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1. Introduction and Summary. It is the purpose of this paper to examine the 

work of J. L. B. Cooper on the representation of a continuous semigroup 

{St, t ~ 0) of isometries on a separable Hilbert space 1J and to show how it 

can be adapted to give a complete discussion of the representation theory of a 

very general class of continuous parameter, weakly stationary stochastic pro­

cesses which included finite as well as infinite dimensional processes, (12]. 

The possibility of such a connection between Cooper's results and representations 

of stationary processes has been noted by P. Masani and J. Robertson (15). (also 

[14).). However, the approach of these authors has been to reduce the study of 

continuous parameter processes to certain discrete parameter processes associated 

with them. ( [ 15 J,§4). 

The point of view adopted in this paper enables us to dispense with the assoc­

iated discrete parameter process and to give a time domain analysis based directly 

on the stochastic process itself. A significant tool in our analysis is the fund­

amental notion of multiplicity of a stochastic process introduced recently by H. 

Cramer [2] and T. Hida (10], and studied extensively by the former author in 

subsequent papers ((3), (4)). Before we can bring out the relevance of Cooper's 

ideas to our present aims, it is necessary to complete his basic result in two 

essential respects: firstly, to introduce the definition of multiplicity of 

Cooper's representation and secondly to show that it is equal to the dimension 

of the deficiency subspace R..1.,R being the range of the Cayley transform V of 

the maximal symmetric operator H, where iH is the infintesimal generator of {St). 

Cooper's result thus completed and amplified is presented as Theorem 2.1 in 

section 2. 

In sections 3 and 4 we obtain some interesting points of contact with more 

recent work on isometric operators in Hilbert space. We show in section 3 that 

Theorem 2.1 illllllediately yields in a simple and natural way a direct integral 

representation in terms of "differential innovation" subspaces obtained earlier 

by Masani, (14). Indeed, the vector valued integral of (14) turns out to be 

nothing other than the orthagonal sum of N 'stochastic integrals', N being the 

multiplicity of the representation. Section 4 carries the study of the differ­

ential innovation subspaces further. Each such subspace is shown to be a 

"weighted" orthogonal sum of Vn(R) (n=0,1, .•• ) which are the innovation 

subspaces of the associated discrete representation (1.1) of (14). We believe 

that this theorem (Theorem 4.1) puts in better perspective, the intrinsic 

relationship between the given continuous parameter process and its associated 

discrete parameter process. 

In sections 5 and 6 we apply Theorem 2.1 to the semigroup of isometries 

induced by the unitary group of a stationary stochastic process ~t (-co< t < ~) 



--

-

defined on a separable Hausdorff space t and satisfying certain continuity 

requirements (Condition (5.1)). We obtain the Wold decomposition of such a 

process, together with the desired representation for the purely non-determin­

istic component (Theorem 6.3). A consequence of our derivation is the very 

natural and significant role played by the Cramer-Hida multiplicity of the process. 

This multiplicity is, in fact, shown to be equal to the dimension of the defic­

iency subspace of the induced semigroup, which in this case turns out to be 

L
2

(~;0) 8 v-1L
2

(~;0), V being the Cayley transform of the unitary group and 

L
2

(~~0), the past and present up to times O of the process. For finite dimen­

sional stationary processes, this result yields the corollary (proved in (12] 
by a different method) that the multiplicity of the process equals its rank. 

The first time domain analysis of a continuous in quadratic mean, univariate 

stationary process {xt, -~ < t < ~} was given by O. Hanner in a remarkably 

original paper [9]. Recently, with the help of the ideas of multiplicity 

theory we have extended his approach to obtain representations of multivariate 

(including infinite dimensional.) stationary processes (12]. These representa­

tions are seen to be essentially the· same as the ones derived in this paper, 

thus effecting a·synthesis between the ideas of Hanner and the ideas presented 

in this paper. 
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2. Continuous semi-groups of isometries on a Hilbert space. Let {St, t ~ 0) 

be a strongly continuous semi-group of isometries on a separable Hilbert-space 

1_1 with iH as it~ infinitesimal generator. J. L.B. Cooper has shown that H 

is a maximal symmetric operator with negative deficiency index say, a(a f o) [1]. 

He further proved that every such semi-group yields the following decomposition of 

where (i)'800 = Q St (1)) and the restriciton of St toy
00 

is unitary, (ii) each 

the domain of the adjoint H* of Hin such a way that f(i) is chosen from~*' 

2 ~ m ( H* f ( i ) , f ( i ) ) = -1 and (iii) mf(i) is the closed linear subspace consisting 

of all elements of the form J
0
i,(u) d(S;u;f(i)), p€ 12(µ,[0,®)), the Hilbert-

space of complex-valued function a;i· (O,oo), square integrable with re~pett ·:to.:the 

Lebesque measureµ. In the notation of [1] (pp. 837-839) the integral introduced 

above is defined as the limit in norm of Riemann type sums. It will be seen 

below that such an integral is, in fact, nothing but a·'stochastic integral' 

with respect to an orthogonal homogeneous set function (J. Doob (5], Ch. IX, 

e2, 0. Hanner [9]). 

Sincey is separable it is clear from (2.1) that N can at most be equal to Xe,. 
Beyond this, Cooper's method of proof does not give any information about N. 

