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Abstract

We consider two-person zero-sum stochastic games with limit superior payoff
function and Borel measurable state and action spaces. The games are shown to have a
value and the value function is calculated by transfinite iteration of an operator and proved
to be upper analytic. The paper extends results of our earlier article [17] in which the
same class of games was considered for countable state spaces and finite action sets.
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- 1. Introduction

In [17], a class of two-person zero-sum stochastic games was formulated as
follows. Let X be a countable, nonempty set of states, and let A and B be finite,
nonempty sets of actions for players I and II, respectively. Let u be a bounded, real-
valued utility function on X and let q be a function which assigns to each triple (x,a,b) €
X x A x B a probability distribution on X. The game starts at some initial state x. Player I
chooses an action a; € A and, simultaneously, player II chooses b; € B. The next state
x; has distribution g(*Ix,a;,b;) and is announced to the players along with their chosen
actions. The procedure is iterated so as to generate a random sequence Xj,X,... and the
payoff from player II to player I is

(1.1 u* = limgysup u(xp).

It was proired in [17] that this game has a value.
The aim of the present article is to extend this result to a Borel measurable setting.
The following assumptions will remain in effect throughout the paper.

(1.2) (i) X,A,B will be nonempty Borel subsets of Polish spaces.

(ii) F,G will be Borel subsets of X x A, X x B, respectively, with nonempty vertical
sections F(x), G(x) for all x € X. At the state x, F(x)(G(x)) is the set of actions that
player I (I) is allowed to use.

(iii) G(x) is compact for every x € X.

(iv) q is a Borel measurable transition function on J x Z(X), where J is the Borel set
{(x,a,b) e Xx AxB:ae F(x) &b e G(x)} and 8(X) is the Borel o-field of X.

(v) For every fixed set E € #&(X) and (x,a) € F, the function q(E | x,a,°) is
continuous on G(x). :

(vi) u is a bounded, upper analytic function on X, that is, for every real c, the set
{u> c} is analytic.

Let T(u)(x) be the stochastic game with initial state x in which the payoff from
player II to player I is u*. (The play of the game is as described in the first paragraph
above with measurability conditions which will be explained in section 2.) Here is the
main result of the paper.

Theorem 1.1. 'Assume that the conditions (1.2) hold. Then, for each x € X, the game
T(u)(x) has a value. The value function is upper analytic. Furthermore, for every
€ >0, both players have e-optimal families of universally measurable strategies.



The techniques which will be used to prove Theorem 1.1 are similar to the
methods of [17]. However, there are problems of measurability which arise and which .
are solved by methods from the theory of inductive definability. Similar methods were
used to resolve problems of measurability in the theory of gambling in [7] and [16].

Stochastic games were formulated by Shapley [23], with state and action spaces
finite and payoff function equal to the total discounted reward. Shapley proved that his
game had a value and that both players had optimal stationary strategies. Thereafter, a
number of authors considered the problem when the payoff function is the average reward
per day. Notable contributors to the average reward problem include Gillette [11],
Hoffman & Karp [12], Blackwell & Ferguson [5] and Kohlberg [13], who solved
different special cases of the problem. The definitive solution of the problem was
provided by Mertens & Neyman [18], who based their proof on a difficult result of
Bewley & Kohlberg [2] on the asymptotic behavior of the value of the discounted reward
game as the discount factor tends to one. Stochastic games with general state and action
spaces were considered by a number of authors. Nowak's article [21] provides an
excellent bibliography. In the same article, Nowak formulated the conditions (1.2) and he
considered both discounted and positive stochastic games under these assumptions.
Indeed, his Theorem 5.1 will be the point of departure of the present article.

Blackwell [3] proposed a variant of Shapley's game in which the law of motion
was eliminated but which allowed for payoff functions more general than either the total
discounted reward or the average reward per day. He proved that a win-lose game, where
the winning set for player I is a Gg subset of the set of histories, has a value. In [4], he
gave an operator solution of the same problem. This second paper of Blackwell is the
inspiration for the present paper, as it was for our previous article [17].

Our paper is organized as follows. The next section sets down definitions,
notation and some preliminary results. Auxiliary games are treated in sections 3 and 4.
Section 5 handles the measurability problems involved in iterating the auxiliary games a
transfinite number of times. Theorem 1.1 is proved in section 6.

2. Preliminaries

Let Z = A x B x X and define the space of historiestobe H=ZxZx ....
Elements of H will be denoted by h = (z,,25,...). We use pp(h), or more briefly, p, to
denote the partial history (z},23,...,2y)-

Let P(A) and P(B) be the sets of probability measures on the Borel subsets of A
and B, respectively. Equip P(A) and P(B) with the weak topology, so that P(A) and P(B)
are both Borel subsets of Polish spacés. Moreover, the sets {(x,it) € X x P(A): p(F(x)) =
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1) and {(x,v) € X x P(B): V(G(x)) = 1} are Borel in X x P(A) and X x P(B),
respectively, and, for every x € X, the set {v e P(B): W(G(x)) = 1} is compact. See
Parthasarathy [22, Chap. 2] for details.

Let K = {(x,u,v) € X xP(A) x P(B): u(F(x)) =1 =v(G(x))}. ThenKisa Borel
subset of X x P(A) x P(B). We now define a function m on K x #3(Z) by the formula

m(A, x B, x X, Ix,p,v) = j j q(X| Ix,a,b) du(a) dv(b),
AB,
where A;, B; ,X are Borel subsets of A, B, X, respecuvely It is easy to verify that mis
- a Borel measurable transition function.

