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Arnold J. Stromberg1 

ABSTRACT 

A new technique for computing high breakdown estimates in linear and nonlinear 

regression is presented. The technique is applied to compute Rousseeuw's {1984) least median 

of squares estimate and Yohai's MM-estimate (1987) in both simulations and examples. A 

method for computing the exact value of the LMS for certain nonlinear regression functions is 

presented and used to compare various approximations to the LMS estimate. Asymptotic 

standard errors for MM-estimates are compared with bootstrapped and Monte Carlo standard 

errors. Examples show that the deficiencies of the LMS algorithm pointed out in Cook and 

Weisberg (1989) are not due to their use of the PROGRESS algorithm but are inherent in the 

LMS estimate. The MM-estimate is shown to be a high breakdown estimate that is useful in 

identifying outliers and model deviations in both linear and nonlinear regression. 

1 Arnold Stromberg is Visiting Assistant Professor, Department of Applied Statistics, 

University of Minnesota, St. Paul, MN 55108. This work presents and extends material from 

his Ph.D. dissertation. He was supported by NSF Grant DMS-8701201. The author thanks 

David Ruppert and R. Dennis Cook for their helpful comments. 



1. INTRODUCTION 

In this paper I present a new technique for computing high breakdown estimates in linear 

and nonlinear regression. The technique is applied to compute Rousseeuw's {1984) least 

median of squares estimate and Yohai's MM-estimate {1987) in both simulations and 

examples. MM-estimates, which can have both a high breakdown point and high asymptotic 

efficiency if the errors are normally distributed, are computed to investigate Simpson and 

Ruppert's (1990) claim that a high efficiency estimate is important for data analysis and 

outlier detection as well as estimation of regression coefficients. The results presented in this 

paper substantiate Simpson and Ruppert's claim by showing the usefulness of MM-estimators 

in identifying outliers and model deviations in both linear and nonlinear regression. 

High breakdown estimators have been used in linear regression to identify outliers and 

discover problems with masking that other diagnostic techniques missed (Atkinson 1986; 

Rousseeuw and von Zomeren 1990). On the other hand, Cook and Weisberg (1989) give 

examples showing that using Rousseeuw's PROGRESS algorithm as an approximation to the 

LMS estimate can find outliers when none are present and when outliers are present, identify 

them incorrectly. They also point out the inability of the PROGRESS approximation to the 

LMS estimate to identify deviations from the proposed model. 

It seems possible that the problems pointed out by Cook and Weisberg are due to the 

deficiencies of the PROGRESS algorithm and not the least median of squares estimator. For 

multiple linear regression, my algorithm produces estimates of the LMS estimate with much 

smaller median squared residuals than the PROGRESS algorithm but these improved 

estimates do not seem to improve the performance of the estimator. For the class of nonlinear 

regression models given by g( a + {Jx) where g is monotone, I am able to compute the exact 

value of the LMS estimate, but doing so does not improve the performance of the estimator. 

One might conjecture that the problems demonstrated by Cook and Weisberg are 

inherent in all high breakdown methods, but I show that the MM-estimate overcomes these 
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problems and retains a high breakdown point. I am also able to show that the MM-estimate 

needs only an approximation to the LMS estimate as a starting value, and thus there is no 

need to go to the computational expense of computing a very accurate estimate of the LMS 

estimate. 

The definitions of the LMS and MM estimators can easily be generalized for use in 

nonlinear regression, but several important issues must be addressed in order to justify their 

use in practice. Stromberg and Ruppert (1989) analyze breakdown properties in nonlinear 

regression. Stromberg (1989) gives a proof of the consistency of OLMS in nonlinear regression 

which justifies its use as the high breakdown estimate needed to compute a nonlinear MM­

estimate. This paper deals with the use and computation of the LMS and MM estimators in 

nonlinear regression. The ideas presented here could be modified to study the performance of 

other high breakdown estimates. 

Section 2 presents an overview of the LMS and MM estimators in linear regression. 

Because the computation of the exact fit to p data points is far from trivial in nonlinear 

regression, the PROGRESS algorithm, which computes a large number of exact fits, must be 

modified for use in nonlinear regression. My algorithm and a method for computing the exact 

value of the LMS estimate for nonlinear regression functions of the form g( o + /Jx) where g is 

monotone are presented in section 3. In section 4, I present simulation results comparing the 

performance of several estimates of OLMS with and without outliers in the data. I also 

compare the estimates of OLMS as starting values for computing OMM· Section 5 discusses a 

method for computing standard errors for MM-estimates. The method is based on the 

asymptotic distribution of MM-estimates. The asymptotic standard errors are shown to be 

close to bootstrapped and Monte Carlo standard errors as long as the proportion of outliers is 

not too large. Finally, in section 6, I present several examples involving the use of high 

breakdown estimates in practice. 
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2. High Breakdown Estimation in Linear Regression 

Rousseeuw (1984) defines the least median of squares estimator, denoted OLMs, for the 

linear regression model given by: 

(2.1) 

where the xi's are known p-dimensional vectors of explanatory variables, the fi are independent 

with a common distribution F that is symmetric and strongly unimodal. iJ LMS is then defined 

by: 

(2.2) 

where the median is defined as the [~] + 1st order statistic and [ ·] is the greatest integer 

function. Be proves that iJLMS exists and that if any p observations determine a unique value 

of 9LMs, then the finite sample breakdown point of the LMS method in linear regression is 

[!l] - p + 2 2 n • Kim and Pollard (1990) have recently proved that the rate of convergence for the 

least median of squares estimator in linear regression is Op(n-113
). This implies that the 

asymptotic efficiency of the least median of squares estimator is zero. 

Simulations presented in section 4 and other places (e.g., Rousseeuw and Leroy, 1987) 

verify the low efficiency of LMS compared this least squares for finite samples with normal 

errors. Using LMS as a starting value for an MM estimate preserves the high breakdown point 

of the LMS estimate and solves the efficiency problem. For completeness, I now review the 

definition of an MM estimate. 

A rho function (adapted from Yohai, 1987) satisfies the following conditions: 

(i) p(O) = 0. (ii) p(-u) = p(u). (iii) OSuS v implies p(u) S p(v). (iv) p is continuous. 

