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SUMMARY 

Bayesian methods are potentially useful for the design, monitoring, and analysis of clinical 

trials. These methods, however, require that prior information be quantified and that the methods 

be robust. This paper describes a method to help quantify beliefs in the form of a prior distribution 

about regression coefficients in a proportional hazards regression model. The method uses dynamic 

graphical displays of probability distributions that can be freehand adjusted. The method was 

developed for, and is applied to, a randomized trial comparing prophylaxes for toxoplasmosis in a 

population of HIV positive individuals. Prior distributions from five AIDS experts are elicited. The 

experts represent a community of consumers of the results of the trial and these prior distributions 

can be used to try to make the monitoring and analy_sis of the trial robust. 
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1 Introduction 

Bayesian approaches to clinical trials, as discussed for example by Spiegelhalter and Freedman 

(1988) and Freedman· and Spiegelhalter (1992), require the specification of a prior distribution. 

In this paper, an AIDS clinical trial comparing potential prophylaxes for toxoplasmosis is used as 

a context to develop and implement methodology to aid in the elicitation of prior distributions. 

Following Kadane (1986), we require that a range of priors be identified that are representative of 

"the community." These will then be used to try to make monitoring and analysis robust. This 

paper focuses on the elicitation part of such an approach and we report on the prior distributions 

of five individuals. Bayesian analysis and monitoring of the trial is reported in Carlin et al (1992). 

First we provide a description of the toxoplasmosis prophylaxis trial and then describe the elic­

itation method based on graphical input and feedback. We then summarize what we learned from 

eliciting the prior distributions, the results of the trial, and some of the problems in implementing 

a Bayesian approach. 

2 The toxoplasmosis prophylaxis trial 

The toxoplasmosis prophylaxis trial, conducted through the Community Programs for Clinical 

Research on AIDS, was a placebo controlled, modified double blind study to evaluate the effec­

tiveness of both clindamycin and pyrimethamine on the subsequent development of toxoplasmosis 

encephalitis (TE). An effective prophylactic agent needed to be found, since TE was a major cause 

of mortality and morbidity among patients with AIDS, and had been reported to be a very common 

opportunistic infection and was the most common cause of intracerebral mass lesions. 

All patients entered into the study had a positive titer for Toxoplasma gondii. Enrollment was 
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planned for one year with all patients to be followed for a minimum of two years so that the average 

period of follow-up would be two and a half years. A computerized literature search for information 

on toxoplasmosis and AIDS yielded very little, the exception being a paper by Grant et al (1990) 

in which it was estimated that 30% of the placebo patients would develop TE in two and a half 

years. 

The study had four treatment groups: active clindamycin, placebo clindamycin, active pyrimeth­

amine, and placebo pyrimethamine with an allocation ratio of 2:1:2:1 respectively. Randomization 

was set up so that allocation to clindamycin and pyrimethamine was unblinded and allocation within 

each group to active or placebo was double blind. The planned analysis was a semi-parametric 

proportional hazards regression model (Cox, 1972). Death was to be treated as a censoring event. 

In order to calculate sample size, based on frequentist methods for computing power, the protocol 

committee agreed upon values for the effects. They assumed that among fully compliant patients 

those on active drug would have a 50% lower rate of TE compared to the pooled placebo groups. 

Given the potential for toxicities, investigators felt that a large reduction in TE, perhaps as high 

as 50%, was necessary before these drugs could be recommended for routine use in the community. 

It was also predicted that 10% of the placebo patients would switch over to one of the active drugs, 

25% of the patients assigned to active drug would not comply with their assignments, and 33% 

of the patients would be lost to follow-up due to death unrelated to treatment assignment. The 

planned sample size was 750 patients with 250 patients to be allocated to each active medication 

group and 125 patients to each placebo group. In the analysis the two placebo groups would be 

combined. 

