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Abstract 

We consider two-person zero-sum stochastic games with limit superior payoff 
function and Borel measurable state and action spaces. The games are shown to have a 

value and the value function is calculated by transfinite iteration of an operator and proved 

to be upper analytic. The paper extends results of our earli~r article [17] in which the 

same class of games was considered for countable state spaces and finite action sets. 

AMS 1~80 subject classification: 90D15, 60040, 03D70 
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.. 1. Introduction 
In [17], a class of two-person zero-sum stochastic games was formulated as 

follows. Let X be a countable, nonempty set of states, and let A and B be finite, 

nonempty sets of actions for players I and Il, respectively. Let u be a bounded, real
valued utility function on X and let q be a function which assigns to each triple (x,a,b) e .-

X x A x B a probability distribution on X. The game starts at some initial state x. Player I 
chooses an action a 1 e A and, simultaneously, player Il chooses b1 e B. The next state 
x1 has distribution q(•lx,a1,b1) and is announced to the players along with their chosen 

actions. The procedure is iterated so as to generate a random sequence x 1,x2,··· and the 

payoff from player Il to player I is 

(1.1) u* = limosup u(xn>· 

It was proved in [17] that this game has a value. 

The aim of the present article is to extend this result to a Borel measurable setting. 
The following assumptions will remain in effect throughout the paper. 

(1.2) (i) X,A,B will be nonempty Borel subsets of Polish spaces. 

(ii) F,G will be Borel subsets of Xx A, Xx B, respectively, with nonempty vertical 
sections F(x), G(x) for all x e X. At the state x, F(x)(G(x)) is the set of actions that 

player I (Il) is allowed to use. 
(iii) G(x) is compact for every x e X. 

(iv) q is a Borel measurable transition function on J x ~(X), where J is the Borel set 
( (x,a,b) e X x A x B: a e F(x) & b e G(x)} and &(X) is the Borel a-field of X. 

(v) For every fixed set Ee &(X) and (x,a) e F, the function q(E I x,a,•) is 

continuous on G(x). 

(vi) u is a bounded, upper analytic function on X, that is, for every real c, the set 
{ u > c} is analytic. 

Let n(u)(x) be the stochastic game with initial state x in which the payoff from 

player Il to player I is u*. (The play of the game is as described in the first paragraph 

above with measurability conditions which will be explained in section 2.) Here is the 
main result of the paper. 

Theorem 1.1. Assume that the conditions (1.2) hold. Then, for each x e X, the game 

n(u)(x) has a value. The value function is upper analytic. Furthermore, for every 

£ > 0, both players have £-optimal families of universally measurable strategies. 
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The techniques which will be used to prove Theorem 1.1 are similar to the 

methods of (17]. However, there are problems of measurability which arise and which 

are solved by methods from the theory of inductive definability. Similar methods were 

used to resolve problems of measurability in the theory of gambling in [7] and [16]. 

Stochastic games were formulated by Shapley [23], with state and action spaces 

finite and payoff function equal to the total discounted reward. Shapley proved that his 

game had a value and that both players had optimal stationary strategies. Thereafter, a 

number of authors considered the problem when the payoff function is the average reward 

per day. Notable contributors to the average reward problem include Gillette [11], 

Hoffman & Karp [12], Blackwell & Ferguson [5] and Kohlberg [13], who solved 

different special cases of the problem. The definitive solution of the problem was 

provided by Mertens & Neyman [18], who based their proof on a difficult result of 

Bewley & Kohlberg [2] on the asymptotic behavior of the value of the discounted reward 

game as the discount factor tends to one. Stochastic games with general state and action 

spaces were considered by a number of authors. Nowak's article [21] provides an 

excellent bibliography. In the same article, Nowak formulated the conditions (1.2) and he 

considered both discounted and positive stochastic games under these assumptions. 

Indeed, his Theorem 5.1 will be the point of depanure of the present article. 

Blackwell [3] proposed a variant of Shapley's game in which the law of motion 

was eliminated but which allowed for payoff functions more general than either the total 

discounted reward or the average reward per day. He proved that a win-lose game, where 
the winning set for player I is a Ga subset of the set of histories, has a value. In [ 4], he 

gave an operator solution of the same problem. This second paper of Blackwell is the 

inspiration for the present paper, as it was for our previous article [17]. 

Our paper is organized as follows. The next section sets down definitions, 

notation and some preliminary results. Auxiliary games are treated in sections 3 and 4. 

Section 5 handles the measurability problems involved in iterating the auxiliary games a 

transfinite number of times. Theorem 1.1 is proved in s~tion 6. 

2. Preliminaries 
Let z = A x B xx and define the mace of histories to be H = z x z x .... 

Elements of H will be denoted by h = (z1,z2,···>· We use p0(h), or more briefly, Pn to 

denote the partial bistro (z1,zi, ... ,2;i). 

LetP(A) andP(B) be the sets of probability measures on the Borel subsets of A 

and B, respectively. Equip P(A) and P(B) with the weak topology, so that P(A) and P(B) 
are both Borel subsets of Polish spaces. Moreover, the sets { (x,µ) e X x P(A): µ(F(x)) = 
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1} and ( (x,v) e X x P{B): v(G(x)) = 1} are B~l in Xx P(A) and X x P(B), 

respectively, and, for every x e X, the set {v e P(B): v(G(x)) = 1} is compact. See 

Parthasarathy [22, Chap. 2] for details. 
Let K = { (x,µ,v) e X x P(A) x P(B): µ(F(x)) = 1 = v(G(x))}. Then K is a Borel 

subset of Xx P(A) x P(B). We now define a function m on K x &(Z) by the fOI'IDula 

m(A1 x B1 x X11x,µ,v) = J J qCXilx,a,b) dµ(a) dv(b), 

A1B1 

where A 1, B 1 ,X 1 are Borel subsets of A, B, X, respectively. -It is easy to verify that m is 

a Borel measurable transition function. 
A universally measurable (or, more briefly, measurable) strategy a for player I 

available at x is a sequence a0 ,a1, ••• where <J0 e P(A) such that a0(F(x)) = 1 and, for 

n ~ 1, a 0 is a universally measurable mapping from zn to P(A) (that is, measurable when 

ZJ1 is endowed with its a-field of universally measurable subsets and P(A) is equipped 

with its Borel a-field) such that, for every (z1,zi, •.• ,z.i) e zn, a 0 (z1,zi, ..• ,z.i) (F(x0 )) = 
1, where Zn= (3n,b0 ,x0). A universally measurable (or more briefly,. measurable} strategy 
't for Il available at x is defined analogously with P(B) and G(x) in place of P(A) and 