We shall show that there is an intrinsic connection between N and the semigroup 

{St) o Let V = (H-iI)(H+iif1 be the Cayley transform of H. (It will be often 

convenient to write C(H) for the Cayley transform of H). Let R = V(~) and R , 

the orthogonal complement of Ro We first prove that N = dim(R) = a. The 

essential point involved in showing this is to recognize thati:)H* is generated 

by the ~ubspaces ~ and R {pz, Nagy B. [20], p. 38) and to see that the elements 

f(i)in(2ol) (ii) can actually be chosen from R. In order to bring out the 

significance of this result for weakly stationary stochastic processes we 

introduce a spectral resolution of the identity associated with {St}o Let 

and let " E(t) be the projection onto If ·we .define 
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- "" - ' E(t) = I - E(t) if t ~ O, and= 0 fort< O, then {E(t), -00 < t < 00} is the 

desired resolution of the identity. Our. next step is to show that N is equal to 

the multiplicity of the maximal spectral type ~ with respect to {E(t)}, p 
being of .positive Lebesque type, i.e., pis equivalent to the restriction ~+ 

ofµ on [0,00). (In fact, p is a uniform spectral type, although this fact is· 

not used here). IThese ='fa~:t's, presented in Theorem 2 .1,. enable us to give a com-
l ·._' 

plete discussion of the representa~ion and multiplicity theory of stationary 

processes of the most general kind and to put it in the perspective of the multi­

plicity theory of purely non-deterministic processes developed by H. Cramer ([2], 

[3], [4]) and T. Hida~([lO]). It also enables us essentially to identify the 

multi-dimensional extension of the time domain analysis of Hanner [9] worked out 

by us [12], with the theory developed here. 

We begin by recasting the elements of ~(i) as stochastic int_egr-als. In 

doing so we shall freely use the properties of the integrai.J
0

00 

p(u)d(S;u;/i)) 

obtained by Cooper ([1] p.831.and p.840). For each finite interval [a,b) (0 ~a< b < oo), 

let g{i)[a,b) = 600

I[a,b){u)d{s;u;f{i)), (i.=1,2, ••• ,N) where I[a,b){U) = 1 

if U€[a,b) and= O, otherwise. It can be seen that s(i)[a,b) is a homogeneous 

orthogonal interval function; i.e., for each i and O ~a< b < c, 

(a) s(i)[a,b) + s(i)[b,c) = s(i)[a,c,)' 

(2.3) (~) s(i)[a,b) is orthogonal to s(i)[b,c), and 

_, 

-
--

- (2.4) 

-
-

(r) s s(i)[a,b) = s(i)(a+t,b+t) for all' t ~ o. 
t 

Since L2(µ,[0,oo)) is generated by the family {I[a,b)(u) 0 ~a< b < oo} we have 

'YrG:( i) = the subspace of 1J generated by {g {i) [a, b ), 0 ;:;; a < b < oo). By the 

definition of stochatic integrals ([5]) it then follows that 

' 00 (i) m (i) = { J0 p(u)d·s (u), p€ L2 (µ,[0,co·))) = Ylct(i) 
f. !:, 
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It is convenient to recall at this point some of the terminology of multi~ 

plicity theory fn a separable Hilbert space Let A be any self-adjoint operator 

with the resolution of the identity [E(t)). For any element f in 1j 1et pf 

be the finite measure on Borel sets of the real line {sometimes called the spectral 

function off) given by pf(.6.) = I jE(.6.) fj j2
, where if .6. = [a,ij,E(.6.) = E(b) - E(a). 

The family of all finite measures on the lirle is divided into equivalence classes 

by the re.lat ion of equ_ivalence between measures ( equivalence here means mutual 

absolute continuity). If pis used to denote the equivalence class to which pf 

belongs, p will b~ called the spectral type off with respect to A (or (E(t))). 

pis· also referred to as the spectral type belonging to A. If elements f and g 

are such that pf~ pg they obviously have the same spectral type p. We say that 

the spectral type p dominated the spectral type cr(p·> a or cr < p) if any (and 

thus every) measure belonging to cr is absolutely continuous with respect to any 

measure belonging top. p is called a Lebesque type if every measure belonging 

top is equivalent to the Lebesque measure. panda are said to be independent 

spectral types if for any spectral type v such that v < p and v <awe have v = O. 

An element f is said to be of maximal spectral type p (with respect to A or (E(t))) 

if for every gin~ pg<< pf. The closed linear subspace (E(.6.)f, .6. ranging 

over all finite intervals) is called the cyclic subspace (with respect to A) 

generated by f. If this subspace coincideswith~, f is called a cyclic or gener-
:i 

ating element of A and A is cyclic. Also if f is a generating element of A, 

f is of maximal spectral type and the latter is referred to as the s·pectral type 

of the cyclic operator A. It is to be noted that if A is any self-adjoint 

operator (since His separable) there always exists a maximal spectral type 

belonging to A. Any system of mutually orthogonal cyclic parts of A of type p 

is called an orthogonal system of type p relative to A. An orthogonal system of 

type ·p which cannot be enlarged by adding to it more cyclic parts of A is called 

maximal. It is a known result of this theory that all maxim.al systems of type p 

have the same cardinal number. This uniquely determined cardinal number is defined 
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(2.5) 

to be the multiplicity of the spectral type p with respect to Ao 

Finally, we need the notion of a uniform spectral type. The spectral type p 

is said to be uniform if every non-zero type cr dominated by p has the same multi­

plicity asp itself. Most of the above definitions have been taken from the article 

of A. I. Plessner and V. A. Rohlin [16] to which the reader is referred for further 

details. 

Let us denote by A, the self-adjoint operator on.*(=~ given by the resol­

ution of the identity {E(t)}. Our aim is to show that each mf(i) reduces A 

and that the restriction A(i) of A to~(i) is cyclic with a generating element 

g(i)eR.L. We need the following characteri2ation of RJ..([20], p.38), 

·and the relations due to Cooper([l], p.840 (5.12)(5.13)); 

(Cl) E(t) = sts; for each t ~ O, 

(C2) for peL2 (µ, [O,co)) , 

(c3) sr /
0

00

p(u)d(S;u;f(i)) = f; p(u+t)d(S;u;f(i)). 

