
•' 

. -

Computing the exact value 
of the least median of squares estimate 

in multiple linear regression 
by Arnold J. Stromberg 

University of Minnesota 
Technical Report #561 

May, 1991 



. -

., 

COMPUTING THE EXACT VALUE OF THE LEAST MEDIAN OF SQUARES ESrlMATE 

IN MULTIPLE LINEAR REGRESSION 

i 

Arnold J. Stromberg1 

ABSTRACT 

A method for computing the least median of squares estimator (SLMS) in multiple linear 

regression that requires considering (pt 
1
) possible (J values is presented. It is based on the fact that 

BLMS is the Chebyshev ( or minimax) tit to half of the data. This yields a surprising easy algorithm 

for computing the exact LMS estimate. Several examples show how approximate algorithms can yield 

very different conclusions from the exact least median of squares solution. 
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1. INTRODUCTION 

Linear regression treats the problem of estimating 80 where: 

I 

Y· = x-80 + e- i = 1, 2, ••• , n 
. l 1 l 

where (xi, yi) e (RP, R) are data points and 80 is an unknown p-dimensional parameter vector and the 

ei are unknown errors. We will denote estimators of 80 by 8. The residuals, Yi - xi9, i = 1, 2, ... , n, 

are denoted ri(0). The best known estimator of 80 is the least squares estimator BLS which is: 

Argmin E rf(O) 
(J i=l 

The least squares estimator, although optimal in many situations, has the drawback that it is heavily 

influenced by outliers. It also suffers from the problem of masking, that is, it is possible that multiple 

outliers may be present in the data set, yet they are not detected by common least squares diagnostic 

procedures. 

The breakdown point of an estimator (Donoho and Buber, 1983) has been shown to be a useful 

measure of the robustness of an estimator. It can be thought of as the least amount of arbitrary 

contamination that can drive the estimate to infinity. It is clear that the breakdown point of the least 

squares estimate in linear regression is 1/n. Recent research (Atkinson 1986; Rousseeuw and von 

Zomeren 1990) has shown the usefulness of estimators with breakdown point approximately equal to 

1/2. These estimators seem to be able to detect masking when least squares diagnostic procedures do 

not. The most studied high breakdown estimator is Rousseeuw's (1984) least median of squares (LMS) 

estimator. It is denoted 0LMS and defined as: 

In order to obtain the highest possible breakdown point for 0LMS when the data are in general 

position, meaning that any p points give a unique determination of 8, the median is defined as the qth 

order statistic where q = [n/2] + [(p+l)/2] and [ ·] indicates the greatest integer function. 

One of the drawbacks of the least median of squares estimate is that it is quite difficult to 

compute. The objective function is continuous, but not differentiable and it has many local minima. 

Rousseeuw and Leroy's (1987) PROGRESS algorithm is the most widely used algorithm for estimating 

BLMS in linear regression. For a given data set and regression function, the PROGRESS algorithm 

computes the exact tit, 8 ef' to many randomly chosen p point elemental subsets of the data set. 
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Denote the 9 ef with the smallest median squared residual 8. If the regression function has no intercept, 

8 is the PROGRESS estimate of 0LMS· If an intercept is used in the model, the intercept of iJ is 

adjusted to yield the smallest possible median residual. This adjusted 8 is then the PROGRESS 

estimate of iJLMS· A -flow chart for the algorithm is presented in Figure 1.1. Rousseeuw and Leroy 

(1987) note that at the expense of additional computation time, the intercept adjustment can be done 

for each elemental set. ·unfortunately this algorithm, which Steele and Steiger (1986) show will 

find the exact value of 9LMS when p=2, does not yield the exact LMS estimate in multiple linear 

regression where p>2. 

The MVELMS algorithm of Hawkins and Simonoff (1991), which is also based on the selection of 

p point elemental sets but uses an intercept adjustment for all elemental sets, has been proposed as an 

alternative to the PROGRESS algorithm. In general, it produces estimates of 80 with a smaller 

median squared residual than the PROGRESS algorithm. 

Using a geometric argument, Tichavsky (1991) has argued that the exact LMS estimate in 

multiple linear regression can be found by considering all p+ 1 point elemental sets and for each one 

finding the values of 9 where the magnitudes but not the signs of all p+ 1 residuals are equal. This 

method leads to (2P-1)(p:l) values of 9 that must be considered in order to compute the exact value 

of 6LMS in multiple linear regression. Given the complexity of the problem for moderately large n and 

p, Tichavsky suggests approximating 6LMS by selecting p point elemental sets and checking the 

median squared residual for the values of 8 generated by the selected elemental sets. 

