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SUMMARY 

This paper addresses the problem of quantifying expert opinion about a 

normal linear regression model when there is uncertainty as to which in­

dependent variables should be included in the model. Opinion is modelled 

as a mixture of natural conjugate prior distributions with each distribution 

in the mixture corresponding to a different subset of the independent vari­

ables. It is shown that for certain values of the independent variables, the 

predictive distribution of the dependent variable simplifies from a mixture 

oft-distributions to a single t-distribution. Using this result, a method of 

eliciting the conjugate distributions of the mixture is developed. The method 

is illustrated in an example. 
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1. Introduction. This paper is concerned with the task of quantifying 

an expert's opinion about a regression model when the expert is uncertain 

about which set of independent variables should be used in the model. It is 

supposed that a response, Y, is related to independent variables X1 , ••. , Xr 

through the usual normal sampling model 

Y = /31X 1 + ... + /3rXr + e, 

and the expert believes that one or more of the coefficients /3i are likely to 

be zero or trivially small. There are many situations of this form where it 

would be useful to have expert opinion expressed in a prior distribution. For 

example, motivation for the present work arose from the potential benefit 

of being able to use expert opinion in the design of experiments. At the 

design stage, the source of information is the experimenter's background 

knowledge, including information gained from previous experimental data. 

Also, at that stage, a variable-selection problem commonly arises because 

all the variables judged as having a nontrivial chance of a marked affect on 

the response should be included in the design. The failure to identify and 

control important variables could be a serious error. Questions of how to 

utilize prior distributions when designing experiments have been treated, for 

example, by Atkinson and Fedorov ( 1975a and 1975b ). 

Methods of quantifying subjective opinion about a linear regression model 

have been developed for the case where the variable-:selection problem do~s 

not arise (e.g. Kadane et al., 1980; Garthwaite and Dickey, 1988, 1990). Such 

methods assume that expert opinion can be well represented by a member 

of the stan~ard family of conjugate prior distributions (Raiff a and Schlaifer, 

1961 ), but this assumption may be inappropriate if the expert has prior 
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suspicion that there may be X-variables included in the model that are 

unimportant. To illustrate, suppose that the response, Y, is the yield in 

an industrial chemical process and that X; corresponds to the quantity of a 

chemical, where the chemical might be of a type that acts as a catalyst or 

might be one that has no effect. It follows that the expert's marginal prior 

distribution for /3;, f(/J;) say, would include a sharp peak of probability at 

the origin, corresponding to the probability that X; has virtually no effect .. 

The remainder of the probability would be mainly to the right of the origin, 

corresponding to X; being a catalyst and beneficial to the response. The 

distribution might then be similar to that illustrated in Fig. 1, which cannot 

be represented by the _natural conjugate prior (at-distribution). 

It is imagined that if the effective-variable problem could be resolved, then 

opinion could be represented by a natural conjugate distribution. But since 

the subset of effective variables is not known, opinion will be represented by 

a mixture of conjugate distributions, where each constituent distribution cor­

responds to a different subset of regressor variables. A relationship between 

the constituent distributions of the mixture will be assumed that will result 

in the problem being tractable. The chosen relationship is described in the 

next section and gives a structure which permits marginal distributions of 

the type illustrated in Fig. 1, provided the sharp peak of probability can be 

well approximated by a point mass at the origin. 

We give a method in this paper for eliciting the conjugate distribution 

constituents of the prior distribution, but we do not give a special method 

of eliciting the mixing weights, beyond asking directly for the subjective 

probabilities of possible sets of effective variables. The method given here 

Fig. 1. 

about here 
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is a generalisation of the conjugate-prior method of Garthwaite and Dickey 

(1988). Indeed, the method given in that paper [to be referred to here as 

G & D] was obtained as a special case during development of the method 

reported here. Both methods exploit an elicitation task involving the choice 

of points of Constrained Minimum Variance, or CMV points. In Section 3 

this task is described and results developed concerning CMV points perti­

nent to the variable-selection problem. In Section 4 the elicitation method 

is described, and in Section 5 the way the elicited information is used to 

determine the conjugate distributions is given. An example illustrating the 

use of the method is provided in Section 6. The example also shows that 

assessing the mixing weights of the prior distribution can be straightforward. 

The elicitation method has been implemented as an interactive computer 

programme. To quantify his or her opinion; the expert types in answers to 

questions displayed by the computer, questions formulated on the basis of 

the expert's answers to preceding questions. The individual assessment tasks 

he must perform are essentially similar to the tasks imposed in the elicitation 

method of G & D, despite the added complexity of having opinion modelled 

by a mixture of conjugate distributions rather than a single such distribution. 

A user guide for the computer programme, together with a prog_ramme listing 

and details of the implementation, are given in Garthwaite {1990). Further 

examples ~here the elicitation method has been used to quantify the opinions 

of industrial chemists may be found in Garthwaite (1983). 

2. Model and notation. The sampling model states that the response 

Y is related to independent variables X1, ••• , X,. by the equation 
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where the experimental error is e and is normally distributed with mean 0 

and (unknown) variance u~. We suppose /31X1 is a constant term with X1 

identically equal to 1. It is also supposed that each independent variable can 

take on any value between its lower and upper bounds and that none of the 

variables are deterministically related to one a_nother. Otherwise the CMV 

points would be excessively constrained, and as a consequence, would encode 

insufficient information ( c.f. G & D). While some variables might not affect 

the response, there will usually be others which, in the expert's opinion, are 

certain to affect it. For convenience the variables are ordered so that the 

first m variables, X1(= 1),X2, X3, •.• , Xm, m ~ r, are considered certain to 

affect the response. 