Since E[a,b) J; p(u)d(S;u;f(i)) = {E(a) - E(b)} J; p(u)d(S;u;f(i)) 

However, by (c3) and (C2) 

Hence it follows that 

00 (i) b (i) 00 (i) 
(2.6) E[a,bO) JO p(u)d(S;u;f ) = { p(u)d(S;u;f ) = J0 p(u)I[a,b) (u)d(S;u;f ) . 

Lemma 2.1. For each i, there exists an element g(i)eR.L, such that 

~i)=©E[a,b)g(i), where [a,b) is a finite subinterval of the line}. 
f 
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(2. 7) 

(2.8) 

(2.9) 

(2 .10) 

(i) c. 00 -u (i) Proof. Let us define g = v2 J
0 

eds • Clearly from (2.6), 

E[a, b: g( i) = £"' e"' I[a, b) ( u)d(S ;u;f( i)) for -oo < a < b < + co • Also, e"' > O 

for u ~ 0 and L2(µ, [0,oo)) is generated by {I[a,b)( ·), 0 ~ a< b<~} .• Hence 

'17cf(i) =@E[a,b)g(i), -co< a< b < + ~}. To complete the proof of the lemma, 

we now show that H*g(i) = - i/i) so .that by (2.5) g(i\r-. Let f€~?' the domain 

of H. Then lim (t- 1[s;-I]g(i) ,f) exists, since for each t > O 
t~O 

lim (t-1[s~-I]g(i) ,f) = 
t~O 

lim (g(i) ,t-1[st-I]f) =(g(i) ,iHf). 
t~o 

Also, from (c3), 

S* (i) = 2 roo-(u+t) d(S· ·f(i)) - -t (i) t g "O e , u, _ e g • 

Hence 

( g ( i) , iHf) = lim t - l (et - 1 )( g ( i) , f) = -( g ( i) , f) for f €~; :· i. e • , 
t-K) 

g(i)€~* and -i(H*g(i),f) = -(g(i) ,f) for all fe/:)H. 

Thus H*g(i) = -ig(i) and the lemma is proved. 

Lemma 2 .1 immediately implies that A is reduced by m ( i), and that 
f 

where A(i), the restriction. of A to lrl_(i) is cyclic with the generating element 
f 

g(i) = ./2 J;eu d(S;u;/i)). If, further, µ+(.6.) = µ(.6.A[O,oo}) for each .6. (Lebesque) 

measurable on the real line, we get 

+ 
p (1) = p (2) = ••• p (N) = µ . 

g g g 
N 

Since ':£ = ~ Ef) m (.), it follows from Lemma 2 .1 that 
i=l fl. 

X = ~ El) (s(E[a,b)g(i)_.. <a< b <+co}= : · (s"fE[a,b)g(i) 0 ~a< b < -t<>o}, 
i=l i=l 

The last equality in (2.10) is a consequence of the fact that E[a,bI/i) = 0 
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- for -oo <a< b < O. We now state the main theorem of this section. 

Theorem 2.1. Let {St, t ~ O} be a strongly continuous semigroup of isometries 

on a separable Hilbert-space y . Then 

St to 13
00 

is unitary; 

00 (") 

2) 17c.E(i) =(!
0 

p(u)df i (a), pc L2(µ,[o,~))} where ,:< i) . h 
~ is a omogeneous, 

orthogonal interval function and the integral /
0

00 

p(u)ds(i)(u) is a 'stochastic 

integral'; 

3) For each i,(i=l,2, •.. ,N), )Yt. (i) is a cyclic subspace of A with generating 

element g(i)cR.Lsuch that p (i) ! µ+, whereµ+ is the restriction of the Lebesque 
g 

measure µ to [ O ,oo ); 

4) N is equaf to the multiplicity of the common spectral type p of p (i) with 
g 

respect to A; 

5) 
J_ 

Finally, N = the dimension of the deficiency subspace R. 

Proof. Conclusions 1) and 2) follow from (2.1) and (2.4) respectively. 3) is 

precisely Lemma 2.1. To prove 4) observe that from (2.8) and (2.9) (A(i)) is 

an orthogonal system of type p. To show that this is a maximal system of type p, 

we have recourse to an argument based on the ideas of A. I. Plessner and V. A. 

Rohlin [16] and used by us in [12] (Theorem 5.2). 

Let{A;} be an orthogonal system of type p and cardinality M'; i.e., a system 

of orthogonal cyclic restrictions A~ of the operator A, the spectral type of each· 

A:~ being p. According to our definition N is the multiplicity of p if we prove 

M' ~ N. By· the separability of 1Jneither N nor M' can exceed f<.o. There is 

obviously nothing to prove if N =~o· Thus the only case to be considered is 

where N is a finite cardinal. If possible let M' > N. Let~ be a generating 
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(2 .11) 

(2 .12) 

element of A~. Clearly there is no loss of generality in assuming that all these 

elements have the same spectral function p' (i.e., p' = p;; = pgCi)). From (2.10) 

if follows that 

g' - ~ /
0

00 

F -rA. ( u)dE( u)g ( i) where ~ /
00 

IF ( u) I 2dp' ( u) is finite. 
f3 - i=l ....., i=l O if3 

For every finite interval ._.I::::. we obtain 

The left hand side of the above relation is zero if f3 + r and equals p'(!::::.) if f3 = r. 