(v) 0 < sup(p(u)) < oo. (vi) p(u) < sup(p(u)) and OS u < v implies p(u) < p(v). 

Given the sample u = (u1,u2 , ... , un), The scale M-estimate s(u) is the value of s that 

solves: 

(2.3) 
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where B can be taken to be the expected value of p(u) with respect to the standard normal 

distribution. 

Yohai (1987) defines the MM-estimate by the following three stage procedure: 

1. Compute a consistent high breakdown estimate, OH8 , of 90 • 

2. Use the residuals ri(6H8 ) = Yi - x?°BHe, l~i~n and (2.3) to compute a scale 

M-estimate which I denote sn. Let the rho function in (2.3), denoted Po, be 

such that 

i = 0.5 

where A = max(p0 (u)). Huber (1981) shows that this scale M-estimate has 

breakdown point 0.5. 

3. Let p1 be a rho function such that p1(u) ~ p0 (u) and 

sup(p1(u)) = sup(p0(u)) = A. 

The MM-estimate, OMM' is any solution of 

such that 

(2.4) 

(2.5) 

Yohai shows that the MM-estimator will have the breakdown point of the estimator used 

in stage one, and efficiency under normal errors determined by the choice of p1. He then 

shows that the high breakdown estimate and p1 can be chosen so that the resulting MM­

estimator has breakdown point 0.5 and arbitrarily high efficiency. 

Because it is the most studied 50% breakdown estimator, I choose to use the least 

median of squares estimate ( 0 LMs) as the high breakdown estimate computed in stage 1 

above. The objective function used to define O LMS is nondifferentiable and has many local 

minima, and thus the computation of OMM is difficult. Rousseeuw and Leroy (1987) use the 
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PROGRESS algorithm to approximate OLMS· The algorithm can be summarized as follows: 

First calculate the exact fit to p points, denote it Bex, then calculate the median residual at 

Bex· Ideally the procedure is repeated for the (8) possible p element subsets and the value of 

Bex producing the lowest median residual is called the least median of squares estimate. If 

repeating the procedures (8) times is computationally difficult, Rousseeuw and Leroy suggests 

a different method for choosing the number of subsamples. If the proportion of outliers is £, 

then the number of subsamples can be chosen to ensure that, with high probability at least one 

of the subsamples contains none of the outliers. They note that for large B, this probability is 

approximated by: 

1 - (1 - (1 - ell (2.6) 

where k is the number of subsamples. 

They suggest that k could be chosen to ensure that (2.6) is at least .95, but in their 

algorithm they chooses k differently. k is chosen to depend on p as follows. 

~: 1 2 3 4 5 ~6 

max k: 500 1000 1500 2000 2500 3000 

For small values of p, their choice virtually assures the choice of at least one subset containing 

no outliers. They appear to be choosing k to provide a better estimate of the true value of the 

least median of squares estimate. Note that although it saves on computation time, the cap of 

k = 3000 implies an increasing risk as p increases of no subsamples avoiding all the outliers. 

3. COMPUTING HIGH BREAKDOWN ESTIMATES IN NONLINEAR REGRESSION 

There are several reasons why I chose to modify the PROGRESS algorithm to find an 

estimate of the LMS estimate in the nonlinear regression setting defined by replacing x"'{ (J in 

(2.1) with h(~,0) for some known regression function h. First of all, choosing a large number 

of subsamples would require too much computation time in nonlinear regression. Also, since 

no attempt is made to minimize the objective function, the procedure rarely yields even a local 
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minimum. In fact, since k can be no more than 3000, the algorithm doesn't compute a 

consistent estimator of 80 • 

My algorithm is a multi-stage procedure. At each stage an attempt is made to improve 

the current best estimate, denoted iJ, of iJLMS· The algorithm is summarized in figure 1. 

Since reasonable starting values are critical when dealing with nonlinear equations, I 

begin my algorithm by performing a grid search over a user-defined region and grid density. 

Initially, let 6 be one of the points on the grid and compute the median squared residual at iJ. 

The squared residuals at another grid point, Dgp, is compared with the median squared residual 

at O and if more than half the residuals at Dgp are less than the median squared residual at 6, 

then the median squared residual at Dgp is computed and it becomes the new value of 0. This 

process is then repeated for all of the grid points. Note that the sort for computing the median 

residual is avoided at most grid points, and thus this grid search will be only slightly more 

complex than a grid search for a starting value for computing the least squares estimate. 

Next iJ is used as a starting value for finding the least squares fit, denoted OLs, to p 

randomly selected points. If the median squared residual at 6 LS is less than the median 

squared residual at 6, then 6Ls replaces iJ as the current estimate of 6LMS· This procedure is 

then repeated k times where k is specified by the user. The default method for computing 6Ls 

uses the Newton-Raphson method with 8 as a starting value. If 6Ls can be found 

algebraically, users may want to save computation time by modifying the algorithm to use the 

algebraic solution. The default number of least squares fits is chosen to ensure that (2.6) is at 

least .99 when f = 50 percent. At the same time the least squares fits can be used to find a 

starting value for finding the least squares estimate to the whole data set. 

The next stage takes advantage of the fact that OLMS is basically trying to find a good 

fit to half of the data. 6 is used as a starting value for calculating the least squares fit, 

denoted 6ts, for data points such that r~(6) < med r~(B). 
-1sisn 

then ets replaces jj as the current estimate of OLMS· 
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I I tRegresslon 
Data function 

~ , 
Search region and ... Grid search for LMS 

grid density ... estimate 

~ ' 
.... 

Repeat k times 
~ 

LS fit to p points 

~ ' 
LS fit to half data 

~ , 

Stopping value 
....._ .. Nelder-Mead 

~ , 

Scale estimate LS estimate 

~ ' 
Efficiency under .... 

MM-estimate 
__... 

normal errors ,,,,, ~ 

toouble frames represent user inputs, single frames are steps performed by the program. 