Let J(/3, u) denote the expert's joint prior distribution for f3 and u, where 

/3 = {/31 , ••• , /3rY· The expert's opinion gives positive probability that some {3-. 

coefficients are zero. For each i = 1, 2, ... , h, let Hi be an hypothesis which 

specifies that certain ,8-coefficients are zero and that the other coefficients 

are non-zero. Also, let H0 be the special hypothesis stating that all the /3-

coefficients are non-zero with probability one. It is assumed that exactly one 

of the h + 1 hypotheses H0 , Hi, ... , Hh. is true and that each of these has 

positive probability of being true, with the possible exception of H0 • The 
1 

prior distribution can then be expressed as a mixture of h + 1 conditional 

distributions: 
h. 

(2.1) J(/3, u) = ~ J(f3ciP u IHi) P(Hi) 
•=0 

where /3 (i) denotes the non-zero ,8-coefficients when Hi is true. P( Hi) is the 

expert's prior probability that Hi is the true hypothesis. Representing a prior 
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distribution as a mixture of conditional distributions in this way has been 

advocated by Hill {1974), Dickey {1974, 1980), and others. 

A relationship between the conditional distributions in (2.1) is required 

to make the elicitation problem tractable. One way of relating these dis­

tributions, a way that we will not use without modification, is first to take 

the distribution conditional on Ho ( Ho gives zero probability that any /3-

coefficient is zero) and then to condition further on particular /3-coefficients 

being zero. With each Hi (i = I, 2, ... , h), associate a set of integers, Pi say, 

for which j E Pi means that Hi requires /3i equal zero, and with probability 

one under Hi, the other /3i are non-zero. One might then assume the conti­

nuity condition, 

(2.2) J(fiti)' u IHi) = f(~i)' u IHo, /3i = 0 for j E Pi). 

Such prior continuity conditions are discussed generally by Dickey and Lientz 

{1970) and Gunel and Dickey (19i4). They play an important role in Sav­

age's density ratio for Bayes factors. Relationships of the form in {2.2) would 

arise, for example, if an expert were perfectly coherent in his opinions and all 

his knowledge of /3 and u came from experiments with the regression model of 

current interest. That is,- if each prior distribution under an hypothesis were 

non-informative, and sample data were then obtained, then the posterior 

distributions under the different hypotheses would satisfy equation (2.2). 

A disadvantage of the structure given in (2.2) is that the marginal prior 

distribution of u will vary from hypothesis to hypothesis. This would be in­

appropriate if an expert's opinions about the experimental error were mainly 

based, not on experimental work with the present problem, but on experience 

gained in other problems, perhaps using the same equipment or experimental 
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techniques as will be required in the present problem. We believe that these 

latter circumstances occur commonly in practice. 

In the case where u is known, this disadvantage does not arise and the 

relationship derived by the further conditioning in (2.2) seems a suitable way 

to model expert opinion. Hence, we wish to choose a model that will have 

such a structure when u is known, so we assume that 

(2.3) f(/3(i) IHi, u) = f(/3 IHo, u, /3j = 0 for j E Pi)-

In the more general case where u is unknown, the marginal distributions of u 

conditional on the different hypotheses must also be specified, to define the 

joint distribution of /3(i) and u conditional on Hi. In line with the observation 

in the preceding paragraph, we assume that this distribution is independent 

of which hypothesis is true. That is, for i = 0, 1, ... , h 

(2.4) f(u) = f(u IHi)-

Equations (2.3) and (2.4) give the relationships between the distributions 

in (2.1), since f(~i)' u fHi) = f(~i)IHi, u) f(u IHi)• Each distribution must 

also be given more specific structure. We suppose that each is a member of 

the natural conjugate family, as follows. Under every hypothesis, let u2 be 

distributed as wn times the reciprocal of a chi-squared random variable with 

n degrees of freedom, 

(2.5) u2 
- wn/x!-

Given u and Ho, let /3 have a normal distribution with some mean b and 

variance matrix u2U /w. The distribution of /3, conditional on u and any 

other hypothesis, is then given by (2.3) and is also multivariate normal. The 

hyperparameters in this prior distribution, w, n, b and U, together with the 
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weights P(Hi), must be determined in any elicitation method. 

Conditional on any of the hypotheses Hi, the marginal distribution of P 

is a multivariate-t distribution with n degrees of freedom. The location-scale 

multivariate-t family with n degrees of freedom has a generic random vector 

z = c+Btn, where c and Bare constant and tn is the standard multivariate-t 

vector on n degrees of freedom (Press, 1972). Following Kadane et al. {1980) 

and G & D, we define C(z) = c as the "centre" of z and S(z) = BB' as the 

"spread" of z. These quantities are used because they exist for all positive 

values of n, while the variance, Var(z) = [n/(n - 2)]S(z), does not exist if n 

is less than 2 and the mean, E(z) = c, does not exist if n is less than 1. For 

/3, we ha~e that C(/3 IHo) = b and S(/3 IHo) = U. 

3. Points of constrained minimum variance. A set of particular 

values x for the independent variables will be referred to as a design point, 

and y is used to denote the (unknown) average response that would be ob­

tained if a large number of observations were obtained at a single design point. 

The main assessment tasks that the expert will perform in order to quan­

tify his opinion are: (a) to select design points satisfying certain constraints, 

where subject to these constraints, his subjective accuracy _in predicting y 

is maximised; and (b) to specify the median and quartiles of his predictive 

distribution for y at such points. 

It has been assumed that the expert's prior distribution corresponds to a 

mixture of natural conjugate distributions, so the prior predictive distribution 

of y at (most) design points is a mixture of two or more t-distributions. 

Gaining useful information about a mixture distribution is a difficult task, 
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since such quantities as its interquartile range bear no simple relationship 

to its parameters. To emphasize this point, three t-distributions and the 

mixture distribution they form are plotted in Fig. 2. It would clearly be 

difficult to obtain useful estimates of the parameters of the individual t­

distributions through questioning the expert about the mixture. Instead, our 

approach is to find design points at which the prior predictive distribution 

simplifies from a mixture of distinct t-distributions to a single t-distribution. 