Hence for u not in a set:Jv;,r of zero p'-measure we have 

N 
r. F4A.(u)Fi (u) = 8A. for all {3, r. 

i=l ....., r ... r 

Since M' is at most }<
0 

:·the set J.f = lJ Jf A. is ~easurable and p·,,• (J/) = O. 
f3, r ... r 

Choosing a fixed point u
0 

in the complement ofJ(°we see that 

If ~ = (F 1f3(u0 ),.o.,FNf3(u0)) the relations (2.11) imply that the af3's are M' 

orthonormal vectors in N dimensional space. Hence M' ~ N. In other words p 

has multiplicity N. 

Proof of 5) Let us consider for 0:(=1,2, ••• ,~) hee!)H =o9 HA m (o:)9 
(o:) f 

_(/\. 00 (o:) 
Then CCTH is dense in Yn:,f(o:) and h = J0 q(O:,l\) ( u)d(S ;u; f ) • It follows that 

(o:) 

the set {q(o: l\.)' he4 _} is dense in L2(µ,[0,oo)) for every o:. It is known 
' (a) 

(see N. Dunford and J. Schwarz [6] p.1258) that (Hh,cp) = (in~,h'Pa)' where 

cp = ~ /
00 

p (u)d(S;u;/o:)),(, )denotes the inner product in L2 (µ,[0,0QI}) and 
o:=1 0 0: . 

iD is the differential operator i -fu,. If, further, cpef, from (2.5) we have, 

(Hh,q>) = (h,H*q>) = {h,-iq>) = < '\x,h,-ipa) • 
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(2o13) 

But since the operator iD is formally self-adjoint ([6], p.1287), 

( 10'\:x,h•Pa) = ( 'b,h' 10Pa) = < 'b,h' -ipa) 

from (2.12). The set {<la h' h€·J9 .. (a})being dense in L2 (µ,[0,oo}), from (2.13) 
, I:. . .' / 

we get d 
du ~a(u) = -pa(u) for every a. The above differential equation has the 

solution in L2 (µ,[0,oo)) given by Pa(u) = acJu. Hence ~eg:L implies that 

N co -u (a) N (a) 
~ = E aa f e d(S;u;f ) = E aa/.ffe g ; i.e., the orthonormal.system 

<l=l O Ct=l 

{g(a), et=l,2, .•• ,N) in R'J.. is complete, giving N = dim(ir-). The proof of Theorem 2.1 

is complete • 

, . 
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(3.1) 

(3.2) 

(3.3) 

3. An alternative derivation of a direct integral representation of P. Masarti. 

It is ~ell-known (P.R. Halmos [8]) that if Vis an isometry on a Hilbert space 

-y onto a subspace R of ~ , then 

k ..L • ~ k 
where for j + k V (r) j_ VJ(R ) and restriction of V to (\ V (1 l) is a 

~o v 
unitary operator. Recently P. Masani [14] has obtained a continuous parameter 

generalization of the decomposition (3.1) as follows~ 

Theorem M ([14], Thm. 6.5). Let {St) (t ~ 0) be a strongly continuous 

semigroup of isometries on~ into~ , iH its infinitesimal generator and V 

the Cayley transform of H. Then for every a, non-negative, 

00 J_ 00 J. 
Sa(~) = { Tdt(R ) + 1J .. • fo Tdt(r)_!_ }Joo; 

where R = V(B), ~ .. = Q St~) and for each a, b (o la a< b) 

1 b b 
Tab= -J; {Sb-Sa-{ Shdh} is an operator-valued measure and { Tdt(R) is defined 

as a direct ihtegral of differential innovation subspaces. 

In this section we deduce Theorem Mas a consequence of Theorem 2.1. In 

fact, Theorem 2.1 even enables us to give an explicit representation for each 

"differential innovation subspace" in terms of the subspaces Vn(R-½. The latter 

result furnishes another generalization of (3.1) and as such we treat it in the 

next section. 

Noting that the subspace mg(i) of the preceding section reduces Sa for 

each a~ O, we can write the representation obtained in Theorem 2.i in the following 

somewhat more general form: 

The elements of are 'stochatic integrals'. Hence, we can rewrite (3.3) as, 
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- (3.4) 

(3.5) 

N 
s ('\.J) = (vlv = E 

a v k::l 

where, .if N(~ dim R) is infinite then the sum of stochastic integrals repres­

enting V converges in the sense of norm. 

For each finite subinterval [a,b}(O ~a< b) let Tab be the bounded linear 

operator on RJ..which transforms the complete orthonormal system (g(k)} in RJ.. 

as follows: 

(k = 1,2, .•• ,N). 

Then Tab is an operator valued measure on intervals which has the following 

properties ([14) p.627(4.2)); 

o:) Tab + T be = Tac (0 ~a< b ~ c) , 

(3.6) 13) 8 T = T tab a+t,b+t ( t ?: 0, 0 ~ a < b) , 

(3.7) 

r) 

We shall show (Theorem 3.l(a)) that Tab is identical with the operator 

valued measure -Tab on R • 
.L Following M.asani we denote by L

2
([a,b],R ), the 

Hilbert-space of all strongly (Lebesque) measurable functions x on [a,b] with 

values x( t) in RJ_ and such that 

.L of L2 ([a,b),R) has the form x(t) 

J: I lx(t)I j2 dt is finite. Since each element x 

= ~ c {t)g{n) where en eL
2

(µ,[a,b]) the 
n=l n 

b 
integral fa Tdt(x(t)) can be naturally defined as follows, 

fb Tdt(x(t)) = ~ Jb c (t)d~(n)(t). 
a 1 a n 

The above definition is unambiguous because the functions cneL
2

(µ,[a,b]) are uniquely 

determined by x. From the properties of stochastic integrals, one can show that 

(3.7) is a "genetalized vector-valued integral" of the kind introduced by Masani[14] 
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and satisfies the following properties: 

