
The Optimal R~ward Operator 

in 

Negative Dynamic Programming 

by 

A. Maitra and W. Sudderth* 
University of Minnesota 

Technical Report No. 555 
November 1990 

* Research supported by National Science Foundation Grant DMS - 8911548. 



Abstract 

We consider the negative dynamic programming mQClel of Strauch [10] and prove 

that the optimal reward function can be obtained by a transfinite iteration of the optimal 

reward operator. A departure from all previous treatments of this model is that we allow 

nonmeasurable policies. We prove that a player loses nothing by restricting himself to 

measurable policies, if the returns from nonmeasurable policies are evaluated by lower 

integrals. 
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1. Introduction 
The aim of this article is to study the optimal reward operator for the negative 

dynamic programming model introduced by Strauch [10]. Our paper parallels the work of 

Blackwell et al [2], who made a study of the optimal reward operator for the positive 

dynamic programming model. They proved that for an n-day horizon problem the optimal 

reward over measurable policies equals the optimal reward over all policies, measurable or 

nonmeasurable. Since, in the positive case, the optimal reward for the infinite horizon 

problem is the limit of the optimal rewards for the n-day problems, it follows that 

nonmeasurable policies do not give the player any advantage in the infinite horizon 

problem. In the negative case, however, the adequacy of measurable policies for finite 

horizon problems, which can be established simply by imitating the methods of [2], is of 

no help in establishing the analogous result for the infinite horizon problem. A new idea is 

needed. The idea is to obtain the infinite horizon optimal reward function by iterating the 

optimal reward operator a transfinite number of times. The measurability problems that 

arise in implementing this idea are handled by using a result from the theory of inductive 

definability. Methods from the theory of inductive definability have been used in the theory 

of gambling (see, for example, [3] and [5]), but, as far as we know, this is the first use of 

such methods in dynamic programming. 

A negative dynamic programming problem is specified by the objects S, A, q, r. 

The state space S is a nonempty Borel subset of a Polish space. The set A is an analytic 

subset of S x X, where Xis a Polish space, with each vertical section A(s) of A nonempty. 
The set A(s) is to be regarded as the set of actions available at the state s e S. The law of 

motion q is a Borel measurable transition function from A to S, that is, for each fixed 
(s,a) e A, q(•ls,a) is a probability measure on the Borel subsets of S, and, for each fixed 

Borel subset B of S, q(BI•,•) is a Borel measurable function on A. Finally, the daily return 
r is an upper analytic function on A x S into [-oo,O], that is, for every real number c, the set 

{ r ~ c} is an analytic subset of A x S. 

This is the way the game is played. When the system is in state s and we take 
action a e A(s), we move to a new states' selected according to q(•ls,a) and receive a 

return ofr(s,a,s'). The process is then repeated from the new states'. We wish to 

maximize the total expected return over the infinite future. 
A policy 1t is a sequence x1,1t2, ... , where 7tn is a function on Ax Ax ... Ax S (n 

factors) to the set #'(X) of probability measures on the Borel subsets of X such that for 

each partial history h = (s1,a1, ••• ,s0 _1,a0 _1,Sn) e Ax Ax ... x Ax S (n factors), 
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7tn(h)(A(Sn)) = 7tn(A(s8)lh) = 1. A policy 7t is measurable if, for every n ~ 1, 1tn is 

analytically measurable, that is, for every Borel subset M of 'IJ(X), x-;(M) belongs to the 

a-field generated by the analytic subsets of A x A x ... x A x S (n factors), where the Borel 

a-field on 'IJ(X) is generated by the weak topology on 'IJ(X) (see [71). A measurable 

policy 7t is Markov if, for every n ~ 1, there is an analytically measurable selector f0 : S ~ 

X for the set A such that for every partial history he Ax Ax ... x Ax S, 7tn(•lh) = 

8(f0 (Sn)), where 8(a) is the degenerate probability measure concentrated on a. Recall that f: 