The first patient was randomized in September 1990. In March of 1991, the active and placebo 

clindamycin groups were terminated due to an excess of non-life threatening but serious toxicities 
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that re~ulted in permanent medication discontinuances. The details of the toxicities are reported in 

Jacobson et al (1992a). The pyrimethamine arm continued. After termination of the clindamycin 

arm, people on either clindamycin or placebo for clindamycin were offered rerandomization to either 

the pyrimethamine group or placebo group with a two to one allocation ratio. 

In April 1992, the trial was terminated because the rate of TE in the pyrimethamine and placebo 

groups was much lower than expected. The rate in the pyrim.ethamine arm was actually slightly 

higher than in the placebo arm, but the difference was not significant and continuation of the trial 

was very unlikely to lead to a significant difference. Data that accrued after termination indicated 

an increased death rate on the pyrimethamine arm; (see Jacobson et al, 1992b). 

3 The survival model and Bayes structure 

The protocol specified an analysis by a proportional hazards model, with a nonparametric un­

derlying hazard function. Our Bayesian analysis will follow this same general approach using the 

partial likelihood as a likelihood. This strategy can be justified using arguments given in Kalbfleisch 

(1978), if a Dirichlet process or a gamma process is used for the underlying hazard. 

Specification of an informative prior distribution is difficult. Methods for specifying opinions 

have been developed for several different sampling models, for example the Bernoulli process (Win­

kler, 1967; Chaloner and Duncan, 1983) and the no~al linear model (Kadane et al., 1980; Garth­

waite and Dickey, 1990 and 1991 ). There are no specific methods that we know of, however, for 

specifying a prior distribution on the regression coefficients of a proportional hazards model. Meth­

ods for other models typically require the expert to specify certain properties of his or her beliefs 

and a distribution is chosen that has these properties, or properties very close to the ones provided 
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by the expert. The distribution is usually chosen from a. specific parametric family, typically a 

conjugate family. Freedman and Spiegelhalter (1983) ta.ke a different approach and specify a. prior 

distribution which is uniform over intervals, see also Spiegelhalter, Freedman and Parmar (1992). 

We chose to take a. combination of these approaches by starting with the specification of a 

prior distribution from a parametric family. The expert then has the option of ma.king freehand 

adjustments. Specifying both the initial parametric distribution a.nd the nonparametric distribution 

a.re done with the help of dynamic graphical plots to provide feedback within the XLISP-STAT 

environment of Tierney (1990). 

4 Elicitation method 

First we describe a method for specifying a parametric prior distribution on the two regression 

parameters corresponding to the two treatment effects, and then discuss freehand adjustments. 

Since the clindamycin a.rm was terminated early, due to toxicities, the method was converted to 

one for a single regression parameter. The univariate method is described in Section 4.3. 

4.1 The bivariate version 

Rather than direct assessment of the proportional hazards regression parameters the elicitation 

scheme is based on three potentially observable quantities, Po, PO, a.nd PP, the probabilities of 

experiencing the toxoplasmosis endpoint within the first two yea.rs of treatment on the placebo, 

clinda.mycin a.nd pyrimetha.mine respectively. The expert can think a.bout ea.ch probability as 

a proportion of a large group of patients, thus incorporating beliefs about noncompliance and 

switchover directly rather than having to consider a perfectly compliant patient ( as in Freedman 

and Spiegelhalter, 1983). Using such potentially observable quantities follows the argument of 
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Kadane et al (1980) that observable quantities are easier to think about than regression parameters. 

The baseline hazard for the placebo is assumed to be the same for each respective treatment 

arm. In the proportional hazards model, we denote the baseline survivor function for the combined 

placebo arms by S(t) and the regression coefficients for the two treatments by {3p and f3c. For 

two-year follow-up: 

Po = 1- S(2) 

pp = 1 - S(2)exp(Pp) 

PC = 1- S(2rxp(Pc). 

In our experience, clinicians consider the efficacy of a treatment as a relative risk reduction 

condition~ on the underlying placebo rate. For example, if the incidence of toxoplasmosis for the 

placebo group over two years is known to be 15%, then the incidence for the pyrimethamine group 

might be thought most likely to be 10%; whereas if it became known that the incidence on placebo 

was in fact 30%, the incidence on pyrimethamine might be thought most likely to be 20%. In both 

cases the relative risk is approximately 0.67. 