These points will be found to be points of constrained minimum variance, 

which we now define. 

A point of minimum variance (MV) is a point where the interquartile 

range of the prior predictive distribution of y is minimized. It will be conve­

nient to consider distributions conditional on Hi, and then to refer to an lv/V 

point under Hi. "Variance" is used in the terminology because, conditional 

on Hi, the predictive distribution of y at any design point is at-distribution, 

so as x varies, var(y I x, Hi) (provided it exists) is proportional to the square 

of the interquartile range and both are minimised at the same design points. 

Let x be partitioned so that x = (x~, x;y where x1 and. x2 are k x 1 and 

(r-k) x 1 vectors, respectively, and suppose the constraint is imposed that x1 

take some specified value, say x1 = a. A point where the interquartile range 

of the predictive distribution of y is minimised, subject to this constraint, 

is referred to as a point of a-constrained minimum variance, or if it is clear 

what constraint is meant, as just a point of constrained minimum variance 

(CMV). The MV point is a CMV point with k equal to I and a= I, since 

X1 is identically equal to 1 while the other X-variables are not constrained. 

The basic result about CMV points (given by G & D, Theorem 4.1) is 

Fig. 2. 

about here 
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the following. Suppose x and U are conformably partitioned as 

(3.1) x=(::)· 
Then if x1 is constrained to equal a, the CMV point und~r Ho is the point 

(3.2) ( ' 'U u-1), a , -a 12 22 • 

Also, the spread of the distribution of y at this point is given by 

(3.3) 

A CMV point under ·Ho is unique. For a CMV point under other Hi, those 

X variables corresponding to non-zero ,8-coefficients are unique. 

It will be convenient to express the above results in terms of inverse-spread 

matrices. Suppose, 

Then -U12Ui"l = Gi"i1G12 and Un.2 = G1l , so the a-CMV point under 

Ho is 

(3.4) ( I 'G-lG )' a 'a n 12 

and 

(3.5) 

It has been assumed to be known that X2, X3 , ••• , Xm (m :5 r) nontriv­

ially affect the response. The following theorem shows that if some ( or all) 
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of these variables are constrained to take specified values; then the CMV 

point under H0 is also a CMV point under every other Hi ( i = 1, ... , h ), and 

at this point the distribution of y is a single t-distribution and not a more 

complicated mixture of t-distributions. We go on to show in Theorem 2 that 

this point -is also the CMV point when it is uncertain which hypothesis is 

true. Proofs of the theorems are given in Appendix A. 

THEOREM 1. Let a = (1, a2, ... , ak)' where the a; are constants and 

k :5 m. Then 

(i) The a-CMV point under Ho is also an a-Ctv/V point under 

Hi for i = l, 2, ... , h. 

(ii) .At this point x, f(y Ix) = f(y Ix, Hi) for i = 0, 1, ... , h 

and f (y Ix) is a t-distribution. D 

THEOREM 2. Let a = (1, a2, ... , ak)' where the a; are constants and 

k :5 m. Then the a-Clv/V point, when it is uncertain which hypothesis is 

true, is the a-CMV point under H0 • D 

The predictive distribution of y is a mixture distribution, so its variance 

at different design points is not proportional to its interquartile range. Since 

CMV points are defined in terms of the interquartile range of the distribution 

of y, Theorem 2 does not show that var(y Ix) is smaller at the a-CMV point 

than at any other point whose first components equal a. However, this result 

does hold, as given in the following theorem. 

THEOREM 3. If n > 2 (so that var(y Ix) exists), then under the conditions 

of Theorem 2, var(y Ix) is smaller at the a-CA1V point than at any other point 

whose first k components equal a. 
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PROOF. Let () be a random variable that takes the value i if Hi is the 

hypothesis that is true. Then, for fixed x, 

(3.6) 

Var(y Ix) = Es[var(y Ix, Hs )] + Vars[E(y Ix, Hs )] 
h 

= L P(Hi)var(y I~' Hi) + Vars[E(y Ix, Hs)). 
i=O 

At the CMV point, E(y Ix, Hi) = E(y Ix) for all i (Theorem 1 ), so 

Vars[E(y Ix, Hs)] = 0 at this point. Also, for all i, var(y Ix, Hi) is smaller 

at this point than at any other point whose first k components equal a. 

(Theorem 1 ). Hence (3.6) is also smaller at this point than at other points 

satisfying the constraint. D 

The purpose of this section was to identify p·oints at which the prior 

predictive distribution of y is a singlet-distribution. Theorems 1 and 2 show 

that particular CMV points have this property. Moreover, the decisiveness 

with which var(y Ix) is minimised at such points ( each term on the right-hand 

side of (3.6) is individually minimised) suggests that assessing the positions 

of CMV points is a reasonable task to ask of an assessor. 

4. Elicitation method. In the prior model, the marginal distribution 

of u satisfies /(u) = f(u IHi) for all i (equation 2.4) and its form is given in 

equation (2.5). To determine wand n, the hyperparameters of this marginal 

distribution, the procedure given by G & D can be used without change. It 

is outlined briefly in Appendix B but is not discussed further in this paper. 

Instead, attention is concentrated on the other hyperparameters to be de­

termined, b and U. These latter parameters are the centre and the spread 
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of the conditional prior distribution f(/3 IHo, u), so information about this 

distribution must be elicited. It might seem natural to ask conditional ques­

tions of the form: "Suppose HO were true, what would be your assessment 

of ... ". However, conditional questions are harder to answer than uncon­

ditional questions and become harder as the number of conditions increase. 

Also, a conditional question is particularly hard to answer when the given 

condition seems unrealistic, and 'Ho is true' may be such a condition. If 

several of the independent variables are each unlikely to affect the response, 

then H0 , the hypothesis that all variables affect the response, may be very 

unlikely. For these reasons, we prefer questions in which no hypothesis is 

conditioned on, and when conditional questions are asked, relatively weak 

conditions will be specified. 

