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BREAKDOWN 
IN NONLINEAR REGRESSION 
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ABSTRACT 

The breakdown point is considered an important measure of the robustness of a linear regression 

estimator. This paper addresses the concept of breakdown in nonlinear regression. Because it is not 

invariant to nonlinear reparameterization, the usual definition of the breakdown point is inadequate for 

use in nonlinear regression. We introduce the breakdown function, and based upon it, a new definition 

of the breakdown point. For the linear regression model, our definition of the breakdown point 

coincides with the usual definition. For most nonlinear regression functions, we show that the 

breakdown point of the least squares estimator is 1/n. We prove that for a large class of unbounded 

regression functions the breakdown point of the least median of squares or the least trimmed sum of 

squares estimator is close to 1/2. For monotonic regression functions of the type g( a + f3x) where g is 

bounded above and/or below, we establish upper and lower bounds for the breakdown points that 

depend on the data. 

KEY WORDS: Breakdown function, Invariant to reparametrization, Least median of squares 

estimator, Least squares estimator, Least trimmed sum of squares estimator. 
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1. INTRODUCTION 

This article is concerned with extending breakdown analysis from linear to nonlinear regression. 

There has been considerable recent interest in high-breakdown point (HBP) estimators for linear 

regression. Because of their relative immunity to masking, HBP estimators are effective in outlier 

detection (Atkinson 1986; Rousseeuw and van Zomeren 1989). For inference when the sample contains 

outliers among the predictor variables, HBP estimators, especially those that also possess a bounded 

influence function, are much more "stable" than other estimators (Simpson, Ruppert, and Carroll 

1989). "Stability" means that the conclusions of the analysis are not radically altered by deletion of 

one, or a few, data points. 

In linear regression, the basic HBP estimators are S-estimators, that is, estimators defined by 

minimizing a robust scale measure of the residuals (Rousseeuw and Yohai 1984). Other HBP 

estimators use iterative algorithms with S-estimators as starting values. The most studied S-estimator 

is the least median of squared residuals (LMS) estimator (Rousseeuw 1984), which, as its name implies, 

minimizes the median of the squared residuals. Another well-known S-estimator is the least trimmed 

sum of squared (LTS) estimator which minimizes the sum of the [n/2Il + 1 smallest squared residuals, 

where n is the sample size and [ · Il is the greatest integer function. 

Although the definitions of the LMS, L TS, and other S-estimators are easily extended to 

nonlinear regression, analysis of breakdown properties and computation of these estimators in the 

nonlinear case is far from trivial. Here we consider only breakdown; for a discussion of computation, 

see Stromberg (1989). 

The usual method for studying properties of a nonlinear model is linear approximation in a 

neighborhood of the true parameter. Approximation by a linear model does not work for the analysis 

of breakdown properties since these are determined by large (i.e., nonlocal) changes in the estimated 

parameters. 

Donoho and Huber (1983) define the finite sample breakdown point, eii of an estimator to be 

the smallest proportion of data that must be changed to cause an infinite perturbation of the estimate. 

More precisely, let 

and 

Xn = 
Bn(Xn) = 

Dm -
n = 

the observed data set consisting of the sample points {z1, ... , zn}, 

an estimator On evaluated at Xn, 

the set of all data sets, xW, obtained by replacing any m points in 

Xn with arbitrary values. 
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Then the finite-sample breakdown point of On at Xn is 

e~(On(xn)) = min {W; sup ~On(xH1) - On(Xn)~ = oo.}. 
l~m~n xfreDfr 

{1.1) 

We will use the the nonlinear regression model 

Yi = h(x1,00 ) + e1 i= 1,2, ... , n, {1.2) 

where the xi are k-dimensional vectors of explanatory variables, ei are independent and identically 

distributed random variables with mean O and unknown variance o-2, 00 is an unknown p-dimensional 

element of parameter space 8, and h is a known model function that is assumed continuous in O for 

each x. In the definition of e~, let z1 = (Yi, x1). 

For several reasons, the usual breakdown point e~ is of limited use in nonlinear regression 

settings. First of all, regardless of the regression function, if the parameter space is bounded, then t:~ = 
1. Thus e~ is not an appropriate definition of the breakdown point for bounded parameter spaces. 

Note also that e~ is not invariant to reparameterization. Consider the equivalent nonlinear regression 

models (1.2) and 

Yi = h(xj,g(w0)) + t:1, i=l,2, ... ,n (1.3) 

where g is a continuous function such that 00 = g(w0). An estimator is invariant to 

reparameterization if On = g( w0 ). A breakdown point is invariant to reparameterization if it is the 

same for models (1.2) and (1.3). 

