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Abstract 

The sum of two independent Cauchy random variables is well-known to be distributed 

according to a ( scaled) Cauchy distribution. This reproductive property is no longer 

tenable, however, in the general multivariate case; n~ssary and sufficient conditions are 

here investigated. A distribution whose density is proportional to a product oft-densities 

has been called a poly-t distribution, or double-t for two factors in the density. Simple 

mathematical forms for the normalizing constant and the lower-order moments of the 

multivariate double-Cauchy density are here derived when the two Cauchy-density factors 

satisfy the aforementioned conditions. These forms are then applied to obtain new Bayesian 

estimates of the multivariate normal location parameter and slope coefficients in the linear 

multiple regression sampling model with independent Cauchy-type g-prior distributions. 

The new estimators are adaptive, and differ substantially from the usual Bayesian estimates 

obtained using natural conjugate prior distributions. 

1. Introduction 

The well-known Cauchy distribution has heavy tails and possesses a reproductive 

property, whereby the sum of two independent scaled Cauchy random quantities is, still, a 

scaled Cauchy quantity. The Cauchy distribution is often employed in robustness studies. 

Having no mean or higher moments, it is often used to constructt counterexamples. The 

poly-Cauchy is a distribution with density proportional to a product of Cauchy densities. 

The double-Cauchy, with two Cauchy factors, is sometimes encountered in Bayesian 

inference for a normal population, for example, as the posterior distribution of the mean 

when it is prior distributed according to a Cauchy distribution with the unknown variance 

independently reciprocal chi-squared distributed. (For early work involving even more 
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general multivariate-t and matrix-t factors, see Stein (1962), Lindley (1962), Anscombe 

(1963), Tiao and 2:ellner (1964), and Stone (1964), followed later by Dickey (1967, 1968, 

1975) and others.) In the univ~te case, Bian and Dickey ( 1990) found simple 

mathematical forms for the mean and variance of the double-Cauchy and used them to 

develop new Bayesian estimates of the normal location parameter under Cauchy-type prior 

distributions. Since the estimates are obtained from non-conjugate prior distributions, they 

exhibit new properties, including adaptability to the dispersion in the data, properties which 

do not appe.ar in the usual Bayesian estimates based on conjugate or non-informative 

priors. 

In this paper, we study properties of the multivariate Cauchy and the lower-order 

moments of the multivariate double-Cauchy. The multivariate Cauchy is a direct 

generalization of the univariate Cauchy, but in general, the reproductive property does not 

hold. Necessary and sufficient conditions for the property will be investigated here, in 

Section 2. The normalizing constant and lower moments of the multivariate double-Cauchy 

density, derived in Section 3, will have simple mathematical forms when the two Cauchy 

component densities satisfy the conditions. These are applied, in Sections 4 and 5, to 

Bayesian estimation of the multivariate normal location parameter and the coefficient 

parameter in multiple linear regression. The location or regression parameters are 
prior-distributed as multivariate Cauchy, independently of the dispersion component a2. In 

all these applications, the parameters of interest, the mean vector or regression coefficients, 

are posterior distributed as multivariate double-Cauchy. 

2. Reproductive property of multivariate Cauchy distributions 

We review briefly necessary formulae and concepts of the multivariate Cauchy distribution. 
Suppose the random vector i = (21, •••• , Zp)' to be distributed multivariate normal N(O, Ip) 

and Y distributed as a chi-square quantity with 1 degree of freedom, independently of i. 

Denote 

-[~
1
]- _112 -[z1:·

112
] ~ - . - y i- . 

. . 
Xp 2r,y-t/2 

(2.1) 

Then the distribution of~ is standard p-dimension multivariate Cauchy and its density 

function is 
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fc(!; Q, Ip)= c(p) (1 + !'!) -(I+p)/2, 

where c(p) = r[(p+l)/2] ,r(p+l)/2 (Raiffa & Schlaifer 1961, p.256). 

The characteristic function of ?f. is 

cf>c(1; Q, Ip)= E[exp( i1 '~ )] = E( exp[ i r tj Zj Y-112] ). 