A method for computing 0LMS in multiple linear regression that requires considering (pil) 

possible 8 values is presented in this paper. Since BLMS minimizes the qth largest squared residual for 

a given data set, it must minimize the maximum squared residual for some q element subset of the 

data. Thus, 6LMS is the Chebyshev ( or minimax) fit to that q element subset. Section 2 presents two 

theorems that can be used to find the Chebyshev fit for a given data set. The first implies that the 

LMS fit must be the Chebyshev fit to some p+ 1 element subset of the data, and the second provides a 

surprising easy method for computing the Chebyshev fit to p+ 1 points. Thus, the theorems can be 

used develop an algorithm for computing the exact value of iJLMS in multiple linear regression. 

Section 3 presents two examples showing how approximate algorithms can yield very different 

conclusions from the exact least median of squares solution. 

2. THE CBEBYSHEV FIT 

In this section we adapt theorems found in Cheney (1962) to provide a method for computing the 

Chebyshev fit, and thus the LMS fit, in linear regression. The first relevant theorem can be restated in 

the context of regression as follows: 
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Theorem l (Cheney, 1962. R:. a§). 

In linear regression, the Chebyshev tit, Be, will be the Chebyshev fit to some p+l element subset of the 

data. D 
; 

By Theorem 1, if we can fmd iJ c for all p+ 1 element subsets of the data, then we can find iJ c for the 

entire data set. Theorem 2· provides a method for finding Be when the sample size is p+l. The Baar 

condition says that there is one and only one exact fit to any p points. Let Y = (y1,y2, ••• ,Yn? and X 

be then x p matrix given by (x1,~, ... ,xn?. 

Theorem 1 (Cheney, ~ ~ ill 
Consider the linear regression setting described in Section 1 with sample size p+ 1. Assume that 

the Haar condition is satisfied. Then 

B1s = MY, where M = (XTxr1xT 

is the least squares fit to the data. Let 

and S be the p+l dimensional vector where si = sgn(ri(B18)), i = 1, 2, •.. , p+l. Then 

Be= M(Y - eS). a 

Remarks: Since the LMS tit is the Chebyshev fit for some sample of p+ 1 points, the following 

algorithm (Figure 2.1) can be used for computing the exact value of BLMS in multiple linear regression: 

For each p+l point elemental set, use Theorem 2 to compute the Chebyshev fit, denoted Be. The Be 
with the smallest median squared residual will be the exact LMS estimate. As with the algorithms of 

Section 1, implementations should take advantage of the fact that for many Be, computing all the 

squared residuals and/or the sort to find the median residual can be avoided. Suppose B is the current 

best estimate of BLMS and Be is the Chebyshev tit to the p+l point elemental set being considered. 

The squared residuals at Be need only be computed until n -q are more than rr q)(B) because then it 

must be that rf q)(6~) > rf q)(B) • Should this not be the case, Be becomes the new estimate of BLMS 

and the squared residuals are sorted to find the qth largest squared residual at the new estimate of 

8LMS· 
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The fact that iLMS is the Chebyshev fit to some p+l point elemental set seems intuitive, but it 

is quite surprising that the computation of Be provided by Theorem 2 is only moderately more 

_ computationally difficult than computing the exact fit, 8 ef to p points as is done in the approximate 

algorithms of Section 1. This suggest that algorithms based on :computing iJef could be improved by 

computing Be instead of Ber 

If the Chebyshev fits are unique, then the LMS fit will have p+l points with squared residuals 

equal to the median squared residual, q - p - 1 points with squared residuals less than the median 

squared residual, and n - q points with squared residuals more than the median squared residual. 

The exact algorithm can easily be modified to compute what can be called the percentile 

estimates. The (k/n) x 100% percentile estimate for k = p+l, p+2, ••• , n minimizes the kth largest 

residual for the data set. We will denote the estimate i(k)" Note that the LMS estimate is a percentile 

estimate with k = q. Cook and Hawkins (1990) argue the usefulness of percentile estimates. Since 

each of the percentile estimates is the Chebyshev fit to some p+ 1 element subsample of the data, the 

following modification algorithm can be used to compute all the percentile estimates in one pass 

through the Be. Use the ith = k-pth row of a (n -p) x p matrix K to hold the current best estimate 

of B(k) for k = p+l, p+2, .•. , n. At each Be, compute and sort the squared residuals. Then update 

B(k) if rfk)(Bc) is less than the previous smallest value for rfk)(6). After considering all Be, the matrix 

K will contain the exact values of B(k) fork= p+l, p+2, ••• , n. 