F(x), respectively. Measurable strategies a and 't available.at x determine a probability 

measure Pa,i = Px,a;t on the Borel subsets ofH. (The initial state x will usually be clear 

from the context and we will suppress it.) Namely, the Pa,'t-distribution of the first 

coordinate z1 = (a1,b1,x1) is Pa0 ,'to = m(•lx,a0 ,'to) and the Pa,'t conditional distribution of 

Zn+l = <&n+1,bn+1,Xn+1> given z1,z2, ... ,z.i is Pa,'t(•lz1,z2,···,Zo> = 
m( •lx0 ,<J0 (zi,z2,···,Zo), 't0 (z1 ,zi, ..• ,z.i)). The existence of P a,'t is proved in [1, 

Proposition 7 .45]. If g is a bounded, universally measurable function on ff, we write its 
expectation under P a,'t as JgdP a,i or Ea,i(g). 

If a is a measurable strategy for player I available at some x and p = (z1,zi, .•• ,z.i) 

a partial history, the conditional strategy O'[p] is defined by 

' ' ' ' t t <J[P1m<, ,72, ... ,zm) = Gn+mCz1,z2,•••,Zn,7l ,72, ... ,zm) 
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t t t . 

· for all m ~ 1 and (7i ,72,•:•,zm) e rz!D. Note that a[p] is a measurable strategy for player I 

available at x0 • Given measurable strategies a and t for players I and II available at x, the 
probability measure P a[p],'t[p] = PXn,a[p],i[p] is easily seen to be a version of the P a,i 

conditional distribution for <Zn+t,Zn+2,···> given (z1,z2, .•. ,7.n). Thus, if g: H--+ R is 

bounded and universally measurable, 

(2.1) Ea,i(g) = J {Ea[pn(h)],t(pn(h)] (gpn(h))} dP a,iCh), 

where, for p = p0(h) = (z1,z2,···,Zn), gp is the p-section of g defined on H by (gp) (h') = 
' t ' ' (gp) (71. ,72, ... ) = g(z1,z2,···,Zn,2t ,Zi, ... ). In the special case when g(h) = u*(h) = 

lim8 sup u(x0 ), the function u*p is just u• and (2.1) simplifies to 

Ea,i(u*) = J{Ea[pn(h)],1:(pn(h)](u*)} dP a,i(h). 

The upper value V(x) and the lower value Y(x) of the game n(u)(x) are defined as 

follows. 

(2.2) V(x) = inf sup Ea i(u*) 
't a , 

and 

(2.3) Y(x) = sup inf Ea i(u*), 
a 't , 

where the suprema are over all measurable strategies a for player I available at x and the 

jnfima over all measurable strategies t for player II available at x. 

We say that ( a(x»xe x is a universally measurable family of strate&ies for player I 

if for every x e X, a(x) is a measmable strategy for I available at·x and, for every n ~ 0, 

(a(x))0 (z1,z2, ... ,zn) is a universally measurable mapping from Xx rzJl to P(A). One 

defines a universally measurable family of strategies for player II analogously. 
A stOJ)J)ing time tis a mapping from H to {0,1, .•. } u {oo} such that, for 

n = 0,1, ... , if t(h) = n and h
1 

agrees with h in the first n coordinates, then t(h') = n. 

(Notice that, if t(h) = 0 for some h, then t is identically zero.) A sto,p rule t is a stopping 
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time which is everywhere ~te. A stopping time (stop rule) t is universally measurable if, 

for every n ~ 0, the set { t S n) is a universally measurable subset of H. 
If tis a stopping time, h = (z1, 22, ... ) = ((a1,b1,x1),(a2,b2,x2), ... ), and t(h) < 00, .-

we define the variables zt,x1,p1 to have values zt(h),Xt(h),PtCh) = (z1 ,22, ..• ,Zt(h)) at h. 

Suppose now that tis a universally measurable stop rule. Then, it is not hard to verify 
that Pa[pu,'t[Pt] = Pxt,a[pi),'t[ptl is a version of the P a,t conditional distribution for 

(z1+1,zt+2, .•. ) given (z1,Z2,•••,zt> and (2.1) generalizes to 

(2.4) Ea,t(g) = J (Eafpt1,t[ptl(gpi)) dP a,t· 

If tis a stop rule and p = (z1,22, ... ,zn) is a partial history, define t[p] on H by 

' ' ' ' t[p](7i ,72, ... ) = t(z1 ,z2, ... ,z0 ,2)_ ,72, ... ) - n. 

Notice that, if t(z1,zi, ... ,Zn,···) ~ n, then t[p] is itself a stop rule, in which case t[p] is 

called a conditional sto,p rule given p. If tis universally measurable, then so is t[p]. 

When p = (z), we write z for p and t[z] = t[p]. 

There is a natural way to associate with every stop rule t an ordinal number j(t) 

called the~ oft by setting j(O) = 0 and requiring, fort> 0, that 

j(t) = sup (j(t[z]) + 1: z e Z}. 

This definition of the index is equivalent to that of Dellacherie and Meyer [6], as was 

pointed out in [15, Proposition 4.1]. Furthermore,j(t) is familiar to students ofDubins 
and Savage as being the structure of the finitary function zt (cf. [8, sections 2.7 and 2.9]) 

except for the uninteresting case when Z is a singleton. Some of our proofs (Lemma 2.3 

& Theorem 4.3) will use transfinite induction on j(t) and it is important to notice that, for 

all t > 0 and all z, j(t[z]) is strictly less than j(t). 

Suppose t > 0 is a universally measurable stop rule and consider the special case of 
(2.1) where n = 1 and g = u(x&). Note that 

if we make the convention that Xt[zi1(z2,z3, ... ) = x1 when t[zi] = 0. Thus (2.1) gives 
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(2.5) Ea,-c(u(xJ) = /{Ea[z1],'t[z1J(U(Xt[z1J)) dPa0 ,tc,(z1). 

A universally measurable (or, just measurable) ~ for player I available at x is a 
pair ( a,t) where a is a measurable strategy for I available at x and t is a universally 

measurable stop rule. We say that (a(x), t(x»xex is a universally measurable family of 

policies for player I if ( a(x))xe x is a universally measurable family of strategies for player 

I, t(x) is a stop rule for every x e X and t(x)(h) is a universally measurable function on 

XxH. 

