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Abstract 

Carlson's multiple hypergeometric functions arise in Bayesian inference, including methods 

for multinomial data with missing category distinctions and for local smoothing of histograms. 

To use these methods one needs to calculate Carlson functions and their ratios. We discuss 

properties of the functions and explore computational methods for them, including closed form 

methods, expansion methods, Laplace approximations, and monte carlo. Examples are given to 

illustrate and compare the methods. 
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1 Introduction 

Let u = ( u1, u2, ••. , u 1) be a Dirichlet random vector with parameter b = ( b1, b2, ••• , b 1), 

denoted by u "' D(b ), where every bi > 0. That is, u1 , ••• , u1-1 have the density function on 

the probability simplex S1 = {( u1, ••• , u1) : Ui ~ 0, E[=1 Ui = 1}, 

I 

f(u; b) = B(b)-1 IT uti-1
, (1.1) 

i=l 

where B(b) = [I1f=1 r(bi)]/r(b+) and b+ = r:,f=t bi. The following integral is a special case of 

Carlson's (1971, 1974) two-way multiple hypergeometric function, Ra. Ifwe define R(b, G, -c) = 

Ra(b, G, -c), where a= c+, then, 

R(b, G, -c) = Eulb rrf =1 (Ef=t 9ij'Ui )c; 

r 1 (rr/ bi-1) ITJ ("I ) c; d d d = JSr B(o) i=l ui j=l L..,i=l 9ij1Li U1 U2... U[-1 • 

{1.2) 

See also Dickey (1983) for an introduction to Carlson's functions for statisticians. 

Relation (1.2) has suggested several statistical uses for Carlson's R (Dickey 1983; Dickey, 

Jiang and Kadane 1987; Dickey and Jiang 1991; and Dickey, Garthwaite, and Bian 1989). In 

particular, we discuss its usefulness for Bayesian local smoothing and Bayesian multinomial 

censored data in section 2. Properties of the R function are introduced in section 3. Section 4 

gives several relevant computational methods for R and ratios of R. Examples are provided in 

Section 5. Section 6 summarizes our findings. 

2 Bayesian applications 

2.1 Local smoothness 

Let v = ( 111, 112, ••• , VJ) be the unknown cell probabilities for multinomial histogram sam

pling. If the sample count data is reported as x = (x1,x2 , ••• ,xJ), then the likelihood function 

is 

h ( V) = ( x+ ) JI 117' 
X J=l 

(2.1) 
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It is well known that the corresponding natural conjugate family is the Dirichlet distributions, 

v - D(b ). The Dirichlet coordinate random variables are nearly independent, with a slight 

negative association, because of the constraint on their sum, 

Corr (vi,v;) = - -- 3 
, [ 

Wi ] [ w· ] 
1- Wi 1- Wj 

(2.2) 

where w = Ev = b/b+. However, in the sense of prior belief, the sampling probabilities of 

adjacent cells would usually be positively prior correlated. Hence, a Dirichlet prior distribution 

is not appropriate for its lack of such smoothness. 

To deal with this problem, Dickey and Jiang (1991) introduced filtered-variate Dirichlet 

distributions as priors for the likelihood function (2.1). That is, the prior-distributed random 

vector v is expressed as a linear transformation, v = u · G, of a Dirichlet vector, u - D(b ), 

where u and bare I-dimensional row vectors, a.nd G is an J x J transformation matrix. Note 

that each of the rows of the matrix G must sum to one, as the sum of Vi's must be one. Denote 

this distribution by v - FaD(b ). Since the range of v, which is the convex closure of the set of 

row-vector points of G, is a subset of the probability simplex SJ, it is too complicated to work 

directly with a density for v. Therefore, we express a.nd work with the distribution of v in terms 

of u. We first reexpress the likelihood function (2.1) in terms of u as, 

( ) 

J I z; 

l2(u) = X+ JI (~9ijUi) • 
X J=l i=l 

(2.3) 

The prior predictive distribution for the count data xis the prior expectation of (2.3) 

Pr(x) = ( ~ ) R(b,G,-x), (2.4) 

with Ras defined in (1.2). With this filtered-variate Dirichlet prior, the posterior density of u, 

where v = u ·Gunder multinomial sampling, is 

( 

I ). J ( I )z; 
/(u;b,G,x)=B(b)-1 Jiuti-l ·lI ~9ij1Li /R(b,G,-x). 

a=l J=l a=l 

(2.5) 

The normalizing constant in (2.5) is an R function from (2.4). This posterior distribution of 

u is a generalized Dirichlet distribution denoted by u I x - D(b, G,x) (Dickey 1983). The 
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posterior distribution of v is then the filtered-variate generalized Dirichlet distribution vlx ,...., 

FaD(b,G,x). A general moment of v can be defined by taking the expectation of 

J 

II d· v/. 
j=l 

(2.6) 

For various choices of d, this can specify coordinate means and second moments, mixed second 

moments, etc. The posterior expectation of (2.6) is simply the ratio, 

E (II
J d; I ) _ R(b,G,-x- d) 

vj x - R(b G ) · 
i=l ' '-x 

(2.7) 

See Dickey and Jiang (1991) on Bayesian use of these prior and posterior distributions for 

problems of local smoothing. 

2.2 Bayesian analysis of censored discrete data 

Consider multinomial sampling when some of the observations suffer missing distinctions 

between categories. Let y = (Y1, Y2, ••• , YI, Y12, ••• , Y12 •• .1) be the vector of frequency counts for 

sampling from a distribution on a finite sample space having the unknown probability vector 

u = ( ui, u2, ... , u1 ), where Yi is the frequency count of observations in category i and Yii is the 

frequency count of observations reported not as a unique category, such as i or j, but rather as 

the set of two categories { i,j}. And in general, y" is the frequency count of observations that 

are reported as falling in the set of categories u, where u is a non-empty subset of 1, 2, ... , I. If 

9i,u is the probability that an observation that is actually in category i will be reported as being 

in set u, then the likelihood function is 

( 
Y + ) II [t g;.,, u;] Ytr , 

y " i=l 

(2.8) 

where u varies over a specified class of sets. Typically, many of the 9i," 's would be zero. For 

example, if 9i," = 0 unless u = { i}, there are no category confusions. If 9i,u = g;," for all 

i, j E u, and zero otherwise, then the data are non-informatively censored. Otherwise, the 

pattern of censoring in the data, itself, is informative. 