A universally measurable (or, more briefly, measurable) strategy © for player I
available at x is a sequence 0,,01,... where G, € P(A) such that 6,(F(x)) = 1 and, for
n2 1, o, is a universally measurable mapping from Z? to P(A) (that is, measurable when
Zn is endowed with its o-field of universally measurable subsets and P(A) is equipped
with its Borel 6-field) such that, for every (z;,2,,...,2;) € ZR, Oy(21,23,...,Zy) F(xp) =
1, where z, = (a,,by,Xp). A universally measurable (or more briefly, measurable) strategy
< for I available at x is defined analogously with P(B) and G(x) in place of P(A) and
F(x), respectively. Measurable strategies ¢ and < available at x determine a probability
measure Pg ¢ = Py 7 on the Borel subsets of H. (The initial state x will usually be clear
from the context and we will suppress it.) Namely, the Pg .-distribution of the first
coordinate z; = (a;,b,X}) is Pgqyt, = m(*lx,0,,7,) and the Py, . conditional distribution of
Zna1 = (01D 1% 1) BIVED 21,2102 18 Py (121,200020) =
m(*Ixp,0n(21,2;---+Zp)s Tn(21,22,---:2p)). The existence of Py 1 is proved in [1,
Proposition 7.45]. If g is a bounded, universally measurable function on H, we write its
expectation under P, as [gdPy ¢ or Eg «(g).

If o is a measurable strategy for player I available at some x and p = (2},2y,...,2,)
a partial history, the conditional strategy o{p] is defined by

olpl, = c’n(P)

Olplm(z;.z;,....z;,) = c.,;,m(zl,zz.....zn,zl'.z;.--.,zm)



-forallm21 and (71',7.;,._..,2‘;) € ZMm, Note that ofp] is a measurable strategy for player I

available at x,,. Given measurable strategies ¢ and 7 for players I and II available at x, the
probability measure Py 1{p] = Praolplalp) iS €asily seen to be a version of the Py
conditional distribution for (z,,1,2p42,...) given (zy,23,...,z,). Thus, if gt H — R is
bounded and universally measurable,

(2.1) Eg;+(8) = /{Eo{pam)),tipah)) €Pa(h)} dPg,z(h),

where, for p = py(h) = (2;,23,...,2,), P is the p-section of g defined on H by (gp) (h) =
(8p) (3:2y,---) = £(21,22+-+ZnZ):%y,--). In the special case when g(h) = u*(h) =

lim;sup u(x,), the function u*p is just u* and (2.1) simplifies to

Eg2(0") = J(Eofpny cipa)(v*)) dPg;z(h).

The upper value V(x) and the lower value Y (x) of the game N(u)(x) are defined as
follows.

22) V(x) = inf sup Ego(u”)
and
(2.3) Y(x) = sup n:f Eg1(u®),

where the suprema are over all measurable strategies ¢ for player I available at x and the
'infima over all measurable strategies 1 for player II available at x.

We say that (6(x))xe x is a universally measurable family of strategies for player I
if for every x € X, 6(x) is a measurable strategy for I available at x and, for everyn2 0,
(6(x))n (21,225.--,Zn) is a universally measurable mapping from X x Z" to P(A). One
defines a universally measurable family of strategies for player II analogously.

A stopping time t is a mapping from H to {0,1,...} U {e} such that, for
n=0,1,.., if t(h) = n and h' agrees with h in the first n coordinates, then t(h’) = n.
(Notice that, if t(h) = 0 for some h, then t is identically zero.) A stop rule t is a stopping



time which is everywhere finite. A stopping time (stop rule) t is universally measurable if,
for every n 2 0, the set {t < n} is a universally measurable subset of H.

If t is a stopping time, h = (Zl, ZQ,...) = ((al,bl,x1),(a2,b2,x2),...), and t(h) <ee, .
we define the variables z,,x;,p; to have values zyg,),Xm)Pi(h) = (21,22,....Zy(p)) at h.

Suppose now that t is a universally measurable stop rule. Then, it is not hard to verify
that Po{p;] xpr) = Pxe.ofpq.1ipg IS @ version of the Pg ¢ conditional distribution for

(Z41:Z42>---) Eiven (z1,23,...,z;) and (2.1) generalizes to
2.4) Eq;(8) =I(Eoipgipa(epy)} dPos.

If t is a stop rule and p = (2§,23,..-,Zy) is a partial history, define t[p] on H by

t[p](zl',z;,...) = t(zl,zz,...,zn,z;,z;,...) -n.

Notice that, if t(z},25,...,Zp,) 2 0, then t[p] is itself a stop rule, in which case t[p] is

called a conditional stop rule given p. If t is universally measurable, then so is t[p].
When p = (z), we write z for p and t[z] = t[p].

There is a natural way to associate with every stop rule t an ordinal number j(t)
called the index of t by setting j(0) = 0 and requiring, for t > 0, that

j@®) =sup {jt[z]) + 1: ze Z}.

This definition of the index is equivalent to that of Dellacherie and Meyer [6], as was
pointed out in [15, Proposition 4.1]. Furthermore, j(t) is familiar to students of Dubins
and Savage as being the structure of the finitary function z; (cf. [8, sections 2.7 and 2.9])
except for the uninteresting case when Z is a singleton. Some of our proofs (Lemma 2.3
& Theorem 4.3) will use transfinite induction on j(t) and it is important to notice that, for
all t > 0 and all z, j(t[z]) is strictly less than j(t).

Suppose t > 0 is a universally measurable stop rule and consider the special case of
(2.1) where n =1 and g = u(xy). Note that

(x(z1)(22,23,...) = X((2],22,...) = Xt[21](22,Z3,...)

if we make the convention that x[z;)(2,23,...) = X; when t[z;] =0. Thus (2.1) gives



(2.5) Ec,t(u(xt)) = I [Ec[zﬂ,‘t[zﬂ(u(xt[zﬂ)) dPO’o.‘to(zl)o

A universally measurable (or, just measurable) policy for player I available atx is a
pair (o,t) where ¢ is a measurable strategy for I available at x and t is a universally

measurable stop rule. We say that (0(x), t(x))xe x is a unjv m le family of
policies for player I if (6(x))xe x is a universally measurable family of strategies for player

I, t(x) is a stop rule for every x € X and t(x)(h) is a universally measurable function on
XxH.

We conclude this section with some results which will be needed in the sequel.
Recall that a real-valued function ¢ on a Borel set Q is upper analytic if the set
{@ > c} is analytic for every real c. :

Lemma 2.1 Let ¢ be a function on a Borel subset Q of a Polish space into [0,1]. Then ¢
is upper analytic if and only if the set

E = {(o,c) € Qx[0,1]: u(w) >c)
is analytic in Q x [0,1].