S ~ X is an analytically measurable selector for A if (s,f(s)) e A for every s e S, and 

f-1(B) belongs to the a-field generated by the analytic subsets of S for every Borel subset B 

of S. 
If 7t is a measurable policy, then, for each initial state s, 1t, together with the law of 

motion q, induces a probability measure ex(•ls) on the Borel subsets of Z =Xx S x Xx ... 

such that en(A(s) x Ax Ax ---Is)= 1 ([1], Proposition 7.45). The total expected reward 

l(7t)(s1) from 7t, when we start in s1, is given by the formula 

where Z(s1) = A(s1) x Ax Ax··· and z = (ai,s2,a2, .•• ) e Z(s1). Suppose, next, that 1t is a 

policy which is not necessarily measurable. We wish to define l(x). Set 

n 

r (h) = ~ r(s.,a.,s. 
1
) 

n ""' 1 1 1+ 
i=l 

where the partial history h = (s1,a1,····,an-1,s0 ,a0 ,s0 +t>· Let p0 (x,s1) be the 2n-fold 

iterated lower integral of r0 (h) with respect to the 2n probability measures 

Finally, set 

l(1t}(s1) = lim p8 (1t,s1). 
n 
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Using the monotone convergence theorem, one checks easily that the two definitions of 
I(1t), when 1t is measurable, are in fact equivalent. 

Blackwell et al [2] used the upper integral in defining the total expected reward from 

a nonmeasurable policy. In the negative dynamic programming problem, however, use of 

the upper integral turns out to be too generous an evaluation of the total expected reward 

and, then, nonmeasurable policies have a distinct advantage over measurable ones. This is 

shown by the following example, which is based on an unpublished example of S. 

Ramakrishnan in the theory of gambling. 

Example. Let S = {-1} u (0,1) u {0,1,2, ... }; A(s) = {0}, s = -1,0,1, ... ; A(s) = 

{ 1,2, ... }, s e (0,1). Let q(•l-1,0) = A, where A is Lebesgue measure on (0,1); q(•ls,n) = 

6(n), s e (0,1), n = 1,2, ... ; q(•ln,0) = 6(n-l), n = 1,2, ... ; q(•I0,0) = 6(0). Let r(l,0,0) = 
-1 and let r = 0, elsewhere. It is straightforward to verify that I(x)(-1) = -1 for every 

measurable policy 1t. 

Suppose now that in evaluating the expected reward from a nonmeasurable policy 

we had used a convex combination of the lower and upper integrals. To fix ideas, suppose 
that we had defined Pn(1t,s) as follows: For n = 1, let 

Pt (1t,s) = aJ• J• r(s,a,s') q(ds'ls,a) 1t1 (s)(da) 

+ (1-a) I.I. r(s,a,s') q(ds'ls,a) 1t1(s)(da), 

where u is fixed and O S a S 1. For n > 1, define Pn analogously. 

Consider the following nonmeasurable policy for the example above. Fix a 
n 

partition {Bn, n ~ 1} of (0,1) such that 1.( U Bi= 0) for every n ~ 1, l. being inner 
i=l 

Lebesgue measure. The existence of such a partition is proved in [1,p.279]. Let 1t be the 

policy that chooses action n when the current state s e Bn. Then 
I(1t)(-l) = 1 i m Pn(1t,-l) 

n---+oo 

• n 
= lim -(1-a) A ( U B.) 

n-+oo i=l I 

= -(1-a). 
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Hence, for any choice of a > 0, the policy 7t would fare strictly better at s = -1 than any 

measurable policy by the fixed amount a. Indeed, a = 0 is the only choice for which 

nonmeasurable policies do not provide an advantage over measurable policies. This is true 

in general and is the import of Theorem 1.1. 
Next, we define the optimal reward operator T. For any function w: S ~ [-co,0], 

define Tw: S ~ [-co,0] by 

(Tw)(s) = sup · [J.(r(s,a,s') + w(s')) q(ds'ls,a)], 
aeA(s) 

where J. is the lower integral. Define by transfinite induction functions Q;, ~ < ro1, on S 

into [-co,0] as follows: 

and, for ~ > 0, 

where~ is the function which is identically zero on S. Finally, set 

Q= inf Q;. 
~<(1)1 

We can now state the main results of the paper. 