To see that t:~ is not invariant to reparameterization, consider the regression model: 

where w is an angle in (-J,J) and x1 has appropriate units. Investigator A calculates the finite sample 

breakdown point directly for the least-squares estimator and finds that it is one, since w can't take on 

arbitrarily large values. Investigator B reparameterizes using O = tan-1(w). Since O can take all real 

values, he finds that the finite sample breakdo'!n point for the least-squares estimator is ft· t:~ is, 

however, invariant to linear reparametrization, which explains its suitability for linear regression. 

Section 2 introduces a new concept, the breakdown function, and uses it to give a new definition 

of the breakdown point. In linear regression, this new breakdown point is the same as the usual 
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definition; see Theorem 1. Section 3 discuss breakdown of the ordinary least-squares estimator. We 

find that, in general, the least-squares estimator can be broken down by a single outlier, just as in 

linear regression; see Theorem 2. Section 4 discusses breakdown of the LMS and L TS estimators. The 

breakdown points of these estimators depend upon the model and are not necessarily near 50% as in 

the linear case, but these estimators do seem acceptable in terms of breakdown. The Appendix 

contains proofs of all theorems presented in Sections 2 through 4. 

2. A NEW FINITE SAMPLE BREAKDOWN POINT 

To rectify the deficiencies of e~, we defme breakdown in terms of the estimated regression 

function, not the estimated parameter. Specifically, we define the finite sample breakdown function, e~ 

at On(Xn) under regression function has 

e~(x,h,On(xn)) = min {W; sup jh(x,On(xW)) - h(x,On(xn))j = sup lh(x,O) - h(x,On(xn))l}-
osmsn xW e oW o 

We then define the finite sample breakdown point, fri by 

eri(h,Dn(xn)) = iiµ_ {eri(x,h,On(Xn))}, 
nontnv,al x 

where x is nontrivial if there exists 0,01 in 9 with h(x,O) =,= h(x,01). In linear r~gression we suppress h, 

writing Eri(x,On(Xn)) for the finite sample breakdown function and fh(On(Xn)) for the breakdown point. 

It is rather easy to establish that for any estimator that is invariant to reparameterization, 

e. g., the least-squares, LMS, and L TS estimators, e~ is also invariant to reparameterization. 

Our first theorem shows that in linear regression, where e~ is an accepted measure of 

robustness, fri and fn coincide. 

Theorem 1 

In a linear regression where 9 = RP and h(x,O) = x T 0, we have fh(On(Xn)) = e~(On(Xn)). 

3. BREAKDOWN PROPERTIES OF THE LEAST-SQUARES ESTIMATOR 

In nonlinear regression, we will see that the finite sample breakdown point for the LMS 

estimator depends on the regression function h as well as the sample Xn· This is not the case for the 

least-squares estimator. The following theorem establishes that for most regression functions, the finite 

sample breakdown point of the least-squares estimator, denoted 0~5 , is ft· 
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Theorem 2 

In the nonlinear regression setting defined in (1.2) assume there exists a nontrivial x and that 

8~5 exists for all X~ E D~. 

Then 

4. BREAKDOWN PROPERTIES OF THE LEAST MEDIAN OF SQUARES AND LEAST 

TRIMMED SQUARES ESTIMATORS 

(3.1) 

In this section, we investigate the finite sample breakdown properties of the least median of 

squares estimator, 9LMS, and the least trimmed squares, 9L TS, for various nonlinear models. We 

begin by presenting a theorem that can be used to establish the finite sample breakdown point of both 

estimators for many nonlinear regression functions. We introduce the following new notation: 

r~(O), i=l,2, ... , n = the squared residuals based on Xn· 

rfl)(O), i=l,2, ... , n = the ordered r~(O).· 

r?(O), i=l,2, ... , n = the squared residuals based on xW, an arbitrary element of DW. 

r1i)(O), i=l,2, ... , n = the ordered r?(O). 

k = [~] + 1. 

We define the LMS estimator by 

and the L TS estimator by 
k 

bk TS = arg min L r~i)(O) 
0 i=l 
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Theorem 3 

Let m E {1, 2, ... , [jD}. Suppose that for some fixed x, 

(1) 

and 

sup lh(x,O)I = oo, 
0 

(2) there exist Tm C {1, ... ,n} with (n - [~D + m) elements such that 

lim inf { .
1 
ienfrm I h(xj,O) 1} - oo. 