The elicitation method described here and the method of G & D require 

similar tasks of the expert. The positions of CMV points are elicited, together. 

with fractile assessment of the predictive distribution of y at these. points. 

The only difference is that in the present method, the expert is asked to 

assume, for parts of the elicitation interview, that a specified X variable is 

certain to affect the response. This is done for various X-variables in turn. 

For these parts of the interview, the expert must then take this assumption 

into account when giving assessments. To illustrate, if X corresponds to 

a variable which ~ay, in the expert's opinion, be a catalyst in a chemical 

reaction, then at times the expert must assume that it is a catalyst when 

giving his assessments. 
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4.1. Design point assessments. Theorem 2 indicates that the overall MV 

point and the MV point under Ho are coincident. Hence the questions (a) 

"What is the MV point?" and (b) "Suppose Ho were troe, what would be 

the MV point'?" should, in principle, give the same answer. Consequently, to 

obtain the answer to the conditional question (b ), the unconditional question 

(a) can be asked. Similarly, if a= (1,a2, ••• , ak)' with k < m, the expert can 

be asked to specify the a-CMV point and his answer can then be equated 

to the a-CMV point under H0 • (The expert believes the first rn. X-variables 

are certain to affect the response, and is only uncertain as to which of the 

last n - m variables should feature in the model.) Hence, without asking 

conditional questions, design points x1, x2 , ••. , Xm can be elicited that have 

the following structure: 

(4.1) 

where: 

~ 

~ 

x.-., 

x' m 

1 Xt,2 

1 a2 

-
1 a2 

X1,3 X1,m Xt,m+l 

X2,3 X2,m X2,m+l 

a· ., x;,;+1 ... Xj,m Xj,m+t 

.. • am Xm,m+l 

(i) x1 is the MV point under H0 ; 

and 

(ii) for j = 2, ... , m, x; is the a;-CMV point under Ho, 

where a; = (1, a2, ••• , a;)'; 

(4.2) for j = 2, 3, ... , m. 

Xt,r 

X2,r 

x;,r 



I 
Xm+l 

I 
Xm+2 

x'· J 

x' r 
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In the above matrix, the values ak are specified by the computer, and the 

values of the elements Xi,i are chosen by the expert. The rows of the matrix 

are determined sequentially, starting with x1 , which is obtained by eliciting 

the expert's MY-point. For x; (j = 2, ... , m), the computer selects a value 

for a; that differs from x;,;-t, the jth element of the preceding row, thus 

satisfying (4.2). The other elements of a; have previously been selected and 

the expert assesses his a;-CMV point, giving the point x; specified in (ii). 

To obtain the positions of further CMV points under H0 , conditional 

questions are asked. For each j = m + 1, ... , r, it is uncertain whether the 

variable X; will have an affect on the response. For each of these variables in 

turn, the _expert is asked to assume that it does have an effect. Conditional 

on this assumption, he assesses the CMV point for the constraint that (a) 

the first m components of the point equal 1, a 2, ••• , am (these are the values 

of the first m components of Xm) and (b) the j th component of the point 

equals a;. Theorem 2 implies that, conditional on X; affecting the response, 

the selected CMV point is also the CMV point under H 0 • In this way, CMV 

points Xm+i, Xm+2, ••• , x,. are elicited that have the following form: 

1 a2 ..• am am+l Xm+l,m+2 

1 a2 •• • am Xm+2,m+l am+2 Xm+2,m+3 

-
1 a2 ••• am Xj,m+l ......... Xj,j-1 a· J Xj,j+t 

(4.3) 

The values am+I, am+2, •.• , ar are selected by the computer and satisfy 

Xm+l,r 

Xm+2,r 

Xj,r 
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(4.4) for j = m + 1, ... , r. 

4.2. Median and quartile assessments. At each of the design points 

x1 , ... , Xr, the expert is asked to assess the median, upper and lower quartiles 

of the predictive distribution, f(y Ix;). For the.point x;, where j = m+ 1, m+ 

2, ... , r, he is asked to assume that the independent variable X; certainly 

affects the response when making these assessments. Under this condition, 

Theorem 1 implies that f(y Ix;) is identical to f(y Ix;, Ho), and so the fractile 

·assessments can be equated to fractiles of this latter distribution. Let Y;,.so, 

Y;,.75 and Y;,.25 denote the median and quartile assessments at the point x;. 

Then for j = 1, ... , r, the centre and spread of f(y Ix;, Ho) are calculated as 

{4.5) 

( 4.6) 

C(y Ix;, Ho)= Y;,.so 

S(y Ix;, Ho) = [(Y;,.15 -W;,.2s) / (2qn)J2 

where qn is the interquartile range of a t-distribution with unit spread and n 

degrees of freedom. 

As in G & D, the expert is also questioned about the differences in 

average response between pairs of design points. Specifically, the median 

and quartiles of the distributions of d2, d3, ••• , dr are elicited, where d; = 
(y Ix;) - (y I x.,), and s is the smaller of j - 1 and ·m. The usefulness of these 

assessments stems from results in the following theor~m. 

THEOREM 4. For j = 2, 3, ... , r 

(4.7) 

(4.8) 

C(d; IHo) = C(ylx;,Ho)- C(ylx.,,Ho) 

S(d; IHo) = S(y Ix;, Ho) - S(y Ix.,, Ho) 
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and the distribution of f(d;) is at-distribution that is identical to J(d; IH0). 