Theorem 1.1. 
(a) Q is upper analytic, TQ = Q and Q is the largest function w such that Tw ~ w. 

(b) Q is the optimal reward function, that is, 
Q(s) = sup {I(x)(s): 7t any policy} 

for every s e S. 

(c) For every e > 0, there is an e-optimal Markov policy, that is, there is a Markov policy 7t 

such that I(1t) ~ Q- e. 

As was mentioned earlier, the negative dynamic programming model was 

introduced by Strauch [1 O] and studied by him, by Bertsekas and Shreve in their 
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monograph [1] and by Schal [8,9]. None of these authors considered nonmeasurable 

policies. Denote by v the optimal reward function over measurable policies. Strauch [10] 

proved that v is upper analytic and that Tv = v. Bertsekas and Shreve proved that vis the 
largest upper analytic function w from S to [-oo,0] such that Tw ~ w ([1], Proposition 

9.10) and also that, given£> 0, there is a Markov policy 1t such that I(1t) ~ v - e ([l], 

Proposition 9.19). The thrust of Schal's work was in a different direction. He found 
sufficient conditions under which the functions Q.i.1 = ~ converge to v and also 

conditions ensuring the existence of a stationary optimal policy. Bertsekas and Shreve also 

dealt with these problems (see [l, section 9.6]). 

Our paper is organized as follows. Section 2 is devoted to the statements of 

auxiliary results that will be used in this article. The optimal reward operator is studied in 

section 3. The proof of Theorem 1.1 is completed in section 4. In section 5, we give a 
sufficient condition which ensures that Q; = Q for some countable ordinal ~ and conclude 

with an example for which Q; * Q for every ~ < m1. 

2. Measure and set-theoretic preliminaries 

In the sequel, a number of results from measure theory and set theory will be used. 

This section contains the statements of these results. In particular, it includes a brief 

exposition of that part of the theory of inductive definability, which we use in this paper. 

Let (O,Gl,µ) be a probability space and let w: n -+ [-oo,0]. We define the lower 
integral I. wdµ by the formula: 

J. wdµ = sup Judµ, 

where the supremum is taken over all al-measurable functions u: n -+ [-oo,0] such that 

u Sw. 

(2.1) Suppose w: n-+ [-oo,0], u: '2-+ [-00,0] and assume u is measurable with respect to 

the completion of al -with respect to µ. Then 

J.(u+w) dµ = Judµ + J. wdµ 

(2.2) Let w: '2-+ [-00,0], G = ((ro,c) e n x [-oo,0]: w(ro) < c) and let A be Lebesgue 

measure on [-oo,0]. Then 
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J.wdµ = -(µx"-)*(G), 

where <µx"-)* denotes the outer measure induced by the product measure µxA. 

(2.3) Suppose w,wn: n--+ [-00,0], n ~ 1, and suppose Wn .L w. Then 

J.wdµ = 1 i mJ.wndµ. 
n~oo 

The proofs of (2.1) and (2.3) can be found in [l, Appendix A], while (2.2) is 

easily proved by using the results there. The Bertsekas-Shreve definition of the outer 

integral for nonpositive functions agrees with our definition of the lower integral above. 

Let Y, Y' be analytic subsets of Polish spaces. 

(2.4) Suppose w: Y--+ [-00,0]. Then w is upper analytic iff { (y,c) e Y x [-oo,O]: 
w(y) ~ c} is an analytic subset of Y x [ .;.oo,O]. 

(2.5) Suppose g: Y' --+ Y is Borel measurable and w: Y --+ [-oo,O] is upper analytic 

(universally meas~ble). Then w O g is upper analytic (universally measurable). 