Figure 1. MM-estimation algorithm for estimating nonlinear regression parameters. 
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In order to find a still better estimate of iLMs, the current value of 9 is then used as the 

starting value for an algorithm designed to minimize m~ r~(9). Under reasonable conditions, 
1s1sn 

the continuity of m~ r~(8) is proved in Stromberg (1989), but m~ r~(8) is not differentiable 1s,sn 1s1sn 
since as the median squared residual switches from one residual to another, the derivatives 

from the left and right will not generally be the same. Because the Nelder-Mead Simplex 

Algorithm (1965, Nelder and Mead) does not rely on derivatives of the objective function, I use 

it to minimize m~d r~( 9). The algorithm evaluates the objective function on a p+ 1 
1s1sn 

dimensional simplex, where pis the dimension of 8, and thus it never computes derivatives. I 

use a stopping criterion suggested by Dennis and Woods (1986)2. If vi, l~i~p+l are the 

rows (vertices) of the simplex, then 

(3.1) 

is a measure of the relative size of the simplex. When (3.1) is less than the user specified 

stopping value or 1000 iterations of the algorithm have occurred, the Nelder-Mead algorithm is 

stopped. My experience has led us to chose the default value of 10-4 which seems to· be 

adequate if iLMS is being used as a starting value for BMM· A smaller stopping value will 

produce a slightly better estimate of OLMS at the expense of substantially more computation 

time. The algorithm is made significantly faster by taking advantage of the fact that if less 

than half the residuals at 81 are less than m~ r~( 9), then m~ r~ ( 61
) > m~d r~( 6). The 

1s1sn 1s1sn 1s1sn 
Nelder-Mead algorithm's choice for the minimum of med r~(O) is then final estimate of 

lSiSn 

Yohai's (1987) MM-estimator for linear regression parameters can be generalized to 

provide a high breakdown, highly efficient under normal errors estimator of nonlinear 

2The Nelder-Mead algorithm given in Dennis and Woods' paper is incorrect. Press, 

Flannery, Teukolsky, and Vetterling (1986, p289-293) present the correct algorithm. 
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regression parameters. In Yohai's Remark 2.3 (1987, p. 645) he suggests that for rho function 

p, Po and p1 can be chosen such that p0 (u) = p(k
0

) and p1(u) = p(k/ k0 is chosen so that 

(2.4) holds and thus ensures a high breakdown estimator. k1 is chosen to ensure high efficiency 

under normal errors. 

My algorithm uses the function found by integrating Hampel's redescending psi function 

with constants denoted a, b, and c as the rho function, denoted PH(·), to determine p0 and p1. 

00 

Since (2.4) must hold, k0 should satisfy !(b - a+ c) = J PH(k )f(u)du, where f denotes the 
-oo 0 

standard normal density. If the traditional values of a = 1.5, b = 3.5 and c = 8 are chosen 

then numerical integration yields ko = 0.212. From Yohai's theorem 4.1 (1987), the 

asymptotic efficiency under normal errors is given by: 

ck1 

]

2 

J tfai(u)f(u)du 
-ck1 
ck1 
J ,t,~(u)f(u)du 

-ck1 

where f is the standard normal density. Using (a,b,c) = (1.5, 3.5, 8), numerical integration 

yields Table 1. 

Table 1 

k1 for Various Efficiencies 

Desired Efficiency(%): 80 85 90 95 96 97 98 99 

: .4950 .5704 .6877 .9014 .9687 1.0524 1.1642 1.3402 

The scale M-estimate, sn, is then computed using the Newton-Raphson method to solve 

(2.3) using p = Po = PH( k)' where a=l.5, b=3.5, c=8, and k0 =.212. To improve the 
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chances of convergence, the Newton-Raphson algorithm is modified to allow squeezing, which 

means that if an iteration doesn't provide a better solution of the objective function then the 

step is divided by 2 and then checked again for improvement in the objective function. If ten 

divisions produce no improvement, then the current estimate is declared the solution. 

Finally, (2.5) is solved using Newton-Ra.phson with squeezing where p1 = PH(k )' a=l.5, 
1 

b=3.5, c=8, and k1 is determined by the user specified efficiency under normal errors. The 

algorithm minimizes the objective function using OLMS and then the least squares fit to all the 

data as starting values. Whichever starting value yields a lower value of the objective function 

is the final MM-estimate. The default choice for the efficiency of the MM-estimate is .95. 

Choosing a higher efficiency risks forcing the MM-estimate to the least squares estimate which 

is undesirable when outliers are present. With no outliers present, setting the efficiency at .95 

will yield an estimate very close to the least squares estimate. The algorithm is coded using 

the Gauss Programming Language, Version 1.49b. (A version of the algorithm in XLISP­

STAT (Tierney, 1989) will be available soon.) Persons interested in obtaining a copy should 

contact the author. 

At this point I generalize part of the "Main Lemma" of Steele and Steiger (1986) and its 

proof. This will provide a method for computing the exact value of the least median of squares 

estimate for nonlinear regression functions of the form g( o + /Jxi) where g is continuous and 

monotonically increasing or monotonically decreasing. I use notation developed by Steele and 

Steiger. 

The goal is to identify possible minima for the objective function 

I assume that the parameter space for (o,/J) is R2 and that the data (xi,Yj), lSiSn are in 

general position, meaning that any two data points determine a unique (o,/J). This implies 
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that the xi's must be unique. Let ea:,{J = {(x,y): y = g(o + /Jx)}. If xi< xj < xk and ri(o,/J) 

= -rj(o,/J) = rk(o,/J), then eo,/J equioscillates with respect to i, j, and k. A consequence of 

the general position assumption and the monotonicity of g is that there is one and only €
0

,/J 

that equioscillates with respect to any three distinct data points. Note that any I, a divides 
Q,/J 

{1,2, ... , n} into 

Theorem 

B
0

,/J = {i: r?(a,/J) > f(o,,B)}) 

Ma,,B = {i: r~(o:,,B) = f(a,,B)}) 

so,/J = {i: r~(a,,B) < f(o,,B)}). 

If ( a* ,/3*) is a local minimum of f( o,/J), then I, * a* equioscillates with respect to three 
Q 1/J 

data points. 