Suppose now that u has the prior Dirichlet distribution, u ,...., D(b ). Then the 

Bayesian predictive distribution for the reported vector y is 
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Pr(y) = ( y; ) R(b, G, -y), (2.9) 

where G is the probabilities 9i,u arranged in matrix form, so that G is an Ix J matrix, where J 

is the number of censoring subsets in the model. The posterior distribution for u is D(b, G, y), 

with p.d.f., 

/(u I y) = B(b)-1 (JI u~•-1
) • (rr [tg;,,,u;]

11

") /R(b,G,-y). 
•=1 tr •=1 

(2.10) 

Thus, the Dirichlet family is not conjugate for the multinomial missing data likelihood. However, 

using the generalized Dirichlet prior distribution D(b,G,c), yields the posterior distribution 

D(b, G, c + y). Thus, the generalized Dirichlet is conjugate to the multinomial missing data 

model. Under the Dirichlet prior, the posterior moment is 

E (IT uf' I y) = B(b + d). R(b + d,G, -y). 
i=t B(b) R(b,G,-y) 

(2.11) 

See Dickey, Jiang and Kadane (1987) for furthe~ discussion on Bayesian inference for censored 

data. 

To use these methods effectively, it is necessary to compute R and ratios of R. Before 

presenting methods for computing the functions R and their ratios (section 4), we first give 

relevant properties of R. 

3 Properties of Carlson's R 

In this section, we give properties of Carlson's R function, which simplify its computation. 

H the set of columns of matrix G and the vector c are permuted conformably, the corre

sponding R retains its value. Formally, 

Lemma 3.1 If G = GP and c = c · P, where P is a permutation matrix, then 

R(b, G, -c) = R(b, G, -c). 

The following consequence of the definition (1.2) of R, is useful in Bayesian missing

distinction problems in which the high-dimentional vector y is sparse. 
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Lemma 3.2 If, without loss of generality, the vector c is taken in the form c = ( c<1>, o ), where 

c<1) has J(l) < J coordinates, then 

R(b, G, -c) = R(b, 0<1>, -c<1>), 

where G(l) consists of the first J(l) columns of G = (G<1>, 0<2>). 

The following corollary is an extreme case of Lemma 3.2. 

Corollary 3.3 If c = O, then 

R(b, G, -c) = 1. 

Two dimension-reduction lemmas are given next. 

Lemma 3.4 Conformably partition G = ( 0<1>, G(2)) and c = ( c<1>, c<2>). If each entry of a<2> 

is a one, then 

R(b,G, -c) = R(b,GC1), -c<1>). 

Lemma 3.5 Conformably partition O = ( G(l), a<2>, G(3)) and c = ( c<1), c<2), c<3)). If 0<1) = 
0(3), then 

. R(b, G' -c) = R(b, G, -c), where G = ( a<1>' 0<2>) and C = ( c<1> + c<3>' c<2>). 

The next lemma shows the relationship between R's when their corresponding matrices 

have proportional columns. The asterisk in a subscript denotes the list of possible values of that 

subscript. Hence, g*; = (91;,92;, ... ,gr;f and gi* = (9it,9i2,···,9iJ). We use this notation 

throughout the paper. 

Lemma 3.6 Let g.; and h.; be the j-th column vectors of matrices G and H respectively and 

assume g.; = e; · h-;, for scalar e; for all j, then 

J 

R(b, G, -c) = (Ile?)· R(b, H, -c). 
j=l 

D 

If the last / columns of the matrix G form an identity matrix, the following dimension

reduction lemma applies. 
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Lemma 3.7 Define G = (G<1>,G(2>) and conformably, c = (c(1>,c<2>). If G<2> is an identity 

matrix, then 

R(b G -c) = B(b + c<
2
>)R(b + c<2> a<1> -c<1>) 

' ' B(b) ' ' . 

Our final lemma extends the applicability of the preceding and other properties of R by 

interchanging the roles of the rows and columns of the matrix argument G. This identity, which 

generalizes Picard's classical identity regarding Lauricella's Fv, was given by Dickey (1968) 

before the introduction of two--way R by Carlson (1971). It can have an important effect on the 

dimension of integration, but because it can create a pole in the density, it is most often useful as 

a tool for accessing further simplifying relations, series expansions, and methods of computing 

R. For the Carlson function, in general, Ra(b,G,-c) = Ra(-c,GT,b). Our integral form R 

requires a= -c+ and then, for the right-hand side, a= b+. This is obtained by extending the 

matrix G according to Lemma 3.4 yielding the following. 

Lemma 3.8 Define c* = (c,-(b+ + c+)) and G* = (G, lJ), where lJ = (1, ... , If. Then 

R(b,G,-c) = R(-c*,G*T,b). 

4 Computation of R functions and their ratios 

As defined in subsection 2.2, if, for any Oi,u, 

Di,u = { e" all i E u 
0 otherwise 

then the pattern of observed missing category distinctions is not itself informative. The matrix 

G has the same quantity in each nonzero eritry of a column. We define a matrix as an indicator 

matrix if each entry is either O or 1. By lemma 3.6, R with this matrix G is proportional to 

an R having an indicator matrix parameter. Therefore, the discussion of the computation of R, 

when it refers to Bayesian noninformatively missing data problems, can be restricted to R with 

an indicator matrix parameter. When G takes the special form of a nested partition indicator, 

defined in subsection 4.1 below, R is expressible in a closed form. When G does not take such a 

special form, R can be represented by a summation of closed forms, as in our expansion method 
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of sub-section 4.2. When neither of these two methods is feasible, one may use an approximation 

method or a simulation method, discussed in sub-sections 4.3 and 4.4, respectively. 