We conclude this section with some results which will be needed in the sequel. 
Recall that a real-valued function q, on a Borel set '2 is upper analytic if the set 

( <p > c} is analytic for every real c. : 

Lemma 2.1 Let <p be a function on a Borel subset '2 of a Polish space into [0, 1 ]. Then q, 
is upper analytic if and only if the_.set 

E = {(O>,c) e '2 x [0,1]: u(O>) > c} 

is analytic in '2 x [0,1]. 

Ema{. The 'if' part follows from the fact that a section of an analytic set is analytic. For 

the converse, note that 

E = U[{ 0> e n: u(O>) > r} x [0,r)], 

where the union is over all rationals r in [0,1]. Plainly, Eis analytic. 

I&roma 2,2 Let x e X, <p a bounded, upper analytic function on X and µ be a probability 

measure on A such that µ(F(x)) = 1. Define a function 'If on G(x) by 

'lf{b) = /q,(x1) q(dx1 lx,a,b) µ(da). 

Then vis continuous on G(x). 

fm.gf. Use [21, F3.9] and the dominated convergence theorem. 
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For each n ~ 1, let ;r0 be the a-field of subsets of Hof the form A x Z x Z x ••• , 

where A is a universally measurable subset of zn, let ;r0 = { cl>,H} and let ;r~ be the a-

field generated by u~;r0 • Suppose now that tis a universally measurable stopping time 

on H. Define ;rt to the collection of all sets E e ;roo such that E (') { t S n} e ;t:0 for every 

n ~ 0. It is straightforward to verify that ;r1 is a a-field. 

Suppose next that G,G'( 't, 't') are measurable strategies for player I (II) available at 

Xo and that tis a universally measurable stopping time. We say that the pair ( G,'t) ames 
E1h (G','t') prior to time t if n < t(h) implies 

I 

Gn(pn(h)) = Gn <Pn(h)) 

and 

' 'tn<PnCh)) = 't <Pn(h)). n 

l&mma 2.3 Let G,G1('t,'t1
) be measurable strategies for player I (II) available at x0 and s a 

universally measurable stop rule such that (G,'t) agrees with (G','t') prior to times. Then 

P a,t = P d,t' on ;rs· 

fmgf. The proof is by induction on the indexj(s). Fors= 0, the result is trivial. So 
assume the result is true for all universally measurable stop rules of index less than ~, 

where ~ > 0 is a fixed ordinal. Let s be a universally measurable stop rule of index ~

Suppose L e ;rs· Then, denoting by Lz1 the z1 - section of L, we have: 
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where the first and last equalities are by virtue of a variant of (2.1) and the intermediate 
equality uses the inductive hypothesis applied to a[zi], a'[z1], 't[z1], 't'[z1], s[z1], the fact 

' ' that Lz1 e ;rs[zt] and the fact that 0'0 = 0'
0
and 'to = 't

0 
since s ~ 1. 

Lemma 2.3, in the gambling context, is proved in (25]. 

We now want to extend Lemma 2.3 to universally measurable stopping times. 

The next result is due to V. Pestien and S. Ramalcrishnan. 

l&mma 2,4. Lett be a universally measurable stopping time. Then ;rt is the smallest a

field Sl containing u~;rtAD, where tAn is the stop rule whose value at h is the smaller of 

the numbers t(h) and n. 

fmaf. Let n,k ~ 0 and let k > n. We claim that 

. (2.6) A e ;rn iinplies An {t> k) e ;rtJ\k· 

To establish (2.6), we must prove for each m ~ 0 that 

An {t > k) n {t A k Sm) e ;rm· 

If m < k, then A n ( t > k) n { t A k S m) is empty. If m ~ k, then A n { t > k} n 

( t A k Sm} = A n {t > k}. Since A e ;r0, {t > k} e ;rk and m ~ k > n; it follows that 

A n ( t > k) n { t A k S m) e ;rm_, which proves (2.6). 

Next, we observe that 

(2.7) A e ;roo implies An ( t = 00 ) e St· 

Suppose A e ;r0 • Then 

-
An{t=oo)= fl An{t>k), 

k=n+l 

so, by (2.6), A e SL Since u~;r0 is a field generating ;roo, a monotone class argument 

establishes (2.7). 
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Now let A e ;rt· Write 

A= [u~An {tSn)] u[An {t=oo)]. 

It is easy to see that An {t Sn) e ;rtAn E ~ for every n;::: 0. Hence, by (2.7), A e Sl· 
Thus, ;rt s ~-

For the reverse inclusion, observe that ;rtAn E ;r0 • Hence, if A e ;rtAn, then 
An {tSm) e ;rm form;::: n. If A e ;rtAn andm<n, then An {tSm} =An 

{t "n Sm} e ;rm· Hence ;rtAn s ;rt for every n;::: 0, so~ E ;rt· 

lemma 2.5. Let a,a'('t,t') be measurable strategies for player I (II) available at Xo and ta 
universally measurable stopping time such that (a,t) agrees with (a',t1 prior to time t. 
Then P a,i = P a',i' on ;rt· In particular, if cp is a bounded, universally measurable function 

on X and s a universally measurable stop rule, then 

for every m;::: 0, and 

fmgf. The first assertion is an immediate consequence of Lemma 2.3 and Lemma 2.4. 

For (i), observe that the function q>(xi) 1 (tSm} is ;rt - measurable. For (ii), note that q>(xs) 
is ;roo - measurable and that the a-fields ;rt and ;t'00 coincide when restricted to the set_ 

{ t = 00 ) e ;r1 n ;roo, so that the function q>(xs) 1 (t=oo) is ;rt - measurable. 

3. Auxiliazy one-day games 
Consider an auxiliary one-day game <7l( cp )(x) starting from x, where cp is a 

bounded upper analytic function on X. In the game <7l( q> )(x), players I and Il choose . 

actions a,b simultaneously such that a e F(x), b e G(x) and the payoff from Il to I is 

Jq,(x1) q(dx1 I x,a,b). 

It follows from Lemma 2.2 and an old result of Ky Fan [10,Theorem 2] that for each 
fixed x e X, the game <7l( cp )(x) has a value, I bas an £-optimal strategy and Il bas an 

optimal strategy. The value of the game <12( cp )(x) will be denoted by (Sq> )(x). 

1 1 



Here are some f~ about the measurability of the value function and of e-optimal 

(optimal) strategies of the players. 