Broof. The 'if' part follows from the fact that a section of an analytic set is analytic. For
the converse, note that

E=U[{oe Q: u(w)>r} x[0,x)],
where the union is over all rationals r in [0,1]. Plainly, E is analytic.

Lemma 2.2 Letx € X, ¢ a bounded, upper analytic function on X and t be a probability
measure on A such that p(F(x)) = 1. Define a function y on G(x) by

w(b) = Jo(x;) qdx)x,a,b) p(da).
Then v is continuous on G(x).

Proof. Use [21, F3.9] and the dominated convergence theorem.



For each n 2 1, let &, be the o-field of subsets of H of the form AxZxZx ...,
where A is a universally measurable subset of Z1, let o = {¢,H} and let &, be the o-

field generated by Up>0%,. Suppose now that tis a universally measurable stopping time
on H. Define &, to the collection of all sets E € &, such thatE N {t<n} e &, for every
n20. Itis straightforward to verify that & is a o-field.

Suppose next that 6,6'(1,7") are measurable strategies for player I (I) available at
X, and that tis a universally measurable stopping time. We say that the pair (0,t) agrees
with (0',%") prior to time t if n < t(h) implies |

Ga(Pa®)) = G, Pa(h))

and

Ta@a) = T Eah)).

Lemma 2.3 Let 0,6'(t,t") be measurable strategies for player I (II) available at x, and s a
universally measurable stop rule such that (6,t) agrees with (¢',1") prior to time s. Then
Pc"r = Pd,t' on gso

Proof. The proof is by induction on the index j(s). For s =0, the result is trivial. So
assume the result is true for all universally measurable stop rules of index less than &,

where & > 0 is a fixed ordinal. Let s be a universally measurable stop rule of index .
Suppose L € &,. Then, denoting by Lz, the z, - section of L, we have:

Pg,+(L) = [Poiz1) 21z110L21) dPoo,10(21)s

=Jp -
J PRr ALY dpo,:,(zl)

= Pc';:'(L):



. where the first and last equalities are by virtue of a variant of (2.1) and the intermediate
equality uses the inductive hypothesis applied to 6{z;], 6'[z1], t{z], T'[z1]. s[z;]. the fact

that Lz) € Fs[z;) and the fact that 6, = q; and 7o = 1:; since s 2 1.
Lemma 2.3, in the gambling context, is proved in [25].

We now want to extend Lemma 2.3 to universally measurable stopping times.
The next result is due to V. Pestien and S. Ramakrishnan.

Lemma 2.4. Let t be a universally measurable stopping time. Then ¥, is the smallest o-
field @ containing \Up>0%an, Where tan is the stop rule whose value at h is the smaller of
the numbers t(h) and n.

Proof. Letnk 2 0 and let k > n. We claim that
- (2.6) " Ae ¥, implies AN {t>k) € Fx.
To establish (2.6), we must prove for each m 2 Q that

ANnf{t>k}n{tAk<sm}e Fp.
Ifm<k thenANn{t>k}N{tAk<m}isempty. f m2k, then AN {t>k} N
{tAk<m}=AnN {t>k}. Since A € F, {t>k) € F and m 2 k > n, it follows that _
An{t>k}n{taAk<m}e Fm which proves (2.6).

Next, we observe that :

2.7) A€ Fimplies AN (t=o} € Q.

Suppose A € &;. Then

AN{t=oo) = ﬁ An{t>k)},

k=n+1

50, by (2.6), A € Q. Since Uy, is a field generating .., a monotone class argument
establishes (2.7). '
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Now let A € &, Write
A=[UpoANn{t<n)]U[AN {t=2)].

Itis easy to see that AN {t<n) € &y, € @ forevery n 20. Hence, by (2.7), A € Q.
Thus, &, = §.

For the reverse inclusion, observe that &, & ¥,. Hence, if A € &y, then
An{tsm}e Fyform2n. IfAe F pandm<n, thenAN{t<m}=AN
{tAn<m} e . Hence F,\;, € F; foreveryn20,s0 g € &,.

Lemma2.5. Let 6,6'(1,7") be measurable strategies for player I (II) available at x, and t a
universally measurable stopping time such that (c,t) agrees with (¢',") prior to time t.
Then Pg ¢ =Pg ¢ on &,. In particular, if ¢ is a bounded, universally measurable function

on X and s a universally measurable stop rule, then

@ I (tsm) P(X) dPg,r = J (tsm) P AP
foreverym20, and
(i) I (1m0} P(Xs) APz = I (t=w0) P(Xs) APgy 2

Proof. The first assertion is an immediate consequence of Lemma 2.3 and Lemma 2.4,
For (i), observe that the function @(x;) Hi<m) is &; - measurable. For (ii), note that @(x)
is &, - measurable and that the o-fields &, and &, coincide when restricted to the set
{t=c0} € &N F, so that the function Q(Xg) 1 (=) is F; - measurable.

3. Auxiliary one-day games

Consider an auxiliary one-day game Q(¢)(x) starting from x, where @ is a
bounded upper analytic function on X. In the game Q(¢)(x), players I and II choose -
actions a,b simultaneously such that a € F(x),b e G(x) and the payoff from Il to I is

Jo(xp) q(dx; I x.2,6).
It follows from Lemma 2.2 and an old result of Ky Fan [10,Theorem 2] that for each

fixed x € X, the game Q(@)(x) has a value, I has an e-optimal strategy and II has an
optimal strategy. The value of the game Q(@)(x) will be denoted by (S@)(x).
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Here are some facts about the measurability of the _value function and of e-optimal
(optimal) strategies of the players. ‘

Lemma 3.1. Let Q be a Borel subset of a Polish space. Suppose that v is a bounded,
upper analytic function on Q X X. Let y: Q XX ~ R be defined by

y(@,x) = (S v(®,*))(x).
Then v is upper analytic.