Based on these considerations the elicitation scheme asks the expert for a "best guess" of the 

incidence on placebo, denoted by f,0 • The joint probability distribution of pp and pc is elicited 

conditional on p0 = f,0 • To structure a parametric approach we utilize the property that for the 

proportional hazards model, the complementary log-log transformation of pp and Pc has a range 

of the whole real line and is linear in the regression coefficients. Specifically, 

log{-log(l - pp)} = {3p + log{-log(l - Po)} 
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log{- log(l - po)} = .Bo+ log{-log(l - Po)}. 

We use a parametric bivariate distribution for ,8p and /Jo conditional on Po= j,0 , and we assume: 

f({Jp,,8olPo =Po)= f(,8p,,8o). (1) 

To check assumptions, the elicitation process can be repeated using a different follow-up in­

terval and the elicited distributions o~ the /j's can be compared. Under the proportional hazards 

assumption the prior distribution should not depend on the interval. In our example, we repeat 

the process by asking the expert about predictions for both two and three years of follow-up and 

compare the distributions on the regression coefficients. 

4.2 The parametric bivariate distribution 

Although it seems natural to use a bivariate normal distribution for (f3p, .Be), this choice is not 

particularly helpful. For this distribution on the fJ's, the corresponding distribution of pp and Po 

can have singularities at zero and one (Meinhold and Singpurwalla, 1987). Realistic prior opinipns 

on the probabilities are unlikely to have such singularities. We therefore take (,8p, .Bo) to have a 

Type B bivariate extreme value distribution as given in Johnson and Kotz (1972, pp. 251-255), 

f(x, Yim) = em(z+y)(emz + emy)-2+1/m 

x{m _ 1 + (emz + emy)tlm}exp[-(emz + emy)t/m] 

form~ 1. Note that m = 1 corresponds to independence of f3p and /Jo (and therefore of pp and 

Pc) and m > 1 produces positive correlation. For a distribution with location parameters µp and 

µc and scale parameters C1p and C1c the probability density function is obtained by substituting 
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u;1 ( x - µp) for x and u01 (y - µo) for y in the above expression and multiplying the result by 

u;1u01• Marginal distributions are extreme value with scale and lo~ation parameters (µp, up) and 

(µo,uo). 

The marginal distribution of pp has probability density function: 

,. 1 log{-log(l - pp)} - µp 
f(pplµp,ap,po =Po)= (l - pp){-log(l - pp)}up exp{-ezp[ up ]}. (2) 

The corresponding distribution of [-l~g(l - pp)) is Weibull and of course, log[-log(l - pp)] is 

extreme value. 

To specify the distribution on pp and po the expert specifies the upper and lower quartiles for 

pp and po. These quartiles are used to calculate initial values for µp, µo, up, and uc. Starting 

with m = 1, i.e. independence, the expert is presented with plots of each marginal distribution 

and a dialog box with five sliders. The first four sliders adjust the four parameters µp, µo, up 

and uo. As the values are changed, the plots change accordingly. The sliders allow the expert to 

adjust interactively the specified values and see the consequences directly, in terms of the marginal 

distributions for pp and Po. 

The quantities pp and po are likely to be dependent with a positive correlation. Our current 

approach does not address negative correlation. To pick an initial value of m, the expert specifies 

the probability that both probabilities pp and Po are larger than their respective marginal medians. 

If pp and Pc are independent, this probability is 0.25. For the type B extreme valu~ distribution 

the probability is (½)21'm (Johnson and Kotz 1972, p. 253) and the probability must be between 

0.25 and 0.50. 

The parameter m can be adjusted using the fifth slider. Graphical feedback on the joint dis-
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tribution is provided by a contour plot of the joint prior distribution of pp and Pc with regions 

corresponding to approximate 20%, 40%, 60% and 80% density regions based on a chi-square 

approximation to the log likelihood. Changing the value of m does not change the marginal distri­

butions but it does change the contour plot. 