M -. oo 0: I h(x,O)I > M 

Then 
.,, (x h 0'"L TS) - .,, (x h 9LMS) > (m+l) ~r:i , , n - ~n , , n - n · 

Corollary 1 

If the conditions (1) and (2) Theorem 3 hold for all nontrivial x, then 

Application: The Michaelis-Menten nonlinear regression model is given by: 

Vxi 
Yi = hmm(xj,O) = K + xi , i = 1, 2, ... n, 

where O = (V,K)T, V and K are nonnegative parameters, and xi> 0 for all i. We can apply the 

previous theorem to find the breakdown point of 9L TS and 9LMS for the Michaelis-Menten model. 

It is clear that for any nontrivial, i. e., nonzero, x, condition (1) of the theorem is satisfied. 

Because K > 0, for any x > 0, hmm(x,O) -. oo is equivalent to V -. oo, which, in turn, is equivalent 

to hmm(xj,O) -. oo for all i. Therefore (2) of the theorem holds for all m E {1, ... ,[~D}. Thus 

, '"L TS , '"LMS [jD+l 
en(x, hmm, On ) = en(x, hmm, On )~-n-· (4.1) 

[!!D+1 
Qlearly ~ is the maximum possible breakdown point so equality holds in (4.1). Applying the 
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corollary 

It is interesting that the breakdown point for the Michaelis-Menten model is 1/n larger than for the 

straight-line regression model. The Michaelis-Menten model is constrained to pass through (0,0), and 

this in effect gives an extra "good point". 

Next we consider the class of models with the form 

h(x,6) = g( a + {3x), a E IR, /3 E IR, and 6 = ( a,/3) T 

where g is monotonically increasing in x. (Since both g and y can be multiplied by -1, the results 

presented here hold for montonically decreasing g as well.) Models of this type fit into one of the 

following subclasses: 

Ga; where lim ga(x) = -oo and lim ga(x) = oo if 8a E Ga. 
X-+-00 X-+00 

lim gb(x) = gb > -oo and lim gb(x) = oo if gb E Gb. 
X-+-00 - X-+00 

Ge; where lim gc(x) = ge > -oo and lim gc(x) = ge '< oo if ge E Ge. 
X-+-00 - X-+00 

Note that for gb, we can subtract ~b from y and g, thus we can take ~b = O. Also, for gc, we can 

subtract le from y and divide by (gc - g), thus we can take ~c = 0 and ge = 1. These standardizations 

will be used in the following theorems. 

For models in the class Ga, we can establish the breakdown point exactly by applying the 

corollary to Theorem 3. 

Theorem 4 

For a regression function gain Ga, 

Gb(x) and Gc(x) are classes of models where the breakdown point depends on how good a fit 

exists for the original data - at least there exists upper and lower bounds depending upon the goodness 

of fit. In Theorems 5 and 6, bounds are established for t~(gb,OkMS(Xn)) and t~(gb,Ok TS(Xn)) when 

gbE Gb. 
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Theorem ft 

For a regression function gb in Gb, let M1 be the maximum integer m such that 

• 
Then, if x1, ... ,xn are all distinct, 

(4.2) 

Let M2 be the minimum integer m such that 

2 (6"LMS) 2 
r(k) n > Y(k - m)· (4.3) 

Then 

(4.4) 

Theorem.§. 

For gb in Gb, Let M1 be the maximum integer m such that 

(k+m) ([~]-m) 
inf .E rli)( 6) < _E Yli)· 

(J 1=1 t=l 

Then, if x1, ... ,xn are all distinct, 

Let M2 be the minimum integer m such that 

Then 

, ( 0" L TS( )) M2 en gb, n Xn ~ n· 
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Remark: Consider fixed xi and fJ. As Yi converges to gb(x1,tJ) for i = 1, ... ,n, eventually M1 equals [~D 
- 1 and M2 equals [~Il in Theorems 5 and 6, and therefore 

, ( o"LMS( )) _ , ( g"L TS( )) _ ["] £n gb, n Xn - £n gb, n Xn - 2 · 

Thus, if the uncontaminated data tit well, one expects a high breakdown point. 

In Theorems 7 and 8, we establish bounds for £h(&,8kMS(xn)) and Eh(gc,Uk TS(xn)) when gc is 

in Ge. 