Lemma 3.2. Let ¢ be a bounded, upper analytic function on X. Foreach &> 0, thereis a
universally measurable function f: X — P(A) such that for each x € X, f(F(x)) =1 and

inf ff ®(x,) q(dx, Ix,a,b) f(x)(da)
be G(_x)
2 (So)(x) - .

Furthermore, there is a universally measurable function g: X — P(B) such that for each
x € X, g(G(x))=1and

sup_ [lo(x)) q(dx, Ix,a,6) g(k)(db)
ae F(x) o
< (SP)x).

Lemmas 3.1 and 3.2 are straightforward consequences of Theorem 5.1 in Nowak
[21]. We now record for later use two useful properties of the operator S.

Lemma 3.3. Let ¢; < @ < ... be uniformly bounded, upper analytic functions on X.
Then

(a) S@; <S¢, and (b) lim S¢, = S(lim @y).
n n

Proof. (a) is obvious. For (b), set ¢ =1im @y, so @ is a bounded, upper analytic
n
function. Now let € > 0 and fix x. Choose it € P(A) such that p(F(x)) = 1 and

- [ @xy) q(@x] | x.2.b) p(da) > (SIX) - 2

12



- forallbe G(x); By the Monotone Convergence Theorem,

3.1) [ ga(xy) q(dx; 1x,2,b) p(da) T f @(x;) q(dx, I x,2,b) p(da)

for all b e G(x).

Now the functions in (3.1) are continuous on G(x) by virtue of Lemma 2.2, so, by Dini's
Theorem [9,p.190], the convergence in (3.1) is uniform on G(x). Consequently, for
sufficiently large n and all b € G(x),

Il g(x1) q(dx; I x,,b) p(da) 2 (Sp)(x) - &.

Hence

inf [llp (x,) q(dx,Ix,a,b) p(da) v(db) 2 (S)(x) - €
ve P(G(x)) ’

for all sufficiently large n, and so

sup inf [ffo(x,) q(dx,Ix,a,b) A(da) v(db)
Ae P(F(x)) ve P(G(x))

2 (S@)(x) - &.
It follows that
Sop)(x) 2 (SP)(x) - €
for all sufficiently large n. This completes the proof.

4. Leavable games -
Letubea bounded, upper analytic function on X. Then u and an initial position x
determine a leavable game 2 (u)(x), which is played exactly like the game N (u)(x)
introduced in section 1, except that now I gets to terminate the game unilaterally at any
time of his choice and the payoff to I from II is the value of u at the terminal state. More
formally, I chooses a measurable strategy G available at x and a measurable stoprulet,
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player II chooses a measurable strategy 7 available at x, and the expected payoff to I from
Il is Eg -(u(xp). Here we allow t = 0 and require x, = X.

Define inductively
4.1) Uy=u
and, forn20,
4.2) Ups1 =uv SUL.

Here a v b is the maximum of a and b. Let

(4.3) U = sup Uj,
n

Lemma 4.1. (a) For every n 2 0, U,, is upper analytic and Uy, € Uy,;.

(b) The functions Uj; are uniformly bounded.

(c) U is upper analytic and sup [UI < sup lul.

(d) U is the least, bounded, upper analytic function ¢ on X such that (i) ¢ 2 u and
(i) Sp < 0.

(e) U=uv SU.

Proof. To prove (a), use induction, Lemma 3.1 and Lemma 3.3. Next, observe that if ¢
is bounded and upper analytic on X, then sup IS¢! < sup lgl. It follows from this and _
induction that sup [Uy| < sup lul for every n 2 0. This establishes (b) and also that sup Ul
< sup lul. The other assertion in (c) is immediate from (a). For (d), assume that @ is
bounded, upper analytic on X and satisfies (i) and (ii). So ¢ 2 U, =u. Suppose that ¢ 2
Up. Then ¢ 2 S¢ 2 SU,, by Lemma 3.3 (a) and, so ¢ 2u v SU;, = Uy,;. Hence, ¢ 21U,
for all n and so @ 2 U. On the other hand, U 2 u, and, by Lemma 3.3 (b), SU =

S(l'ilm Up) = lli‘m SU, < llilm Up+1 = U. This proves (d). It follows that U2 u v SU.

For the opposite incqﬁality, fix x and suppose that u(x) < U(x). Then, for n sufficiently
large, u(x) < U,(x) and so U(x) = lim Uy, 1(x) = 1lim (SU,)(x) = (SU)(x) by Lemma 3.3
n n

(b). This completes the proof of (e).
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Lemma 4.2. Forevery n 2 0 and € <0, player I has a universally measurable family of
policies (o:(x),t“(x))xex such that t"(x) < n, x € X, and such that for any measurable

strategy T of player Il available at x,

(4.4) o"( . (u(x )) 2 Un(x) -€

forevery x € X.

Proof. First, fix a universally measurable function f* on X into P(A) such that
f* (x)(F(x)) = 1 for every x € X. The existence of f* is a consequence of the von-

Neumann selection theorem [19,4E. 9,p 240].
Forn=0,letto(x)=0and (x) be the strategy which uses f"‘ every day. Then

(4.4) is a triviality for n = 0. Assume next that the result is true for n. Define

+l(x)(2) =0 | if u(x) 2 Uy (X),
= t“(xl)(zz,23,...) +1 if u(x) < Un.,.l(x).

Plainly, t"*1(x) < n+1. If u(x) 2 Up,(x), let c:"'l(x) be the strategy which uses f* every

day. Supppose, next, that u(x) < Up,1(x). Fix a universally measurable function f: X —
P(A) such that for each x € X, f(F(x)) =1 and

@5 inf [[Un(x1) q(dxyIx,a,b) f(x)(da)

2 (SUn)(x) -€/2.

The existence of f follows from Lemma 3.2 by taking ¢ = U,,. Define

of* 1) = £,
n+l n . .
A (x)i(z1,225..Z}) = O m(xl)i_l (z,23,...,2j) if1<Si<n,

=£"(x;) if n+1 <i.
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It is easily verified that (of"*' (x),t™1(x))xex is & universally measurable family of

policies. It remains to verify (4.4) for n+1. If u(x) 2 U, ;(x), once again (4.4) is trivial.'
So suppose that u(x) < U, 1(x). Let T be a measurable strategy for player II available at
x. Then, for fixed x € X,

E
A Tl )(u(xt""‘m) )

= +; dP 1+
H ( n-bl ¢ )[zll) ou l(x)[ll}‘t[zll on 1(x),‘l.’

