem is then 

n m(t,) 

l(F) = L L l[t,,;>:,;,>t,,;-i] log[F(ti,;-) - F(ti,;-1)]. 
i=l j=l 

A proof of consistency requires a suitable compactification of the parameter space, 
which we take to be the set 0 of all subdistribution functions with the topology 
of vague convergence (which is compact by Helley's selection theorem). The ex
pectation of the log likelihood ratio, ,\(F) = E[l(F) - l(Fo)], is an upper semicon
tinuous, nonnegative concave function by Fatou's lemma, Jensen's inequality, and 
the assumption that no inspection time occurs with positive probability. So the 
set C = { F : ,\(F) = 0} is a closed subset of 0. The distribution functions in C 
cannot be distinguished by maximum likelihood. Hence, following Redner (1981), 
we identify all of the points in C with Fo. 

Then we have the following theorem, which is proved in the Appendix A. 

Theorem 2 Under the assumptions stated above, the maximum likelihood estimate 
{ .Fn} converges strongly to the equivalence class C of the true distribution in the 
topology of vague convergence. 
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This says that the sequence {Fn} is eventually in every neighbourhood of C. 
The equivalence class C is the set of all distribution functions F such that F(t;) = 

F0(t;), j = 0, ... , m(t), for almost all inspection time sequences t = (to, t1 , ••• , tm(t))

If the inspection time process densely samples [O, oo ), the equivalence class C will · 
contain only F0 • 

4 Computation 

The method proposed by Turnbull (1976), a version of the EM algorithm, is easy 
to implement but is known to have slow convergence. Alternative methods are 
the constrained Newton-Raphson method of Peto (1973) and the similar active set 
methods of optimization theory (Fletcher, 1987, Section 11.2). The latter are more 

· difficult to implement but have quadratic convergence. 
Another problem with Turnbull's algorithm is that there can be self-consistency 

points other than the MLE. These are not stationary points of the log likelihood. 
They are maxima relative to faces of the parameter space, but moving away from 
such points into the interior increases the likelihood. An. example of this is the 
situation where F(t) puts mass only on the interval (0, 3). Suppose that the data 
are the intervals (0, 1), (1, 3), (1, 3), (0, 2), (0, 2], (2, 3]. Then it can be verified 
that p(0, 1] = 1/2, p(l, 2] = 0, p(2, 3] = 1/2 is a self-consistent estimator while 
p(0, 1) = 1/3, p(l, 2) = 1/3, p(2, 3) = 1/3 is the maximum likelihood estimate. 
An examination of the Kuhn-Tucker conditions at (1/2, 0, 1/2) shows that they are 
violated at this point. 

The occurrence of self-consistency points other than the MLE is troubling for 
two reasons. First, continuity of the EM steps implies that the algorithm makes 
arbitrarily small steps near a self-consistency point so it is not possible to test 
for convergence by examining the sequence of iterates (or the likelihood along the 
sequence). Second, as will be illustrated in the next section, it is a reasonable 
procedure to restart the EM algorithm with very small parameter values set to zero 
to "polish" the parameter values. This will produce incorrect results if the zeros are 
incorrectly determined, since the EM iteration never changes the zeros. 

Both of these problems can be cured by the simple expedient of examining the 
Kuhn-Tucker conditions. If they are used as the convergence test, convergence to the 
MLE is guaranteed. The computational effort required to check the Ku~n-Tucker 
conditions is minimal. All of the necessary quantities are calculated during the self
consistency iteration. Interestingly, Turnbull does derive a characterization of the 
MLE equivalent to the Kuhn-Tucker conditions, but he does not recommend that 
it be used to test for convergence of the self-consistency algorithm. 

5 Example 

The data in Table 1 comes from Finkelstein and Wolfe (1985). It represents the 
interval in which cosmetic deterioration for early breast cancer patients · treated 
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Table 1: Intervals in which Deterioration Occurred 

( 45,-] (6,10] (0,7) ( 46,-) ( 46,-) (7,16) (17,-] (7,14] 
(37,44] (0,8] (4,11) (15,-] (11,15] (22,-] ( 46,-] ( 46,-] 
(25,37] ( 46,-] (26,40) (46,-) (27,34] (36,44] ( 46,-] {36,48] 
(37,-] ( 40,-] (17,25) ( 46,-) (11,18) (38,-] {5,12] (37,-] 
(0,5] (18,-) (24,-) (36,-) (5,11) (19,35) (17,25) {24,-) 
(32,-) (33,-) (19,26) (37,-) {34,-) (36,-) 

with radiotherapy occurred in 46 individuals. The Kuhn-Tucker conditions indicate 
that there are only 14 intervals that need be considered; these intervals and the Pi 
associated with them are reported in Column 2 of Table 2. The matrix of ai; is of 
full rank, hence the maximum likelihood estimate is unique. 

Inspection of the probabilities indicates that several of them are very small and 
hence may be zero at the maximum likelihood estimate. They were set to zero and 
the EM algorithm applied to the resulting renormalized probability vector. The new 
candidate optimal point is reported in column 3 of Table 2, the reduced gradient 
(defined in Section 2.1) at this point is reported in column 4 and the associated 
Lagrange multipliers in column 5. Notice that the Kuhn-Tucker conditions are 
approximately satisfied at the point reported in columns 3-5 of Table 2, hence we 
have found the maximum likelihood estimate at a point where six of the Pi are zero. 