Theorem 1 
Suppose that O < Yi.< 1 for all i and that x1, ... ,xn are all distinct. Let gc be a continuous and strictly 

increasing regression model in Ge. Define zi = min(yj, (1 - yi)) and let M1 be the maximum integer 

m < k-1 such that 

Then 

, ( g" LMS( )) M1 £n gc, n Xn > n · 

Define vf (x) = (Yi - I{xi 2: x})2. Let { vli)(x)} be the ordered values of { vf (~)}. Fix x* and let 

M2(x*) be the smallest integer m < k such that 

Then 

vlk-mix*) < inf r2 m+l ( 8). 
(J (k-[-2-Il> 

"'' (x* g g" LMS) < M2(x*) ~n , c, n _ 2 • 

(4.5) 

Remark: If f 5 Yi 5 1 - £ and lrj(okMS)I < f for some f > 0 and all i, then M1 = [~D - 1 and the 

breakdown point is [~Il / n. 
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Theorem .8. 

Suppose that O < Yi < 1 for all i and that x1, ... ,xn are all distinct. Let gc be a continuous and strictly 

increasing regression model in Ge. Define zi = min(yi, (1 - Yi)) and let M 1 be the maximum integer 

m < k-i such that 

Then 
, ( (JAL TS( )) M1 En gc, n Xn > n · 

Define v?(x) = (Yi - I{xi ~ x})2. Let {vfi)(x)} be the ordered values of {v?(x)}. Fix x* and let 

M2(x*) be the smallest integer m < k such that 

(4.9) 

Then 

£' (x* g (JAL TS) < M2(x*) 
n , c, n _ 2 • 

Remark: As in the remark following Theorem 6, it is possible to est~blish that the exact breakdown 

point is [n/2Il/n whenever M1 = [n/2Il - 1. When M1 < [n/2] - 1, none of Theorems 5-8 can be 

used to fmd the exact breakdown point because taking M1 + 1 = M2 in any of them would lead to a 

contradiction. To see this, suppose that the conditions of Theorem 5 hold and that M1 < [n/2Il - 1. 

Let M1 + 1 = M2 = M. By the first equation in Theorem 5, 

(J \~arfk+M-l)(fJ) < yf[~]-M+l) = yfk-M) (4.10) 

By (4.3) 

2 (fJALMS) 2 
r(k) n > Y(k - M)· (4.11) 

Combining (4.10) and (4.11) 

This cannot happen so M1 + 1 < M2 implying that the breakdown bounds cannot establish the exact 

breakdown point. Considering Theorems 6-8 similarly justifies the remark. 
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5. AN EXAMPLE 

Theorem 4 indicates that when the regression function is unbounded above and below, breakdown 

for both okMS and Dk TS occurs in much the same way that it does in linear regression. Theorems 5 

through 8 make it clear that the breakdown point for high breakdown estimators for bounded 

regression functions depends on the behavior of the data points that are near the boundary of the 

regression function. We will use an artificial data set and the least median of squares estimator to 

illustrate the situation. Suppose we wish to fit the continuous logistic regression model given by 

g (a+ {Jx) - 1 
· c - l+exp(-(a+/Jx)) 

to the following data set: 

x: -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

y: .0219 .0001 .1064 .1738 .3315 .4893 .6899 .8075 .9136 .9999 .9999 .9803 .9998 

Because of the number of points that are near zero or one, transforming to linear regression will induce 

outliers, thus we chose not to transform the data. Using computational methods developed by the 

authors (Stromberg_ 1989) and Theorems 7, we found the breakdown function bounds for nkMS given in 

Figure 5.1. The upper bound on the breakdown function indicates that modifying as few as four points 

will cause breakdown of BkMS. As an example, we will show one way to cause breakdown at x=-0.5. 

(Depicted by the dashed line in Figure 5.1.) Move the first' and fourth data points to (-0.5 - 1, 0). 

Then move the 9th and 12th data points to (-0.5 + l, 1) and let s --+ oo. Note that breakdown was 

achieved in this example by allowing the modified points to remain in [0,1). The least squares 

estimator will break down if one y value approaches infinity, but it requires modifying n-1 points with 

range in [0,1] to break down the least squares estimator. 

11 
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APPENDIX: PROOFS 

Proof of Theorem l 

Claim 1: £ri(Bn) ~ e~(Bn)• 

Suppose that fri( 9n) = W. Then for some x-:p 0, 

where the sup is over DW. This implies 

but ~xT~ < oo so 

This implies claim 1. 