Lemma 3.1. Let n be a Borel _subset of a Polish space. Suppose that v is a bounded, 
upper analytic function on n XX. Let V. n XX -+ R be defined by 

'lf(m,x) = (S v(m,•))(x). 

Then 'If is upper analytic. 

Lemma 3.2. Let cp be a bounded, upper -analytic function on X. For each e > 0, there is a 

universally measurable function f: X -+ P(A) such that for each x e X, f(F(x)) = 1 and 

inf JJ q>(x1) q(dx
1
1x,a,b) f(x)(da) 

beG(x) 

~ (Sep )(x) - e. 

Furthennore, there is a universally measurable function g: X -+ P(B) such that for each 

x e X, g(G(x)) = 1 and 

sup /Jcp(x
1
) q(dx

1
1x,a,ti) g(x)(db) 

aeF(x) 

s (Scp)(x). 

Lemmas 3.1 and 3.2 are straightforward consequences of Theorem 5.1 in Nowak 

[21]. We now record for later use two useful properties of the operator S. 

I&mma 3.3. Let 'Pt S C1>2 S ... be uniformly bounded, upper analytic functions on X. 

Then 

(a) Scp1 S S(1)2 and (b) lim Sq,0 = SOim (l)n). 
n n 

fmgf. (a) is obvious. For (b), set cp = lim 'Po, so cp is a bounded, upper analytic 
D 

function. Now let£> 0 and fix x. Choose µ e P(A) such that µ(F(x)) = 1 and 

· II cp(x1) q(¢c1 I x,a,b) µ(da) > (Scp)(x) - e/2 
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· for all b e G(x). By the ~onotone Convergence Theorem, 

(3.1) II ep0 (x1) q(dx1 I x,a,b) µ.(da) t II ep(x1) q(dx1 I x,a,b) µ.(da) 

for all b e O(x). 

Now the functions in (3.1) are continuous on G(x) by virtue of Lemma 2.2, so, by Dini's 
. . 

Theorem [9,p.190], the convergence in (3.1) is uniform on G(x). Consequently, for 
sufficiently large n and all b e G(x), 

II ep0 (x1) q(dx1 I x,a,b) µ.(da) ~ (Sep)(x) - £. 

Hence 

inf JJJepn(x1) q(dx11x,a,b) µ.(da) v(db) ~ (Sep)(x) - £ 
veP(G(x)) · 

for all sufficiently large n, and so 

sup inf JJJcpn(x1) q(dx11x,a,b) A(da) v(db) 
A.e P(F(x)) ve P(G(x)) 

~ (Sep )(x) - e. 

It follows that 

(Sep0)(x) ~ (Sep )(x) - £ 

for all sufficiently large n. This completes the proof. 

4. Leavable pmes 
Let u be a bounded, upper analytic function on X. Then u and an initial position x 

determine a leavable game -!(u)(x), which is played exactly like the game n(u)(x) 

introduced in section 1, except that no~ I gets to terminate the game unilaterally at any 

time of his choice and the payoff to I from II is the value of u at the terminal state. More 
formally, I chooses a measurable strategy a available at x and a measurable stop rule t, 
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player II chooses a measmable strategy 't available at x, and the e~ted payoff to I from 
Il is Ea,tCu(xJ). Here we allow t = 0 and require Xo = x. 

Define inductively 

(4.1) U0 =u 

and, for n ~ 0, 

(4.2) Un+l = u v SUn. 

Here a v b is the maximum of a and b. Let 

( 4.3) U = sup Un. 
n 

Lemma 4.1. (a) For every n ~ 0, Un is upper analytic and Un SUn+l· 
(b) The functions U0 are uniformly bounded. 

(c) U is upper analytic and sup IUI S sup lul. 
(d) U is the least, bounded, upper analytic function ep on X such that (i) ep ~ u and 

(ii) Sep s ep. 

(e) U=u v SU. 

fmgf. To prove (a), use induction, Lemma 3.1 and Lemma 3.3. Next, observe that if ep 

is bounded and upper analytic on X, then sup ISepl S sup lepl. It follows from this and 

induction that sup IU01 S sup lul for every n ~ 0. This establishes (b) and also that sup IUI 

S sup lul. The other assertion in (c) is immediate from (a). For (d), assume that ep is 

bounded, upper analytic on X and· satisfies (i) and (ii). So ep ~ U0 = u. Suppose that ep ~ 

Un. Then ep ~Sep~ SU0 by Lemma 3.3 (a) and, so ep ~ u v SUn = Un+l · Hence, ep ~ Un 
for all n and so ep ~ U. On the other hand, U ~ u, and, by Lemma 3.3 (b), SU= 
S(lim Un) = lim SUn Slim Un+l = U. This proves (d). It follows that U ~ u v SU. 

n n n . 
For the opposite inequality, fix x and suppose that u(x) < U(x). Then, for n sufficiently 
large, u(x) < Un(x) and so U(x) = lim Un+t (x) = lim (SUn)(x) = (SU)(x) by Lemma 3.3 

n n 

(b). This completes the proof of (e). 
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Lemma 4.2. For every n ~ 0 and £ < 0, player I has a universally measurable family of 

policies (a0(x),t0 (x))xeX such that t0 (x) Sn, x e X, and such that for any measurable 
£ 

strategy 't of player Il available at x, 

(4. 4) E _n (u(x 11 )) ~ U (x) - £ 
o (x),'t t (x) n 

£ 

for every x e X. 

fmgf. Fust, fix a universally measurable function r on X into P(A) such that 
rcx)(F(x)) = 1 for every x e X. The existence off is a consequence of the von-

Neumann selection theorem [19,4E.9,p.240]. 

For n = 0, let t°(x) = 0 and a
0 (x) be the strategy which uses r every day. Then 
£ 

(4.4) is a triviality forn = 0. Assume next that the result is true forn. Define 

t0+1(x)(z) = 0 

= t0 (x 1)(z2,z3, ... ) + 1 

if u(x) ~ U0+1Cx), 

if u(x) < Un+ 1 (x). 

Plainly, t0+ 1(x) S n+ 1. If u(x) ~ Un+ 1 (x), let a:+ 1 (x) be the strategy which uses r every 

day. Supppose, next, that u(x) < Un+1(x). Fix a universally measurable function f: X-+ 
P(A) such that for each x e X, f(F(x)) = 1 and 

(4.5) inf JJU0 (x1) q(dx1lx,a,b) f(x)(da) 
beG(x) 

~ (SU0)(x)- £/2. 