The algorithm can also be modified to compute B(i)' the LMS estimate for the data set with the 

ith data point deleted. This can be done at the same time as the computation of the LMS estimate for 

the full data set. In general, use the ith row of an x p matrix to hold the current best estimate of B(i)" 

For each Be, check for improvement in each of the O(iY Of course, those Be based on elemental sets 

that contain point i must be excluded from the possible B(i) values. For any other Be, the median 

squared residual for the data set with the ith point deleted will be the ( q + j)th largest residual for the 

entire data set where: 

2 • 2 • 
. -{ 0 if r(i)(6c) > r(q)(6c) 
J- 2 • 2 • 

1 if r(i)(6c) !5 r(q)(6c) 

Thus, the squared residuals need only be computed once at each Be to find BLMS and B(i)' i = 1,2, ••• ,n. 

The iJ (i) can be used as a diagnostic tool. If the plot of LMS residuals versus LMS fit values 

using iJ (i) is quite different than the same residual plot using the entire data set, then point i can be 

considered influential. 

The i (i) can also be used to produce jackknifed standard error estimates for the the LMS 

estimator. Jackknifed covariance estimates for BLMS can be computed using the method described by 

Efron (1982, p.18-19). Be suggests the following covariance matrix: 
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n 1°.. .. .. .. T .. ln .. 
JACKCOV = ~~l (O(i) - 8(.))(0(i) - 8(.)) where 8(.) = ni~/(i)" 

The consequence is that a jackknifed estimate of the covariance matrix can be computed with little 

more computational effort than the computation of 9LMS· Unfortunately, jackknifed standard errors 

do not agree with bootstrapped or Monte Carlo standard error estimates, thus it is the authors 

conclusion that the jackknife isn't a reasonable .method for computing standard errors for 9LMS· It 

seems possible, but unlikely because of the nonlinearity of the LMS procedure, that a modified 

jackknife (Wu 1986, SimonotT and Tsai 1986, 1988) may eventually yield a reasonable method for 

computing standard errors for the LMS estimate. 

3. EXAMPLES 

The most notable difference between the approximate algorithms and the exact algorithm is that 

the elemental sets consist of p+ 1 points for the the exact algorithm but only p points for the 

approximate algorithms. As an example of how this can effect the OLMS. fit, consi~er the data in 

Table 3.1, fit by a simple linear regression through the origin model. Both the PROGRESS and 

MVELMS algorithms use one point elemental sets, while the exact algorithm uses two point elemental 

sets. The PROGRESS and MVELMS algorithms find the the line that passes through point 8 which 

has slope .657225, and median squared residual .107. According to this fit, points zero through four 

should be considered outliers. The exact LMS fit is the Chebyshev fit to points 4 and 5, which has slope 

.38485 and median squared residual .075. According to the exact fit, points six through nine should be 

considered outliers. The regression lines are depicted in Figure 3.1. 

Table 3.1 

Data fit by Simple Linear Regression Through the Origin 

Point#: 0 1 2 3 4 5 6" 7 8 9 

x: 1 2 3 4 5 1 2 3 4 5 

y: 0.3302 0.6590 0.9888 1.3194 1.6495 0.6596 1.3192 1.9815 2.6289 3.3011 

The 6 (i) are useful in understanding the LMS fit to this data. If any of the first five points are 

removed, the LMS fit shifts to fit the upper five points while removing any one of the upper five points 

has little impact on the LMS tit. It seems that considering any of the points to be outliers when the 
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Figure 3.1. PROGRESS, MVELMS, and exact LMS fit of a Simple Linear Regression through the 

Origin model for the data in Table 3.1. 
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LMS fit to the iJ (i) is so variable is questionable. 

The data set in Table 3.2 (from Cook and Weisberg 1982, p. 4) summarizes the results of a cloud 

seeding experiment in Florida in 1975. On each of 24 days suitable for seeding, . the following six 

explanatory variables were recorded: 

A: "Action" was set to zero if no seeding took place and to one if seeding occurred. 

T: "Time" was the number of days since the beginning of the experiment. 

S: "Suitability" was a measure of the days suitability for seeding. 

C: "Echo coverage" was the percent cloud coverage in the experimental area. 

P: "Prewetness" was the total rainfall in the target area in the hour before seeding. 

E: "Echo motion" was set to 1 for a moving radar echo and 2 for a stationary radar echo. 