(2.6) If wi,w2: Y-+ [-00,0] are upper analytic, then so is w1 + w2. 

(2.7) Suppose w: Y-+ [-00,0] is upper analytic (universally measurable). Equip #>(Y), 

the set of probability measures on the Borel a-field of Y, with the usual weak topology. 

Then the functionµ-+ Jwdµ is an upper analytic (universally measurable) function from 

#>(Y) into [-oo,O]. 

(2.8) Let n be a Borel subset of a Polish space. Suppose C is a coanalytic subset of 
n x [-oo,O]. If A is Lebesgue measure on [-oo,O], then the function co -+ -A(Cro) is an upper 

analytic function from n to [-oo,0]. 

The proofs of (2.4)-(2.8) may be found in [l,Chapter 7] or in [2]. 
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Finally, we state the result from the theory of inductive definability. Let Y be an 
infinite set and <I> a mapping from the power-set of Y to the power-set of Y. Say that <I> is a 

monotone operator if, whenever E1 s;; :Bis Y, then <l>(E1) s <l><Ei). Define the iterates of 

<I> by transfinite induction as follows: 

where; is any ordinal. So, in particular, <I><>= <t,(<1>). It is easy to verify that <1>00
, the least 

fixed point of <I>, is given by u{ <1>11: 11<1e}, where 1C is the least cardinal greater than the · . 

cardinality of Y. 
Suppose that Y is a Borel subset of a Polish space and <I> is a monotone operator on 

Y. We say <I> respects coanalytic sets if, whenever n is a Polish space and C is a 
coanalytic subset of n x Y, then the set C* = {(ro,y) e n x Y: ye <l>(Cro)} is also 

coanalytic. (Here Cm = { y e Y: (ro,y) e C} .) 

(2.9) Let <I> be a monotone operator on a Borel subset Y of a Polish space and suppose that 

<I> respects coanalyti~ sets. Then 

(a) <1>00 is a coanalytic subset of Y, 

(b) ~ = u~<mi <J>l;, where 0>1 is the first uncountable ordinal. 

(2.9) is a special case of a very general result of a Moschovak:is [6, 7C.8, p.414]. 

Zinsmeister [11] gives a nice exposition of Moschovakis's theorem. 

3. The o.ptimal reward operator 

We are now in a position to establish the basic properties of the function Q, 

introduced in section 1. 

Define an operator <I> on the power-set of S x [-oo,O] to the power set of S x [-oo,O] 

as follows: 

(3.1) <l>(E) = { (s,c) e S x [-00,0]: sup [fr(s,a,s') q(ds'ls,a) 
aeA(s) 

- (q(•ls,a) x 1)*(E)] < c}. 

It is straightforward to verify that <I> is monotone. The next lemma shows that <I> respects 

coanalytic sets. 
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Lemma 3.1. Let n be a Polish space and let C be a coanalytic subset of n x S x [-oo,O]. 

Then 

c* = ( (oo,s,c) E n X s X [-oo,O]: (s,c) E cl>(Cco)} 

is a coanalytic subset of '2 x S x [-oo,0]. In particular, if E is a coanalytic subset of S x 

[-oo,O], then so is <l>(E). 

~- Observe that (oo,s,c) e C* if and only if 

(3.2) (c>-oo) & (3~l)(Vae A(s))[{Jr(s,a,s')q(ds'ls,a) - JA.(Cco,s•)q(ds'ls,a)} S c-1/n]. 

For ( oo,s,a) e n x A, set 

and 

<1>1 (oo,s,a) = Jr(s,a,s') q(ds'ls,a) 

<1>2(00,s,a) = -JA.(Cco,s•> q(ds'ls,a). 

It follows from (2.7), (2.8) and (2.5) that cpl and cp2 are upper analytic functions on '2 x A. 

So, by (2.6), ~1 + <pi is also upper analytic. Consequently, the subset of '2 x S x [-oo,0] 

defined by the condition within [ ] in (3.2) is coanalytic. It now follows by using the well 

known closure properties of the point class of coanalytic sets that c* is coanalytic. 