{i) (J: Tdt{x(~)), J! Tdt{y{t)) ) = J! {x(t),y(t) )dt, for all x,yeLg({1.aih'}-,rl); 

{ii) J! Tdt(>-.1,_(t)+>-.2y{t)):.: >-. 1 J! Tdt(x(t)) +>-.2 J! dt(y(t)),for-:·.>,.1,\;~)complex numbers; 

(3.8) (iii) Ill! Tdt(x(n)(t)) - l! Tdt(x(t))I I converges to zero as 

(3.9) 

J!I lx(n)(t) - x{t)ll 2 dt tends to zero; 

Let us now define 

Then /~ Tdt(RJ.) is a closed linear subspace of ::j isomorphic to L2([a,b],R-½. 

From (3.4) and definitions (3.7), (3.9) it follows that 

(3.10) 

(3 .11) 

The direct integral representation of Masani is identical with the one obtained 

in (3.19). We show this by proving that Tabr = -Tabr for all a,b(O ~a< b) 

J. lb lb .L b and reR and aTdt{x(t)) = - a Tdt(x{t)) for all xeL2 ([a,b],R~). Since Ja,-dt(R) 

is a subspace the result will then follow • 

. . 'J'heo.r.e.m 3.1 (a) If Tt = Tot is -defined as in--(3.5) then-:Ttx = -Ttx for all 

xeR and t i!i o, .wh8re · T0~ ~ •f<s1;-1-J~shdh); - · 

b) For xeL2([a,b],R°'1 and all a,b (0 ~a< b) 

where J! Tdt{x{t)) is the generalized vector-valued integral due to Masani([l4], 

(5.2)(a)). 

Proof of a) It suffices to prove that Tt(-g{k)) = s(k)[O,t) for each t ~ o 
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" 
and k = 1 , 2 , .•• , N • Now, 

T (k) - 1 (S (k) (k) [f~s dh] (k)) g - ~ g -g - ·h g • 
t v2 t o 

For each t ~ 0 (See Section 2 (c3)) 

(3 .12) ( ( k) ) -- t I 00 
-u ( ( k) ) 1- t I 00 -u ( k) St -g = - ,/ 2e t e d S ;u; f = - -i 2 e t e dE ( u). 

But 

~ t 00 U ( k) t ( k) fn t t U ( k) t ( k) ,-· t ... 
(3.13) ~~ e ft ids (u) = e g -~2 e J0 i df (u) = e g -J2 e t(t), 

where t(t) = J~ iudf(k)(u). 

Since[/~ Shdh](-g(k)) = J~ sh(-g(k))dh = -g(k)f~ ehdh+j2 f~ ehS(h)dh 

(k) t .rn-· t J- ft h = -g (e -1) +~2 e t(t) - 2:: 0 e dt(h), 

we get from (3.12), (3.13) and the definition of Tt that 

(k) 1 t (k) - t (k) (k) t ,-;s t r,;- ft h Tt(-g ) = - -J2 {e g -J2 e t(t)-g . -g (e -1)+~2 e t(t)-~2 0e d t(h)). 

. (k) (k) ft h i.e., -Ttg = Tt(-g ) = 
0 

e ds(h). But 

I If~ ehdt(h)- I~ df(k)(h)I 12 = 0. Hence -TOtg(k)= s(k)[O,t] = TOtg(k)' 

for k = 1,2, ••. ,N. 

Proof of b) It suffices to prove (J.ll)for the functions xeL2([a,b],R) of the 

form x(t) = ~ IJ (t)g(k), where IJ is the indicator function of the subinterval 
1 k k 

Jk of [a,b]. By (3.7), 

lb T (x{t)) =~lb I (t)ds(k)(t) =~I df(k)(t) = !T (g(k)) 
a dt 1 a Jk 1 Jk 1 Jk 

But TJ (g(k)) = TJ (-g(k)) and hence f: Tdt(x(t)),= - ~ TJ (g(k)) = -l Tdt(g(k)). 
k k 1 k a 

(See [14] (5.2)(a)). The proof is complete. 
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(4.1) 

(4.2) 

4 • .A re~Fesentation of Tab in terms of (v°, n ~ 0) • The representation (3.1) 

of Section 3 closely resembles the Wold decomposition of a weakly stationary 

stochastic process into a sum of innovation subspaces and its remote past. Inter­

preting k as the time, vk(r) can be regarded as an innovation subspace of 

In the continuous parameter situation we shall refer to Tab(~) , (0 ~a< b < ~) 

as the differential innovation subspace of the continuous semi-group (St, t ~ O) 

([14], p. 624). The purpose of this section is to express each Tab(R7 in terms 

of the discrete subspace Vn(~) , (n=0,1,2, ••• ). 

From Theorem 2. 1 we recall that H = f $ 'Ylt, ( i) $ ~ J,. where N = dim( R-½ and 

£ J N 

the restriction of St to ;:j.. is unitary, Let us set JE. = t(l)l~(i) . It is well 

known (See, e.g., Sz. Nagy (20], p. 40) that~also has the decomposition 

:l, = ~$~ where m1 =(s{g(i), Vg(i), V2 g(i) , ••• ) where {g(i), i=l,2, ... ,N) 
1 

is the complete orthonormal system in R..L introduced earlier. Since H is 

reduced by Yrc,(i) , 
f 

its Cayley transform V is also reduced by \'Y!:..E(i) and thus 

for each 
i ~(i) =Yrc:· Hence, for each finite subinterval [a,b) (0 ~ a< b) • 

and 

From (4.2) and the fact that (i) (v°g } (n=0,1,2, ••• ) is a complete orthonormal 

system in ~(i) we obtain the following relations: 

- 15 -
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--
-
.... 