The existence off follows from Lemma 3.2 by taking cp = U0 • Define 

n+l a 
2 

(x)0 = f(x), 

n+l n ae (x)j(Z1,z2, .•• ,Zi) = a£/2(x1)i-l (z2,z3, ..• ,Zi) if 1 Si Sn,. 

ifn+l Si 
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It is easily verified that (a;+1(x),tn+1(x))xeX is a universally measurable family of 

policies. It remains to verify (4.4) for n+ 1. If u(x) ~ Un+l (x), once again (4.4) is trivial. 

So suppose that u(x) < Un+ 1 (x). Let t be a measurable strategy for player II available at · 

x. Then, for fixed x e X, 

E .Jt+l D+l (u(x n+l )) 
o (x),t (x) t (x) 

£ 

~ JJJ U0 (x1) q(dx1 I x,a,b) f(x)(da) t 0 (db) - £/2 

~ (SU0)(x) - £ 

=Un+1(x)-£ 

where the first inequality is by virtue of the induction hypothesis and the second by vinue 

of (4.5). Thus, (4.4) is established for n+l. 

Theorem 4,3. The game ~(u)(x) has value U(x) for every x e X. For every £ > 0, I has 

a universally measurable family of £-optimal policies. Player Il has a universally 

measurable family of optimal strategies. 

Emgf. For x e X, define n(x) to be the least k ~ 0 such that Ut(x) > U(x) - £/2. Then 

n(x) is a universally measurable function of x. Let (a:a(x), t0 (x»xex, n ~ 0, be as in the 

statement of Lemma 4.2. Set 

- n(x) 
a(x) = a e/2 (x) 

and i(x) = t°Cx)(x). 
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Then (a(x), t(x»xeX is a universally measurable family of policies. Moreover, by 

Lemma 4.2, for any measurable strategy 't for player Il available at x, 

(4.6) 

~ Un(x)(x) - e/2 
~U(x)-e 

for every x e X. 

Using Lemma 3.2, fix a universally measurable function g: X ~ P(B) such that 

for each x e X, g(G(x)) = 1 and 

(4.7) 

Define 

(4.8) 

sup JJU(x1) q(dx1 ls,a,b) g(x)(db) S (SU)(x). 
aeF(x) 

't(x)0 =g(x) 

Then ('t(x))xeX is a universally measurable family of strategies for Il. 

We will now prove that if ( a,t) is any measurable policy of player I available at x, · 

then 

(4.9) Ea,t(x)(u(xc)) S U(x) 

for every x e X. 

We prove (4.9) by induction on j(t). The inequality is obvious when j(t) = 0, i.e., 
when t = 0. Let t be a measurable stop rule with index j(t) = ex > 0 and assume that ( 4.9) 

holds for all measurable strategies a of player I available at x, all x e X and all measurable 

stop rules of index less than ex. Then, by ( 4. 7) and Lemma 4.1 (d), 
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Ea,'t(x)(u(xt)) = II u(Xt[z1]) dPa[z1],'t(x)[z1] dP a,'t(x) 

= II U(Xt[z1]) dPa[zl],i(x1) dP a,'t(x) 

= III U(x1) q(dx1 I x,a,b) G0(da) g(x)(db) 

s (SU)(x) 

S U(x). 

This terminates the proof of the theorem. 

Consider now a modification ~·(u)(x) of the leavable game in which player I 

chooses a measurable strategy a available at x and a measurable stop rule t ~ 1, player Il 

chooses a measurable strategy 't available at x and, as before, II pays I the quantity 
Ea,-r(u(xi)). The only difference is that player I is not allowed to choose t = 0. 

Theorem 4.4. The game ~·(u)(x) has value (SU)(x) for every x e X. For every e > 0, I 

has a universally measurable family of £-optimal policies. Player Il has a universally 

measurable family of optimal strategies. 

Emgf. Let X be a homeomorphic copy of X and disjoint with X. If x e X, its copy in X 

will be denoted by x. Consider a new problem with state space X u X, the same action 

sets F,G, the same utility u and the same law of motion q on X and extended to X as 
follows: 

- -F(x) = F(x); G(x) = G(x) 

u(x) = inf (u(y): ye X} - 1 

and 

q(• I x,a,b) = q(• I x,a,b). 
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. 
Notice that, for any x e X, the leavable game ~(u)(x) is-equivalent to _z:*(u)(x) because I 

will not have any incentive to use t = 0 if the starting state is x. Conseque~tiy, U (x), the 

- . * value of the game .Z:(u)(x), will also be the value of the game .z: (u)(x). By Lemma 

4.1 (e), 

- - - -U (x) = u(x) v (SU)(x) = (SU)(x) = (SU)(x). 

Hence the value of _z:*(u)(x) is (SU)(x), as was to be proved. For any O < £ < 1, by 

Theorem 4.3, player I has a universally measurable family of £-optimal policies 

(a(x),t(x)) X in the games .Z:(u)(x), xeX. But then t(x) ~ 1 and a(x) is available to I at x 
XE 

for every x e X, so this family of policies will be £-optimal in the games ~·(u)(x), xeX. 

Finally, let 't(x) be defined by (4.7) and (4.8). Then, as was observed in the course of the 

proof of Theorem 4.3, for any measurable policy ( a,t) available to I at x with t ~ 1, 

Ea,'t(x)(u(xi)) S (SU)(x). 

Hence, ('t(x))xeX is a measurable family of optimal strategies for II in ~·(u)(x), x e X. 

This completes the proof. 

5. Inductive definability 
In order to prove that the games n(u) have a value and that the value function is 

measurable, it will be necessary to iterate the .z:• games of the previous section a 

· transfinite number of times, ensuring at the same time that these iterated games have value 

functions that are measmable. A result of Moschovakis from the theory of inductive 

definability is tailor-made to handle these problems ofmeasurability. To formulate the 
result, let Y be an infinite set and cf> a mapping from the power-set of Y to the power-set 

ofY. Say that 4> is a monotone o.perator if, whenever E1 5 Bi 5 Y, then 4>(E1) 5 cl>(I½). 

Define the iterates of 4> by transfinite induction as follows: 

(5.1) 

where~ is any ordinal. So, in particular, c!)O = «!>(ct,). It is easy to verify that cf>00
, the least 

fixed point of Cl>, is given by u( «!>Tl: 11«}, where IC is the least canlinal greater than the 

cardinality of Y. 