4.1 Closed form methods 

Carlson's R(b, G, -y) function is considerably simplified when its matrix parameter G 

is an n-level nested-partition indicator, to be defined later. But first, we define the j-th level 

nested-partition subsets for j = 1, ... , n. 

Let S = {1, 2, ... , J}, then {S1c1 }all ki = {S1, S2, ... , SK} is said to be the set of 1st level 

nested-partition subsets of S, if all Sk1 's are mutually exclusive and exhaustive subsets of S. 

That is, 

1. Si n S;, for all i ~ j 

2. Uall lei Sk1 = S. 

Similarly, for j = 2, ... , n, we define {Ski :k2 : ••• :k;-i :k;} all k; to be the set of j-th level nested

partition subsets of Sk1 :~: ••• :k;-i if all subsets are mutually exclusive and exhaustive subsets of 

Sk1 :A:2 : ... :k;-i. ff each of the nth level nested-partition subsets contains a single entry, so that the 

number of nth. level nested-partition subsets is I, then we may say that any of the subsets defined 

above is an n-level nested-partition subset of S. These subsets can be shown in the following 

tree diagram. 

. .... insert figure 1 here ..... 

By these definitions, we have S ::> S1c1 :::> S1c1 :1c2 :::> ••• :::> S1c1 :1c2 : ••• :kn· Before defining an 

n-level nested-partition indicator matrix, we need to define an indicator vector of an n-level 

nested-partition subset Su of S. An I x 1 vector is said to be an indicator vector of Su, where 

Su is a subset of S, if i-th entry of the vector is 1, if i E Su, and is 0, otherwise. 

We a.re now ready to define an n-level nested-partition indicator matrix. A matrix G is 

said to be an n-level nested-partition indicator matrix if there are n-level nested-partition subsets 

so that each column vector of G is an indicator vector of each of these subsets. 

For convenience, in this subsection, we shall refer to the j-th column of G and the j-th 

entry of y as column u of G and Yu, respectively, if the j-th column vector of G is the indicator 

9 



1at_level 

I I 
sk1:1 sk1:2 

l l 

Figure 1 

s 
! 



vector of Su. For example, we have column 1 or column 2:1, etc and y1 or Y2:1, etc. Further, we 

use (q), as the subscript of u(or .b) to denote the sum of the cell probabilities (or para.meters) 

corresponding to the nested-partition subset Su, that is U(O') = LiESo- Ui (and b(O') = LiESo- bi). 

For example, u(2:i) = Lie~:i Ui, b(t:3:2) = Lies1:3:2 bi. H we define u(O':+) = Lall k; u(O':k;), then 

u(O') = u(O':+)· For example, uc3:2) = 1'(3:2:+) = Lall k3 uc3:2:k3 ) and b(4} = b(4:+) = Lall "2 b(4:"2)· 

As in section 3, we use an asterisk to denote a vector of possible entries. So, we have 

U(O':•) = ( U(0':1), U(0':2), ... , U(O':Ko-)) and b(O':•) = (b(O':l}, b(0':2), .•• , b(O':Ko-))• 

We also use brackets instead of parentheses in the subscript of u to indicate that U[u:•) is 

a probability vector. That is, U[u:•] = ( 'U[u:l], U[0':2], ••• , U[O':Ko-]), where U[O':i] = 1L(u:i)/u(O') for all 

i = 1, .. . ,1(0'. 

The following theorem can be derived by transformation of variables. 

Theorem 4.1 In terms of n-level nested-partition subsets of {1, 2, ... , I}, the random proba

bility vector u has the Dirichlet distributions as defined in (1.1), if and only· if, independently, 

U(*) = ( U(l), .. •, U(K)) "' D(hc-)), U[k1 :•] "' D(b(k1:•)), for all ki, U[k1:k2:•] "' D(b(k1:k2:•)), for all 

k1 and k2, ... , U[k1:k2: ... ;kn-1:•] "'D(b(k1:k2: ... :kn-1:•)), for all k1, k2, ... , kn-1• 

Proof: The absolute value of the Jacobian ca.n be shown to be 

where Kk1 is the number of 2nd level nested-partition subsets of Ski, l(k1 :1c2 is the number of 

3rd level nested-partition subsets of Sk1 :k2 , and K1c1:k2 , ••• ,kn-t is the number of nth level nested

partition subsets of S1c1:k2 : ••• :kn-i. 

D 

We now show that R(b, G, -y) has a closed form expression if G is an n-level nested

partition indicator matrix. As defined earlier, we use Yki:k2 : ••• :kn to denote the entry of y corre

sponding to Sk1 :k2 : ... :kn in this subsection. Yk1:k2 : ••• :k;-i=+ is defined to be the sum of Yk1 :k2 : ••• :k;-i:k; 

over all possible k;, for j = 1, 2, ... , n. That is 
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Yk1 :k2 : ••• :k;-i :+ = L Yk1 :k2 : ... :k;-i :k;, for any j = 1, 2, ... , n. 
all kj 

Note that Yki:k2 : ••• :k;-i may not be the same as y~1 :k2 : ••• :k;-i:+· This is different from the situation 

uc0/s. Similarly, we also denote Yk1 :k2 : ••• :k;_2 :+:+ as the sum of Yk1 :k2 ••• :k;_2 :k,_1 :+ over all possible 

kj-l, for j = 2, ... , n. Therefore, 

Yk1:k2 : ••• :k;_2:+:+ = L Yk1 :k2 : ••• :k;_2 :k,_1 :k; , for any j = 2, ... ,n. 
all k;-1,k; 

If the colon ":" before the+ sign in Yk1: ... :k;:+ is replaced by semicolon";", i.e. Yk1 : ... :k;;+, 

then it is the sum of Yk1 : ••• :k;, Yk1 : ••• :k; :+, Yk1 : ••• :k; :+:+, ... and Yki : ••• :k; :+: ... :+. That is, Yki : •.. :kn-i ;+ = 
Yk1 : .•. :kn-1 +Yk1: ... :kn-1:+, and Yk1 : ••• :k;;+ = Yk1: •.• :k; + Lall k;+i Yk1: ... :k;+1 ;+, for all j = 1, 2, ... ' n-2. 