(2.2) 

Since r ljZj is distributed as N(O, 111 ID, independently°from Y, then r(tjZj)Y-112 is 

distributed as a scaled Cauchy. Thus, 

<f>c(1; Q, Ip) = exp( - 111 ID, 

where 11111 = ( f ~2) 
112 

• Further, if W is the linear transformation 
j=l 

Yf = (Vl/2)' ?f. + l!, 

then the density of W is 

(2.3) 

(2.4) 

fc('~y; I:!, V) = c(p)[det(V)J-112 [ 1 + (w- J:!)'V-1(w-1:!H -(l+p)/
2

, (2.5) 

and the characteristic function of Vj is 

<f>c(1; l!, V) = exp( i1 'J:!) 4>c(V1121; Q, Ip) = exp( i.t 'i! - IIV112 1 ID, (2.6) 

where IIV 112 111 = (1 'V 1) 112. We call J:! and V the center and dispersion matrix of the 

multivariate Cauchy random variable Vj, respectively. ~ and W do not have finite means 

and variances. The density function (2.5) and characteristic function (2.6) depend only on 

quadratic forms in their arguments, and the standard multivariate Cauchy distribution (2.2) 

is invariant under orthogonal transformations (Eaton 1983). 

The reproductive property of the univariate Cauchy distribution is no longer automatic 

in the multivariate case, but when the dispersion matrices of the two Cauchy factors are 

proportional, the property holds. Before proving a theorem to this effect, we need the 

following lemma. 

Lemma 1. (Bian 1989) Suppose both A and B are n x n semi-positive definite matrices, 

then there exists an n x n matrix C such that 
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(x'Ax)ll2+(x'Bx)Il2 = (x'Cx)112, for an x E Rn, (2.7) 

iff A is proportional to B. 

Theorem 1. Suppose ~ 1 and ~2 are independently p-dimensional standard Cauchy. Then 

the vector 

(2.8) 

is distributed as a scaled Cauchy if and only if B1 Bt' is proportional to BiB2'. 

Proof. Using (2.6), the characteristic functions of B1 ~ 1 and Bi~2 respectively are <1>1 (1) 

= exp[-(!,'B1 Bt '!,)112] and <J>i(!.) = exp[-(!,'B2B2'!)112]. Since ~ 1 and ~ 2 are 

independent, the characteristic function of Y is the product 

<l>y(!.) = <1>1 (1)4>2(!.) = exp(-UIB1 '!. ll+IIB2'1 II]). (2.9) 

The distribution is determined by the characteristic function. Hence, Y is distributed as a 

scaled Cauchy if and only if there is a semi-positive definite matrix C for which 

<l>y(1) = exp(-UIB1'1 ll+IIBi'!. II])= exp(-(l'C t.) 112). (2.10) 

This is equivalent to 

(2.11) 

By Lemma 1, (2.11) holds if and only if B1B1' is proportional to B2Bi'. 

3. Lower-order moments of poly-Cauchy distributions 

The double-Cauchy density is proportional to a product of two Cauchy den.sities, i.e. 

(3.1) 

Simple mathematical forms for the normalizing constant, mean, and variance of a univariate 

poly-Cauchy density were found by Bian & Dickey (1990). As Theorem 1 has shown, the 

multivariate case is more complicated. In general, there is no closed form for the 
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nonnalizing constant and lower-order moments. However, when the dispersion matrices of 

the Cauchy components are proportional, simple mathematical forms are available. 

Lemma 2. (i) Suppose f is a measurable real function, so that the following integrals are 

meaningfuL Then 

00 

00 

(ii) j xn·lexp(-ax)Sin(bx)dx = f(n) (a2+t,2)"nl2Sin[n arctg(b/a)] 

(Gradsteyn & Ryzhik 1965, pp.620, 490). 

Lemma 3. 

n/2 

J Sinx Cosn-2x 
(1 +a2Sin2x)nl2 Sin[n arctg(aSinx)] dx 

0 

= a 2n-2 B[(n+ l)ll., (n-l)ll.] (1 +a2)-(n+l)/2, 

where B(, ) is the beta function. 

Proof. (i) Case of odd n. 