Figure 1 shows the screen of the workstation running the program to elicit a parametric ap­

proximation to a prior opinion. The figure shows the two marginals, a contour plot of the joint 

density and the dialog box with the five sliders. 

The single expert on whom this bivariate method was tried reported that his beliefs were repre­

sented by this parametric family. Methods are being developed for extending this scheme to allow 

for non-parametric adjustments using more general copula combinations of marginal distributions 

(see eg. Shih, 1990). 

4.3 The univariate version 

The univariate version of the elicitation method is very similar to but more flexible than the 

bivariate version. The expert specifies the distribution of pp by first specifying quartiles and then 

adjusting interactively within the parametric family given by Equation 2. Only two sliders are 

required, one for each of µp and qp. The expert subsequently adjusts the plot by freehand using 

a mouse. 

5 Experience with prior elicitation 

The elicitation process has been used with five individuals with quite different backgrounds whom 

we will refer to as A, B, C, D and E. A, Band Care physicians: A practices at a university AIDS 

clinic, B specializes in the neurological manifestations of AIDS and HIV infection, and C practices 
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at a community clinic. D and E are non-physicians involved in research in AIDS clinical trials: D 

manages studies and E is an infectious disease epidemiologist. 

In eliciting the opinions we used a written script so that questions were asked in a standard 

form. 

5.1 Bivariate elicitation 

Expert A provided bivariate information before the clindamycin arm was terminated. The other 

individuals provided opinions after this time and only gave their beliefs -about the effect of pyri­

methamine. 

The initial step requires a best guess value of po. Expert A experienced difficulty in treating 

death without TE as an uninformative censoring event. Expert A decided to partition the popula­

tion into four groups: people who will die without experiencing TE, people who die from an initial 

attack of TE, people who experience TE and recover from the first attack and people who do not 

die and also do not experience TE. A's best ·guess for a large group of patients is given in Table 1 

for the placebo group and the clindamycin group. The increased incidence of death from non-TE 

causes in the treatment group in Table 1 results from reducing the risk of TE and thus allowing 

other clinical events to cause death. Expert A could not agree with treating death from non-TE 

related causes as uninformative censoring. 

In light of this we proceeded to elicit A's opinion using the combined endpoint of death or TE. 

A's best guess was j,0 = 0.69. Conditional upon this, A specified initial values for the mode, 25th 

percentile and 75th percentile for the distribution of pc: 0.60, 0.40 and 0.80 respectively. A adjusted 

the plot derived from these initial values ending up with µc = -0.15 and qc = 0.25. We then 

discussed the pyrimethamine treatment effect. Expert A believed that the marginal distribution 
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was essentially equal to that for clindam.ycin. 

Following the script, we explained the idea behind the joint probability that both proportions 

would be above their medians and A reported a joint probability of 0.45 ( this corresponds to 

strong dependence). Figure· I shows the distribution specified by this physician as displayed on the 

workstation screen. Expert A found the plots extremely helpful and suggested some modifications 

to the program. 

5.2 Univariate elicitation 

The remaining four experts specified their beliefs using the univariate version of the method for pp. 

None of these individuals had the difficulty experienced by A of treating death as uninformative 

censoring. Each individual had a very different approach to answering. the questions. 

Experts B, C and E had no difficulty providing initial quartiles and a probability distribution 

with the process completed in about 30 minutes. Expert D took much longer, over an hour. and 

needed to make several side calculations and assumptions about patient attributes. Specifically, D 

assumed that among the patient population CD4 counts were approximately uniformly distributed 

below 200. Other factors that influenced D were that the treatment could have some efficacy in 

preventing other opportunistic infections such as Pneumocystis carinii pneumonia (PCP). 

The values of p0 for B, C, D and E were 0.20, O. 75, 0.18 and 0.65 respectively. The four 

distributions elicited are given in Figure 2, along with the expert A's marginal distribution for pp. 