-
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.... 
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a) J
00

w(i)(u) ~(i)(u) dµ(u) = 0 
0 n ~ 

(m =I= n) 

(4.3) b) J 00 I / i ) < u) 12dµ < u) = i 
0 n 

(4.4) 

(4.5) 

(4.6) 

c) 
00 

U (i) for J e- w (u)dµ(u) = 0 
0 n 

n ~ 1 

Further the system Cw~i)(u), n=0,1,! •. ) is complete in L2(µ,[0,00)). Let us now 

denote by L(i)*(u) = ~ eu,i,(i)(u). Then L(i)*(u) satisfy the equations: 
n ..., 2 n n 

00 
- 2u ( i )* ( i )* ( ( ) 2 / e L (u) L (u) dµ u) = 8 m,n = 0,1, .•• 

0 n m nm 

In other words, we have 

00 
-u (i)* (i)* J e L (u/2) L (u/2) dµ(u) = $ for all m, n. 

0 
n .m nm 

From the completeness of the system Cw~i)(u), n = 0,1,2, ••• } in L2(µ,[0,00)) 

and the orthogonality relations (4.4) it follows that the functions L(i)*(u/2), 
n 

n=0,1,2,... are complete in the space of functions on [0,00), square integrable 

-u ( ) (i)* with respect to measure e dµ u • Hence for each i=l,2, ••• ,N, L (u/2) = L (u), 
n n 

where L (u) is the nth Laguerre polynomial (G. Sansome (19]). Hence for each i, 
n 

W(i)(u) = 2 e-uL (2u) and 
n n 

Vng(i) = 2 f e-u L (2u) d"t(i)(u.) 
0 n 

From (4.1) and (4.5) we have 

cn(a,b) = (t(i)[a,b), Vng(i)) = 
b 

2 J e-u L (2u)du • 
a n 

- 16 -
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(4.7) 

-

(4.8) 

(4.n _, 

1 b 
Theorem 4.1. (a) If Tab~ .{2(sb - Sa - £ ¾dh) (0 ~ a< b) , 

J._ 
then on R 

co 

- Tb= E C (a,b}Vn 
a n=O n 

where C (a,b) = n 
b u 

2 f e- L (2u) dµ(u) and the operator-valued power series on 
a n 

J_ 
the right-hand side converges in the strong sense on R . 

(b} 
..L co .L 

The differential innovation subspace Tab(R) = t Cn(a,b)v°(R) • 
n=O 

Proof of a). Let us observe that 

T (i) 
abg for every i = 1,2, ... ,N. 

l. 
For any f€R, 

co co co 

11 E Cn(a,b)Vnfl 12 

n=O 
= E lcn(a,b)l 2 I IVnfl 12 =I1£11 2 E lcn(a,b)l 2 

n=O n=O 

But 
co co 2u 
t jc (a,b)j 2 = 2 J e- I 2[·· b)(u) d~(u) , by Parseval's identity. 

n=O n O a, 

Hence from (4.9 it follows that the operator-valued series 
co n 
EC (a,b)V 

n=O n 
co . J. 

converges strongly on R . Clearly the operator t C (a,b)\/1 is linear and 
n=O n 

co 

bounded (See (4. 9)). This along with (4.3) implies that - Tb= EC (a,b)Vn 
a n=O n 

Proof of b) . . From a) we have 
.L 00 _L 

- T b(R) = EC (a,b)v°(R7 • a 
O

n 
n= 

is a subspace, Tab(1t'-) = - Tab(irl) • This completes the proof. 

In the next two sections we shall apply the results hitherto developed to the 

representation and multiplicity theory of weakly stationary stochastic processes. 

The processes considered in Sections 5 and 6 constitute a large class of stochastic 

processes which include multidimentional stationary processes as special cases. 
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5. Stationary stochastic processes and the associated semigroup of isometries. 

We consider the stationary stochastic process (henceforth, S.P.) of the following 

kind. Let t be a Hausdorff space satisfying the second countability axiom •. We 

say that ~t(-cx, < t < co) is a S.P. on t if for each ~et, ~t(~) is a complex­

valued random variable on a probability space (n,P) with mean zero and e,lxt(~)l 2 

finite. The process {~t} {-ex,< t < -+co) is called weakly stationary (or briefly, 

stationary)_ if for all ~,wet and arbitrary real numbers s, t and T, we have 

c.[~t+T<.~)~s+T(w)] =G [~t(~)~s(w)]. The covariance function ~[~t(~)~B(w)] of th_e 

process depends on t-s,~,'V· It should be noted that the stationarity considered 

here is a temporal one and does not inyolve t. Nevertheless, it is sufficiently 

general and useful for our purpose since it includes as special cases many stat­

ionary random processes of practical interest. For instance, if tis a q-dimen­

sional e~clide~n space and ~t(~) is linear with respect to~ for each t, then the 

x -process can be regarded as a q-variate stationary process {See Yu. A. Rozanov[18]). 
-t 

Associated with the ~t-process are the following spaces. (a) The The past 

and.present up to time t of the !t-process, L2(~;t) is the subspace (s{~T(~),~et,T ~t} 

of L
2

(n,P) generated by the random variables {x. (~),~et,T ~ t}. (b) The remote 
-T 

past of the process L2{~;-oo) =f\L2{~;t). {c) The space of the probess L2 (~) 
t 

is the smallest subspace of L2 (n,P) containing L2(!;t) for each t. 