First assume that IM * a*I = 1. Fix /J*. The monotonicity of g implies that by shifting o* 
Q 1/J 

in the appropriate direction we can decrease the median sized squared residual. For a small 

enough shift the continuity of the residuals implies that the points indexed by S will remain 

unchanged. Thus f(o,,B) will be decreased, contradicting the fact that (o*,,B*) is a local 

minimum. If IM * ,B* I = 2, then the monotonicity of g and the general position assumption 
Q, 

imply that by shifting o: * and /J* in the appropriate directions we can reduce the median 

squared residuals equally. Again, for a small enough shift in the parameters, the continuity of 

residuals ensures that the points indexed by S remain unchanged. Thus f( o,,B) will be reduced 

which violates the assumption of the theorem. If IM * p*I = 3 and I, * /J* does not 
Qt Q I 

equioscillate, then the same argument implies that ( o* ,/J*) can not be a local minimum. Thus 

the conclusion of the theorem must hold. D 

The theorem implies that the exact value of the LMS estimate can be found by 

computing, either numerically or algebraically, each of the (3) possible local minima and then 

comparing their median squared residuals to find the global minimum. 
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4. Simulation results 

Monte Carlo simulations can be used to study the behavior of OLMS and OMM in 

practice. The general procedure used to generate the data sets is as follows: Given the 

regression function h, a data point (x1,y1) is generated at (J = 00 by letting x1 be randomly 

generated from a given distribution for X1, and y1 = h(x1,60 ) + e1, where e1 is randomly 

generated from a given distribution for E1• When outliers are present in the data set, they are 

generated as above except that y1 is shifted by a specified amount. The points chosen to be 

outliers will have x values close together, since outliers of this type are difficult for many 

robust estimators to handle. 

I will consider three models. The first is simple linear regression where 

and (00 ,/30 ) = (1,1). The x1's are randomly generated from a uniform(0,10) distribution, and 

the f 1 's are randomly generated from a standard normal distribution. When outliers are 

present, they are generated at x(lS) through xc26) by letting their y values be increased by 40. 

The second model considered is the Michaelis-Menten model. I use the parameterization 

suggested by Ratkowsky (1983), namely 

(00 ,/30 ) is set to (10, 0). The x1's are randomly generated from a uniform(0,10) distribution, 

and the t;'s are randomly generated from a standard normal distribution. When outliers are 

present, they are generated at x(lO) through x(2 l) by letting their y values be increased by 40. 

Finally I consider the isomerization model used in Carr (1960) and in Bates and Watts (1988). 

The model is given by: 
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where (o0 ,P0 ,-y0 ,60 ) = (1.00, .05, .03, .10). The xi1's where generated from a 

uniform(l00,500) distribution, the xi2 's from a uniform(l00,300) distribution, and the xi3 's 

from a uniform(0,100) distribution. The e1's were generated from a normal distribution with 

mean zero and variance .001. When outliers are present, they are generated at x(lS)l through 

x(2G)l by letting their y values be increased by 1. 

To compute the estimates for a given regression function and data set, I use a slightly 

modified version of my algorithm. Since the data is generated from a specified 80 , a grid 

search could easily be specified that would find a value very near the actual value of the least 

median of squares estimate. To avoid this problem and to speed computation time, I skip the 

grid search step of my algorithm and use the algebraic solution to the least squares fit to p 

points. I use lOE-4 as the stopping value for the Nelder-Mead algorithm and the efficiency of 

the MM-estimate is set to .95. The number of least squares fits to p points will be specified. 

For each model, I generate 500 data sets with sample size 30 and then compute the estimates, I 

then move 40% of the y values so they are outliers and recompute the estimates. 

Table 2 summarizes the performance of BLMS and BMM relative to 6Ls when no 

outliers are present for all three models. Since all the estimators appeared to be unbiased, the 

table presents the relative efficiency of the estimators compared with the least squares 

estimator. The relative efficiency is the ratio of the sample variances of the two estimates for 

the same simulated data sets. For the simple linear regression model, the exact value of the 

LMS estimate is used. By reparameterizing the Michaelis-Menten model, it can be seen that it 

is of the form g( o + Px) where g is monotonically decreasing, and thus the theorem presented 

in section 3 can be used to compute the exact value of the LMS estimate. For the 

isomerization model I use my algorithm with 108 least squares fits as the estimate of OLMS· 

Note that for all three models the relative efficiency of the variances of the least median 

estimates to the least squares estimates is about .2 while the MM estimates have relative 

efficiency of about .9. 
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Table 2 

Efficiencies (Relative to BLs) of OMM and OLMS with no outliers present 

for various Regression Models 

Estimator/Model Simple Linear Regression Michaelis-Menten 

t (.219, .201) 

(.926, .924) 

(.189, .182) 

(.919, .935) 

Isomerization 

(.136, .141, .143, .158) 

(.951, .910, .975, .869) 

t Each table entry is the ratio of the sample variance of the high breakdown estimates for 500 

trials to the sample variance of the least squares estimates for the same 500 trials. 

When severe outliers are present in the data, simulations show that OMM outperforms 

iJ LMS in terms of variance of the estimates. The sample means and sample variances of the 

following estimates are presented in table 3: 

iJ LMS : The exact value of the least median of squares estimate. 

iJMM : The MM-estimate using iJLMS as a starting value. 

iJ LS : The least squares estimate 

OM2s : The MM-estimate using my algorithm with 25 least squares fits. 

iJM47 : The MM-estimate using my algorithm with 47 least squares fits. 

OMlOS : The MM-estimate using my algorithm with 108 least squares fits. 

Table 3 reveals a number of interesting results. As is to be expected the least squares 

estimates are heavily influenced by the outliers. Note that both iJLMS and iJMM ignore the 

presence of the outliers and thus I can compare their performances by looking at the variances 

of the estimates. In both simple linear regression and the Michaelis-Menten model the variance 

of the iJMM estimates is approximately half of the variance of the iJLMS estimates. Next note 

that the performance of iJM25 for both simple linear regression and the Michaelis-Menten 
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model is almost as good as OMM· This seems to indicate that there is no particular need to 

compute the exact value of the OLMS even when it is possible. In practice this should reduce 

much of the computational difficulty of high breakdown estimates. 