=luex (x,)) o, (x,)tlz)] a“‘(x).t
2 [ff Up(x) q(dx; 1 x,a,b) f(x)(da) T,(db) - €/2

> (SUL)(X) - €
= Uml(x) -€

where the first inequality is by virtue of the induction hypothesis and the second by virtue -
of (4.5). Thus, (4.4) is established for n+1.

Theorem 4.3. The game 22(u)(x) has value U(x) for every x € X. For every € >0, I has
a universally measurable family of e-optimal policies. Player II has a universally
measurable family of optimal strategies.

Proof. For x € X, define n(x) to be the leastk>0 such that Up(x) > U(x) - €/2. Then
n(x) is a universally measurable function of x. Let ( (x), t(x))xe x> N 2 0, be as in the

statement of Lemma 4.2. Set

o) = o (%)

and t(x) = m&)(x).
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 Then (G'(x), ?(x))xex is a universally measurable fami]y of policies. Moreover, by
Lemma 4.2, for any measurable strategy < for player II available at x,

(4.6) (u(xgyy) =E°,(,, «

E
o(x).t 2

2 Up(x)(x) - €/2
2U(x)-¢

n{x)

ulx
M (uC :“""(x>)

(x)

for every x € X.

Using Lemma 3.2, fix a universally measurable function g: X — P(B) such that
foreach x € X, g(G(x)) =1 and

4.7 sup uxy) q(dxqls,a,b) g(x)(db) < (SU)(x).
aek(x)
Define
©x)p = £X)
(4.8)

T(X)n(Z1522500002Zy) = 8(Xp), D2 1.

Then (T(x))xe x is a universally measurable family of strategies for IL.

We will now prove that if (0,t) is any measurable policy of player I available at x, -
then '

4.9) Eq100(u(xp) S UR)

foreveryx e X.

We prove (4.9) by induction on j(t). The inequality is obvious when j(t) = 0, i.e.,
when t=0. Lett be a measurable stop rule with index j(t) = & > 0 and assume that (4.9)
holds for all measurable strategies 6 of player I available at x, all x € X and all measurable
stop rules of index less than a. Then, by (4.7) and Lemma 4.1 (d),
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Eg200(u(x) = [ u(igz;)) Poz)xytzn) ch,t(%)
= [ uGxigz1)) dPotz1)atx1) Poen)
<] U(xy) dPg ()
= [l Ux}) q@dx; 1 x,a,b) o,(da) g(x)(db)
< (SU)(x)
< U(x).
This terminates the proof of the theorem.

Consider now a modification 2Z2*(u)(x) of the leavable game in which player I
chooses a measurable strategy © available at x and a measurable stop rule t 2 1, player II
chooses a measurable strategy T available at x and, as before, IT pays I the quantity
Eg 1(u(xp). The only difference is that player I is not allowed to choose t =0.

Theorem 4.4. The game Z*(u)(x) has value (SU)(x) for every x € X. Forevery €>0, I
has a universally measurable family of e-optimal policies. Player IT has a universally
measurable family of optimal strategies.

Proof. Let X be a homeomorphic copy of X and disjoint with X. If x € X, its copy in X
will be denoted by x. Consider a new problem with state space X U X, the same action

sets F,G, the same utility u and the same law of motion q on X and extended to X as
follows:

F(x) = F(x); G(x) = G(x)

u(;)=inf {u(y):ye X} -1
and

q(* 1x,ab) = q(* | x,3,b).

18



Notice that, for any x € X, the leavable game Z(u)(;) is equivalent to 22*(u)(x) because I -
will not have any incentive to use t = 0 if the starting state is X. Consequenﬂy, U(x), the :

value of the game 2 (u)(x), will also be the value of the game Z*(u)(x). By Lemma
4.1 (e),

U®X) = u®) v (SU)X) = (SU)(X) = (SU)X).

Hence the value of Z*(u)(x) is (SU)(x), as was to be proved. For any 0 <€ <1, by
Theorem 4.3, player I has a universally measurable family of e-optimal policies

(O,
for every x € X, so this family of policies will be e-optimal in the games 2*(u)(x), xe X.

Finally, let 7(x) be defined by (4.7) and (4.8). Then, as was observed in the course of the
proof of Theorem 4.3, for any measurable policy (o,t) available toI at x witht2> 1,

in the games 2(u)(x), xe X. But then t(x) = 1 and o(x) is available to I at x

Eg,z(x)(u(xp) < (SUXX).

Hence, (t(x))xe x is a measurable family of optimal strategies for IT in Z*(u)(x), x € X.
This completes the proof.

5. Inductive definability :
In order to prove that the games N(u) have a value and that the value function is

measurable, it will be necessary to iterate the * games of the previous section a
transfinite number of times, ensuring at the same time that these iterated games have value
functions that are measurable. A result of Moschovakis from the theory of inductive
definability is tailor-made to handle these problems of measurability. To formulate the
result, let Y be an infinite set and @ a mapping from the power-set of Y to the power-set
of Y. Say that @ is a monotone operator if, whenever E; = E, € Y, then ®(E;) = ®(E)).
Define the iterates of ® by transfinite induction as follows:

(5.1) D5 =D(Up g DV).
where £ is any ordinal. So, in particular, ®° = ®(¢). It is easy to verify that @, the least

fixed point of @, is given by U{®N: <k}, where K is the least cardinal greater than the
cardinality of Y. -
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Suppose that Y is a Borel subset of a Polish space and ® is a monotone operator
onY. We say @ respects coanalytic sets if, whenever Q is a Polish space and C is a
coanalytic subset of Q x Y, then the set

(5.2) C'={(wy)e QxY:ye ®C,)
is also coanalytic. (Here Cj,={y e Y: (0,y) € C}.)