The stationary S.P. considered will be assumed to satisfy the following condition. 

(i) If ~n~~ then e.l!t(~n) - !t(~) 12
~ 0 for each t. 

(5.1) (ti) For each ~et, l~t(~) - ~s (~) 12~ 0 as s ~ t 

(iii) L2{~;-cx,) = {O}. 

It has been proved by us {[12], LeDlllla 2.1) that, under (5.1), L2 (!) is a 

separable Hilbert space. If we define the operator Ut from L2 (~) to L2 (~) by 

Utxs{~) = xs+t(~), ~et ands, t real, then Ut is a unitary operator for each t. 

Under condition 5.l{ii) and stationarity {U -co< t < -1-co} 
t 

- 18 -
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(5 .2) 

group of unit,ry operators. We shall refer to this group as the unitary group of 

the stationary S.P.. Fort~ ·o,, Ut = u_t is reduced by L2(~;0). If St 

denotes the restr~ction of Uf to L2(~;0) then clearly {St)(t ~ 0) is a strongly 

continuous semi-group on isometries on L2(~;0) which we shall call the semi-group 

of isometries associated with the process {~t). In what follows we shall write~ 

in place of L2(~;0). From(5.l)(iii), we have lim St(\l) = 0. The following 
t~ J 

lemma gives the relation of the infinitesimal generator iK of {Ut} to iH, the 

infinitesimal generator of {St}. 

Lemma 5.1. -1) The infinitesimal generator of the unitary semi-group {Ut, t ~ O} 

is -iK; 

2) -iK is reduces by the space 12(~;0); 

3) iH is the restriction of -iK to L2(~;0). 

Proof of 1); By the definition of K we get that for every real t, Ut = exp(itK). 

From this it follows Uf = exp(-it~) fort~ O. Since {Uf, t ~ O} is a strongly 

continuous semi-group of unitary operators, from TheoremXII.6.1([6], p.1243) it 

follows that {Uf} has a unique infinitesimal generator iK0 given by Uf = exp(itK0). 

Hence K
0 

= -K. 

Proof of 2) and 3); For each t > 0 and fe~, by the definition of St we have 

-1 ] -1[ ] t [S -If= t U*-I f. 
t t 

(If fe~, then lim t-1[Ut-I]f exists; i.e.,~f.J:tK("\lJ. 
t--0 ·u 

Also from (5.2) we get, by a similar argument, that /J _K(\~~- For each 

fe~Kf"\'B, -iKf belongs to '8 and equals iHf. Hence it follows that iH is 

the restriction of -iK to 1:l · 
Let W = c{H) and V = c{K). Since -K is reduced by'B and c(-K) = v-1 it 

follows that v-1 is also reduced by "LI. Further, from (2) and (3) of Lemma 5.1, 
•, I 
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l:aJ 

' 
~ 

~-

-~ ~ .. 
F It is easy to ·see that J)-W = J}v-1 () ~ and Wg = v-

1
g for all ge~-l () ~ • 

Hence we have 

Corollary 5.1 (a) v-1 is.reduced by L2 (~;0); ~nd 

(b) W is the restriction of v- 1 to L2(?!,;0). 

a. 
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- 6. Representation of stationary S.P. 's: Multiplicity as generalization of rank. 

The rank of a discrete parameter q-variate stationary S.P. is defined as the rank 

of its q X q•prediction error matrix, [21]. This definition brings out the import­

ance of this notion to prediction theory and to the development of the spectral 

theory of stationary S.P. 's. The definition of the rank of a q-vari4te, continuous 

parameter stationary S.P., however, is less direct. In this case, the rank is 

defined to be the rank of the associated discrete parameter process. Let 

xt(..co < t <®)be a continuous in quadratic mean, univariate stationary S.P., 

and let {Ut} be its unitary group with infinitesimal generator iK. If Vis 

the Cayley transform of K, the S.P. {V~Q' n=0,,±1, ••• } is called the associated 

discrete parameter process [15]. This definition extends easily to infinite 

dimensional stationary S.P. 's (see [12]). Using this extension we were able to 

show that the Dnlltiplicity of an infinite dimensional stationary S.P. is the proper 

generalization of rank. 

In this section we rederive this result and also obtain a representation of 

the purely non-deterministic component of the S.P., basing ourselves on Theorem 2.1 

iand Theorem 6.2 below. The representation and Dnlltiplicity theory of continuous 

parameter stationary S.P. 'sis thus put on an independent footing without any 

appeal to discrete parameter processes. For the proof of Theorem 6.2 we need the 

following result proved by us in [12]. 

Theorem 6.1 · [12], Theorem 5.2). For each t,let E(t) denote the projection 

operator from L
2

(~) onto L2 (~;t)(cf. Section 5). Then {E(t)}(-oo < t < -+oo) 

is a resolution of the identity in L2(~) and its maximal ~pectral type p has 

uniform multiplicity M. 

The fact that the multiplicity is uniform, is of great importance in the 

ensuing argument. For each t ~ O, i(t) = E(O)-E(-t) and E(t) = 0 fort< 0. 