Other simulation results (Stromberg, 1989) show that if none of subsamples of p points 

contain all "good" points, the estimate of OLMS will be poor enough that the MM-estimate will 

be far from the OMM· As is indicated by the improved performance of 8MlOS over 8M47 in 

table 3, the number of least squares fits should increase with the dimension of the parameter 

space. It seems likely that the number of least squares fits that provide a sufficiently good 

approximation to the least median of squares estimate will also be affected by the model, the 

sample size, the proportion of outliers, and the estimated variance. 

Table 3 

Performance Summary of Regression Estimators for various models 
in the presence of 40% outliers 

Estimator\Model Simple Linear Regression Michaelis-Menten Isomerization 

6M2S 

t (.96942, 1.00486) tt 
(0.3231, 0.0124) 

(0.97166, 1.00824) 
(0.1479, 0.0056) 

(0.71500, 4.24160) 
(11.213, 0.1736) 

(0.96812, 1.01269) 
(0.1497, 0.0093) 

t Mean of parameter estimates for 500 trials. 

( 10.0560,-.090605) 
(0.6789,0.1439) 

(10.0483, 0.00873) 
(0.3297, 0.0712) 

(25.4779, 3.5733) (2.50036, .037859, .033551, .088539) 
(3.5733, 0.8132) (1.05E0, 3.65E-6, 2.08E-5, 7.76E-5) 

(10.0867, 0.01259) 
(0.6058, 0.0669) 

(1.02202, .049788, .030141, .099801) 
(9.04E-2, 3.64E-6, 2.92E-6, 8.16E-6) 

(1.02020, .049998, .029918, .099951) 
(3.81E-2, 2.03E-7, 5.63E-7, 2.27E-6) 

tt Variance of parameter estimates for the same 500 trials. 
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5. Standard Enors 

I now consider standard errors for MM-estimates. Using Yohai's (1987) Theorem 4.1, it is 

reasonable to approximate the asymptotic variance of MM-estimates by the diagonal of the 

covariance matrix: 

• th I . { } . ~ 8[h(xi,8)) 8[h(xi,8)) . . . 
where the Jk element of , J,k E 1,2, ... ,p 1s .Li 

89
_ 

89 
and t/J 1s the derivative of p. 

1=1 J k 

This estimate of the variance of MM-estimates has several drawbacks. In most regression ~ettings it 

has breakdown point 1/n since allowing one xi to go to infinity can usually drive the standard errors 

to infinity. Morgenthaler {1989) argues convincingly that the finite sample efficiency of 

asymptotically efficient high breakdown estimates like the MM-estimate may be small if the design 

contains high leverage points. In order to study the performance of using (5.1) to approximate 

standard errors for finite samples, I computed bootstrap estimates of the standard errors for the first 

three Michaelis-Menten data sets generated for the preceding Monte Carlo study. 20% outliers were 

generated at x(lO) through x(ls) by allowing their y values to be increased by 40. (See table 4.) 

The bootstrap standard errors were computed as Efron (1982, p. 35,36) suggests. The procedure 

is summarized and applied to MM-estimates as follows: 

(1) Compute OMM for a given data set and regression function h. 

(2) Let F put mass 1/n at each ii = Yi - h(xj, OMM). 

* .. * * . . .. (3) Draw a bootstrap data set Yi = h(x1, (JMM) + fi where the £i are 1.1.d. from F. 

(4) Compute OMM for the bootstrap data set. 

"'*1 ·•2 ·•B (5) Repeat steps 3 and 4 B times, resulting in bootstrap replicates OMM' ()MM' ... , OMM· 

{6) The bootstrap standard errors can be estimated by the square of the main diagonal of the 

1 B • •b • * • • •b • * T • * · 1 i .. •b covariance matrix given by: B-l E ( (JMM - (JMM)( 8MM - 8MM) where (JMM =BL, (JMM· 
b=l b=l 
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Table 4 

Comparison of Asymptotic Standard Errors with Bootstrap Standard Errors 

Michaelis-Menten Model 

No Outliers ~ outliers ~outliers 

Monte Carlo Standard Errors: (0.5178, 0.2584) (0.6644, 0.3797) (0.5742, 0.2668) 

MM-estimates (10.464, 0.2823) (10.409, 0.3148) (10.342, 0.2795) 
Data Set #1 Asymptotic SE: (0.4507, 0.2289) (0.5466, 0.2735) (0.6535, 0.3364) 

Bootstrap SE: (0.5131, 0.2489) (0.6916, 0.3048) (82.302, 3. 7855) 

MM-estimates (10.942, 0.3761) (11.045, 0.3555) (11.105, 0.3634) 
Data Set #2 Asymptotic SE: (0.6779, 0.2554) (0.7243, 0.2730) (0.8709, 0.5324) 

Bootstrap SE: (0.8961, 0.2876) (1.0212, 0.3221) (1418.9, 13.918) 

MM-estimates (10.239, -0.0015) (10.185, -.0059) (10.337, 0.0405) 
Data Set #3 Asymptotic SE: (0.4536, 0.2272) (0.5427, 0.2739) (0. 7764, 0.5410) 

Bootstrap SE: {0.4504, 0.2187) (0.4906, 0.2313) {80.138, 4.1669) 

Note from table 4 that the bootstrap standard errors are quite close to the Monte Carlo and 

asymptotic standard errors for up to 20% outliers but that the bootstrap standard errors are much 

larger for more than 20% outliers. At least in these cases, a reasonable explanation for the inflated 

bootstrap standard errors with more than 20% outliers is the bias created by the fact that at least 

some of bootstrap data sets will contain more than 50% outliers, and thus the MM-estimate will fit 

the outliers for these data sets. A simple binomial calculation shows that if 10% outliers are present 

then the probability that a bootstrap data set will contain at least 50% outliers is 3.56 x 10-8 • With 

20% outliers, the probability is 2.31x10-4 • In either case the chance of seeing more than a few 

bootstrap data sets containing 50% outliers is very small, and thus the bootstrap standard errors are 

close to the asymptotic standard errors. On the other hand, with 30% outliers present, the chance 

that a particular bootstrap data set contains at least 50% outliers is .0169. This means that at least a 

few of the bootstrap data sets will contain 50% outliers, and thus the bootstrapped standard errors 
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will be much larger than the asymptotic or monte carlo standard errors. In conclusion, it seems that 

Morganthaler's concern over finite sample efficiency is not a problem in these examples. Perhaps this 

is because the data sets do not contain high enough leverage points to see the effect he discusses. In 

any case, it is valuable to know that with up to 20% outliers in the data, all three estimates of the 

standard error are similar. 