19 



Suppose that Y is a Borel subset of a Polish space and cl> is a monotone operator 

on Y. We say Cl> remects coanalytic sets if, whenever n is a Polish space and C is a 

coanalytic subset of n x Y, then the set 

(5.2) ~ = {(co,y) e n x Y: ye Cl>(Cco)} 

is also coanalytic. (Here Cm= {ye Y: (co,y) e C}.) 

Theorem 5.1. Let cl> be a monotone operator on a Borel subset Y of a Polish space and 

suppose that (J) respects coanalytic sets. Then 

(a) <I>°° is a coanalytic subset of Y, 

(b) ci,oo = U;<mi ~, where m1 is the first uncountable ordinal, 

(c) if E is a Borel set contained in <Jr, then there is ~ < m1 such that E s Cl);. 

Pan (a) of the theorem is a special case of a very general result of Moschovakis 

[19, 7C.8, p.414]. Pans (b) and (c) are not stated explicitly in [19], but they can be 

deduced from results there and this deduction is carried out by Louveau [14]. Zinsmeister 

[26] also gives a nice exposition of Moschovakis's theorem. 

Without loss of generality, we assume that the bounded, upper analytic utility 

function u takes values in [0,1]. Set 

B = {(x,c) e Xx (0,1]: u(x) > c}, 

so Bis an analytic subset of Xx (0,1] by virtue of Lemma 2.1. 
Let Ebe a subset ofX x [0,1]. Define 'PE= X ~ (0,1] by 

CJ>E(x) = sup{c e (0,1]: (x,c) e EC n B }, 

where ~up (cl>)= 0. 

Suppose, next, that w: X ~ (0,1] and let 

E(w) = {(x,c) e Xx (0,1]: w(x) Sc). 
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Then, as is easy to see, <J>E(w) = u Aw, where (u A w)(x) = the minim~m of u(x) and 

w(x). 

We now extend the definition ofihe operator S, introduced in section 3, to 
all functions on X into [0,1]. For w: X ~ [0,1], define 

(Sw)(x) = inf sup ff w(x') q(dx'lx,a,b)(µxv)(daxdb) 
ve P(G(x)) µe P(F(x)) 

where J• stands for the outer integral (see [1, p.273] for a definition). 

Set 
w1 = Sw v w, 

Wn+l = Swn v w, n ~ 1 

and W00 = SUp Wn• 
n 

Finally, define a new operator T by setting 

Notice that, when w is the function u of section 4, w00 = U is the value of the game ~(u) 

and Tw = S~ is the value of ~·(u). 

We are now ready to define a monotone operator on Xx [0,1]. For E s Xx 

[0,1], let 

(5.3) cl>(E) = {(x,c) e Xx [0,1]: (T<J>E)(x) Sc}. 

It is easy to verify that cl> is monotone. 

Lemma 5.2. cl> respects coanalytic sets. 

fmm. Let n be Polish and let C be a coanalytic subset of n x Xx [0,1]. We have to 

prove that the set 

c• = { (m,x,c) e '2 x Xx [0,1]: (x,c) e cl>(Cm)} 
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is coanalytic. 
Define v: '2 x X-+ [0,1] by 

C v(co,x) = sup (c e [0,1]: (x,c) e Cm n B }, 

that is, v( co,x) = <1>cco<x). The function v is upper analytic, for 

v(co,x) >a+-+ (3c)(c>a & (co,x,c) e CC n ('2 x B)), 

which is an analytic condition in co,x,a. Hence, by Lemma 3.1, the function v1 defined 

by 

v1 (co,x) = v(co,x) v (Sv(co,•))(x) 

is upper analytic. So, by induction and Lemma 3.1, the functions 

v0 +1(co,x) = v(co,x) v (Sv0 (co,•))(x) 

are upper analytic as well. It follows that so is the ~ction 

v00(co,x) = sup v0 (co,x). 
n 

Using Lemma 3.1 one more time, we see that the function 

(Tv(co,•))(x) = (Svoo(co,•))(x) 

is upper analytic on n x X. Since 

c• = ((m,x,c) e Ox Xx [0,1]: (Tv(m,e))(x) Sc}, 

it follows from Lemma 2.1 that C* is coanalytic. 

Lemma 5,3. Ifw is a function on X into [0,1], then cl>(E(w)) = E(T(u Aw)). 
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fll2of. This is immediate from the definitions of(!) and T. 

Define by transfinite induction the functions Q; on X as follows: 

(5.4) <lo=Tu 

and, for ~ > 0, 

(5.5) Q; = T(u A inf Q11). 11<~ 

Lemma 5.4. (a) (!)~ = E(Q;), ~ < m1. 

(b) For every ~ < C.01, Cl; is upper analytic. 

fmgf. If E = ci,, then <i>E = u. Hence 

(l)O = (!)(Cl>) 

= { (x,c) e Xx (0,1]: (Tu)(x) Sc} 

= { (x,c) e Xx (0,1]: <lo(x) Sc} 

= E(<lo). 

Assume, next, that ~ > 0 and that (a) is true for all 11 < ~- Let 

It is easy to verify by using the inductive hypothesis that 

But 

so 

Ci>E; = U A inf~, 
11<; 
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Consequently, 

~ = <!>(<!><;) 

= ((x,c) e Xx (0,1]: (Tq,(!)~(x) Sc} 

= ((x,c) e Xx (0,1]: T(u A inf Q11) Sc} 
11<; 

= ( (x,c) e Xx [0,1]: ~(x) Sc) 

= E(Q;). 

For (b ), first observe that it follows from Lemma 5.2 and induction on ~ that Cl>; is 
coanalytic for all ~ < m1. It then follows from (a) and Lemma 2.1 that the functions Q;, 
~ < m1, are upper analytic. 

Let 

(5.6) Q= inf Q;. 
;<m1 

Theorem 5.5. The function Q is upper analytic and T(u A Q) = Q. 

f.mgf. First, note that the monotone operator Cl> defined by (5.3) satisfies the hypothesis 

of Theorem 5.1 by virtue of Lemma 5.2. So, according to Theorem 5.1 (b), 

Hence, by Lemma 5.4 (a), 

(5.7) 

<!>°° = U;<cot {(x,c) e Xx [0,1]: ~(x) Sc} 

= {(x,c) e Xx [0,1]: (inf ~)(x) Sc) 
;<co1 

=E(Q). 

Hence, by ~eorem 5.1 (a) and Lemma 2.1, Q is upper analytic. Moreover, from (5.7) 

and Lemma 5.3, we have· 
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cl>°° = Cl>( cl>°°) 

=Cl>(E(Q)) 

= E(T(u A Q)). 