Claim 2: Eri(Bn) S e~(9n)• 

In order to verify the claim, we need only show fri(x,9n) S t:M9n) for some x. Suppose that 
.. m 

e~(On) = if, then 

Thus, for at least one coordinate of 90 (xW), denoted 80j(XW), 

Let x1 be a p-vector of p-1 zeros and one 1 at coordinate j. Note that 

thus c~(x1,00 ) S W, so claim 2 is verified. 

By claims 1 and 2, e~(On) = e~(9n)• 0 
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Proof of Theorem 2 

Fix x* that is nontrivial. To prove the theorem, it suffices to show that 

Define 

, ( * h iiLS( )) _ l En X , ,un Xn - ii· 

J = sup I h(x*,O) - h(x*,ii;5 (xn)) j. 
0ee 

J > 0 since x* is nontrivial. Fix £ in the interval (O,J) and define 

Define 

J(£) = J - e if J < oo 

= I/e J = oo. 

C(e) = { 9: I h(x*,9) - h(x*,ok5(xn) I ~ J(e) }. 

(A.I) 

Note that C(e) is nonempty. Since e is arbitrary, to prove (A.I) it suffices to prove the existence of y* 

with the following property: If we replace one observation, say (x1,y1), by· (x* ,y*), then the resulting 

least-squares estimator, which exists by (3.1), is not in C(e). 

Fix9£ !2: C(e). Either 

(A.2) 

or h(x*,Oe) < h(x*, ok5(xn)) - J(e). Without loss of generality, assume (A.2). Then as y ~ oo, 

inf [y - h(x*,0)] 2 
- [y - h(x*,Ot:}] 2 ~ oo. 

OeC(e) 
(A.3) 

By (A.3) there exists y* such that 

inf [y* - h(x* ,9)]2 

9eC(e) 

> [y* - h(x*,9e)] 2 + E [Yi - h(xj,Oe)]2, 
i=2 

which proves that ok5( {(y*,x*), (y2,x2), ••• ,(Yn,xn)} ) is not in C(e). D 

14 
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Proof of Theorem 3 

For all (J 

(A.4) 

Notice that { rl0 (8): i = 1,2, ... ,k} contains at least (k-m) elements of {rfo(O); i = 1, ... ,n} and 

therefore, since (k - m) + card(rm) = n + 1, at least one element of {r?(8): iE rm}- Therefore, by 

(A.4) and assumption (2) 

lim { M~ oo 
inf { 

8: I h(x,8) I 2:: M 
(A.5) 

This implies that 

remains in a compact set as xH' varies over DH'. But since by assumption (1), 

I ALMS I sup h(x,8) - h(x,80 (xn)) = oo,. 
(J 

so that m points cannot cause breakdown. Therefore, 

e1 (x h 9LMS) > m+l. k n,,n - n (A.6) 

Replacing m~d with E in (A.4) and (A.5), 
1s1sn i=l 

E'(xhOLTS) > m+l n,,n - n· 

Using (A.6), 

E' (x h 9L TS) - ,,,, (x h gLMS) n , , n - ,;.n , , n 0 

Proof of Corollary 1 

Definition of E~(h,Bk TS) and E~(h,Ok Ts). 0 
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Proof of Theorem 4 

We can use the corollary to Theorem 3 to establish the breakdown point for models of the form 

ga(x). For any nontrivial x, (1) of Theorem 3 is satisfied by the definition of ga(x). Since x1, ... ,Xn are 

distinct, if lga(x,O}I . -+ oo, then for all i E {1,2, ... ,n} except possibly one, lga(xi,O}I . -+ oo. This 
J-+oo J-+00 

implies that (2) of Theorem 3 is satisfied with m = [!] - 1. Thus the corollary implies 

tri(ga,Dk TS) = fri(ga,DkM5 ) ~ [!]/n. 

By using one original point, breakdown can be caused by modifying [!D points thus the conclusion of 

the theorem holds. 0 

Proof of Theorem Q 

For any nontrivial fixed x, assume that modifying M1 points will cause breakdown. Thus 

there exists a sequence of modified data sets xW1, xW2 , .•. determining LMS estimators 81,82,• .. such 

that 

Consider the residuals in the modified data sets. Since the xi's are distinct, as s -+ oo at most one of 

the original data points can have zero residual though which point could depend on s. For each of the 

other data points, 1&5 +,85xil is arbitrarily large, so that the squared residual approaches Y? or oo. 