Theorem 4.2 If G is an n-level nested-partition indicator matrix, then 

where Yk1:k2: ... :k;:•;+ = (Yk1:k2: ... :k;:1;+, Yk1:k2: ... :k;:2;+, · · ·, Yk1:k2: ••• :k;:Kki,1c2, ... ,1c;; +) and l(k1,k2, .•• ,k, 

is the number of the (j + 1 )at level nested-partition subsets of Sk1 :k2 ••• :k;. 

Proof. 

D 

The following corollary, a special case with n = 2, was given by Dickey, Jiang and Kadane 

(1987). 
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Corollary 4.3 If n = 2, and Yk1 :k2 = 0 for all k1, k2, then 

R(b G - ) = B(b(•) + Y•;+J 
' ' y B(b ) . (•) 

We give a final special case in the following. 

Corollary 4.4 If n = 3, and Yki:k2 :k3 = 0 for all k1, k2, k3, then 

4.2 Expansion Methods 

The method in the previous subsection fails if the parameter Gin R is not an n-level nested

partition indicator matrix. By definition (1.2), if c is a vector of non-negative integers, R(b, G, -c) 

is the expectation of the product of linear combinations of 'Ui 's, and we can expand the prod

uct of some of these linear combinations to become a linear combination of products of u'; i's, 

where the ai's are non-negative integers. So, we can reexpress R as a linear combination of 

expectations of the unexpanded product times a product of ufi 's, where the expectation is over 

the Dirichlet distribution. But the expectation of the unexpanded product times the product of 

uf0 s is another R. Therefore, R(b, G, c) can be expressed as a linear combination of other R's. 

We shall use a matrix variable W to indicate the possible expansions of the product. 

Consider an arbitrary matrix G(I x J for arbitrary I and J). Conformably partition G = 

( Q(1), G(2>), c = ( c<1), c<2>) and J = J(t) + J(2), ·where each entry of c<2> is a non-negative integer. 

Expanding the expression (Ef=1 uigV>t~2

>, we obtain a sum which we represent symbolically as 

'°"N m1;1c m2;1c m1,1c h + (2) " all k L W b J J(2) L.Jk=t aku1 u2 .. . u1 w ere m1;k m2;k+• . . +mr;k = c; 1or . et e an x 

matrix variable whose jth column can be any of the vectors ( m1;k, m2;k, •.. , m1;k), k = 1, ... , N. 

Therefore, matrix variable W can be any matrix having the following properties: 

w = { Wij : i = 1, 2, ... ' I' j = 1, 2, ..• ' JC2
)' (4.1) 

Wi; = O, if gj;} = 0, Wij a non-negative integer and w+; = c32>} 
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For example, if a<2> = 0.5 0.4 and c<2> = ( 6, 4 ), then the matrix variable W is 
[ 

0.8 0 l 
0 1.4 

W = { [ 6 ::n w:2 ] : w11 = 0, 1, ... , 6 a.nd w22 = 0, 1, ... , 4] . 

0 4-w22 

The following representation for R can be used to calculate R for general G. 

Theorem 4.5 Consider an arbitrary matri:cG(IxJ). Conformably partition G = (G<1>, G<2>), c = 

( c<1>, c<2>) and J = J(l) + J(2). Refining only c<2> and matriz W defined as in (4.1}, we have 

R(b,G,'-c) = E [ II ( c}2> ) • Iluirj] B(b + w.+) R(b+w.+,G<1>, -c<1>), (4.2) 
wic<2> =J<1>+1 w.; i=l B(b) 

where the summation is over any W having the vector of its column sums the ·same as cC2), w •i 

is the /h column vector of W, and w .+ is the vector of row sums of W. 

Proof 

R(b, G, -c) 

[ 
J{l) (1) /1)] [ J (2) /2)] = Eulb nj=l ( u . g.j ) , TT;=J(l)+t ( u . g.j ) , 

J ( c}
2

) ) { [ J(l) (1) c<.
1>] [ / (2) w· ·]} = Ew1c<2) nj=J(l)+i w.; Eulb Il;=l ( u. g.; ) , ni=l ( Uigij ) ., 

[ 
J ( c}2) ) J (2)w,;] { [ J(l) (1) c<,

1>] [ J Wi+]} = Ew1c<2> Il;=J{l)+t w.; Ili:19ij Eulb TT;=1 (u · g.;)' · Ili=l ui 

D 

Note that, if J(l) = 0, the R in the right hand side of ( 4.2) is one. This is exploited in the 

following corollary. 

Corollary 4.6 Given an Ix J matrix G and W defined as in (4.1} for refining c, we have 

R(b, G, -c) = E [II ( c; ) • IT uij';] . B(b;:: ·+) . 
Wlc i=1 w.; i=1 ( ) 
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Consider the case when G is an indicator matrix. For example, let 

1 0 1 0 0 0 1 

G = (G<1>, 0<2>) = 
1 0 0 1 0 0 1 

0 1 0 0 1 0 1 

0 1 0 0 0 1 0 

H c3 = c4 = c5 = cs = 0, then 

R(b, G, -(Ct, ... , C7)) 

- B(b) E~l=O r::::1 
( CT ) B(b + w) • R(b + W, c(t), -(Ct,•••, cs)) 

W1,W2,W3 

= 1 °"c1 °"c1-w1 ( c7 ) B(b + w)B 61+"2+c1,63+b,+<=2 . B(b) L..,w1ao L..,W2=0 B 1+~,ba+ , 
W1,W2,W3 

0 

(4.3) 

(4.4a) 

(4.4b) 

(4.4c) 

where w3 = c1-Wt -w2, and w = ( Wt, w2, w3, 0). The first identity (4.4b) is implied by Theorem 

4.5. The second identity (4.4c) is from Corrollary 4.3. Alternatively, for the same R in (4.4a.), 

R(b, G, -(Ct, ... ,'c1 )) 

= B(b) f (rrt=l u~i-t) ( 'Ut + u2)c1 
• ( U3 + U4)C2 [E~l=O ( CT ) ( Ut + u2)W1 • ur] du ( 4.5a) 

W1,W2 

= 1 "er B(b) L.,w1=0 

_ t "er 
- B(b) L..,w1:o 

• B(b + w<n) • R(b + w<1>, G<1>, -(Ct+ Wt, c2, ... , c6)) 

where w2 = c1 - Wt, wV> = (0, O, w2, 0) and G(t) is defined in ( 4.3). 