6. Examples 

Growth of Prices in China 

Consider the Annual Rates of Growth of Prices in China data set analyzed in by 

Rousseeuw and Leroy (1987, p.51). The data set is in Table 5. Rousseeuw and Leroy chose to 

use a simple linear regression model. The least squares estimate is (-1049.468, 24.845) which 

obviously provides a poor fit to the data. 

Table 5 

Rates of Growth of Average Prices in the Main Cities of Free China from 1940 to 1948 

Year Growth of Prices 

1940 1.62 

1941 1.63 

1942 1.90 

1943 2.64 

1944 2.05 

1945 2.13 

1946 1.94 

1947 15.50 

1948 364.00 

Source: Simkin (1978) 

Rousseeuw and Leroy (1987) report that using PROGRESS, their estimate of 9LMS is 

(-2.468, 0.102). Since a simple linear regression model is being used, BLMS can be computed 

exactly, this yields the estimate (-3.4218, 0.1250). Note that even in this very simple case the 

exact value of 9LMS is surprisingly far from the PROGRESS solution, indicating the difficulty 
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in computing OLMS using the PROGRESS algorithm. Using my algorithm with the default 

settings yields the global minimum for OLMS· Computing the MM-estimate with 95% 

efficiency under normal errors and 25 least squares fits, I find the MM-estimate 

(-1.3095, 0.0754). Virtually the same estimate is obtained using either the exact value of 

OLMS or the PROGRESS estimate for t~e ~~~~ate of OLMS needed to compute OMM· The 

three estimates for the first 7 data points are graphed in figure 2. 

N 
0 ,-......-------------------------
N 

... ·· 
II') ..• •·•• 

X 

MM Estimates: 
LMS Est1motn: 

PRC Estimates: 

X 

-1.3095 0.0754 (Dashed Line) 
-3.4218 0.1250 (SolJd line) 
-2.4800 0.1020 (Dotted Una) U) v __ ......__.....J. __ .,___......__ ........ __ ...___ 

~ 39 40 41 42 43 44 45 46 47 48 
Year 

49 

Figure 2. Plot showing high breakdown estimates for China data. 

Note that the OLMS estimates are finding the best fit to 5 data points (since there are 9 

total data points), and thus they ignore the data point at (46, 1.94). The MM-estimate allows 

this point to influence it, and therefore estimates the slope differently. If the efficiency is 

chosen to be 100%, the MM-estimate will be the least squares estimate. For this example we 

will look at the effect of the starting value and the choice of efficiency on the MM-estimate. 

20 



Table 6 presents the MM-estimates of the slope parameter for several different efficiencies and 

using the exact LMS estimate and the PROGRESS estimate. 

Table 6 

MM-estimates for Various Efficiencies using two different estimates of iJLMS 

Efficiency 
(%) 

1 
5 
10 
20 
30 
40 
50 
60 
70 
80 
90 
95 
99 
99.9 
99.99 

MM-estimate of slope parameter MM-estimate of slope parameter 
starting at PROGRESS est. starting at exact LMS value 

.10305 

.10431 

.10628 

.10726 

.10623 

.10104 

.09549 

.08889 

.08504 

.07945 

.07536 

.07536 

.07536 

.07536 

.07536 

.10281 

.10552 

.10684 

.10698 

.10075 

.09471 

.08851 

.08502 

.08046 

.07548 

.07536 

.07536 

.07536 

.07536 

.07536 

As the efficiency of the MM-estimate approaches zeros, the estimate will be unstable, regardless 

of how iJLMS is estimated. This is because two points can be fit exactly, the sum of 

p(standardized residuals) at the exact fit to any two data points will be local minimum and all 

such local minima will have the same value of the objective function. As the efficiency 

increases, more points are influencing the MM-estimate. It is interesting to note that the least 

squares estimate to the five data points selected by the LMS estimates is (-2.788, .10977) which 

is very close to the MM-estimates for low efficiencies. As the efficiency increases, the point at 

(46, 1.94) is given increasing weight. The least squares fit to these six points is (-1.3620, 

.07536). Finally the least squares estimate to the seven "good" points is (-1.2532, .07535). 

The fact that the addition of the seventh point has very little influence on the slope parameter 

of the least squares estimate explains the stability of the MM-estimates for high efficiencies. 

Note that for efficiencies above 90%, the slope estimates from table 6 are almost identical. 
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Cloud Seeding Data 

This data set (Cook and Weisberg 1982) summarizes the results of a cloud seeding 

experiment in Florida in 1975. On each of 24 days suitable for seeding, the following six 

explanatory variables were recorded: 

A: "Action" was set to zero if no seeding took place and to one if seeding occurred. 

T: "Time" was the number of days since the beginning of the experiment. 

S: "Suitability" was a measure of the days suitability for seeding. 

C: "Echo coverage" was the percent cloud coverage in the experimental area. 

P: "Prewetness" was the log of total rainfall in the target area in the hour before seeding. 

E: "Echo motion" was set to 1 for a moving radar echo and 2 for a stationary radar echo. 