(3.2) 

(3.3) 

(3.4) 

Taking the change of variable Sin x = Sincp/(y+bCoscp ), where cp = arctgb, and using 

the identity 

00 

x - Sin[ m arctg( mcp ) ] dx f 
k 1 bs· 

(x2+2bxCoscp+b2)ml2 (x+bCoscp) 
0 

= B(k, m-k) bm-k Sin(m-k)cp 

(Grobner and Hofreiter 1950, p.184), we obtain 
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00 

I.HS of (3.4) = Sin2cp f (y
2
+ 2ySincp )Cn-

3
)/2 Sin[ n arctg( bSincp ) ] dy 

(y2+ 2byCoscp+b2)nl2 (y+bCoscp) 
0 

= Sin2q) }o ((n-;>/2) 2iSinicp B(j+2, n-j-2) bi+2 Sin(j+2)cp, (3.5) 

where Sincp = bCoscp = b(l +b2)-112. 

(ii) Case of even n. 

Let tgy = bSinx, then Siny = bSinx/(1 +b2Sin2x)ll2 and Cosy= (1 +b2Sin2x)-ll2. 

Since Sin ny = n Cosn-ly Siny - ( 3) Cosn-3y Sin3y +{~) Cosn-Sy Sin5y -... , (3.6) 

1 

and J xkl2( 1-x)<n-3)/2 dx 
(} +b2x)D 

0 

= (1 +b2)-(k/2+ 1) (n-r11 +b2)-j ((n-l :k)/2) B[k/2+ 1 +j,n-(k/2+ 1 +j)], 
j=O J 

ifn- k+ 3 is even (3.7) 

(Gradsteyn and Ryzhik 1965 p.27 and Grobner and Hofreiter 1950 p.175), we obtain by 

substituting (3.6) into (3.4) and then taking the change of variable z = Sin2x, 

1 
1 J (1-z)(n-3)/2 {n) (n) LHS of (3.4) = - -----1[nbzll2 _ 

3 
b3z312 + 5 b5z512 ____ ] dz 

2 (}+b2z)D .. .. 
0 

[(n-1)/2] { ) 
= (1/2) ~ (-1 )W 2;:+ l t,2m+ 1(1 +t,2)-(m+3/2) 

nfl-m-1 . {n/2-m-1) · I (1 +b2)9J . B[m+3/2+j,n-(m+3/2+j)]. 
j=O J 

(3.8) 

The relation (3.4) can be verified by using the forms (3.5) and (3.8). 

Theorem 2. Let ~ be distributed according to the multivariate poly-Cauchy density, 

6 



f(!) = k[l +(! - M1)'(a12Vr1(! - 1!1)] -(l+p)/2[1 +(! - M1)'(a22Vr1(! - 1!1)1 -(l+p)/2. 

(3.9) 

Then 

(i) the normalizing constant is 

k=c(p)[det(V)]-112[(a1+ai}/C110'2]P(l+ II y-1l2(!!rl!v ll2/(a1+ai}2)]<P+l)/2, (3.10) 

(ii) the mean is 

(3. t 1) 

(iii) and if l: = E{~ - E(~]~ - E(~)]'} is the covariace matrix of~, then 

(3.13) 

Proof. (i) The normalizing constant k is found by Theorem 1, since the convolution of two 

Cauchy densities is a Cauchy density in this case. 

The proofs of (ii) and (iii) are given in an Appendix. 

4. Estimating the multivariate normal mean. 

Statistical inference concerning the mean of a multinormal process has been studied deeply 

from the classical point of view (Stein 1962) and from the Bayesian point of view with the 

usual conjugate or non-infonnative priors (Raiffa & Schlaifer 1961, Press 1982). Further, 

Stone (1964) and Dickey (1968, 1971, 1975) considered Bayesian inference regarding 

multinormal sampling, using independent priors for mean and variance. But the problem 

of estimating the mean vector with these independent priors has not, itself, received much 

treatment, in part, because of the complication of the posterior distributions, as pointed out 

by Jeffreys n948 p.123-124). Here, we consider Bayesian estimation of the multinonnal 

mean, with an independent Cauchy-type prior distribution. 