The data was fit using a multiple linear regression model with the preceding six explanatory variables 

and an intercept. The response variable was ln(rainfall) in a target area for a six hour period. The 

PROGRESS approximation to iJLMS (1.43, .695, -.016, -.455, -.039, .941, 1.08) is based on the exact 

tit to points 0,1,9,16,17,19, and 20. Its median squared residual was- .0601. The MVELMS · 

approximation to 8LMS (.740, 1.13, -.0047, -.567, -.056, 3.60, .990) is based on the exact fit to points 

2,3,5,8,11,21, and 23. Its median squared residual was .0278. Neither of the these approximations 

find seven of the eight points (2,3,4,8,9,11,16,23) that determine the exact LMS fit (.715, 1.13, -.0052, 

-.551, -.056, 3.61, .962) which has median squared residual .0241. The MVELMS basis does have 5 

points in common with the e.~~t basis, which explains why it is close to the exact LMS fit. 

The plot of the least median of squares residuals versus fit values has been suggested (Rousseeuw 

and Leroy, 1987) for assisting in detecting outliers in multiple linear regression. The PROGRESS, 

MVELMS, and exact LMS residual plots for the cloud seeding data are given in Figure 3.2. Note that 
\~ 

with the exception of poinm6: the PROGRESS algorithm identifies different outliers than the other two 

methods. The MVELMS plot is very close to the exact LMS plot, but there would be no way to know 

this without computing the exact LMS fit. For this data set, none of the residual plots based on 0(i)' 

i=l,2, ••• ,n vary much from the residual plot for the full data set (Figure 3.2(1a)), thus none of the data 

points are flagged as particularly influential. 

The ability to compute the exact LMS estimate allows us to study the stability of 0LMS under 

shifts in the observed values. Let the modified cloud seeding data be the cloud seeding data with the 

response at point 4 shifted from 0.8961 to 1.1061. The residual plots for the three methods are almost 

identical to those given if Figure 3.2. If we shift the response for point 4 from 1.1061 to 1.1161, the 

PROGRESS and MVELMS tits are virtually unchanged from those in Figure 3.2, but the exact LMS 

residual plot is now similar to the PROGRESS plot of Figure 3.2. It is interesting that although the 

PROGRESS and exact LMS residual plots are similar in this case, the MVELMS fit has a smaller 

median squared residual than the PROGRESS fit. The instabily of the LMS residual plot is shown in 
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Figure 3.3 where the shift of point 4 from 1.1061 to 1.1161 causes a different set of outliers to be 

identified. In the modified data set with point four at 1.1161, the influence of point four on the fit is 

evident from 6 ( 4) whic~ yields a residual plot quite different fro":1 the residual plot for the entire data 

set (Figure 3.3(b)). As expected, since only point four has been modified, the i(4) residual plot is 

similar to Figure 3.3(a). 
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Figure 3.2. LMS residuals versus fit values for the cloud ·seeding data using (a) Exact LMS, (b) 

PROGRESS and (c)MVELMS. 
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Table 3.2. Cloud Seeding Data 

Index Action TimeSuitabilitx Echo ~verage Prewetness F&Jmmotion m(Bainfall) 

0 0 0 1.75 13.4 .274 2 2.5533 

1 1 1 2.70 37.9 1.267 1 1.7084 
I 

2 1 3 4.1 3.9 .198 2 1.8390 

3 0 4 2.35 5.3 .526 1 1.8099 
t 4 1 6 4.25 7.1 .25 1 0.8961 

5 0 9 1.6 6.9 .018 2 1.2837 

6 0 18 1.3 4.6 .307 1 -0.755 

7 0 25 3.35 4.9 .194 1 1.5173 

8 0 27 2.85 12.1 .751 I 1.8485 

9 1 28 2.2 5.2 .084 1 1.6214 

10 1 29 4.4 4.1 .236 1 1.0152 

11 1 32 3.1 2.8 .214 1 1.3987 

12 0 33 3.95 6.8 .796 1 1.7475 

13 1 35 2.9 3.0 .124 1 1.5769 

14 1 38 2.05 7.0 .144 1 2.4732 

'15 0 39 4.0 11.3 .398 1 1.4929 

16 0 53 3.35 4.2 .237 2 1.2975 

17 1 55 3.7 3.3 .960 1 1.4398 

18 0 56 3.8 2.2 .230 1 0.1484 .. 
19 1 59 3.4 6.5 .142 2 1.6956 

20 1 65 3.15 3.1 .073 1 0.7031 

21 0 68 '3.15 2.6 .136 1 -.1985 

22 1 82 4.01 8.3 .123 1 .00862 

23 0 83 4.65 7.4 .168 1 -1.273 
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