The response variable was log(rainfall) in a target area for a six hour period. Cook and 

Weisberg (1989) point out that Cook's distance labels point 1 (where the points are numbered 

0,1,2, ... , 23) as highly influential, while the PROGRESS approximation to the LMS estimate 

labels it as a "good" leverage point because it has high leverage and a comparatively small 

residual. From the least squares residual plot (part of figure 3), they determine that points 6 

and possibly 23 are outliers. The PROGRESS residual plot (also part of figure 3) indicates 

that point 6 is an outlier but not 23. Rousseeuw's method of reweighted least squares also 

identifies 3 additional outliers. Finally Cook and Weisberg (1989) show the need for an 

interaction term involving the action variable and at least one of the other explanatory 

variables. This is done by finding a "howl" shape in the 3-dimensional plot (reproduced as 

part of figure 4) of x verses y verses z where: x is the difference between least squares fitted 

values for the full model and the least squares fitted values for the model without the action 

variable. y is the least squares residuals for the full model. z is the least squares fitted values 

for the model without the action variable. The corresponding plot (part of figure 4) for the 

PROGRESS approximation to the LMS residuals replaces the y-axis variable with the 

PROGRESS residuals. It shows little sign of the need for an interaction term. 
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Figure 3 (part 1 ). Residual plots for cloud seeding data. 
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Figure 3 (part 2). Residual plots for cloud seeding data. 
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Figure 4 (part 1). 2-D projections of 3-D plots for cloud seeding data. 
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Figure 4 (part 2). 2-D projections of 3-D plots for cloud seeding data. 
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Figure 3 shows residual plots for various efficiencies of the MM estimate, starting with 

the PROGRESS approximation to the LMS solution and then an approximation to the LMS 

estimate given by my algorithm with 100 least squares fits and ending with the LS residual 

plot. The PROGRESS solution is based on 3549 least squares fits to groups of seven randomly 

selected points from the data; it produces a median residual of .0112. My algorithm, using just 

100 least squares fits produces a median squared residual of .0024 and vastly different 

parameter estimates resulting in a very different residual plot. Although my algorithm 

produced an estimate with a smaller median square residual, the location of the exact value of 

the LMS estimate was not computed. Even if it was computed, experience tells us that is 

might not provide useful information. 

The residuals that shift the most from plot to plot in figure 3 (1, 6, and 23) are labelled. 

All the plots show point six as an outlier. The behavior of point 23 is very interesting. In the 

PROGRESS solution it has zero residual while my approximation to the LMS estimate shows 

it as an outlier. The point moves a fair amount as the efficiency increases, but the residual 

remains small compared to its least squares residual even with the efficiency of the MM 

estimate set to .99. This leads one to suspect that point 23 may be outlying in the least 

squares plot because of the influence of point 6, which is the only point downweighted by the 

MM estimate with 99% efficiency. In fact, if the sixth data point is deleted, the resulting least 

squares residual plot does not indicate that point 23 is an outlier. (See figure 5, where it is 

labeled point 22 because point 6 has been deleted.) In the same figure the residual plot for the 

MM estimator with 95% efficiency with point 6 present but not graphed is presented. It is 

very similar to the plot of the least squares residuals when point 6 is deleted. In fact the 

parameter estimates are quite close; (1.56, .282, -.005, -.276, -.016, .539, .292) for the ~M 

estimate with 95% efficiency for the entire data set and (1.59, .226, -.006, -.251, -.015, .530, 

.249) for the least squares estimate with point six deleted. 
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Figure 5. LS residual plot for cloud seeding data with point 6 deleted and MM 95 residual plot 
for entire data set with point 6 not graphed. 

Next consider the 3-dimensional residual plots that are used by Cook and Weisberg to 

show the need for an interaction term in the model. The corresponding MM plots are 

presented in figure 4. Note, as Cook and Weisberg do, that the LMS estimate does not 

indicate clearly the need for the interaction term. Using my algorithm produces a smaller 

median squared residual but still no indication of the need for an interaction term. In general, 

as the efficiency increases, the plots increasingly indicate the need for the interaction term. It 

is important to understand if the outlying point 6 is causing the need for the interaction term. 

Point 6 does not influence any of the MM-estimates, and thus one would not expect the outlier 

to be causing the need for an interaction term. Figure 6 shows the 3-D least squares residual 

plot for the data set with point 6 deleted. As expected, the need for the interaction term is 

still evident. Figure 6 also depicts the 95% efficient MM estimate for the entire data set 

rescaled without point 6 plotted. Note the similarities in the plots. 

At this point we consider the addition of the interaction terms involving the action 

covariate. The least squares estimates, their standard errors, and the p-values for testing each 

parameter equal to zero are presented in table 7. It appears that the action x suitability 

interaction is important. The fact that the parameter estimate for that interaction term is 
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set with point 6 not graphed. 

Table 7 

Least Squares Regression Summary for full Model 

Variable 
Intercept 

A 
D 
s 
C 
p 
E 
SA 
CA 
PA 
EA 

Estimate 
-.2821 
2.2120 
-.0088 
.1269 
.0257 
.4417 
.5734 
-.4329 
-.0425 
-.1465 
-.2854 

Standard Error 
.4872 
.7994 
.0032 
.1104 
.0272 
.2603 
.2526 
.1670 
.0296 
.4082 
.3463 

p-value 
.5724 
.0160 
.0171 
.2708 
.3623 
.1136 
.0434 
.0223 
.1743 
.7255 
.4247 

negative means that as suitability increasing the change in rainfall when seeding occurs 

decreases. This counterintuitive result could be due to large residuals at points 6 and 23. We 

can use the MM-estimate to reduce the affect of the outliers. Note that there are 24 data 

points and 11 parameters. The LMS estimate is attempting to minimize the 13th largest 
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residual. Since an exact fit can be found to 11 data points, the LMS estimate is likely to (and 

does) have a very small median residual. The estimate of scale for the MM-estimate, which is 

based on the LMS estimate, will therefore be very small. The small scale estimate means that 

even for very high efficiencies the MM-estimate will remain at the LMS-estimate and ignore 

half the data. We can still obtain useful information from the MM-estimate by setting the 

efficiency to be very large. In effect, we can compensate for the small scale estimate by 

inflating the constant used to determine the efficiency of the MM-estimate. The estimates for 

several values of k are given in table 8. Note that for k=50, the MM-estimate remains close to 

the LMS estimate. For k=400, the MM-estimate is very close to the least square estimate. 

For the lower efficiencies, many point are downweighted when compared to the least squares 

estimate where no points are downwieghted. Thus as k increases, fewer and fewer points are 

downweighted. A logical choice for k would be one that downweights points 6 and 23 but no 

others. By this criterion, k=150 would be a reasonable choice for k. It is interesting to note 

that all the estimates yield a negative coefficient for the AxS variable. It is reasonable to 

conclude that the effect of the outliers is not causing the negative AxS least squares coefficient. 