{4.5b) 

(4.5c) 

As the number of summation terms, c1 + 1, of ( 4.5c) is smaller than {c7 +1yc1+2>, the 

number for (4.4c), it is usually better for the computation of R to use (4.5c). This motivates 

the following theorem, useful for calculating R when G is an indicator matrix. But first, we give 

some definitions. 
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Consider an J x J indicator matrix G and a vector of non-negative integers y. Conforma.bly 

partition G = ( G(1), 0<2>), y = (y(l), yC2)) and J = J(l) + J(2) so that 0<1> is an n-level nested

partition indicator matrix. If the j-th column of a<2> is an indicator vector of Sj, then there 

a.re mutually exclusive and exhaustive subsets of Sj, whose indicator vectors are some columns 

of G(1), for j = 1, 2, ... , J(2). We call these subsets partition subsets of Sj. Given one way of 

partitioning S;, there is one set of partition subsets of S;. Since there are usually many ways of 

partitioning Sj, there a.re many sets of partition subsets of S;. In practice, it is useful to have a 

way of partitioning so that the number of partition subsets is a. minumum. Hence, the number of 

summation terms is small. For the previous example, G(t) in (4.3) is a 2-level nested-partition 

indicator matrix, J(t) = 6, J(2) = 1 and S1 = {1, 2, 3}. One set of partition subsets of S1 , 

is {{1}, {2}, {3}}. Another set of partition subsets of S1 is {{1, 2}, {3}}. The second way of 

partitioning, which yields two subsets, is better than the first way, which yields three subsets. 

This also agrees with our previous experience. 

Once we have a. way of partitioning for ea.ch S;, we can define the matrix variable W a.s 

any J(l) x J(2) matrix having the following properties: 

1. Each row corresponds to an n-level nested-partition subset. (4.6) 

2. The j - th column w.;, a. vector of non-negative integers, corresponds to S; and y32>, so 

that 

(a.) Wij = 0, if i-th row does not correspond to a partition subset of S;. 
(b) w+; = yJ2>. 

Let S1 and S2 be subsets of {1, 2, ... , I}. We say an observation, which is reported as 

falling in the set of categories S1, is less-censored than another observation, which is reported 

a.s falling in the set of categories S2, if S1 C S2 • One interpretation of the matrix variable W 

in censored categorical data problem is that each value of matrix W indicates a possible set of 

frequency counts refining the observed frequency vector y into less-censored data. 

We then have the following useful theorem for censored data problems. 

Theorem 4. 7 Consider an indicator matrix G, I x J for arbitrary I, J. Conformably partition 

G = ( G(1), G(2>), y = (y(1), y<2>) and J = J(t) + J(2) so that G(1) is an n-level nested-partition 

indicator matrix. Then W, defined in {.,1.6), is a J(l) x J(2) matrix and 
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R(b,G,-y) = 

E [TI ( yJ
2

> )] • R(b,G<1>, -(y(l) + w.+)). 
Wjy(2) j=l w.; 

(4.7) 

The summation is over any W having the vector of its column sums the same as yC2), w .; is the 

/h column vector of matriz W, and w .+ is the vector of row sums of matrix W. 

Now, since G(t) is an n-level nested-partition indicator matrix, we have a closed form for 

R in the right hand side of ( 4. 7). Therefore, for the computation of R with indicator matrix G, 

it is simpler to use Theorem 4. 7 than to use Theorem 4.5. 

In summary, given an R with an indicator matrix parameter, we can express it as an R 

with parameter matrix G = (G<1>, G(2)) so that G(t) is an n-level nested-partit.ion indicator. Let 

the j-th column of G(2) be an indicator vector of S;. We then determine a way of partititioning 

each of the S; 's. Thus, we have W in the form ( 4.6), and we can apply Theorem 4. 7 to compute 

R. 

4.3 Approximation methods 

For extensive non-nested censored data, the expansions that were discussed in subsection 

4.2 may contain too many summation terms, so they may not be practical for computing R. In 

this subsection, we shall use the approximation formula of Laplace to approximate Rand that 

of Tierney and Kadane ( 1986) to approximate ratios of R. The Laplace approximation formula 

is stated as follows: 

If his a function from R1- 1 to Rand has a unique maximum at u1 , then 

(4.8) 

where E is the negative of the inverse Hessian of h at the mode u1, and u1 is a vector which is 

composed of the first I - 1 entries of u. The order of the error is O(!), where mis the sample 

size. 
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To approximate R(b,G(2), -c), we shall need to reexpress it in the form of (4.8). Let 

G = ( G(1), G(2)) be an J x J matrix, where G(l) is an J x I identity matrix, G(2) is an J x J(2) 

matrix and J = I + J(2). Then 

. 1 J I n; 

R(b, a<2>, -c) = B(b) tu (~ g;;u;) du, (4.9) 

where n = ((b - 1), c) and 1 = (1, 1, ... , 1). Define the integrand of the right-hand side of ( 4.9) 

as g( u), i.e., 

J I 

g( u) = II <L 9ij'Ui r;. 
i=l i=1 

Now R may be expressed in the form of ( 4.8), i.e. 

R(b c(2) -c) = - 1
-/ eh(ui)du1 ' ' B(b) ' 

(4.10) 

where h(u1) = logg(u1, ... ,u1-1,l - Ef;f ui). The theorem that follows shows that, under 

mild conditions, g( u) has a unique mode. 