Hence T(u " Q) = Q. 

6. 'Nonleavable iames 

In this section we prove that the game n(u)(x) of section 1 has value Q(x). Let 

V(x), Y(x) be, respectively, the upper value and lower value of the game n(u)(x) as 

defined by (2.2) and (2.3). The next result shows that Y ~ Q. 

Theorem 6.1. Let e > 0. Then there is a universally measurable family of strategies 
( a(x))xe x for player I such that for any measurable strategy 't of player Il available at x 

(6.1) Ea(x),'t(u*) ~ Q(x) - £ 

for every x e X. Consequently, y_ ~ Q. 

lEgf. Consider the game :t:_* (u A Q)(x). By Theorem 4.4 and Theorem 5.5 this game 

has value (T(u A Q))(x) = Q(x). Moreover, by virtue of Theorem 4.4, we can choose, for 

each 6 > 0; a universally measurable family (a(x,6),t (x,6)) of 6-optimal policies for 
player I in the game :t:_*(u A Q)(x). 

Let 60 ,61,··· be positive numbers such that I Sn < e. For each x e X and n ~ 0, 
D 

set OO(x) = O'(x,60 ), tn(x) = t(x,80). Now define 

and 

s0(x)(h) = 1<,(x)(h) 

Sn+ 1 (x)(h) = Sn(x)(h) + lo+ 1 (Xsn(x))(Zsn(x)+ 1,zsn(x)+2,···> 

a(x)0 = o<>(x)0 

a(x)0 (z1 ,z2,···,Zn) = o<>(x)0 (z1 ,z2,•••,Zo) if n < s0 (x)(h) 
--1c+l 

= u-- (xs.t(x)>n-5t(x) (z5t(x)+l 'zs.t(x)+2'···zn) 

if St(X)(h) S n < Sk+ 1 (x)(h). 
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Plainly, ( a(x))xe x is a universally measurable family of strategies. 

We shall now verify (6.1 ). So fix Xo e X, a measurable strategy i for player Il 
available at Xo and let P = P a(Xo),i· The expectations and conditional expectations below 

are all with respect to P. 

Set 
y n = (u A Q)(xsn(Xo)), n ~ 0. 

By assumption, 

and, for n ~ 1, 

where the conditional expectation is with respect to the a-field ;rSn-t(Xo)· 

So, for n ~ 1, 

By iterating the last inequality, we get, for n ~ 0, 

Hence 

But 

E(Y 0 ) ~ E(Y 0 ) - .(61 +½+···+6n) 

~ Q(Xo) - (60+61+···+60) 

~ Q(Xo)-£. 
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E(u*) = EOunnsup u(x0)) 

which verifies (6.1). 

~ E(lim0 sup u(xsn(Xo))) 

~ lim0sup E(u(Xsn)(Xo))) 

~ lim0sup E(Y 0 ) 

~ Q(xo)-£, 

Now we have to prove that V SQ. We need a resul4 which may be viewed as a 
measurable version of one-half of the Fatou equation.- The proof is adapted from [24]. 

Lemma 6.2. Let £ > 0. Then there is a universally measurable function t£(µ,h) = t(µ,h) 

from P(H) x H to N = {1,2, ... } such that (a) for fixedµ, t(µ,•) is a stop rule~ 1, and 

(b) for every µ, 

where Eµ. is the expectation operator underµ. 

film. For each n ~ 1, let µ[z1 ,zi, ... ,Zo] be a Borel measurable function from P(H) ~ xn 
to (0,1] such that µ[z1,z2,•••,Zn] is a version of the conditional distribution under JJ. of 

Zn+1,Zn+2,--· given z1,Z2,···,Zn· The existence of such a function is established in (16]. 

Consequently, 

is a universally measurable function from P(H) x xn to 9t ([1], p.180]). By the Levy 0-1 

law (20, p.133], 

almost surely(µ). 

Let s(JJ.,h) be the least k ~ 1 such that 
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if such a k exists. Otherwise, set s(µ,h) = 00• 

Then s is a universally measurable function on P(H) x H such that for each fixed 
µ, s(µ,•) is a stopping time and µ( { s(µ, •) < oo}) = 1. Let 

gm(µ)= µ({s(µ,•) Sm)), m ~ 1, 

so gm is universally measurable on P(H)([l], p.177). Let N(µ) be the least m such that 

gm(µ)> 1- 6, 

so N(µ) is also universally measurable. 

Let 

t(µ,h) = s(µ,h) A N(µ). 

Plainly, tis universally measurable and, for each fixedµ, t(µ,•) is a stop rule. Moreover, 

µ({t(µ,•) = s(µ,•)}) > 1 - 6 

for every µ e P(H). · Hence, 

Eµ(u*) - Eµ(u(xt(µ,•))) 

= J[Eµ(u* I Pl(µ,•))~ u(xl(µ,•))] dµ 

= I (s{Jl.•~(µ)} [Eµ(u* I Pl(µ,•)> - U(Xt(µ,e))] dµ 

+ I{s(µ,•)>N(µ)} lEµ(u* I Pl(µ,•))- U(Xl(µ,e))] dµ 

S 6 + 2 llull 6 
= 8(1 + 2 llull), 

where llull = s u ~ lu(x)I. 
xeX 

Now choose 6 so that 6(1 + 2 Hull) = e to complete the p~f. 
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Theorem 6.3. For eveiy £ > 0 and~< m1, player II has a universally measurable family 
of strategies (~,!(x))xeX such that for any measurable strategy a for player I available at 

x, 

(6.2) Ea,i~x)(u*) S Q;(x) + £ 

for every x e X. 

fmgf. The proof is by induction on ~- So consider the case when ~ = 0. By Theorem 

4.4, choose a universally measurable family (t(x»xeX of optimal strategies ·for player II in 

the games .?*(u)(x), x e X. Set 

t<>.E(x) = 't(x), x e X. 

Now fix Xo e X and let a be a measurable strategy for I available at Xo· Let P = P a,i°(Xo)· 

Use Lemma 6.2 to choose a universally measurable stop rule t ~ 1 such that 

Then 

Ep(u*) S Ep(u(xa)) + £. 

Ep(u*) S Ep(u(xi)) + £ 

s <lo(Xo) + £, 

since icXo) is optimal in .?*(u)(Xc,). 