PROOF. For i = 0, 1, ... , h, trivially C(d; IHi) = C(y Ix;, Hi)-C(y I Xs, Hi)· 

From Theorem 1, C (y Ix;, Hi) is the same for all Hi, so the same is true of 

C(d; IHi)· G & D show that S(d; IHi) = S(ylx;,Hi)-: S(ylxs,Hi) and, 

again from Theorem 1, S(ylx;,Hi) is the same for all Hi. Hence S(d; IHi) 

is the same for all Hi. Clearly, for all Hi, J( d; IHi) is a t-distribution on n 

degrees of freedom and we have just established that its centre and spread do 

not change as i varies. It follows that the distributions/( d; I Hi) are identical 

for i = 0,_1, ... , h, and hence equal f(d;). D 

The theorem impli~ that median and quartile assessments off ( d;) can be 

equated to the corresponding fractiles of f(d; IH0 ). The median is C(d; IH0 ) 

and, analogous to (4.6), S(d; I Ho) is set equal to [(d;,.15 - d;,.25 )/(2qn)]2. In 

the elicitation method, the expert is questioned about both y Ix; and d; at 

each design point in turn, and medians and quartiles of their distributions 

are elicited that give centres and spreads which satisfy equations ( 4. 7) and 

( 4.8). The expert is helped in this task by the computer. The expert assesses 

fractiles for d; [or (y Ix;)] and the computer calculates fractiles for y Ix; [or 

d;] that would be consistent with these assessments. The expert then either 

accepts the calculated fractile values as being an_ adequate representation of 

his opinions, or he revises them. In the latter case the cycle is repeated. 

Requiring equations ( 4. 7) and ( 4.8) to hold makes the expert consider the 

coherence between his assessments at different design points. 

Equation ( 4.8) implies that, for j = 2, ... , r, the interquartile range for 

y should be smaller at Xs than at x;. This conclusion can also be drawn 
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from the fact that, when a = (1, a2, ••• , a.,), x., was chosen as the a-CMV 

point and not x;, even though the latter point also satisfies the constraint. 

(From ( 4.2) and ( 4.4 ), x; # x •. ) H the interquartile range for y is not less at 

x., than at x;, the expert is required to revise some of his previous fractile 

assessments and/or the positions of CMV points. 

5. Assessment of hyperparameters. The elicited centres and spreads 

of predictive distributions, together with the elicited positions of CMV points, 

must be used to determine the hyperparameters U and b of the conditional 

prior distribution J(/3 IHo). 

5.1. Assessment of U. Let Zi be the r-dimensional vector whose ith 

component equals 1 and whose other components are zero. Define the trian­

gular matrix T by 

(5.1) T' = (x1, X2 - Xi, X3 - X2, ... 'Xm - Xm+l, Zm+l, Zm+2, ... 'Zr)• 

Results given in G & D (Lemma(.5.2 and Theorem 5.1) indicate that 

(5.2) S(T/3 IHo) = ( : 

where D ~s am x m diagonal matrix whose non-zero elements are S(y jx1, H0 ), 

S(d2 (Ho), S(da IHo), ... , S(dm IHo) and 

(5.3) V = S{(/3m+1, f3m+2,. • •, f3r)' IHo)-

From (4.1), the diagonal elements of T are 1, a2 - x 1,2 , a3 - x2,3, ••• , 

am -Xm-l,m, 1, 1, ... , 1. These are all non-zero, from ( 4.2), so Tis invertible. 
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The expert's quartile assessments provide estimates of the non-zero elements 

of D so, if V can be estimated, then U = S(/3 IHo) can be calculated from 

(5.4) U = T-1 .(S(T,B IHo)).(T')-1 • 

Denote v-1 

9m+l,m+l 9m+t,m+2 9m+l,r 

v-1 = 9m+2,m+l 9m+2,m+2 9m+2,r. 

9r,m+1 9r,m+2 9r,r 

In Appendix C we show that the diagonal elements of this matrix may be 

estimated from 

(5.5) 

and that the off-diagonal elements should satisfy 

(5.6) 9j,i = 9;,;(x;,i - Xm,i) / (a; - Xm,;). 

Since the matrix v-1 is synunetric, the
0
values of 9;,i and 9i,j given by {5.6) 

should be equal. To reconcile any difference, for simplicity we take their 

average as the estimate of 9i,j : 

(5.7) 1 (g · ·(X · · - X ·) J,J J,• m,, 
9;,i = -2 a· -x · J m,J 

g . ·(X· · - X ·)) + ,,, i,J m,J • 

ai-:- Xm,i 
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In the implementation of the elicitation method, the matrix 

9m+l,m+l 9m+1,j 

(5.8) 

9i,m+l 9j,j 

is estimated after assessments at the design point x; have been elicited 

(j = m + 1, ... , r ). It is checked that this matrix is positive-definite, since 

otherwise the expert's assessments would not be probabilistically coherent. 

If this check were not satisfied, the expert would be required to revise some of 

his assessments. [In the authors' experience, these checks have always been 

satisfied]. A re-assessment procedure is given in Garthwaite (1990). When 

j = r, the matrix in equation (5.8) is v-1, so both v-1, and hence V, will 

be positive-definite. After determining V, the hyperparameter U is obtained 

from equations (5.1), (5.2) and (5.4), and it will also be positive-definite. 

5.2. Assessment of b. The expert has given assessments that equate 

to C(y I X1, Ho), C(d2 IH0), ... , C(dr IHo), where C(d; IHo) = C(y Ix;, H0 )­

C(y I Xa, Ho) and s is th~ smaller of j - I and m. Let d.50 = ( C(y I x1, Ho), 

C(d2 IHo), .•. , C(dr IHo))' and define the matrix A by A'= (x1 , x2-x1, ••• , 

Xm-Xm-t, Xm+1-Xm, Xm+2-Xm, ••• ,Xr-Xm)• We have that d.so = Ab and, 

in Appendix C, we show that the positive-definiteness of V ensures that A 

is non-singular. Thus the hyperparameter b can be determined as 

(5.9) b = A-1d.50• 
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6. An example. In this real example, the "expert~ whose opinion 

was quantified was an industrial chemist. He was seeking a viable way to 

manufacture a particular chloride compound. To produce this compound, 

two gasses are mixed in a diluent and passed through a long tube containing 

a catalyst. To the extent that the desired reaction does not occur, a waste 

product is produced and the chemist wanted to minimise the proportion of 

this waste product in the output.· He was sure it would be affected by the 

following four factors: the temperature within the tube ( Temp 1), the time 

the gas is in contact with the catalyst ( Time), and the quantity of each 

gas ( Gas 1 and Gas 2) per unit volume of diluent. The chemist was also 

interested in three further factors which he thought might (but might not) 

affect the percentage waste: the temperature of the input gasses ( Temp 2), 

the pressure (Pres) and the back-mix temperature ( Temp 3). The chemist 

thought that those factors which affected the percentage waste would have a 

linear effect for the range of values he wished to consider. Hence if all factors 

had non-zero affects, the linear regression model for this application would 

be 

Waste = /31 + 132( Temp 1) + /33( Time) + /34( Gas 1) + /35( Gas 2) 