Ihmm_ﬁ.l. Let ® be a monotone operator on a Borel subset Y of a Polish space and
suppose that @ respects coanalytic sets. Then

(a) ®=is a coanalytic subset of Y, _
() O~= U§<(o1¢&"’ where ®1 is the first uncountable ordinal,

(c) if E is a Borel set contained in @, then there is £ < @; such that E = @5,

Part (a) of the theorem is a special case of a very general result of Moschovakis
[19, 7C.8, p.414]. Parts (b) and (c) are not stated explicitly in [19], but they can be
deduced from results there and this deduction is carried out by Louveau [14]. Zinsmeister
[26] also gives a nice exposition of Moschovakis's theorem.

Without loss of generality, we assume that the bounded, upper analytic utility
function u takes values in [0,1]. Set

B = {(x,c) € Xx[0,1]: u(x) >c},

so B is an analytic subset of X x [0,1] by virtue of Lemma 2.1.
Let E be a subset of X x [0,1]. Define ¢g: X — [0,1] by

¢e(x) = sup{c € [0,1]: (x,c) € ESNn B},

where sup (¢) =0.
Suppose, next, that w: X — [0,1] and let

E(w) = {(x,c) € X x[0,1]: w(x) <c]).

20



Then, as is easy to see, PEw) =UA W, where (u A w)(x) = the minimum of u(x) and

w(x).

We now extend the definition of the operator S, introduced in section 3, to
all functions on X into [0,1]. For w: X — [0,1], define

Sw)x)= inf  sup | T wix) q(dx'x.a,b)(ixv)(daxdb)
ve P(G(x)) pe P(F(x))

where [* stands for the outer integral (see [1, p.273] for a definition).
Set
w;=Swvw,
Wpe1 =Swpvw, n21

and Woo = SUP Wy
n

Finally, define a new operator T by setting
Tw = Sw,,.

Notice that, when w is the function u of section 4, w,, = U is the value of the game Z(u)
and Tw = SU is the value of Z*(u).

We are now ready to define a monotone operator on X x [0,1]. ForEc X x
[0,1], let

(5.3) D(E) = {(x,c) € X*[0,1): (Tep)(x) <c}.
It is easy to verify that ® is monotone.
Lemma 5.2. ® respects coanalytic sets.

Proof. Let Q be Polish and let C be a coanalytic subset of Q x X x [0,1]. We have to
prove that the set

C* = {(0,x,c) € QXXX [0,1]: (x,c) € ®(Cp))
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is coanalytic.
Define v: Q x X — [0,1] by

v(®@,x) = sup {c € [0,1]: (x,c) € cjo ~B},

that is, v(®,x) = Q¢ m(x). The function v is upper analytic, for

v(®,x) > a & @c)(c>a & (0,x,c) € C°n (Qx B)),

which is an analytic condition in w,x,a. Hence, by Lemma 3.1, the function v defined
by

v1(@,x) = v(©,x) v (Sv(@,°))(x)

is upper analytic. So, by induction and Lemma 3.1, the functions
Vn41(0X) = v(@,x) v (Svp(®,*))(x)

are upper analytic as well. It follows that so is the function

Voo(®,X) = sup vyp(O,X).
n

Using Lemma 3.1 one more time, we see that the function
(Tv(®,2))(x) = (SVee(,*))(x)
is upper analytic on Q x X. Since
C*={(oxc)e QxXx [O,Ij: (Tv(,))(x) < ¢},
it follows from Lemma 2.1 that C* is coanalytic.

Lemma 5.3. If wis a function on X into [0,1], then ®(E(w)) = E(T(u A w)).
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Proof. This is immediate from the definitions of ¢ and T.

Define by transfinite induction the functions Q¢ on X as follows:

(5.4) Q,=Tu

and, for £ >0,

(5.5) =T(u A inf Q).
Q=T 1nf Qp

~ Lemma 54. (a) ¥ =E(Qp), § < o).
(b) For every £ < ©;, Qg is upper analytic.
Proof. IfE = ¢, then ¢g =u. Hence
DO = O(¢) |
= {(x,c) € X*[0,1]: (Tu)(x) Sc)

= {(x,c) € X x[0,1]: Qy(x) <c)
= E(Qy).

Assume, next, that & > 0 and that (a) is true for all <&, Let

O<E=u, ®N and EE=E(inf Q).
<t 1nf Qp)

It is easy to verify by using the inductive hypothesis that
PEE = Pt
But

=uAinf Qy,
- A

SO
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T@A inf Q,‘) = TQg<E-
n<t

Consequently,

@5 = B(D<E)
= {(x,) € Xx[0,1]: (TQg<e)(x) <c}
= {(xc) € Xx[0,1}: T(u A ing Q) <c)
n<

= {(x,c) e Xx[0,1]: Qg(x) <c}
=EQy).

For (b), first observe that it follows from Lemma 5.2 and induction on & that &% is
coanalytic;for all £ < ;. It then follows from (a) and Lemma 2.1 that the functions Qg,

€ <y, are upper analytic. .

Let
5.6 = inf Q.
(5.6) Q égleg
Theorem 5.5. The function Q is upper analytic and T(u A Q) = Q.

Proof. First, note that the monotone operator @ defined by (5.3) satisfies the hypothesis
of Theorem 5.1 by virtue of Lemma 5.2. So, according to Theorem 5.1 (b),

D™ =V @k,

Hence, by Lemma 5.4 (a),

D> = U< {(x,6) € Xx[0,1]: Qe(x) Sc}
(CN)) = {(x,c) € X x[0,1]: (éng Qp)(x) sc}
<]

=EQ.

Hence, by Theorem 5.1 (a) and Lemma 2.1, Q is upper analytic. Moreover, from (5.7)
and Lemma 5.3, we have-
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= = O(P>)
=P(EQ)
=E(T@u A Q).

Hence T A Q) =Q.
6. Nonleavable games
| In this section we prove that the game N (u)(x) of section 1 has value Q(x). Let

V(x), ¥(x) be, respectively, the upper value and lower value of the game N(u)(x) as
defined by (2.2) and (2.3). The next result shows that Y 2 Q.