Once we have found the mode, the next quantity that we need to determine is the deter

minant det E, where Eis minus the inverse of the Hessian matrix of hat the mode ii1. It is 

sufficient to find det(E-1
) = 1/ det E. Let 

/3i; = 9i; - g 1;, for 1 ~ i ~ I - 1, 1 ~ j ~ J, (4.11) 

then 

J (1-1 ) h( u1) = ~ n; log ; ,B;;u; + Ur; . ( 4.12) 

We have 

( 4.13) 

Then 

J '°"-1 '°" T L.., = LI ;;/3.;/3.;, where (4.14) 
i=l 
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[

l-1 ] 
2 

ij = nj/ ~ /3ij'Ui + 9Ij 
i=l 

Therefore, by (4.8), (4.10) and (4.14), we have 

. 1 

R(b, 0<2>, -c) :::: Btb) ( 2,r )"2
1 

[ det (t 'Y ;.8.;.8!;) 1-• ehCti, l, 

where h,/3i;'s, ;;'s are defined in (4.12), (4.11) and (4.15) respectively. 

Theorem 4.8 Assume 

(i) n; > 0 Vj=l, ... ,J; 

(ii) the vectors g.;,i = 1, ... , J, span the I-dimensional real vector space. 

Then, g(u) = rrf=1(Ef=19ij1Li)"j has a single local mode. 

Proof By (4.13), the Hessian matrix of his 

J 

H = L m;/3.;/i;;, where 
j=l 

(4.15) 

(4.16) 

(4.17a) 

(4.17b} 

0 

m; = -ni/ [Ef;f /3ij1Li + 9Ij]2. By (4.17a), m; < O, for every j. For every non-zero (I - 1)

dimensional column vector x, (xTJ3.;)(/3~x) = (xT/3.;)2 ~ O. But, by (4.17b), there is at least 

one j such that xT /3.; ::f: 0. Hence, for every non-zero vector x, xT Hx < 0. By definition, H is 

a negative definite matrix, and so g( u) has a single local mode. O 

A posterior moment (e.g. (2.7) or (2.11)) is proportional to a ratio of two R functions. 

Therefore, we can approximate a posterior moment by applying formula (4.16) separately to 

each of the numerator and denominator. 

R(b + d, a<2>, -( C + e))/ R(b, a<2>, -c) 

( 4.18) 
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where ii1 ,h and, are defined the same as those in (4.16), but iii,h* and,* are defined with b 

replaced by b + d and c replaced by c + e. 

Our experience is consistent with Tierney and Kadane's (1986) theorem that the ap

proximation ( 4.18) for a posterior moment is order O( ~ ), and thus is more accurate than the 

approximation (4.16), which is order O(!)-

For the parameters we discussed in this subsection, if some of the b3 's are smaller than 

unity, then their corresponding ni 's, which are bi - 1, would be negative. Theorem 4.8 would 

not be applicable in this case. The integrand of R, then, would usually not have a unique mode. 

The approximation formula ( 4.8) could not be used directly. Therefore, before applying formula 

( 4.8), we need to apply the following transformation. 

Theorem 4.9 Suppose u"' D(b,G,c). Let Vi = log(ui/ttr), for i = 1,2, .. . ,I - 1, then the 

p.d.f. o/v is 

g(v) = h(v)/R(b,G,-c), where, 

(4.19) 

and the range of each Vi is ( -oo, oo ). Furthermore, if bi > 0 and c3 > 0, for each i and j, then 

h( v) has a unique mode. 

Proof. It can be shown that 

I-1 

Ui = evi /(1 + E evi ), i = 1, 2, ... , J - 1, 
i=l 

1-1 

u1 = 1/(1 + E e11i), 
i=l 

and the absolute value of the Jacobian is 

exp (E[,;;£ vi) 
1 

= IT "i· 

( 1 + r:f ;f eVi) i=l 

Hence, the p.d.f. of v can be expressed as g(v). If we express h of (4.19) in terms of u and let 

v= k(u), then 
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1 ( / ) L ( I )c; 
h{v) = /(u) = B{b) JI uti JI ~9ijUi 

,=1 ,=t i=l 

(4.20) 

where /(u) = h(k(u)). By Theorem 4.8, /(u) has a unique mode and so does h(v). 0 

Note that the Jacobian makes the exponent of Ui for the p.d.f. of D(b, G, c) change from 

"bi -1" to "bi" in (4.20). Now, to compute R, we integrate h(v) in (4.19). By Theorem 4.9, we 

can now apply the approximation formula (4.8). 

As noted earlier, although the Laplace approximation to the ratio of R's is accurate to 

order O( ~ ), the approximation of R, itself, is only accurate to order 0( ~ ). An alternative 

approach is to use monte carlo methods, explained below. 

4.4 Monte Carlo Methods 

If we reexpress R in (1.2) as 

R(b,G, -c) = Eulbh(u), (4.21) 

where 

h(u) = fJ (tu;;u;) c;. (4.22) 

We may then use the following 3 steps to generate a Monte Carlo value for h( u ): 

Step 1: generate I gamma random deviates according to gamma (bi, 1), say Xi, i = 1, ... , I. 

Step 2: Let Ui = Xi/ EL=t x1c, where i = 1, 2, ... , I. Now, u follows a Dirichlet distribution 

with paramater b. 

Step 3: Compute h(u) according to (4.22). 

We denote the above h( u) as h1• Repeating the above three steps n-1 times independently, 

we haven Monte Carlo values h1,h2,h3, ... ,h,,,, for h(u). Leth= Li=thifn. Then, his 

an unbiased estimate of R(b, G, -c). An estimated standard error of h is -j::s, where s2 = 
""'" - 2 
Lti=~~rh) and this is an unbiased estimate of the population variance S2 of h's. Hence, we 

may increase the accuracy by increasing the Monte Carlo sample size. One way to determine the 
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Monte Carlo sample size n is by taking a preliminary sample of size n1 first. After computing 
2 . 

the estimated variance sf, the sample size n can be determined as (:~) , where dis the desired 

standard error of ii. \Ve can then take ( n - n1 ) further Monte Carlo values. 