+ /36( Temp 2) + /31(Pres) + /3s( Temp 3) 

Before having his opinion elicited, the chemist was forewarned of the 

elicitation questions he would be asked and some advice was given on how 

he might tackle the questions. He had used an earlier version of the method 

so this took little time. The interactive computer program that implements 

the method was then initiated. In response to prompts from the computer 

the chemist typed in answers expressing his opinions. 
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His first set of answers determined the names and ranges of the indepen­

dent variables that he felt certain would affect the response. These were: 

Temp 1 : 360-445 ( °C) 

Gas 1 : 5-15 (%) 

Time: 4-20 (secs) 

Gas 2: 5-11 (%) 

His next answers described the other variables which he thought might have 

an effect: 

Temp 2 : 300-420 ( ° C) 

Temp 9 : 250-380 ( ° C) 

Pres : 0.: 1 ( atm) 

[The chemist specified pressure as the increase in pressure above one atmo­

sphere, measured in atmospheres.] He was next questioned about experimen­

tal error (using the methods of G & D), and his· assessments gave values of 

63.3 and 7 for wand n, respectively. 

The chemist then assessed the position of constrained points of minimum 

variance and quartiles of corresponding y and d. The co-ordinates of the 

selected points are given in Table 1. The values with an asterisk were ch~sen 

by the computer and the remainder were chosen by the assessor. The matrix 

Table 1. 

about here 
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T defined in equation (5.1) is thus equal to 

1 380 8 9 6 320 0 280 

0 22.5 0 0 1 30 0 0 

0 0 8 0 2 -30 0 0 

0 0 0 3.5 1 0 0 0 

0 0 0 0 -2 10 0 -40 

0 0 0 0 0 1 0 0 

0 0 0 () 0 0 1 0 

0 0 0 0 0 0 0 1 

The quartile assessments of y and d at the design points are given in Table 2. 

Values with an asterisk were suggested by the computer and accepted by 

the chemist as representative of his opinions. Only for the point x8 did the 

expert change a value (d.50 ) that the computer suggested. 

The semi-interquartile range of a standard t-distribution with 7 degrees 

of freedom is 0. 711. From equations ( 4.6) and ( 4.8), the quartile assessments 

give the following respective values for S(y I x1, Ho), S(d2 IHo), ... , S(ds IHo): · 

40.06, 4.45, 17.80, 17.80 and 4.45. These are the non-zero elements of the 

diagonal matrix D, defined in equation (5.2). 

The matrix v-1 is obtained from assessments at design points x5; "6, x;, 

and Xs- Applying equations ( 5.5) and ( 5. 7) yields 

808.8 1.123 842.5 

v-1 = 1.123 0.05617 2.24 7 

842.5 2.247 2477.0 

Table 2. 

about here 
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Inverting this matrix gives the remaining elements of S(T.B IHo) [c . .f. equa-

tion (5.2)]. The hyperparameter U = S(§JH0 ) is then obtained from equation 

(5.4), and equals 

Const. Temp 1 Time Gas 1 Gas 2 Temp 2 Pres Temp 3 

2112 -5.70 -6.91 -16.5 30.2 .763 3.09 -.459 

-5.70 .0179 .0113 .0103 -.0985 -.00356 .00875 .00156 

-6.91 .0113 .360 .0683 -.301 .00160 -.0944 .00156 

-16.5 .0103 .0683 1.56 · -.259 .00092 .0896 -.00270 

30.2 -.0985 -.301 -.259 1.54 .0225 .186 -.0159 

0.763 -.00356 .00160 .00092 .0225 .00192 -.0128 -.00064 

3.09 .00875 _:.0944 .0896 .186 -.0128 18.6 -.0125 

-0.459 .00156 .00156 -.00270 -.0159 -.00064 -.0125 .000634 

The hyperparameter b is obtained from the assessed medians and co-

ordinates of the design points. Applying equation (5.9) gives 

b' = (111. 7, -0.120, -0.88, -1. 75, 1.59, -0.029, -5.9, -0.012). 

After the interactive elicitation interview, the chemist was given an expla­

nation of the implications of the derived hyperparameter values that defined 

his assessed distribution. He thought the regression coefficient estimates rep­

resented his opinions quite well but, as one might have expected, the derived 

value of the spread matrix U meant little to him. 

To complete the specification of the prior distribution for the linear model, 

mixing weights must be determined (the P(Hi) in equation (2.1)]. The inde­

pendent variables that might have no effect on the response are Temp 2, Pres 

and Temp 3. In discussion, the chemist responded to straightforward ques-
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tions by asserting a one-in-five chance that Temp 2 would affect the response, 

and for each of Pres and Temp 9, he assessed the probability at 0.1. Also, he 

felt that if Temp 2 did affect the response, there was a probability of 0.2 that 

Temp 9 would, as well. Knowing whether Pres affected the response would 

not change his probabilities of Temp 2 or Temp 9 affecting the response. 