For any f€L2(~) and-®< a< b ~ O, I IE{a,b] E(O)fl 12 = I IE(a,b]fl 12 = I IE[-b,-a)fl 12
• 
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Also for O ~ a~ b < co, I IE(a,b]fl 12 = ~ = I IE[-b,-a)fl 12

• Therefore the spectral 

function pf off with respect to {E{t)) can be regarded as the spectral function 

pf of E(O)f with respect to {E{t)); i.e., every spectral type p _of {E(t)) is a 

spectral type of {E{t)). But pis the maximal spectral type with respect to {E{t)), 

so the p < p. The multiplicity of p being uniform by Theorem 6.1, we have M = multi­

plicity of every spectral type p with respect to {E{t)). In particular, M equals 

the multiplicity of the maximal spectral type p of {E(t)). Hence from Theorem 2.1, M=N • 

.. . Theorem 6.2. The multiplicity M·of a weakly stationary S.P. satisfying (5.1) 

is equal to the dimension of the space L2{~;O)0 v-
1
L2{~;O) where V = c(K), iK 

being the infinitesimal generator of the unitary group {Ut) (-co< t <-+«>)of the process. 

Proof: It has just been shown above that M = N. Fro·~ Theorem 2~1, N = dim{r) = 

dim.(L2 (?!_;O)9WL
2

(~;O)) where Wis as defined in Section 5. Corollary 5.1 shows 

that W is equal to the restrd.ction of v 1 to L2{?!_;O). Therefore M(= N)0-:equals 

dim(L2 (~;o)ev-1
L2(~;O)]. 

If in the definition df a stationary process, tis q-dimensional and ~t ts 

linear on t, then {~t -co< t < co} is a q-variate process {see Rozanov: .(.18]). 

Let us denote the associated discrete process by {x )(n=O,+l, ••• ). The "predic-
-n -

tion error matrix" of £tn} has rank equal to the dimension of L2(~;0)9L2 (~)-1) 

where L2 (~;n) = (S"{~m(~),~et,m=m,n-1, .•• }. But L2 (g_';o) = L2(~;O) and 

v-1L
2

(~;O) = L
2
{r;-1). Thus the rank of the associated discrete process is equal 

to the dim[L2{~;0)0v-1L2 (~;O)]which by Theorem p.2 equals the multiplicity. 

Hence the multiplicity of the S.P. is, in reality the generalization of rank. 

From the above discussion it is easy to derive the ''Wold decomposition" 

of the continuous parameter stationary process {?!_t} on t. Let us define for each k, 

s(k\u-t) = Uts(k)cu){t go) where {s(k)cu), u i1; O} is as defined in section 2 and 

{Ut} is the unitary group of the ~.P •• With this definition {s(k)(u), -co< u < +co) 

{k=l,2, ••. ,N) are stationary processes with stationary orthogonal increments. 

Theorem 6.3. Let {?!,t' -co< t < +x>) be a stationai;-y S.P. on a separable 

Hausdorff space t satisfying {5.l){i)(ii). Then 
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~t(cp) 

, 

M 
= ·E 

n=l 

00 

J0 Fn{q>;u)dgn{u-t)+!t(q>) where 

(i) M:is equal to the multiplicity of {~t), 

(ii) 
M 00 

E lO1F (cp;u)l 2 du is finite for each q> and 
n=l n 

(iii) {!t' ..oo < t < -+co) is a deterministic stationary stochastic process on t; 

i.e. ,LJ:;..oo) = L2 (:) 

(iv) For each (t,cp), (s,v): E.[:t(v), rs(t)l = o with Is(t) 
M 

= E 
n=l 

00 

1
0 

F (t;u)dg (u-s) n n 

~: From Theorems 2.1, 6.1 and 6.2 we get 
. M 00 (n) 

~(cp) = n~l lo Fn(cp;u)dg (u) ~ PL2(~;-co)~t(cp) 

where M is the multiplicity of {~t'-co < t <co·.). But for each t, 

xt(cp) = Utx~(cp) = l l
0

00

F (~;u)ds(n)(u-t)+PL ( . )xt(cp) 
- ~ 1 ~ n 2 ~,-co -

by definition of s(n)_process and the fact that UtPL ( . ) = PL ( . )Ut. 
2 ~,-co 2 !,-co 

Let us define_!t(cp) = PL
2

(x;-co)~t(cp) then {,!t' -oo < t < ,t,oo) is a stationary 

process on t and since L2{~;0) = L2(x;O~L2{~;0) = L2(vo)@L2 (~_;.-oo), 

L2 (!;0) = L2 (~;-oo) = L2{!;-oo) • 

As a corollary we obtain the following representation for finite-dimensional 

processes due to E. G. G ladyshe~ ( [ 71, see also [ 17] • F·or univariat"e processes the 

corresponding result was first given by K. Karhunen [ 13] (aiso '. [9]). 

Corollary 6.3. Let [x1{t), .•• ,x
4
(t))] be a continuous in q.m., weakly 

stationary q-variate process. Then 

M co (n) 
x. ( t) = E 1

0 
Fi ( u) ds ( u-t) + z . ( t) ; 

l. n=l n i 

M co 
where (i) Mis the rank of the process, (ii)~ l0 1Fin(u)l 2 du is finite 

(iii) [(z1{t), ••• ,z
4 

(t))] is a q-variate stationary process orthogonal to 

M 00 (n) . 
[(y1{t), ••• ,y {t))] where y.(t) = E 1

0 
Fi (u)dg (u-t), (i=l, ••• ,q). 

a 1. n=l n 

- 23 -



1-,/ 

-
-
~ 

._ 

-' 

wi 

-
-
'-

wl 

\aid 

,,.; 

~ 

._ 

'-' 

-
\:all 

-

.. ... '"'t. 

~~ Theorem 6.3 and Corollary 9.3 were obtained by us in (12].(See also (11]). 

The method used there was an extension of Hanner~s approach made possible by the 

application of the ideas of multiplicity theory. The proof given here-is directly 

based on Theorem 6.2 and the modified version of Cooper's result given in section 2. 

The essential unity of these two approaches ia thus demonstrated. 
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