The elicited distributions were graphs of a density function, corresponding to a continuous 

distribution. Each graph was stored using a 32 point representation with uniformly spaced points 

on the x-axis. This was converted to a 31 point discrete approximation with equal probability at 

each point, not necessarily. equally spaced. The approximation is based on a linearly interpolation 
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of the 32 point representation. 

5.3 Distributions on the regression coefficient 

The distributions on the regression coefficient, /jp, were calculated from the discrete approximation. 

The distributions on /jp for all five experts are given in Figure 3 as probability histograms. Recall 

that the distribution for A corresponds to a different endpoint than that considered by the other 

four. 

5.4 Checking assumptions 

In the elicitation process we as~umed that the proportional hazards model holds, that the prior 

distribution on the regression coefficients are independent of that on the underlying hazard and 

that the independence assumption in Equation 1 holds. To check the assumptions the process was 

repeated for three experts by asking about three year in addition to two year predictions~ The 

elicited distributions on /jp for C, D, and E are shown in Figure 4. Clearly the assumptions do 

not hold as the distributions are not sufficiently close. Further research is necessary to address this 

issue. 

6 Discussion 

6.1 Lesons · learned about the elicitation process 

Through this experiment in elicitation we !_earned that: 

1. The dynamic graphical displays did help the experts to visualize probability distributions and 

they did provide useful instant feedback. 
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2. A written script was developed, and improved upon after the first session, to give clarity and 

consistency to the questions asked. Having a. clear well defined outline questions to ask of the 

expert was extremely important. 

3. Experts a.re very different both in terms of opinions and how they parse the problem. What 

was easy for one expert was hard for another. Developing a single method for elicitation that 

is good for everybody will be difficult, if not impossible. 

4. Even though the process only requires specification of a best guess value for po experts wanted 

to report their uncertainty a.bout it. 

5. Extreme percentiles may be better than quartiles. Several experts started from "95% inter­

vals" when asked for their quartiles. The 2.5th and 97 .5th percentiles may therefore be easier 

for them to think a.bout, as approximate bounds, than the 25th and 75th. 

6. A satisfactory endpoint is essential but ma.y be difficult to decide upon without exploring the 

data. 

7. Some check of the proportional hazards and other assumptions is required. The distributions 

obtained from asking a.bout three year predictions were different from those obtained from 

two yea.r predictions. 

In summary this elicitation process is not perfect, but it is a. first attempt to develop a method. 

6.2 Lessons learned about the toxoplasmosis trial 

At the completion of the trial we learned: 
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1. None of the experts predicted the very low rate of TE experienced in the trial. Out of the 

396 people in the trial only 12 out of 264 on pyrimethamine got TE and only 4 out of 132 on 

placebo got TE. The low rate is believed to be partly due to the prophylaxis treatment for 

PCP. All patients were taking some drug as PCP prophylaxis throughout the trial. Among 

patients receiving the drug Bactrim, TE was extremely rare and so Bactrim may also have 

a prophylactic effect for TE in addition to PCP. During the time the trial wa.s running, 

other studies indicated that Ba.ctrim may be an effective PCP prophylaxis and many patients 

switched to Ba.ctrim during the trial. 

2. All five experts put high probability on a large beneficial effect of the treatment. They were 

wrong and the rate of TE wa.s slightly higher in the pyrimetha.mine group than in the placebo 

group. 

3. In the pyrimethamine group 46 out of 264 people died compared to only 13 out of 132 in the 

placebo group. The death rate was higher in the pyrimetha.mine group. The data indicated 

that death wa.s informative and the analysis should include death in the endpoint. The 

assumption ma.de by the protocol tea.m at the design stage of the trial that there would be 

no difference in the non TE death rates in the different arms, wa.s wrong. Four of the five 

prior distributions were elicited without death in the endpoint. 