These assessments enable the P(Hi) to be determined. P(Ho) = 0.004 and, 

for Pi= {6, 7,8}, {7,8}, {6, 7}, {7}, {6,8}, {8} and {6}, the corresponding 

P(Hi) equal 0.666, 0.144, 0.054, 0.036, 0.074, 0.016 and 0.006, respectively. 

7. Concluding remarks. For a variable-selection problem, subjective 

opinion should be modelled by a mixture of distributions, and structure can 

be imposed on the relationship between these distributions to reduce the hy­

perparameters that must be elicited to a manageable number. The structure 

adopted here seems sensible and a natural one to choose. With many forms 

of mixture distributions, eliciting the parameters of the individual distribu­

tions could be a formidable task. However, the properties of CMV points 

make the elicitation task reasonably straightforward for the model chosen 

here to represent subjective opinion. The assessment tasks that the expert 

must perform are only marginally more complicated than those required to 

determine a single conjugate distribution, rather than a mixture. The only 

difference _is that, here, the expert must assume, in turn, that each of the 

independent variables is certain to affect the response. The calculations to 

form a prior distribution from the expert's assessments are somewhat more 

complicated than in G & D, but this is inevitable if one is to avoid asking 

the expert to make assumptions that are very· unlikely or even impossible, 
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such as 'Ho is true'. We have sought to make the assessor's task as simple as 

possible, regardless of added complexity in the calculations. The example in 

the preceding section here and experiments reported elsewhere (Garthwaite, 

1983, pp 130-136) indicate that the elicitation method developed is a usable 

procedure for quantifying expert opinion. 

APPENDIX A 

PROOF OF THEOREM 1. Without loss of generality, suppose Hi specifies 

that the last ni components of /3 are zero and the first r - ni components are 

non-zero with probability one. Conformably partitfon G = [S(/3 IHo)]-1, /3 

and b as follows: 

Gu W12 W13 /31 b1 

G= W21 W22 W2a /3= /32 ' h= b2 

Wai Wa2 W33 !!.a b3 

where Gu, W22 and W 33 are square matrices with k, (r-k-ni) and ni rows, 

respectively. Then /(/3(i)IHi,u) = f(/31Ho,u,f!.a=0) and ~i) = (/3;,~)'. 

_Since f (/3 IHo, u) is a multivariate-normal distribution, 

(A.I) _ 1 ( Gu W12) [S(~i) I Hi] = . 
W21 W22 

and 

(A.2) 
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To show (i) we use equation (3.4): the a-CMV point under H0 is 

{a', a'Gi"f(W12, W 13)}' while an a-CMV point under Hi is any point whose 

first (r - ni) components equal (a', a'G1"lW12)'. Hence the a-CMV point 

under H0 is also an a-CMV point under Hi. To show (ii), we first establish 

that if x is the CMV-point under H0 , then S(y Ix, Ho) ~ S(y Ix, Hi) and 

C(y Ix, Ho) = C(y Ix, Hi)- The former clearly holds, since S(y Ix, Ho) and 

S(y Ix, Hi) both equal a'G1la, from equation (3.5). For the latter, we have 

that 

C(y Ix, Ho) = (b~, b~, h;){ a', a'G1l(W12, W13)}' 

= b~a + h;W21G1la + h;W31G1la. 

It is straightforward (but tedious) to show that C(ylx,Hi) also equals this 

by putting C(y Ix, Hi) = { C(,B(i)IHi)}'(a', a'G1i1W;1 )', using equation (A.2), 

and putting 

( 

G 11 W 12 )-i _ 
W21 W22 ( 

(Gu - W12W:i/W21)-1 -(Gu -W12W:ilW21)-1W12W2i )'. 

-[W22 - W21G1lW12]-1W21G1l [W22 - W21G1lW12]-1 

Both f (y Ix, Ho) and f (y Ix, Hi) are t-distributions on n degrees of freedom, 

and hence they must be identical since their spreads and centres are equal. 

This demonstrates (ii). D 

PROOF OF THEOREM 2. Let x1 be the a-CMV point under Ho. Then 

f(y I x1) = f(y I X1, Hi) for i = 0, 1, ... , h. (Theorem 1). Let I be the 

magnitude of the interquartile ranges of these distributions. Then for all c, 
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Hence if X2 is any point whose first k components equal a,. the definition of 

an a-CMV point implies 

Moreover, the inequality is strict if x2 differs from x1 in any component that 

corresponds to a non-zero ,8-coefficient under H,. Hence if x 2 :/: x 1 , then for 

all c, 

so the interquartile range of f(y I x2) exceeds I. But, by definition, the a­

CMV point is the point at which the interquartile range of the predictive 

distribution of y is rrµnimised, subject to the constraint. Hence the a-CMV 

-point is x1 • D 

APPENDIX B 

ASSESSING w AND n. To determine the hyperparameters w and n, the ex­

pert is first asked to imagine that two separate experiments will be conducted 

at the same design point. Let Z1 be the response in the first" experiment mi­

nus the response in the second experiment. The expert assesses the median 

of the unsigned difference IZ1 I, his assessment being denoted by k1 • He is 

asked to imagine that the observed difference was Z1 = z1 and that two 

further experiments are to be conducted at a single design point, Z2 being 

the difference in the responses these yield. He assesses the median of the 

magnitude of Z2IZ1 = z1 , k2 being his assessment. The value of n is then 
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determined from the equation 

where a = zi/ k1 and qn is the semi-interquartile range of at-distribution with 

unit spread and n degrees of freedom. [In the i~plementation of the method, 

the computer chooses z1 so that a=½ and a table stores the corresponding 

values of kif k2 for various values of n, thereby simplifying calculations.] After 

n has been determined, w is obtained from the equation, w = ½(kif qn)2
• 

APPENDIX C 

DERIVATION OF EQUATIONS (5.5) AND (5.6). To estimate g · · and g · · J,J , •• 

(j = m + 1, ... , r; i = m + 1, ... , r), only assessments at the CMV points 

Xm, Xm+1, ... , Xr will be used. The first m components of each of these points 

equal 1, a2, a3, ... , am so the linear model can be restricted to design points 

that satisfy this constraint. Putting o = x',,J3, the linear model E(Y) = 
P1 + P2X2 + ... + PrXr becomes 

where e1 = X; - Xm,j for j = m+l, m+2, ... , r. 