Take C = n x E to get the final assertion of the lemma. 

If w: S ~ [-oo,0], set E(w) = ((s,c) e S x [-oo,O]: w(s) < c}. So if w =~'then 

E(w) =cl>. 

Lemma 3.2. If w: S --+ [-00,0], then E(Tw) = <l>(E(w)). 

fm.Qf. E(Tw) = ( (s,c) e S x [-oo,OJ: (Tw)(s) < c} 

= ((s,c) e S x [-oo,O]: sup [J.(r(s,a,s') + w(s')) q(ds'ls,a)] < c} 
aeA(s) 

= ((s,c) e S x [-oo,O]: sup [Jr(s,a,s') q(ds'ls,a) + J.w(s') q(ds'ls,a)] < c} 
aeA(s) 
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= {(s,c) e S x [-oo,0]: sup [Jr(s,a,s') q(ds'ls,a) - (q(•ls,a) x A)*(E(w))] < c} 
aeA(s) 

= Cll(E(w)), 

where the third equality is justified by using (2.1) and the fourth by using (2.2). 

Lemma 3.3. (a) ~ = E(Qz;), ~ < ro1 

(b) For every ~ < ro1, Q; is upper analytic. 

fmQ!. Cl)O = <I>( cf>) 

= <l>(E(~)) 

=E(f~) 

=E(~), 

where the third equality is by virtue of Lemma 3.2. Suppose next that (a) is true for all 

11 < ~ and ~ is an ordinal greater than 0. Then 

= 4>(E(inf Qq)) 
11<~ 

=E(Q;), 

where the second equality uses the inductive hypothesis and the fourth is by vinue of 
Lemma 3.2. This establishes (a). To prove (b ), use induction on ~ and Lemma 3.1 to see 

that (I); is a coanalytic subset of S x [-oo,O] for every~< ro1• (b) now follows from (a) and 

(2.4). 
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Theorem 3,4. The function Q is upper analytic and the largest fixed point of the operator 
T. Indeed, if w: S ~ [-oo,O] and Tw ~ w, then Q ~ w. 

=E(inf Q;) 
~<C01 

=E(Q), 

where the first equality is by virtue of (2.9 (b)) and the second is by Lemma 3.3 (a). By 
(2.9) (a)), w00 is coanalytic, so Q is upper analytic by (2.4). On the other hand, by Lemma 

3.2, 

E(TQ) = W(E(Q)) 

= W(cl>°°) 

= <l>oo, 

so that TQ = Q. Finally, let w: S ~ [-oo,0] and suppose Tw ~ w. Then, by Lemma 3.2, 

E(w) 2E(Tw) 
= <l>(E(w)). 

Since <I> is monotone, it follows by induction on~ that~ s E(w) for every~< <01. So 

Hence E(Q) s E(w); so that Q ~ w. This completes the proof. 

4. The optimal reward function 
We will now identify the function Q with the optimal reward function for the 

negative dynamic programming problem. Set 

(4.1) v*(s) = sup 1(7t)(s), s e S, 
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where the supremum is taken over all policies, measurable or nonmeasurable. 

Theorem 4.1. For every l; < m1, v* S ~-

Proof. The proof is by induction on l;. Consider first the case when l; = 0. Let 7t be a 

policy, possibly nonmeasurable. Then, for any s e S, 

I(x)(s) S PI (7t,s) 

S I.(TC2)(s) 7t 1 ( da 1 ls) 

= (TO)(s) -

This proves that v* S ~- Suppose now that l; > 0 and that v* S Q11 for eyery T) < l;. Let 7t 

be a policy, possibly nonmeasurable. For (s,a) e A, define the policy xs;a as follows: 

for n= 1,2,... . It is easy to verify that 

Pn+l (x,s) = I.I. {r(s,a,s2) + p0{xs.a,s2)} q(ds2ls,a) 1t1 (dais) 

for n=l,2, ... ,se S. Hence, for any s e S, 

l(x)(s) = Ii m Pn+l (7t,s) 
n~oo 

=Ii mI.I.{r(s,a,s2) + p0 (x8.a,s2)} q(ds2ls,a) 1t1(dals) 
n~ 
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= I.I. {r(s,a,si) + 1 i m p0 (1t8,a,82)} q(dsils,a) 1t1 (dais) 
n~oo 