Theorem 3. Suppose that ! 1, ••• , !n are independently drawn from a p-dimension normal 

population N(I!, a2V) with unknown mean vector 14 and variance component a2, and that 

I! and a2 are prior independently distributed according to a scaled Cauchy distribution and a 

reciprocal chi-square type distribution, respectively. In notation, 
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f( a -2) ex ( a-2ft<12-lexp(- a -2so2 fl.). (4.1) 

Then 

(i) the joint posterior density is 

f(H, 0 -21 x, 9n) ex ( 0 -2)(np+k)/2-l fc(IJ; 1!1o, d
0
2V) 

(4.2) 

(ii) the marginal posterior density of I! is a poly-t with density 

(iii) furthermore, ifk = (1-n)p + 1, the marginal posterior density of I! is a poly-Cauchy 

with the density 

f(l! Ix, 8n) oc fc{J:!; l!lo, d02V)[ 1 +n11v-tfl(x - J:!)ll/(n8n2+si)]-<P+l)/2, (4.4) 

and the conditional predictive distribution of x for given 8n is Cauchy with the density 

nv-112(x-mo)ll2 
fi(XI S ) ex [ 1 + - J-(p+ 1)/2 

n [(Sn2+s
0
2/n)l/2+do]2 ' 

(4.5) 

where X = (1/n) }: !i, and Sn.2 = (1/n) l: UV·ll2(!i - X)ll2• 

Proof. (i) The density of the sufficient statistic (x, 8n2) is 

f(x, 8n2I I!, a) ex (a-2)npl2 (9n2)Cn-l)pfl-1 exp{-(na-2/2)( 11v-112(x- l!)II+ s02 ]}. 

The joint density of x, 8n 2 and I!, c, -2 is proportiona1 to the product of the likelihood 

function and the prior density, 

·fc(&!; J!lo, <1o2V) exp{-(na-2/2)[ 11v-112(x - !!)II+ 8n2 ]}. (4.6) 

The joint posterior density of I! and a-2 is proportional to the joint density ( 4.6), so that 
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f(I:!, c,-21 x, Sn) cc ( c, -2)(np+k-2)/2 fc(l!; J!lo, d
0
2V) 

. exp{- (a-2J2)[nllV-112(x - y)ll+nSn2+so2]}. 

(ii) The marginal density ( 4.3) is obtained immediately by integrating out a -2 from the 

joint density ( 4.2). 

(iii) The density (4.4) is a special case of (4.2) with k = (1-n)p+ 1. To derive (4.5), 
integrate out a -2 from f(x, 8n2, l!, a -2) specified by ( 4.6) with k = (1-n )p + 1, to obtain 

Then integrating out I!, since the convolution of two Cauchy densities is a Cauchy density, 

we obtain the predictive density, 

f(X, Sn2) cc (Sn2)[(n-l)p-3]12[(Sn2+s
0
2/n)112+d

0
J-P 

. {1 + 11v-t/2(x - J!lo)ll2/ [(5n2+sa2/n)ll2+doJ2}-(p+l)/2. (4.7) 

Density (4.5) is obtained by fixing 5n2 in (4.7), and the theorem is proved. 

Note that the posterior density of I!, (4.3), is a poly-t. When the prior location l!lo is 

near the sample mean x, the posterior density is unimodal, but when the prior location 

differs substantially from the sample mean, this means that the prior is somewhat 
inconsistent with the sample, and the posterior density of I! is a bimodal function. The 

modes and valley are located on the so-called "contract curve", the line segment connecting 

the prior location and the sample mean. Bimodality of the posterior density may suggest 

incoherency of the prior opinion with the sample. However, the bimodality would 

disappear under the more usual Bayesian inference even if the prior distribution is 

substantially inconsistent with the observed sample. This is because the conjugate prior 

stipulates a joint prior density having the same mathematical form as the likelihood 

function. This implies that the prior information can be parameterized by imaginary data, 

called "prior data", drawn from the same underlying population. In other words, the 

conjugate prior assumes that the prior distribution should be summarized by a statistic 

combining it in a standard way with the real observations. 

