
XLISP-STAT
A Statistical Environment Based on

the XLISP Language

by
LukeTiemey

Technical Report No. 512
February 1988

School of Statistics
University of Minnesota

XLISP-ST AT Version 1.0

Table of Contents

Table of Contents .. 1
Preface .. 3

Using tllis Tutorial ... 4
Why nISP-STAT Exists .. 4
Availability . 5
Disclaimer . 5

1. Starting and Finishing. 6
2. In.troduction to Basics ... 8

2.1. Data ... 8
2.2. The Evaluator ... 9

Exercises . 10
3. Elementary Statistical Operations . 11

3.1. FirstSteps ... 11
Exercises . 12

3 .2. Summary Statistics and Plots ... 12
Exercises . 16

3 . 3 . Two Dimensional Plots . 16
Exercises ·. 19

4. Some Useful Shortcuts .. 20
4.1. Getting Help ... 20
4.2. More on the nISP-STAT Top Level ... 22
4.3. Loading Files .. 22
4.4. Saving Your Work ... 22
4.5. The nISP-STAT Editor .. 23

5. More on Genera.ting and Modifying Data ... 24
5 .1. Genera.ting Random Data . 24
5 .2. Genera.ting Systematic Data ... 24
5.3. Forming Subsets and Case Deletion .. 24
5 .5. Combining Several Lists ... 25
5. 6. Modifying Data ... 26
5. 7. User Initialization File .. 27

6. More Elaborate Plots . 28
6.1. Spinning Plots .. 28

Exercises . 30
6.2. Scatterplot Matrices ... 30

Exercises ... 33
6.3. Interacting with Individual Plots .. 34
6. 4. Linked Plots. 34

Exercise ... 35
6 .5. Modifying a Scatter Plot ... 35
6.6. Dynamic Simulations ... 38
6. 7. Customizing Plot Actions .. 40

7. Regression .. 41
Exercises . 4 5

8. Defining Your Own Functions ... 46
9. Adding Your Own Regression Methods .. 47

10. Matrices and Arrays ... 48
11. Reading Data Files . 4 9
12. Nonlinear Regression ... 50

1

l

13. One Way ANOVA ... 52
References .. 53
Appendix: Selected Listing of XLISP-STAT Functions 54

A 1. Arithmetic and Logical Functions .. 54
A 2. Constructing and Modifying Compound Data and Variables 54
A 3. Basic Statistical Functions .. 54
A 4. Plotting Functions ... 54
A 5. Some Useful Array and Linear Algebra Functions 55
A 6. System Functions .. 55
A 7. Some Basic Lisp and XLISP Functions and Special Forms 55

Index .. 57

2

Preface

XLISP-STAT is a statistical environment built on top of the XLISP programming language. This
document is intended to be a tutorial introduction to the basics of XLISP-STAT. The first three
sections contain the information you will need to do elementary statistical calculations and plotting.
The fourth section describes some additional features of the user interface that may be helpful. The
remaining sections deal with more advanced topics, such as interactive plots, regression models,
data editing and writing your own functions. All sections are organized around examples, and most
contain some suggested exercises for the reader.

This document is not intended to be a complete manual. However, a list of many of the
commands available is given in the appendix. Brief help messages on these commands are
available through the interactive help facility described in Section 4 below.

XLISP itself is a full fledged programming language developed by David Betz and placed
in the public domain. It is a dialect of Lisp, most closely related to the Common Lisp dialect.
XLISP also contains some extensions to Lisp to support object oriented programming. These
facilities are used in XLISP-STAT to implement the screen menus, plots and regression models.
Several excellent books on Common Lisp are available. One example is Winston and Horn (1984).
A book on XLISP itself has recently been published, but I have not had a chance to review it.
Documentation on XLISP is includ~ in the source code distribution; a copy is available from me.
Betz has also written a tutorial introduction to XLISP for BYTE, Betz (1985). However, this deals
with version 1.2 which differs somewhat from version 1.6, the basis of XLISP-STAT.

This document deals primarily with Version 1.0 of XLISP-STAT for the Apple Macintosh.
XLISP-STAT is also available for 4.[23]BSD UNIX and for running under suntools on Sun 3
computers. The basic UNIX version supports non-interactive plotting for tektronix terminals via
the gnuplot routines. When running on a Sun 3 console under suntools interactive graphics are also
available.

The Macintosh version of XLISP-ST AT was developed and compiled using the
Lightspeed™ C compiler from Think Technologies, Inc. The Macintosh user interface is based on
Paul DuBois' TransSkel and TransEdit libraries. Most floating point calculations in the Macintosh
version are done with the Microsoft Fortran runtime library. Some of the linear algebra calculations
are done with Fortran code from the LINPACK library. Regression computations are carried out
using the sweep algorithm as described in Weisberg (1982).