Consider computation of the ratio of R's, 

R(b, G, -( c + d))/ R(b, G, -c) = Eulbf(u)/ Eulbh(u), (4.23) 

where 

J I 
/( u) = IT (E 9ij'Ui)<c;+d;) (4.24) 

j=l i=l 

and h(u) is defined as in (4.22). In the third step of generating a Monte Carlo sample, we may 

also compute /(u) according to (4.24). The /(u) computed from the ith cycle is denoted by /i· 
Then, the ratio of R in ( 4.23) can be estimated by r = f /h, which is a slightly biased estimate 

of R1/R2, where R1 = R(b,G, -(c+ d)) and R2 = R(b,G, -c). The bias is of order O(¼)- The 

following results can be used to determine the mean squared error of the ratio. 

Theorem 4.10 The mean squared error of r (to order O(¼)) is 

1 R2 R 
lrf SE(r) = R2 (Var(l) + R~ Var(h)- 2R1 Cov(f,h)), 

n 2 2 2 

where Var(!)= Eulb(f(u) - R1)2 and Gov(!, h) = Eulb(f(u)- R1)(h(u)- R2). 

Proof: 

Let d1 = f R~1 and d2 = hR~2 , then 

f = R1(l + d1), ii = R2(l + d2) and 

r = f /h = R1(l + d1)/ R2(l + d2) 

= (Ri/R2) · (1 + d1)(l - d2 + d~ - d~ + d~ - ... ), ld2I < 1 

= (R1/ R2)(l + d1 - d2 + ... ). 

Therefore, the mean squared error of r is to order 0( ¼ ), 
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MSE(r) = E(r - Ri/R2)2 

= (Rt/ R2)2E(d1 - d2)2 (to O(¼)) 

= (Ri/R2)2(Var(d1) +-Var(d2)- 2 Cov(d1,d2)) (Since E(d1) = E(d2) = 0) 

= (Rt/ R2)2. ¼ (V~J) + V~h) _ 2c'i:i(kh)) 
= ~(Var(!)+~ Var(h) - 2l Gov(!, h)). 

Corollary 4.11 The estimated mean squared error for r is 

0 

.. 1 [ 2 Rj 2 R1 ] M SE(r) = nh2 s1 + R~sh - 2 R
2 

SJh , where (4.25) 

5 Examples 

We use three examples to illustrate and compare computation methods. In the first example, the 

closed-form method is illustrated by computing R with a three-level nested-partition indicator 

matrix. In the second example, we illustrate our expansion method by computing R and a 

ratio of R's with an indicator parameter matrix. To compare estimated values and CPU times, 

the Laplace method and monte carlo method are also used. In the third example, we compare 

estimated values and CPU times for R and a ratio of R's when neither the closed form nor 

expansion method is feasible. 

Example 1. Three surveys are taken regarding degree of satisfaction of a service. The first, 

second and third survey questionaires were designed, respectively, to have two ( acceptable and 

not acceptable), four (very good, good, bad and very bad), and eight (1 (excellent), 2, ... , 8 

(terrible)) possible outcomes. Hypothetical sample data is shown in Table 1. If the i-th degree 

of satisfaction corresponds to the i-th category, then there are eight categories. If we also assume 

a uniform prior distribution, then the posterior p.d.f., after these three samples are combined, 
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has expression (2.10) with R(b, G, -y), where b = (b1, 62, ••• , b8), b1 = b2 = ... = ba = 1, y = 
(y(1), y(2)) = (3, 2, 1, 5, 2, 1 : 2, 1, 5, 8, 4, 3, 1, 0), and 

1 0 1 0 0 0 1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 1 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 1 0 0 0 0 0 

G = (G<1>,G(2>) = 1 0 0 1 0 0 0 0 0 1 0 0 0 0 

0 1 0 0 1 0 0 0 0 0 1 0 0 0 

0 1 0 0 1 0 0 0 0 0 0 1 0 0 

0 1 0 0 0 1 0 0 0 0 0 0 1 0 

0 1 0 0 0 1 0 0 0 0 0 0 0 1 

Define b + y(2) and (y<1>, 0) as c and z respectively, i.e. b + y(2) = c and (y<1>, 0) = z, 

then 

R(b,G, -y) = 
B(b + yC2>] 

. R(b + yC2)' G(t)' -y<t>) 
B[b] 

= 
B(c] 
B(b] R( c, G, -z) 

= B(c] . B(c(•l + z•;+] ( rr B(c(k,,.) + Zk,,.;+J) 
B[b] B[c(•)] ki=t B[c(l~i:•)] . 

(5.1) 

The first, second and third identity above are from Lemma 3.7, Lemma 3.2 and Corollary 4.4 

respectively. Using notation defined in subsection 4.1, we have z3 = z1:1 , z4 = z1:2, z5 = z2:1, 

Z6 .= Z2:2, Z7 = Zt:1:1, Zs = Zt:1:2, Z9 = Z1:2:1, Z10 = Zt:2:2, zu = Z2:1:1, Z12 = Z2:1:2, Z13 = Z2:2:1 and 

z14 = z2:2:2· Hence, z.;+ = (z1;+, z2,+) = (z1 + (z3 + z4) +(z1 + zs + Zg + z10), z2 + (zs + z6) 

+(zu +z12+z13+z14)) = (9,5),zt:•;+ = (z1:1;-1-:,z1:2;+) = (z3+(z1+zs), z4+(zg+z10)) = (1,5), 

and z2:•;+ = (z2:1;+, z2:2;+) = (zs + (zu + z12), Z6 + (z13 + zu)) = (2, 1). We also have C(•) 

= (cc1), cc2)) = (Ef=t Ci, E1=s ci) = (20, 12), c(l:•) = (c(l:l), cc1:2)) = (c1 + c2, c3 + c4) = (5, 15), 

and C(2;.) = ( C(2:l), C(2:2)) = ( cs + c6, c1 + cs) = (9, 3). Substitute the data vectors into equation 

(5.1), we have 

R(b G ) _ B 3,2,6,9,5,4,2,1 . B(29,17) (B(6,20) . B(ll,4 ) 
' '-y - B 1,1,1,1,1,1,1,1) B(20,12) B(S,15) B 9,3) 

= 5.2172 X lQ-28• 
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D 

Example 2. Neurological complications are one serious sequel associated with meningitis. 