For the inductive step, let ~ > 0 and assume that the result is true for all 11 < ~- By 

Theorem 4.4, we can find an optimal family ('t(x))xe x of universally measurable 

strategies for II in the games .?*(u " inf Q"l)(x), x e X. Let 
T)<~ 

where inf (cl>)= oo, so that A is a universally measurable stopping time. Let, for 11 < ~, · 
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½) = {x e. X: Q11(x) < (inf Qc)(x) + E/8}. 
~<; 

Note that the sets ½I are universally measurable. We now define ~£(x) as follows: 

~,E(x)o = t(X)o 

't~•2(x)0 (z1 ,z2,•••,Zo) = i (x)0 (z1 ,z2,•••,Zn) if n- < A(h) 
= 't11,el8(x~0-1(z1+i,z1+2, .•• ,Zo) if n > A(h) & x1 e c;-u11,<Tl½t'· 

Plainly, (~,e(x))xeX is a universally measurable family of strategies. 

Fix Xo e X and let a be a measurable strategy for I available at Xo· Set 
P = P a,~E(Xo)" Choose m ~ 1 such that 

(6. 3) 
( · P({A < oo)) s P({A s m}) + B(lluff + l) • 

Since ~,e(xo) and t(Xo) agree prior to time A, it follows by virtue of Lemma 2.5 that 

(6. 4) P ({A< oo}) SP ({AS m}) + £ . 
a,l"(x.,) a,-c(xJ 8(11ull + 1) 

Now define a function s as follows: 

s(h) = (A A m)(h) 

= m + t£/4(P[pm(h)], (hm+1,hm+2,···» 

ifA(h) Sm, 

ifl.(h) > m, 

where the function t£/4 is as in the swement of Lemma 6.2 and P[pm(h)] abbreviates 
P a[J>m(h)],~EfJ>m(h)J° It is easily verified that s is a universally measurable stop role. 

In the calculations below, expectations and conditional expectations will be with 

respect to the probability measure P. First, write 

We will now obtain bounds on the two terms on the right side. For the first term, 
condition on PMm and calculate: · 
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(6.6) 

SJ(~) (inf ~)(xl) dP + £/4 
11<~ 

=I(~) (u A inf Qq)(x1) dP + £/4 
11<~ 

where the first inequality uses the definition of ~(Xo)[p)J and the inductive hypothesis, 

the third equality is by virtue of the fact that ~tE(Xo) and i(Xo) a~ prior to time A. and 

Lemma 2.5 (i) and, the final equality is by the definition of s. 
For the second term on the right side of (6.5), we condition on Pm and calculate: 

J(bm) u• dP = J(bm) rJu• dP[pm11 dP 

S J(b ) [fo(x rJ4 ) dP[pm]] dP + £/4 
m t (P[pm],•) 

= J(bm)E(u(xs> I Pm) dP + £/4 

= I (bm) u(xs> dP + £/4 

= I (m<A<oo 1 u<xs> dP + J <A=-> ucxs> cIP + £/4 
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where the first inequality is by virtue of Lemma 6.2, the second equality is by the 

definition of the stop rule s, the second inequality is by virtue of (6.3) and the facts that 
IIQ1111 S llull and u(xs> S ( nf Qq)(xs) on { l. > s) and, the final inequality is by vinue of 

11<; 

(6.4), the fact that ~(Xo) agrees with i(Xo) prior to time l. and Lemma 2.5 (ii). 

Hence, by (6.5), (6.6) and (6.7), 

E(u*) s; J(u "~~ Qq) (xs) dP a,'t(xo) + £ 

SCJ;(Xo) +£, 

the last inequality being justified by the fact that t(Xo) is optimal for player II in the game 
.Z:*(u" inf Q11)(x0), which has value ~(xo). Thus, we have verified (6.2) and the proof 

11<; 

is complete. 

Corollazy 6,4. v s Q. 

fmgf. It follows from Theorem 6.4 that V S ~ for every ~ < c.o1• The conclusion now 

follows from (5.6). 

Corollary 6.5. For every e > 0, player Il has a universally measurable family of strategies 
('t(x))xe x such that for every measurable strategy a of player I available at x, 

Ea,t(x)(u*) S Q(x) + £ 

for every x e X. 

fmgf. Assume without loss of generality that O Su S 1. Let C; = { xe X: ~(x) = 
Q(x)), ~ < C.01. Then, as is easy to see, the sets C; are universally measurable and 

\J;<mi C; = X. We define 
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1:(x) = ~,E(x) if x e C; - u11<; Cq, 

where ~,e is defined by Theorem 6.3. In order to prove that (1:(x))xeX is universally 

measurable, we have to verify that, for each n ~ 0, 1:(x)0{z1,Z2,···,Zn> is universally 

measurable in x,z1,Z2,···,Zn· So let JJ. be a probability measure on the Borel sets of Xx 

zn. Let Jlo be the marginal of JJ. on X. Then Q is Jio-measurable, so there is a Borel 

function Q': X -+ (0, 1] such that Q' ~ Q and Q' = Q a.s.(Jlo). Plainly, the set 
{ (x,c) e Xx (0,1]: Q'(x) Sc} is Borel and is contained in E(Q) = { (x,c) e Xx (0,1]: 

Q(x) Sc}. But, by (5.7), E(Q) = Cl>°°, where the monotone operator <ll is defined by 

(5.3). Consequently, by Theorem 5.1 (c), there is~< C01 such that { (x,c) e Xx (0,1]: 

Q'(x) Sc} s ~- So, by Lemma 5.4 (a), it follows that Q; SQ', so that~= Q a.s. 

(~). Thus, µ((X-C;) x Z0 ) = 0. Now it is easy to verify directly from the definition that, 

restricted to the universally measurable set C~ x zn, the function 1:(x)0 (z1,Z2,···,Zn> is 

universally measurable, hence it follows that it is µ-measurable on X x zn. Since JJ. was 

an arbitrary probability measure on X x zn, this proves that 1:(x)0 (z1,Z2,···,Zn> is 

universally measurable. 
Finally, fix Xo e X and let a be a measurable strategy for I available at Xo· If 

Xo e C~ - u11<;Cq for~< co1, then 

Ea,'t(Xo)(u*) = Ea,~Xo)(u*) 

SQ;(Xo) +£ 

SQ(Xo) +£ 

where the inequality is by virtue of Theorem 6.3. This completes the proof. 

Theorem 1.1 now falls out of Theorem 6.1, Corollary 6.4 and Corollary 6.5. 
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