9 



Theorem 4. Suppose that the assumptions of Theorem 3 hold and that the prior parameter 

k is the function of sample size and dimension, k = (n-1 )p - 2. Then the optimal estimate 
of I!, under quadratic loss, is the posterior mean 

E(I,! Ix, So)= dc,+(sn21sa2/n)ll2 [(sn2+sa2/n)ll2J!lo+ d,,X] 

= 1 (A -lm + (L2+s 2/n)-1l2x] 
c1o-1+(Sn2+s

0
2/n)-112 uo -o -n o · 

(4.8) 

Proof. This expression is a direct conclusion of Theorem 2 and Theorem 3. 

The new Bayesian estimate ( 4. 7) is seen to be a weighted average of J!lo, the prior 

location, and 1, the sample mean. The weights depend on the sample dispersion 8n2 and the 

prior dispersion do 2• When the sample dispersion goes up, the uncertainty from the sample 

mean becomes larger. Thus the estimate moves closer to the prior location. The new 

estimate adjusts automatically to the sample dispersion. In this sense, it is adaptive. 

However, if the independent Cauchy-type prior ( 4.1) is replaced by the natural conjugate 
prior, the usual Bayesian estimate of I! obtains, 

1 
F.c(I! I K, 8n) = ( no +n) [ noIDo + DX.] , (4.9) 

which is a weighted average too, but the weights are detennined only by the sample size n 

and prior sample size llo· (See Ra.iffa & Schlaifer 1961, p. 316-325). Comparing (4.8) 

with.(4.9), we see that the new estimate (4.8) may differ substantially from the usual 

Bayesian estimate when the prior location is inconsistent with the sample mean. It is 

important to consider the effects of reasonable priors in Bayesian inference, especially in 

small sample cases. 

5. Estimation in linear regression 

We consider, in this section, estimates of the coefficient parameters in the normal multiple 

linear regression model (NLR) with the standard form 

_y=XB+e, (5.1) 

where y is an n x 1 vector of observations on the dependent variable, X is an n x p design 

matrix with rank p, .6 is a p x 1 vector of regression parameters with unknown value, and e 
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is then x 1 vector of disturbance or error items. It is assumed that the elements of e are 
independently drawn from a normal distribution with mean O and finite variance a2. The 

Bayesian analysis of the NLR with the natural conjugate or the usual non-informative prior 

distributions has appeared in Jeffreys (1948), Raiffa and Schlaifer (1961), Tiao and 2.ellner 

(1964), Box and Tiao (1973), and elsewhere. Zellner (1986) considered Bayesian 

inference regarding NLR with the normal g-prior specified by the following forms, 

p(B, a) ex h( a) f(B lcr, g), (5.2) 

in which f(61 a, g) ex er -p exp{- g(B - 80 )X'X (6 - 60 )/2a2} 

and h(cr) ex 1/a. 

This is a special case of the natural conjugate prior. Based on this normal g-prior, the 

posterior density is 

f(.8, al y) ex a -(n+p+l) exp{-[(y -X8)'(y -XB) + g(.8 - .80 )X'X (.8 - .80 )]J2cr2}. (5.3) 

Hence, the Bayesian estimate of .8, under quadratic loss, is the posterior mean 

F.c(61 y, g) = (ft + g80 )/(1 + g), 

where A is the OLS estima~ of 6, 

ft= (X'X)-1 X'y. 

(5.4) 

(5.5) 

The Bayesian estimate (5.4) is a weighted average of A, the OLS estimate, and .80 , the 

prior center of .8. The weights depend on the prior parameter g only. The Zellner normal g

prior distribution (5.2) assumes that there is little prior knowledge regarding the variance 

and that the prior knowledge regarding 6 is dependent on the variance. In some practical 
cases, the prior knowledge regarding 6 and a may come from different sources and the 

information regarding .8 is then a bit looser. In that case, it may be appropriate to describe 
as independent the prior knowledge regarding B and c,2 by assuming the Cauchy-type g-

prior and a reciprocal chi-square distribution, respectively. In notation, 

p(.8, a) ex h( a) f(.8 I g), (5.6) 

where f(BI g) ex [ 1 + g (.6 - B0)'(X'X)(B - B0 )]-<P+l)l2, 

and f(a-2) ex (a-2)k12-lexp(- c,-2s
0
2 /2). 
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Theorem S. Suppose the NLR model has the standard form (5.1) with the Cauchy-type 