The CMV points Xm, Xm+1, ... , Xr transform to the (r-m+l)-dimensional 

vectors '1m,'1m+1,·· ·,'1r, where71m=(l,O,O, ... ,O)' and, for j=m+l, .... ,r, 

Xm,r )'. The MV point for the model in (C.1) is Tim and '1m+t, ... , '1r are CMV 

points. The components of 11 i that are constrained are the first component, 

which is constrained to equal 1, and the (j-m+ l)th component, which is 
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constrained to equal a;-XmJ· The spreads of the predictive distributions at 

these points are given by S(y I 11;, H0 ) = S(y Ix;, H0 ) for j = m, ... , r. 

Let G = [S( { a, .Bm+i, ... , .Br}' I Ho)J-1• Since (1, 0, 0, ... , 0)' is the MV 

point for (C.1), equation (3.4) implies that the off-diagonal elements of the 

first row and column of G are zeros. Hence 

91,1 0 0 0 

0 9m+l,m+l 9m+t,m+2 9m+1,r 

G= 0 9m+2,m+t 9m+2,m+2 9m+2,r 

0 9r,m+l 9r,m+2 9r,r 

where 911 = [S( a IHo)]. To estimate this matrix we first note that a = 'Xrn.8, 

so 

(C.2) 91,1 = [S(y lxm, Ho)]-1 
• 

From equation (3.5), for j = m+l,m+2, ... ,r 

( )

-1 ( ) 911 0 1 
S(yl11;,Ho) = (1,aj-Xm.;) ' . 

0 g· · a·-X · J,J J ffl,J 

Also, from (4.8), S(yf 11j,Ho)-91,1 = S(y(x;,Ho)-S(ylxm,Ho) = S(d;), so 

9;,; = (a;-xm.;) 2 
/ S(di IHo), which is equation (5.5). 

From (3.4) and the positions of the CMV-points ,jm+t, '1m+2, ••• , '1r, we 
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have that for i = m+l,m+2, . .. ,r; j = m+l,m+2, ... ,r; i =f:j, 

) 
( 

91,1 0 )-l ( l ) 
z;,i-Zm,i = (O,g;,i O g·. a·-:,; . . 

J,J J m,J 

and equation (5.6) follows. D 

PROOF THAT A IS NON-SINGULAR. Partition A as 

where Au and A22 are m x m and ( r - m) x ( r - m) matrices, respectively. 

-From the choice of design points (equations (4.1) and (4.3)), A 21 = 0, so the 

determinant of A equals I Aul- I A22 I. Also, Au is a diagonal matrix whose 

diagonal elements are non-zero ( they equal 1, a2 - x 1,., ••• , am - Xm-1,m), so 

I Au I =/: 0. Consequently, if I A22 I =/: 0, then I A I is non-zero and hence A is 

non-singular. 

During the elicitation procedure it is checked that V = S( {Pm+i, ... , Pr}' IHo) 

is a positive-definite matrix. We relate A22 to V. Define the square matrix 

Q = (q;,i) by 

q;,; = 9m+j,m+j 

and 

for j = 1,2, ... ,r-m; i = 1,2, ... ,r-m; i =f:j. 

Comparison with (5.7) indicates that ½(Q + Q') = v-1
. Since Vis positive­

definite, 0 =/: tJ, 'V-1tJ, = ½[1/J 'Q'1j, + ( tJ, 'Q'1j, )'] fo~ any non-zero vector ,t,. 

Consequently, QtJ, =/: 0 for any non-zero vector t/, , so Q is non-singular and 
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IQ I non-zero. If, for j = 1, 2, ... , r - m, the jth row of A22 were multiplied 

by 9m+;,m+;/(am+;-xm,m+;), the matrix Q would be obtained. Hence, 

T"-m 

I A22l = IQ I IT [(am+;-Xm,m+;) / 9m+j,m+;J. 
j=l 

Since IQ I:/: 0 and (am+;-Xm,m+;) :/: 0 for j = 1, 2, ... , r - m, we have that 
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TABLE 1 
Elicited Points of Constrained Minimum Variance 

Point Constant 'femp 1 Time Gas 1 Gas 2 Temp 2 Pres Temp 3 

Xi 1* 380 8 9 6 320 0 280 

x' 2 1* 402.5* 8 9 7 350 0 280 

x' 3 1· 402.5* 16* 9 9 320 0 280 

Jc.a 1· 402.5* 16* 12.5* 10 320 0 320 

x' 5 1· 402.5"' 16* 12.5* 8* 330 0 280 

x;, 1· 402.5* 16* 12.5* s· 390* 0 300 

~ 1· 402.5* 16* 12.5* s· 350 o.5· 320 

Xs l* 402.5* 16* 12.5* s· 350 0 315* 
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TABLE 2 
Median and Quartile Assessments at the Elicited 

Points of Constrained Minimum Variance 

Point Y.2s Y.so Y.1s d.2s d.so d.75 

X1 35 40 44 

X2 33.3* 38 42.7* -4 -2* -1 

X3 29.4* 35 40.6* -8 -3* -2 

Xi 23.6* 30 36.4* -8 -5* -2 

X5 20.5* 27 33.5* -5 -3* -2 

~ 18.3* 25 31.7* -4 -2· -1 

X7 16.3* 23 29.7* -5 -4* -2 

Xg 19.4* 26* 32.6* -1.5 -1 -0.5 
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0 

FIG. 1. Marginal distribution for the coefficient (/3;) of a variable that 

might increase the response, or might have no affect on it. 

FIG. 2. Three t.;distributions and the mixture distribution they f onn. 