Theorem 6.1. Let € > 0. Then there is a universally measurable family of strategies
(6(x))xe x for player I such that for any measurable strategy T of player II available at x

(6.1) Egr2(8") 2 Q(x) - €
for every x € X. Consequently, V2 Q.

Proof. Consider the game Z*(u A Q)(x). By Theorem 4.4 and Theorem 5.5 this game
has value (T(u A Q))(x) = Q(x). Moreover, by virtue of Theorem 4.4, we can choose, for

each 8 > 0, a universally measurable family (6(x,5),t(x,5)) of 8-optimal policies for

player I in the game 2*(u A Q)(x).
Let 8,01, be positive numbers such that ¥ 8§, <e. Foreachxe X andn20,
. n

set 60(x) = 6(X,8y), ty(X) = t(x,5,). Now define

So(x)(h) = to(x)(h)
Sn+1(X)(h) = sp(X)(h) + tn41(Xsn(x))(Zsn(x)+ 125y (xp4 2
and
O'(X)o = GO(X)O
O(X)n(z1,22,-.-:2y) = 6°(X)(Z1,225..-4Zp) if N < s5(x)(h)

_ k+1
= ok (xsk(x))n-sk(x) (zsk(x)+l’zsk(x)+2’“'zn)

if sp(x)(h) < n < sp,.1(x)(h).
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Plainly, (6(x))xe x is @ ﬁniversally measurable family of strategies.
We shall now verify (6.1). So fix x, € X, a measurable strategy t for player II

available at x, and let P = Po(x ) . The expectations and conditional expectations below

are all with respect to P.
Set |
Yn = (u A Q)(xSn(Xo))’ n20.

By assumption,
E(Yo) 2 Qxo) - 8
and, forn21,
E(Yn!Ps,.1(x0) 2 Qs 1(x0)) - o

where the conditional expectation is with respect to the o-field &g, (x,)-
So,forn21, '

E(Yg) 2 EQ(Xs,,4(xo)) - O
2E(Yy.1) - &p.
By iterating the last inequality, we get, forn 2 0,
E(Yp) 2 E(Y,) - (81+32+--+8p)
2 Q%) - (8g+01+++-+3p)
2 Q(xo) - &
Hence

limysup E(Yy) 2 Q(xo) - &

But
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E(u*) = E(lim sup u(x,))
2 E(limpSup u(Xg,(x,)))
2 limpsup E(u(xg;)(xo)))
2 limgsup E(Y,)
2Q(xo)-&

which verifies (6.1).

Now we have to prove that V £ Q. We need a result, which may be viewed as a
measurable version of one-half of the Fatou equation. The proof is adapted from [24].

Lemma 6.2. Let &> 0. Then there is a universally measurable function t€(,h) = t(,h)
from P(H) xH to N = {1,2,...} such that (a) for fixed W, t(i,*) is a stop rule 2 1, and
(b) for every m,

E, (") <E, (u(xyy, ) +&,
where E,, is the expectation operator under j.

Proof. Foreachn 2 1, let pu[z;,2,,...,z,] be a Borel measurable function from P(H) x Xn
to [0,1] such that p[z,,z,,...,z,] is a version of the conditional distribution under . of
Zp+12p42>- iVEN 21,29,...,Z,. The existence of such a function is established in [16].
Consequently,

E,(u* 123,25,...,2) = Ju* plzy,25,....2,] (dh)

is a universally measurable function from P(H) x X" to R ([1], p.180]). By the Levy 0-1
law [20, p.133], '

E, (u* | 2,2,...,2) = u*(x1,X3,...)

almost surely ().
Let s(p,h) be the least k 2 1 such that
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E,(u* l‘ 2},29,..,Zf) < U(X) + B,
if such a k exists. Otherwise, set s(i,h) = oo,
Then s is a universally measurable function on P(H) X H such that for each fixed
K, s(iL,*) is a stopping time and p({s(i,*) <ee}) =1. Let
gm(W) = u({s(n,?) sm}), m21,

SO g is universally measurable on P(H)([1], p.177). Let N(i) be the least m such that

gm() >1-3,

so N(}t) is also universally measurable.
Let

tG,h) = s(L,h) A N@).

Plainly, t is universally measurable and, for each fixed W, t(,) is a stop rule. Moreover,
H({t(p,e) =s@,))) >1-8

for every 4 € P(H). Hence,

E,(1") - Ey(uxguey)
=] (E,* I Pugee)) - Uygs)]
= {sQLo)SNQ) [Ep(u" | Prgue)) - u(xm.))] du
+ JsquNg)) Bu(m® Py ) - gy )] At
<5+21lld
= 8(1 + 2 llull),

where lull=su § ha(x)l.
Xe

Now choose & so that 3(1 + 2 llull) = € to complete the proof.
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Mﬁ. For every € > 0 and £ < @, player II has a universally measurable family |
of strategies (158(x)), x such that for any measurable strategy o for player I available at

X,
(6.2) Egt.en®") S Qe(x) +€

foreveryxe X.

Proof. The proof is by induction on €. So consider the case when £ =0. By Theorem

4.4, choose a universally measurable family (T(x))y¢ x of optimal strategies for player II in
the games Z*(u)(x), x € X. Set

10£(x) = T(x), x € X.

Now fix x, € X and let 0 be a measurable strategy for I available atxo. Let P =Pgz(, ).
Use Lemma 6.2 to choose a universally measurable stop rule t 2 1 such that

Ep(u*) < Ep(u(x)) + €.
Then
Ep(u*) < Ep(u(x)) + €
S Qo(xo) +8,
since T(x,) is optimal in Z*(u)(x,).