To evaluate a standard therapy the results of a neurological test were obtained for 33 children 

with meningitis. Both pre and post-test results were available for 25 children, only pre-test 

results were available for 6 children, and only post-test results were available for 2 children. 

This data (Smith and Gunel (1984)) is summarized in Table 2. 

In the 2 x 2 table there are four categories taken in the respective order, (1, 1), (1, 2), (2, 1) 

and (2, 2). Again, assuming a uniform prior, we have that the normalized constant for the 

posterior p.d.f. is B(b) · R(b, G, -y ), where b = (7, 9, 4, 9), y = (y(l), yC2>) = (2, 4, 0, 0, 0, 0, 2) 

and 

101000 1 

0 1 0 1 0 0 1 

100010 0 

010001 0 

If we partition S~2
) = {1, 2} into {1} and {2}. Then, by ( 4.6), the possible W's are vectors 

w1, w2 and w3, where 

0 

0 

0 

0 

0 

0 

Wt = Q , W2 = 1 and W3 = 2 

2 

0 

0 

By Theorem 4. 7 and yp> = 2, we have 

1 

0 

0 
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R(b, G, -y) = ~=1 ( ( ~; ) ) R(b, G<1>, -(y<1l + w;)) 

2 

+R 

7 

9 

4 

9 

7 

9 

4 

9 

G(l) -
' ' 

G(l) -
' ' 

4 

0 

2 

0 

0 

2 

4 

2 

0 

0 

0 

+2·R 

7 

9 

4 

9 

G(l) -
' ' 

2 

4 

1 

1 

0 

0 

Using the closed form method (as we did for example 1) for each term, we have R(b, G, -y) = 
0.0060975. Denote this R by Ro and let R1 = R(b',G,-y) where b' = (8,9,4,9). Using the ex

pansion method again, we can compute R1 and obtain R1/ Ro. Note that the posterior moments 

are proportional to ratios of R's. To compare relative errors, i.e. the absolute value of error 

over the true value given by the expansion method, and CPU times, the Laplace and monte 

carlo methods were also used to estimate Ro and R1 / R0 • Results are given in Table 3. In this 

example, the monte carlo method is more accurate than the Laplace method for estimating a 

single R. However, to estimate a ratio of R's, the Laplace method is more accurate. In terms of 

CPU time, the Laplace method is uniformly better. Note that we used sample size n = 4,000 

for each of the monte carlo calculations. D 

Example 3. In this example, we compare the estimated values of Rand ratio of R's by using 

the Laplace and monte carlo methods. Although we use hypothetical data, this is the type of R 

we are likely to encounter in Bayesian smoothing problems. Here, we consider Ro = R(b, G, -c) 

and R1 = R(b, G, -c'), where b = (b1, ... , b6), b1 = ... = b6 = 1.46, c = (5, 15, 3, 5, 1, 1 ), c' = 
(6, 15, 3, 5, 1, 1) and 
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.252636 .346373 .186692 .165444 .048276 .000580 

.249421 .303337 .157317 .144730 .084169 .061026 

.236832 .291551 .143567 .117765 .091937 .118348 
G= 

.230493 .295390 .142317 .128301 .093455 .110044 

.236654 .327355 .162942 .141962 .076223 .054865 

.261564 .331194 .183567 .164998 .052740 .005937 

The results are shown in Table 4. The estimated values of Rt/ Ro based on the Laplace and 

monte carlo methods are very close. But, the estimated values of each of Ro and R1 based 

on the two methods are quite different. Since the expansion method is not feasible, we do not 

have an exact value available. However, we do have the estimated standard errors, which are 

small, for Ro and R1 based on the monte carlo method. Again, in terms of the CPU time, the 

Laplace method is more efficient. We used sample size n = 10, 000 for .each of the monte carlo 

calculations. 
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Table 1. Three surveys: Degree of Satisfaction 

Degree of 

satisfaction 1 2 3 4 5 6 

Survey 1 3 

Survey 2 1 5 2 

Survey 3 2 1 5 8 4 3 - -- -- -- -- --

Table 2. Data on neurological complications (Smith and Gunel, 1981) 

Post-test 

s 
F 

Supplemental data 

on pre-test 

Pre-test 

s 

6 

3 

2 

27 

F 

8 

8 

4 

Supplemental data. 

on post-test 

2 

0 

Total sample size 

33 

7 8 

2 

1 

1 0 -- -



Table 3. Neurological complications 

Exact value ( expansion): Ro = .0060975, R1/ Ro = 1.0278967 

Estimated value Relative Error CPU time (seconds) 

Ro .0058201 .0455 .05 

Laplace 

R1/Ro 1.0291576 .0012 

Ro .0061280 .0050 2.58 

Monte carlo 

R1/Ro 1.0243962 .0034 

Table 4. General R: Non-indicator matrix G 

Estimated value CPU Time (seconds) Standard error 

Ro 2.2601394 X 10-20 0.100 

Laplace R1 .5544338 X 10-2o 0.090 

R1/Ro .2453096 

Ro 3.15694 X 10-2o 10.56 .00090 X 10-2o 

Monte Carlo R1 .774512 X 10-2o 10.26 .00023 X 10-2o 

R1/Ro .2453363 
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6 Conclusion 

The preferred method to compute R(b, G, -c) or its ratios depends on the parameters of R. We 

summarize as follows: 

1. HG is an n-level nested-partition indicator matrix, use the closed form (section 4.1). 

2. If G is an indicator matrix, c+ is not very large and J' ( the number of nonzero Ci 's) is 

small, or if G is not an indicator matrix but c+ and J' are small, we use the expansion 

method (section 4.2). 

3. If b+ + c+ is very large, when computing R, orb++ c+ is not small, when computing a 

ratio of R's, we can use the approximation method (section 4.3). 

4. H b+ + c+ is not very large, when computing R, or b+ + c+ is small, when computing a 

ratio of R's, it is best to use the Monte Carlo method (section 4.4). 

From our experience, it is very likely in practice that, simultaneously, more than one of 

the above methods can be used very effectively, thus providing comparisons, as in the examples 

of section 5. 
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