g-prior specified by (5.6). Then 

(i) the posterior density of .6 and a -2 is 

f(B, a-21 y) oc (a-2)(n+k)/2-1 [ 1+ gl/211 (X'X)ll2(6-.6o)ll2J-(p+l)/2 

· exp{- (II y -Xfi 112 + II (X'X)ll2(8 - A)ll2+ s0 2]/2a2}, 

(ii) the marginal posterior density of 8 is a poly-t with the density 

f(BI y) oc [ 1 + gl/211 (X'X)ll2(8 - Bo)ll2]-(p+l)/2 

·[ II (X'X)112(J3 - fi)ll2 + II y-Xfi 112+ so2J-(n+k)l2. 

The omitted proof is similar to that of Theorem 3. 

(5.7) 

(5.8) 

The posterior density of 13, (5.8), obtained using the independent Cauchy-type g-prior, 

is a poly-t, which may have two modes when the prior center of 8 is far away from the 

OI.S estimate. 

Theorem 6. Suppose that NLR has the standard form (5.1) with the Cauchy-type g-prior 

specified by (5.6) with the prior parameter k related to sample size and dimension by k = 

p+l-n. Then 

(i) the marginal posterior density of .6 is a poly-Cauchy with density 

f( Bl y) oc [ t + g 112 11 (X'X) 112( 8 _ 8
0

) 1121-<P+ 1 )/2 

·[ II (X'X)ll2(8 - fi)ll2 + II y-Xfi 112+ so2J-(p+t)l2, 

(ii) the Bayesian estimate of .6, under quadratic loss, is the posterior mean, 

E(81 y, g) = wfi + (l-w)J30 , 

where w = (1 + g112[11 y-Xfi II+ s0
2]112t 1, and A is the OLS estimate of 8, (5.5). 

Proof. This is the direct conclusion of Theorem 2 and Theorem 5. 

(5.9) 

(5.10) 

Both the usual Bayesian estimate (5.4) and the new Bayesian estimate (5.10) are 

weighted averages of the prior location and the OLS estimate. The weights in (5.4) depend 
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only on the prior parameter g. However, the weights in (5.10) depend on the residual II y -

xA II and the prior parameter g. The weight on ft is a monotone decreasing function of the 

residual. Hence, the Bayesian estimate (5.10) is adjusted automatically by the residual II y

xA If. The smaller the residual, the closer to the OLS estimate A. In this sense, this is again 

an adaptive estimate. The two Bayesian estimates (5.4) and (5.10), which are obtained 

using different priors, may differ considerably, and both may differ considerably from the 

OI.S estimate when the OI.S estimate is far from the prior location. 

6. Conclusions 

Use of an independent Cauchy prior can le.ad to a posterior mean for the multinorrnal mean 

vector or the regression coefficient vector that is an adaptive weighted average of the prior 

location and the classical estimate. The weights depend on the sample dispersion, so the 

estimates are adjusted automatically by the dispersion of observations. In this sense, they 

are adaptive. These estimates may differ substantially from the usual Bayesian estimates 

obtained using the natural conjugate prior distributions. From these results, it appears that 

investigating Bayesian inferences with more realistic prior distn"butions and considering the 

effects of realistic prior distributions on the statistical inference can be important in theory 

and practice. 
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Appendix - The proof of Parts (ii) and (iii) of Theorem 2 

(ii) For convenience, take the transformation 

y = O"(ly-1/2 (~ -1:!1), 
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and denote a= a2!ai, and J! = a(1V-112 (1!2 - g1). Then the density function of y is 

reduced to 

f(y) = k1[1 + 11 y 1121 -Cl +p)12[1 + a-2 (y - g)'(y - g)] -<1 +p>12, . (3.15) 

where k1 = c(p)[(l +a)/a]P[l + II I:! 112/(1 +a)2)]<P+ 1)12. 