It is also important to note that the MM-estimate with k=150 yields very similar estimates 

and standard errors to the least squares estimate with points 6 and 23 deleted. (See table 9.) 

Table 8 

MM Estimates for inflated efficiencies 

ParameterLMS Est. k=50 k=lQQ k=150 k=200 k=3QQ k=400 LS Est. 
Intercept -1.5657 -1.5921 -.7944 .5116 -.0319 -.2627 -.2821 -.2821 

A 3.9858 3.1905 2.5607 1.3423 1.9178 2.1788 2.212 2.212 
D .0025 -.0044 -.0057 -.0067 -.0076 -.0085 -.0088 -.0088 
s .2805 .3497 .2125 -.0288 .0830 .1254 .1269 .1269 
C .0942 .0970 .0583 .0223 .0289 .0281 .0257 .0257 
p -.1065 -.1159 .1301 .4552 .3893 .4115 .4417 .4417 
E .4306 .3701 .4158 .3485 .4455 .5369 .5734 .5734 
SA -.6087 -.6261 -.5114 -.2806 -.3909 -.4320 -4329 -.4329 
CA .1245 -.1098 -.0728 -.0379 -.0451 -.0447 -.0425 -.0425 
PA 1.0598 .4789 .2190 -.1207 -.0713 -.1092 -.1465 -.1465 
EA -.1704 -.0251 -.0937 -.0376 -.1442 -.2447 -.2854 -.2854 
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Table 9 
MM-estimates (k=150) and Standard Errors for full data set 

and 
Least Squares estimates and Standard Errors for data set with points 6 and 23 deleted 

Parameter MM Estimates LS Estimates 
intercept .5116 (.2988) .4297 (.3670) 

A 1.3423 ( .4902) 1.3958 ( .4678) 
D -.0067 (.0020) -.0059 (.0015) 
S -.0288 (.0677) -.0017 (.0778) 
C .0223 (.0167) .0307 (.0138) 
P .4552 (.1597) .3447 (.1340) 
E .3485 (.1571) .2627 (.1243) 
SA -.2806 (.1024) -.3089 (.0959) 
CA -.0379 (.0182) -.0458 (.0148) 
PA -.1207 (.2503) .0045 (.1954) 
EA -.0376 (~2123) .0567 (.1637) 

Enzyme Kinetics 

Table 10 presents data analyzed in Ruppert, Cressie and Carroll (1989). The data points 

are numbered column by column with the point being point O. The data is from an enzyme 

kinetics study where substrate concentration (S) and inhibitor concentration (I) are 

independent variables and initial velocity (v0 ) is the response variable. As a model they 

consider a special case of the Michaelis-Menten model given by: 

V _ VS 
0 

- K(I) + S 
(5.1) 

where V is the maximum velocity which is assumed to be independent of I and the Michaelis 

parameter (K) is allowed to depend on I. 

Substrate 
25 
50 
100 
200 
400 

Table 10 

Enzyme Kinetics Data from Becton Dickenson 

Inhibitor Concentration 
!! l 10 

.0328 .0153 .0087 

.0510 .0327 .0146 

.0697 .0536 .0231 

.0934 .0716 .0305 

.0924 .0904 .0658 
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Note that if V depends on I, then ( 5.1) would be: 

which implies 

V(I)S 
Vo= K(I) + S 

1 K(I) + S 1 K(I) 1 
Vo = V(I)S = V(I) + ( V(I))(S). 

Thus V(I) and ~m can be estimated using the simple linear regression model. For fixed I, a 

Lineweaver-Burk plot includes the data points <v}(I)' ~), and the least squares fit to th~se 

points. It is common in practice to check the assumption that V is independent of I by 

superimposing Lineweaver-Burk plots for each inhibitor concentration. A common intercept is 

evidence for a common V. Ruppert, Cressie and Carroll point out that the apparently high 

intercept when I = 30 (figure 7) is due to a high leverage point. The MM estimate with 95% 

efficiency (MM95, in figure 7) for I = 30 ignores the high leverage point and yields an intercept 

of only .005. For the other inhibitor concentrations, the MM-estimates are very close to the 

least squares estimates. An investigator who computed the MM95 fit as well as the least 

squares fit would feel more comfortable with the common V assumption. 
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Figure 7. Lineweaver-Burk plots for each inhibitor concentration for enzyme kinetic data. 
(MM 95 estimate is dashed line.) 
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Fitting model (5.1) using least squares yields the residual plot given in figure 8. The 

Points 4, 13 and 14 might be considered outliers, but there status is uncertain because of the 

evident heteroscedasticity. Note that none of these points appear to be outliers in the 

Lineweaver-Burk plots in figure 7. The LMS residual plot suggests that points 4, 13 and 18 

may be outliers, but since only an approximation to the LMS estimate is used, experience tells 

us that the true LMS residual plot may be quite different. The residual plot for MM-estimate 

with 95% efficiency shows the heteroscedasticity in the data set and also shows that point 14, 

which is somewhat outlying in the least square residual plot, should probably not be considered 

as an outlier. Points 4 and 13 are more clearly outlying in the MM 95 residual plot. High 

breakdown estimates have been criticized (Cook and Weisberg, 1989) for finding more outliers 

than are actually present in the data, and thus it is interesting that this is a case where the 

high breakdown MM-estimate finds fewer outliers than the least squares estimate. 

The biochemist who provided this data set warned that deviations from the proposed 

model are common. The least squares plot indicates no such deviations and Ruppert, Cressie 

and Carroll find no evidence of a lack of fit in the proposed model. The MM-estimate residual 

plot suggests that perhaps some lack of fit exists, but no evidence for lack of fit is found in a 

plot of the residuals verses substrate concentrations. It seems that the possibility of lack of fit 

suggested by the MM-estimate residual plot is merely due to heteroskedasticity. 
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Figure 8. Residual plots for enzyme kinetic data. (LS, LMS, and MM95 estimates) 
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