4. Using death or TE a.s a.n endpoint the proportional hazards model did not provide a good 

fit to the data. The hazard for death in the pyrimetha.mine group increased over follow-up 

compared to the placebo group. 

Bactrim becoming the choice for standard prophylaxis for PCP during the trial illustrates that 

standard care for AIDS changes rapidly a.nd might well have changed the outcome of the trial. 
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The changing nature of standard care and the large number of drugs many AIDS patients take 

introduces new challenges to the statistical analysis of an AIDS clinical trial: this is discussed in 

detail in Ellenberg, Finkelstein and Schoenfeld (1992). These challenges are present in either a 

Bayesian or frequentist approach. 

Knowledge about AIDS is changing rapidly. Information is accrued during a trial from sources 

independent of the trial. Experts will accrue information from their clinical practice and elsewhere 

during a trial. In addition, other trials may yield information: trials for PCP prophylaxis and some 

French trials for TE prophylaxis were concurrent with our trial. Information accrued concurrently 

could be incorporated into either the likelihood or the prior distributions. 

In order to specify a prior distribution the model that will be used for analysis must be specified. 

The data may indicate an alternative model. Perhaps one prior distribution and one model could 

be used at the design stage and, subsequently, when the statistician decides on a model of choice 

for an analysis, either interim or the final, the statistician could return to the expert, who remains 

blinded to the data, and elicit a prior distribution for that model. The prior specification of a 

model is also required for a correct frequentist analysis. 

This excercise has illustrated some of the practical problems in implementing a Bayesian ap­

proach to a clinical trial. 

6.3 The need for an elicitation method 

Even if prior distributions are not accepted for analysis and monitoring they are clearly useful in 

the design stage to decide on a sample size, to decide whether or not the trial is feasible and to 

decide on the ethics of the trial. 

In the design of this trial the protocol team used their best guesses for the magnitude of the 
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rates and effects to compute a sample size. The explicit incorporation of prior uncertainty into the 

design process would be beneficial. In addition, at the design stage, if a physician believed that 

an arm of a clinical trial was harmful to a patient then it would be unethical for that physician to 

enroll patients in a trial involving the possible use of that treatment. In this trial the beneficial 

effect of the prophylaxis must b~ large enough to outweigh the potential toxicity and side effects of 

the drug before it would be used routinely. The quantification of prior opinion is required for an 

individual to decide whether it is ethical to participate in the trial: either as a physician or as a 

patient. 

Prior distributions a.re also required for Bayesian monitoring of a trial. ff a treatment is to be 

widely used, the results of a clinical trial must be convincing to many different people: in particular 

to the physicians prescribing it and to the people receiving the treatment. A method for stopping 

a trial could be to stop when a majority of this community of interested parties would agree on 

the practical implications of the results. It is therefore appropriate to elicit prior opinions from as 

many such people as possible in order to determine when to stop the tr~al. 

Such Bayesian monitoring of this trial using such a method is discussed in Carlin et al (1992); 

see also Kadane (1986), Louis (1992), Carlin and Louis (1992). 

6.4 Discussion 

Bayesian methods are becoming increasingly recognized as appropriate for biostatistical problems 

and clinical trials, see for example Breslow (1990). The implementation of Bayesian methods 

requires the specification of prior distributions. Prior distributions are hard to specify, however, 

and little guidance is available in the literature for elicitation in clinical trials. 
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die die recover from alive and 

without TE from TE first TE no TE 

placebo 51% 9% 9% 31% 

clindamycin 54% 3% 3% 40% 

TABLE 1: Expert A's best guesses. 
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Fig 1: the screen for the bivariate el i citation for expert A. 
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Fig 3: prior distributions on the regression coefficient from 2 year probabilities 



C D E 

in 
in in N N N 

0 
0 0 N N N 

"! "! "! 

q q q 
~ 

~ 

in 
"! "! 0 
0 0 

0 
0 q 0 0 0 

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 

beta beta beta 

Fig 4: the prior d~stribu~ions on regression coefficient from 3 year probabilities for{:;. D and E 