Because the Cauchy distribution is invariant under orthogonal transformations, without 
losing the generality, assume M = l!o = (µ, 0, ... ,0)'. Thus, for the last p-1 means, obtain 

E(Yj) = 0, for j = 2, ... , p. (3.16) 

The mean of Y 1 is 

E(Y 1) = k1 f Y1[l +II I 1121 -(l+p)/2[1 + a-2 (I- l!o)'(I - l!oH -(l+p)l2dI 

= c-l(p){l +a)P[l + 111! 112/(1 +a)2)](p+l)l2h(l!o), (3.17) 

where 

h(J!) = c2(p)CJ -pf YI [l +II I 1121 -(l+p)/2[1 + a-2 (I - l!)'(I - J!}] -(l+p)/2dx. 

To calculate h(g), take the Fourier transform and use the convolution formula, to obtain 

g(l) = j11(JJ)exp(il!' !)dy = lP(!) <I>( at), (3.18) 

where 

<l>(ot) = c(p)a -p[l +a -211 ~ II ] exp(1i '!)d~ = exp(- o-11111), f 2 -(l+p)/2 . (3.19) 

and 

We express \P(l) as 

IP(!.) = -i fc(p )[ 1 +II I 1121 -(I +p)/2 ~ I exp(ix '!.) dI 

= -if ~
1 
{c(p)[l+ II I ll21-(l+p)/2exp(iJ'!.)} dJ. (3.20) 
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Because the integral (3.20) exists, the order of integration and differentiation is 

interchangeable. Therefore, 

1p(1) = -i ~
1 
f c(p)[l +II y 112) -(l+p)/2exp(iy '!.) ~ 

= -i C:
1 
exPC-111 ID= i /1 i_ 1

1
1 exp(-11111). 

Substituting (3.19) and (3.21) into (3.18), we have 

g(1) = i / 1 £ 1\ exp(- ( a+ 1)11111). 

Taldng the inverse Fourier transformation, we have 

h(I!) = (21r)·P Jg(!.) exp(-i!!' !.)) di 

= i(2x)-P f /1 tl i'i exp[- (a+ 1)111 IU ~(-ii:!' 1) di. 

When J!o = (µ, 0, ... ,O)', 

h(I:!.,) = i(2x)·P f /1 £ i'i exp[-(a+l)ll 1111 exp(-iµt1)) di. 

Use (3.2) to reduce the above integral to 

h(&!o) = i 2-p+ 1 ,r(p+ 1)12 r-1 [ (p-1 )/21 

where 

00 

· f jt exp(-iµt) yP-2( t2+y2)-ll2 exp[-( a+ 1 )(t2+y2) 112] dt dy 

0 

= 2-<P-2) 7r(p+l)/2 r-I[(p-1)/2] I, 

00 

I== ff yP-2{t2+y2)·l/2 exp[-(a+l)(t2+y2)112]Sin(µt) dt dy. 

0 
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To calculate I, change variables, t = z Sime, and y = z Cosx, and then use (3.3) and (3.4), 

n/2 

I= f i v>-1 exp[-(1 +a)z]Sinx CosJ>"2x Sin(µzSinx) dz dx 

0 

x/2 

= f(p) J Sinx CosP-2x [(l +a)2+µ2Sin2xJ-p/2 Sin[p arctg(µSinx)] dx 
l+a 

0 

= f(p)µ(l +o)-<P+ 1) 2J>-2 B[(p-1)/2,(p+ 1)/2] [l +µ 2/(1 +o)2J-(p+ 1)/2. (3.23) 

Substituting (3.23) and (3.22) into (3.17), obtain 

h(t!o) =rr<P+l)/2 f[(p+t)/2] µ(t+o)-<P+l) [1+µ2/(1+o)2]-(p+l)/2, 

and E(Y 1) = µ/(1 +a). (3.24) 

By combining (3.24) with (3.16), the mean of Y is 

E(Y) = (1 +o)-1 I!· (3.25) 

Using the transform (3.14), the expectation of~ is seen to be 

EC'ID = I! 1 + a 1 v112 ECY) 

(iii) Similarly to the proof of Part (ii), consider 

E(II XII)= k1 f II I 112 [ 1 +II I 1121-<1 +p)/2[1 + cr2 (I - jfo}'(y - l!o>] -(l+p)/2 dy 

(3.26) 

where 

h1(1!) = c2(p)crP f II I 112 [l +II I 112] -(l+p)/2£1 +cr2 (I - !!>'(I - 1!>1 -(l+p)l2dy. 