Thus, as s --+ oo, the smallest possible set of ordered squared residuals are M1 +1 zeros, then yf l)' 

yf 2),·. .• Thus, as s -+ oo rf k)( 0) ~ yf [;]-Mi)° But, by assumption, 

and thus altering M1 points can not cause breakdown. Therefore, for all nontrivial fixed x, 

, ( nLMS )) M1 d h , ( nLMS )) tn x,gb,"" (Xn > n, an t us tn gb'"" (Xn , 

proving ( 4.2). 

To prove ( 4.4), first note that by ( 4.3) there exists t > 0 such that 

2 (nLMS) 2 2 
r(k) un > y(k - M2) + t. (A.7) 

16 
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Without loss of generality we can and will assume that xi > 0 for all i, because adding a constant to 

each xi is merely a reparametrization. Now suppose we replace M2 points by {(x{, y{)} where for 

some s, 

x{ = -i and y{ = gb(- s xj), for i = 1, ... , M2• 

Now let o: = (0, -s)T. Then for all larges, we have 

(A.8) 

since M2 residuals from o: are 0, and for x > 0, gb (x,Ot) tends to O as s -+ oo. 

Let 85 be the LMS estimator for the contaminated data, which depends upon s. Now suppose 

that breakdown does not occur as s -+ oo. This implies that as s -+ oo, gb (x{ ,85 ) stays bounded for 

each i=l, ... , M2• Then for any e > 0, 

(A.9) 

because the residuals of (y{, xj) from 85 tend to oo. Since fJLMS minimizes rfk)(O), using (A.7), (A.8), 

and (A.9) we obtain, 

which is a contradiction to the fact that 85 is the LMS estimator for the contaminated data. 

Therefore, breakdown does occur. 

Proof of Theorem ft 

The proof follows by making the following modifications to the proof of Theorem 5: 
2 k 2 

Replace r(k)(O) with .E r(i)(O). 
•=1 

k 
Replace r~k)( 0) with .E r~i)( 0). 

t=l 

k+M1 
Replace rf k+M )( 0) with .~ rfi)( 8). 

1 1=1 
k-M2 

Replace rfk-M )(0) with .E rfi)(O). 2 1=1 
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Proof of Theorem 7 

The lower bound is established by making minor modifications to the proof of the lower bound in 

Theorem 5. 

To establish the upper bound, let x.5 be the solution to 

5 _ ( A LMs( ) aLMs( ) ) · - gc On Xn + f'n Xn x.s · 

Assume that PkM5 (xn) ~ 0. (The case PkM5 (xn) < 0 is analogous and will not be covered.) 

Assume that x* ~ x_ 5, since the other case is analogous. To simplify notation, let M2 = M2(x*). 

M i 
Consider a sequence {xn 2 ' : i = 1, 2, ... } of perturbed data sets and corresponding LMS estimators 

01, 02, •••• Since x* ~ x_5 , breakdown occurs at x* if 

Fix x** < x* so that there are no x's in [x**, x*). 

The sth perturbed data set is constructed as follows: Take M2 of the original observations not 

corresponding to v~1)(x**), ... , v0<-M
2

)(x**). Let [M2 /2Il of their rep"tacements have x's in (x**, x**­

j) and y values equal to zero. Let the remaining replacements have x's in (x**, x** + j) and y values 

equal to 1. 

Now suppose that ass _., oo, 

A {1 if x > x** 
gc(&s + /Jsx) _., 0 if x < x** ' (A.IO) 

which implies breakdown at x in (x**, x_ 5] and in particular at x*. Because gc is continuous and 

stictly increasing from O to 1, one can always find ( &5 , Ps) so that (A.10) holds. 

Then the residuals from 05 tend to Oat the perturbed data points, and therefore 

- (fJA ) 2 ( **) - 2 ( *) r (k) S _., V (k-M2) X - V (k-M2) X ' (A.11) 
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where the equality holds because none of the original x values are in [x**, x*). 

On the other hand, if (A.10) does not hold, then at least [~2] of the absolute residuals will have 

a lim inf of at least 1/2 as s ~ oo. Therefore, since the original y's are in (0, 1), for all large s at 

most [M~+l] of the perturbed points correspond to 

2 A 2 A r (l)( Os), ... , r (k)( Os)• 

Consequently, 

(A.12) 

for larges. 

By (A.11) and (A.12), ( 4.5) implies (A.10) and therefore breakdown at x*. D 

Proof of Theorem .S. 

By making modifications similar to those used to prove Theorem 6, the proof follows from the the 

proof of Theorem 7. 
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