= I.I. {r(s,a,s2) + l(1tS,8)(sv} q(ds2ls,a) 1t1 (dais) 

S J.I.{r(s,a,si) + v*(s2)} q(ds2ls,a) 1t1(dals) 

=~(s), 

where the third equality uses (2.3) and the second inequality is by virtue of the inductive 
hypothesis. Hence, v* SQ; and the proof is complete. 

The next corollary is an immediate consequence of Theorem 4.1. 

Corollaty 4.2. v* S Q. 

We will now prove the reverse inequality. Indeed, we will establish an apparently 

stronger result As in the Introduction, let 

( 4.2) v(s) = sup I(1t)(s), s e S, 

where the supremum is taken over measurable policies. For the next result, we need to 

explain some more notation. 

With each analytically measurable selector f of the set A, associate an operator L(f) 

as follows: 

(4.3) (L(f)w)(s) = J{r(s,f(s),s') + w(s')) q(ds'ls,a), 
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where w: S--+ [-oo,0] is universally measurable. It follows from (2.5) and (2.7) that L(f)w 

is a universally measurable function on S into [-00,0]. 

Suppose that 7t = (f1,f2,···> is a Markov policy. It is easy to prove by induction on 

n that for any s e S 

so that 

(4.4) l(1t)(s) = 1 i m (L(f1)L(fi)···L(fn) O)(s), 
n~oo -

by the monotone convergence theorem. 

Theorem 4.3. For every e > 0, there is a Markov policy 1t such that I(1t)(s) ~ Q(s) - e for 

every s e S. Consequently, v ~ Q. 

fmm. Fix£> 0. By Theorem 3.4, TQ = Q. Hence, by a selection theorem ([2, p.936] or 

[1, Proposition 7.50]), for every n ~ 1, we can find an analytically measurable selector fn: 

S --+ X for the set A such that 

(4.5) 
£ 

(L(f0)Q)(s) ~ Q(s) -
2
n 

for every s e S. Now, using the fact that the operator L(f) of (4.3) is monotone and 

iterating ( 4.5), we get: 

£ £ £ 
· (L(f 1)L(fi) ... L(fn)Q)(s) ~ Q(s) - ( 2 + 22 + ··· + 2n) 

~ Q(s)- £ 

for every s e S and n ~ 1. But, since Q S (2, we have for every n ~ 1 and s e S, 
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and,consequently, 

Now let n--+ oo and use (4.4) to see that 

l(x)(s) ~ Q(s) - e 

for every s e s. This completes the proof. 

Theorem 1.1 now follows from Theorem 3.4, Corollary 4.2 and Theorem 4.3. 

5. The absolutely continuous case 
According to Theorem 1.1, the optimal reward function Q can be obtained by 

iterating the operator T ro1 times. The question arises if this process of iter~tion terminates 
at some countable stage, that is, if there is a countable ordinal ~ such that ~ = Q. An 

example will be given at the end of this section to show that, in general, it is possible that 
~ ;t Q for every countable ordinal ~- The next result gives a sufficient condition for the 

existence of a countable ordinal ~ such that Q; = Q. 

Theorem 5.1. Assume that there is a probability measure µ on the Borel a-field of S such 

that q(•ls,a) is absolutely continuous with respect toµ for every (s,a) e A. Then there is an 

ordinal ~ < ro1 such that Q = CJ;. 