For the inductive step, let £ > 0 and assume that the result is true for all ) <&. By
Theorem 4.4, we can find an optimal family (T(x))x¢ x of universally measurable
strategies for I in the games Z*(u A ing Qp)(x), x € X. Let

<

Ah) =inf (k2 1: u(xy) > (11‘21& Qp)(xp)}

where inf (¢) = oo, so that A is a universally measurable stopping time. Let, forn <&, -
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Ch={xeX:Qu(x)< (tgg Qp(x) +¢€/8).
Note that the sets Cy, are universally measurable. We now define 5£(x) as follows:

tg'e(x)o = ;(x)o

EE(X)(21,220012Zp) = T(K)(Z1,2200120) if n < A(h)
= THEB(xX) A (Z\+1,20425-Zn) if 1> A(h) & x), € Cp-Uyp e Cyp-

Plainly, (t5€(x)),c x is a universally measurable family of strategies.

Fix x, € X and let 6 be a measurable strategy for I available at x,. Set
P=P; ter, Choosem2 1 such that

— .
8(llull + 1)

(6.3) P({A <e}) <P({A<m)) +

Since 5:£(x,) and T(x,) agree prior to time A, it follows by virtue of Lemma 2.5 that

6 . 4 o0 _j.__
(6.4 Poruplh<=NsP_ . (Asm))+gms
Now define a function s as follows:
s(h) = A A m)(h) if A(h) €m,

=m + APPL®)]), (he1.hpme2,)) i AH) > m,

where the function t€/4 is as in the statement of Lemma 6.2 and P[pm(h)] abbreviates
Pclpm(h)]'#[pm(h)]. It is easily verified that s is a universally measurable stop rule.

In the calculations below, expectations and conditional expectations will be with
respect to the probability measure P. First, write

(6.5). E@") = Jagmu* dP + [ g yu” dP.

We will now obtain bounds on the two terms on the right side. For the first term,
condition on p) \m and calculate: '
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L 4

| u dP =/ (fu dP

dP
(Asm) (Asm) o[p,).‘t‘"(x.,)[p,']]

< Jp<m) Ginf dP +¢/4
psma(L2£ Q)XY
=Ja<m)@ A inf Qu) dP + &/
=J a<m)® A inf Qut) oy, + /4
(6.6) =Jasmy 1 10 Qux9 Pyt €,

where the first inequality uses the definition of 15€(x,)[p;] and the inductive hypothesis,
the third equality is by virtue of the fact that T5(x,) and T(x,) agrée prior to time A and
Lemma 2.5 (i) and, the final equality is by the definition of s.
For the second term on the right side of (6.5), we condition on p, and calculate:
Joom 0P = [om Uu® dPlpy]) dP
<J [bm)[Iu(x',,‘(P[pm]’.)) dP[p,, ] dP +e/4

= JomEM(x9) | py) dP +e/4

= [pom) 00 AP + /4

= [imcrcee) 0% AP + i3 julx) dP + €/4 |

<]/ {m<h<eo} (ua ‘ll|l<l£ Qn)(xs)dp +¢e/4
+ .’(3,3..,](“ A :\ng Qq)(xs) dP +¢/4

< macmy @ A Inf Qp)(xy APy * 26/4

31



oy @A inf Qu(xg) dPoyy* /4
6.7) =Jpom)@ A Inf Qu)(s) dPoring) + 36/

where the first inequality is by virtue of Lemma 6.2, the second equality is by the

definition of the stop rule s, the second inequality is by virtue of (6.3) and the facts that

llinl < llull and u(xy) < (ng Qn)(xs) on {A > s} and, the final inequality is by virtue of
n<

(6.4), the fact that T6£(x,) agrees with T(x,) prior to time A and Lemma 2.5 (ii).
Hence, by (6.5), (6.6) and (6.7),

E@*) <Ju A 11‘ gg Qq) (x9) APy 1 +E

S Qe(xo) +€,

the last inequality being justified by the fact that ;(xo) is optimal for player II in the game
Z*ua ing Qn)(xo), which has value Qz(x,). Thus, we have verified (6.2) and the proof
n<

is complete.
Corollary 64. V< Q.

Proof. It follows from Theorem 6.4 that Vs Q; for every £ < ;. The conclusion now
follows from (5.6).

Corollary 6.5. For every € > 0, player I has a universally measurable family of strategies
(T(x))xe x such that for every measurable strategy © of player I available at x,

Eoa)*) Q) +€
forevery x € X.
Proof. Assume without loss of generality that0 <u<1. Let Ce= {xeX: Q:(x) =

Q(x)}, € < ;. Then, as is easy to see, the sets C are universally measurable and
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%) = %58x) if x & Cg - Upee Cop,

where 15+ is defined by Theorem 6.3. In order to prove that (T(x))xe x is universally
measurable, we have to verify that, for each n 2 0, ©(x),(21,2,....2) is universélly
measurable in x,zl,zz,...,zn. So let 4 be a probability measure on the Borel sets of X x
Zn, Let |, be the marginal of L on X. Then Q is p,,-measurable, so there is a Borel
function Q' X — [0,1] such that Q' 2 Qand Q' =Q a.s.(i,). Plainly, the set
{(x,c) € X x[0,1]: Q'(x) <c} is Borel and is contained in E(Q) = {(x,c) € X x [0,1]:
Q(x) <c}. But, by (5.7), E(Q = <I>°5, where the monotone operator @ is defined by
" (5.3). Consequently, by Theorem 5.1 (c), there is & < @, such that {(x.c) € X x[0,1]:
Q'(x) <c} = ®%. So, by Lemma 5.4 (a), it follows that Qg <Q), so that Qg =Qa.s.
(io). Thus, u((X-Cg) x Zn) = (. Now it is easy to verify directly from the definition that,
restricted to the universally measurable set C x Z7, the function ©(x)n(21,23,...,2p) is
universally measurable, hence it follows that it is pi-measurable on X x Z", Since 1 was
an arbitrary probabiligy measure on X x Zn, this proves that T(x),(z1,23,...,2;) is
universally measurable.

Finally, fix x, € X and let ¢ be a measurable strategy for I available at x,. If

X0 € Cg - UptCy for & < @y, then

Ec,t(h)(u*) =E c,tgﬁ(xo)(u‘)
SQe(xg) +€
SQxp) +¢€

where the inequality is by virtue of Theorem 6.3. This completes the proof.

Theorem 1.1 now falls out of Theorem 6.1, Corollary 6.4 and Corollary 6.5.
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