In this problem p2 may be set to zero without any of the 1/i becoming zero. 
Doing this and applying the EM algorithm yields a self-consistent estimator that 
is not the maximum likelihood estimator as was described previously. However, 
an examination of the reduced gradient and the Lagrange multipliers at this point, 
Columns 6, 7 and 8 of Table 2, indicates that the Lagrange multiplier associated 
with p2 is negative and hence the Kuhn-Tucker conditions are violated at this point. 
It cannot be a maximum likelihood estimate. 

Table 2: Restricted Set of Intervals and the Associated Probabilities 

Left Right Probability Probability Reduced Lagrange Probability Reduced Lagrange 
Gradient Multiplier Gradient Multiplier 

4 5 0.0463 0.0463 0.0002 0 0.0583 0.0000 0 
6 7 0.0335 0.0334 0.0009 0 0 0 -6.097 
7 8 0.0886 0.0886 0.0003 0 0.1128 0.0000 · 0 

11 12 0.0708 0.0708 -0.0001 0 0.0680 0.0000 0 
15 16 4.19· 10-19 0 0 24.3 0 0 24.45 
17 18 2.65·10-6 0 0 7.65 0 0 7.091 
24 25 0.0927 0.0926 0.0000 0 0.0927 0.0000 0 
25 26 1.58· 10-1 0 0 9.36 0 0 9.42 
33 34 0.0817 0.0818 0.0000 0 0.0817 0.0000 0 
34 35 4.88· 10-8 0 0 10.5 0 0 10.52 
36 37 0.0007 0 0 2.87 0 0 2.87 
38 40 0.1174 0.1206 0.0000 0 0.1185 0.0001 0 
40 44 0.0031 0 0 2.79 0 0 2.786 
46 48 0.4653 0.4658 0.0000 0 0.4654 0.0000 0 
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A Proof of Consistency 

The proof of Theorem 2 relies on the method of Wang (1985) and the idea of 
Redner (1981), which permit a simple proof of consistency. We first need to clarify 
one difference between our problem and Wang's setup. She assumes (p. 933) that 
the family of distributions constituting the model is dominated by a single a-finite 
measure, but her method actually applies to general M-estimation. We only need· 
to verify her assumptions for the log likelihood in our problem. 

The log likelihood for a single individual in our problem is 

m(t) 

l(F) = E l[t;>z>t;-i] log[F(t;-) - F(t;-1)] (8) 
j=l 

Note that exactly one of the indicators is nonzero so (8) is another notation for 
log[F(R-) - F(L)]. 

Wang's assumptions are as follows. 
Assumption 1: There is a compactification 0 of the parameter space 0 which 

is a separable metric space. 0 is the space of all distribution functions ( satisfying 
F(0) = 0), and 0 is the space of all subdistribution functions (nondecreasing, right 
continuous, F(0) = 0, and F( oo) ~ 1) with the equivalence class C defined by 
(7) identified as one point. This is compact by the Helley selection theorem and 
metrized by Levy distance if the state space [O, oo] is mapped homeomorphically to 
[0,1]. It is separable by Billingsley (1968, p. 239). 

Assumption 2: There is a decreasing sequence of neighbourhoods V,., r = 1, 2, 
... , which we take to be Levy neighbourhoods of radius 1/r of the equivalence class 
C, and for each r and F there is another parameter point, which we take to be 
FF,r = r!t F + r~l Fo, such that (1) FF,r is in 0 (is proper) when Fis, (2) FF,r E V,., 
and (3) l(F)-l(FF,r) is locally dominated on 0. (1) is obvious. (2) holds because the 
Kolmogorov-Smirnov distance between F0 and FF,r is less than or equal to 1/(r + 1) 
and the Kolmogorov-Smirnov distance is dominated by the Levy distance. For (3) 
we actually show global domination, that the function 

sup[l(F) - l(FF,r )] 
Fee 

m(t) F(t;-) - F(t;-1) 
= sup E l[t;>z>t;-i] log 1 [ ( ) ( )] r [ 

Fee i=t r+i Ft;- - F t;-1 + r+i Fo(t;-) - Fo(t;-1)] 
m(t) 

~ E l[t;>z>t;-i] log(r + 1) 
j=l 

< log(r + 1) 

has finite expectation. As an aside,. this shows the advantage of Wang's method. 
Classical methods require that l(F) - l(Fo) be locally dominated, which is not true. 

Assumption 3: For any F ft. C the expectation of l(F) - l(FF,r) is strictly less 
than zero. The proof is similar to Lemma 4.4 in Wang (1985). 
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Assumption 4: l(F) - l(FF,r) is lower semicontinuous at each FE 0 ex·cept for 
a null set of points which does not depend on F. Actually no null set is necessary. 
By the portmanteau theorem (Billingsley, 1968, p. 11) if Fn converges vaguely to 
F then liminfn Fn(t;-) - Fn(t;-1) ~ F(t;-) - F(t;-1). This, together with the 
monotonicity of u ~ log[u/(au + b)] with a, band u positive gives the result. 

Assumption 5: l(F)-l(FF,r) is upper semicontinuous at each FE 0 except for a 
null set of points which may depend on F. Here the exception set is the set of (x, t) 
such that not; is a jump of F. For such t we have by the portmanteau theorem 
limn Fn(t;-) - Fn(t;_t) = F(t;-) - F(t;-1) if Fn ~ F vaguely. 
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