~- Since Q; S Q11 for 11 < ~ < m1, it follows that E(Q11) s E(Q;). Set E; = ECQ;+ 1) -

E(~), ~<m1• Then the sets E; are disjoint and (µXA.)-~easurable, where A. is Lebesgue 

measurable on (-oo,0]. Since µx1 is a a-finite measure, it follows from the countable chain 

condition that only countably many E;'s can have positive (µx1)-measure. So there is 

~<ro1 such that (µxA)(E~) = 0. It follows by Fubini's theorem that~= ~+l a.s. (µ). 

Hence, for each (s,a) e A, 

J(r(s,a,s') + ~
0
(s')} q(ds'ls,a) 

= J(r(s,a,s') + ~o+i(s')} q(ds'ls,a), 
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since q( •ls,a) is absolutely continuous with respect to µ. So, for any s e S, 

~+1(s) = sup [/ {r(s,a,s') + ~ (s')} q(ds'ls,a)] 
ae :A(s) 0 

= sup [/{r(s,a,s') + Q; +1(s') q(ds'ls,a)] 
aeA(s) 0 

= CT~+1>(s). 

It follows that Q = ~+ 1. This completes the proof. 

It should be apparent from the proof above that in the absolutely continuous case 

Theorem 1.1 can be established without recourse to the methods of inductive definability. 

Strauch [10, p.880] gives an example of a negative dynamic programming problem 

with countable state and action spaces - and therefore satisfying the conditions of Theorem 
5.1 - such that Cleo = Q, but Q0 ¢ Q for every natural number n. Without undue effort, one 

can generalize Strauch's example to establish the following: For every~< m1, there is a 

negative dynamic programming problem with countable state and action spaces such that 
Q; = Q, but Q11 ¢ Q for every Tt < ~- In other words, even for countable problems, there is 

no uniform bound on the number of times T has to be iterated to obtain Q. 
Fmally, we give an example to show that it is possible that~ ¢ Q for every 

~ < m1. The example is due to Biackwell ([10], p.881 ). First, we need to explain some 

concepts and results from classical descriptive set theory. 
Let ~ be-the set of rationals in (0, 1) with its usual ordering. Fix a system 

{W r, re~} of Borel subsets of [0,1]. Such a system is called a Borel~- For each 

x e [0,1], let 

Mx = {re Q: xe WrJ, 

D = (x e [0,1]: Mx is not well-ordered} 

and, for each countable ordinal ~, 

C; = {x e [0,1]: the order-type of Mx = ~}. 
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The set D is called the set sifted through the sieve {Wr} and the sets C; are called the 

constituents determined by the sieve{Wrl· Here are the facts that we will need. 

(a) For any Borel sieve {Wr}, the setD is analytic ([4], p.465). Conversely, every 
analytic subset of (0,1] is of the form D for some Borel sieve {Wr} ([4], p.483). 

(b) For any Borel sieve {Wr}, the constituents C; are Borel subsets of [0,1] and [0,1] - D 

= U;<mt Ci; ([ 4], p.500). 

Now fix a Borel sieve {Wr, r e ~} such that the sifted set D is not Borel. Fix also 

an enumeration r1 ,r2, ... of the elements of~- Consider now the negative dynamic 

programming problem defined as follows: 
Let S = [[0,1] x (~ u {0,1 })] u {t}, where ti [0,1] x (~ u {0,1 }), and let 

A(s) = { 1,2,3, ... } for every s e S. The law of motion is given by 

q(•l(x,r),a) = 6(x,r8 ) ifr8 <r & x e Wra 

= 6(t) otherwise, 

q(•lt,a) = 6{t) 

and the return function is given by 

r(s,a,t) = -1 ifs¢ t 

= 0 otherwise. 

It was proved in [10] that 

Q(x,l) = 0 ifx e D 

= -1 if x e [0,1] -D. 

On the other hand, it is not hard to verify that 

Q;(x,l) = 0 if x e [0,1] - ~sl;½} 

= -1 if XE UT1sl;½}• 

Since the set Dis not Borel, it follows from (b) that u11sl;½} ¢ [0,1] - D for every~< ro1• 

So Qi; ¢ Q for every ~ < ro1. 
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