To calculate hi(!!), take the Fomier transform and use the convolution formula, to obtain 
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where. 
<I>( 01) = exp(- all 11D 

and 1P1(!) "'_f <P>II I 112 [l +II I 1121 -(p+t)l2exp(iI'DdI 

= .f<p)[l +II I 1121 -(p-l)l2exp(iI'!)dI -exp(- all! II). 

Using (3.2), the first term of the right hand side of tp1(1) is expressed as 

00 

I = ~) f j zP-2(1 +z2+x2)-(p-l)f2exp(ixll ! ID dxdz 

0 

00 

f
~ . "' :.~) J uJ>-l(l+u2)-(p-1)/2SinP-2w Cos(ull !IICosw) dudw. 

0 

rr/2 

J 
. 2 7rl/22p/2-2 18_ 

Since SmP- w Cos(ull 1 IICosw) dw = (II l llu)P'2_1 f( 2 ) Jp/2-1 (ull 1 ID, 

and 
00 ,r1121f t IIP/2-2 

Jup/2(1 +u2)-<P-1>12J (ull t ll)du = -
p/2-l - 2P12-1exp(H 1 ll)f((p-l)/2) ' 

(3.27) 

(3.28) 

(3.29) 

where Jk(-) is the Bessel function (Gradsteyn & Ryzhik 1965, p.403, p.686), we have 

I= (p-1) 11 ! 11-1 exp(-11.t ID, 

and 1P1(1) = [(p-1) 11111-1 - l]exp(-11.t 11). 

Substituting (3.30) and (3.28) into (3.27), obtain 

gl (1) = [(p-1) 111 11-1 - 1 ]exp(- (1 +a)ll .t 11). 

Now, taking the inverse Fourier transformation for g 1 (1), 
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• 

h 1 (l!) = (2,r)-P Jg 1 (1) exp(-i1J' l) d!, 

= (2,r)-P f [(p-1)11 ! 11-1-11 exp(- (a+ 1)11 ! II) exp(-il,!' !) d! 

= (2,r)-P f (p-1) II ! 11-1 exp( - ( a+ 1) II ! II) exp( -i1!' !) d! 

- c(p)(l +otP[l + fl l! 1121(1 +a)2)]-<P+l)/2. (3.32) 

Cauculating the first term of the right hand side of (2.32), 

l1 = (p-1)(2,r)-P f II! 11-1exp(- (a+l)II ! ll)exp(-il!' !) d! 

= c-l(p-2)(p-1 )(2,r)-P f J zP-2(z2+x2)-lf2exp[- ( a+ 1 )(z2+x2)]exp(iyll I! II) dxdz 

00 

J
n/2 

= c-1(p-2)(p-1 )(2,r)-P J uP-2expH 1 +a)u lSinP-2w Cos( ull I! IICosw) dudw 

0 

00 

= (2,r)p/21j~ jJPl2-l J uP12-1exp[-(1 +a)u]Jp/2-I(ull I! ll)du • 

00 

Since J uPl2-1exp[-(l +a)u1Jp12-1(ull 1! ll)du 

2Pl2-1 II I! I lp/2-1 l 

= ,rl/2[1 + 111! 112/(1 +a)2](p-l)/2 r<1y-) 

(Gradsteyn & Ryzhik 1965, p.1145), we have 

11 = c(p) [1 + 111! 1121(1 +a)2J-(p-1)/2. 

Substituting (3.23), (2.32) into (2.26), obtain 

E(II Y II)= 11 !! 112/(1 +a) + a. 
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Using the transform (3.14), 

E(II v-112~-l!1) 112) =E[(~-M1)'V-1(~-M1)] 

cr1II v-ll2(Y1-M2) 112 
= 0'10'2+ 

Thus Trace(v-1 l:) = E(II v-112~ -M 1) 112) - II v-112(13@ - l! 1) 112) 

= a1a2[ 1+ 11 v-112(l!i-l!2> 1121(a1+ai)2)J. 
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