This tutorial has borrowed several ideas from Gary Oehlert's "MacAnova User's Guide".
Many of the on-line help entries have been adopted directly or with minor modifications from the
Kyoto Common Lisp System. Most of the examples used in this tutorial have been taken from
Devore and Peck (1986). Many of the functions added to XLISP-STAT were motivated by similar
functions in the S statistical environment described in Becker and Chambers (1984).

The present version of XLISP-STAT seems to run fairly comfortably on a Mac Plus, but is
a bit cramped on a 512K Mac. The program will occasionally bomb with an 10=28 if it gets into a
recursion that is too deep for the Macintosh stack to handle. On a 512K Mac it may also bomb with
and ID=15 if too much memory has been used for the segment loader to be able to bring in a
required code segment

Development of XLISP-STAT was supported in part by the grant of an Apple Macintosh
computer and hard disk from the MinneMac Project at the University of Minnesota, by a single

3

quarter leave granted to the author by the University of Minnesota, and by grant DMS-8705646
from the National Science Foundation.

Using this Tutorial
The best way to learn about a new computer program is usually to use it. You will get most out of
this tutorial if you read it at your computer and work through the examples yourself. To make this
easier the named data sets used in this tutorial have been stored on the file tutorial. lsp in the
Data folder of the Macintosh distribution disk. To read in this file select the Load item on the file
menu. This will bring up an Open File dialog window. Use this dialog to open the Data folder on
the distribution disk. Now select the file tutorial. lsp and press the Open button. The file will
be loaded and some variables will be defined for you.

Why XLISP-STAT Exists
There are three primary reasons behind my decision to produce the XLISP-STAT environment.
The first is to provide a vehicle for experimenting with dynamic graphics and for using dynamic
graphics in instruction. Second, I wanted to be able to experiment with an environment supporting
functional data, such as mean functions in nonlinear regression models and prior and likelihood
functions in Bayesian analyses. Finally, I was interested in exploring the use of object oriented
programming ideas for building and analyzing statistical models. I will discuss each of these points
in a little more detail in the following paragraphs.

The development of high resolution graphical computer displays has made it possible to
consider the use of dynamic graphics for understanding higher-dimensional structure. One of the
earliest examples is the real time rotation of a three dimensional point cloud on a screen - an effort
to use motion to recover a third dimension from a two dimensional display. Other techniques that
have been developed include "brushing" a scatterplot - highlighting points in one plot and seeing
where the corresponding points fall in other plots. A considerable amount of research has been
done in this area, see for example the discussion in Becker and Cleveland (1987). However most
of the software developed to date has been developed on specialized hardware, such as the Tty
5620 terminal or Lisp machines. As a result, very few statisticians have had an opportunity to
experiment with dynamic graphics first hand, and still fewer have had access to an environment
that would allow them to implement dynamic graphics ideas of their own. To the best of my
knowledge there are at this point only two widely available software packages that incorporate
dynamic graphics. They are MacSpinTM and the Data DeskTM, both written for the Apple
Macintosh. Both are fine programs, but both have their drawbacks (especially for use in
instructional labs at an impoverished state institution). MacSpin only provides point cloud rotation
and is not part of an integrated environment. To view a pair of covariates along with the residuals
from a regression, for example, would require a second statistical program to calculate the
regression residuals. The Data Desk does provide an integrated framework, but it does not allow a
user to add new functions. Furthermore, many users have found its heavy reliance on mouse and
menu operations to be rather restrictive. XLISP-ST AT provides at least a partial solution to these
problems. It allows the user to modify a scatter plot with Lisp level functions and provides hooks
for attaching a user defined function to a mouse click within a scatter plot window. Alternatively, it
is easy to add functions written in C to the program. Ideally this should not be necessary; but on
the Macintosh it is often the only way to achieve reasonable execution speed

An integrated environment for statistical calculations and graphics is essential for
developing an understanding of the uses of dynamic graphics in statistics and for developing new
graphical techniques. Such an environment must essentially be a programming language. Its basic
data types must include types that allow groups of numbers - data sets - to be manipulated as entire
objects. But in model-based analyses numerical data are only part of the information being used.
The remainder is the model itself. Sometimes a model is easily characterized by specifying a set of
numbers. A normal linear regression model with i. i. d. errors might be described by the number
of covariates, the coefficients and the error variance. On the other hand, in many cases it is easier

4

to specify a model by specifying a function. To specify a normal nonlinear regression model, for
example, one might specify the mean function. If our language is to allow us to specify this
function within the language itself then the language must support a functional data type with full
rights: It has to be possible to define functions that manipulate functions, return functions, apply
functions to arguments, etc .. The choice I faced·was to define a language from scratch or to use an
existing language. Because of the complexity of issues involved in functional programming I
decided to use a dialect of a well understood functional language, Lisp. The syntax of Lisp is
somewhat unfamiliar to most users of statistical packages, but it is easy to learn and several good
tutorials are available in local book stores. I considered the possibility of using Lisp to write a top
level interface with a more "natural" syntax, but I did not see any way of doing this without
complicating access to some of the more powerful features of Lisp or running into some of the
pitfalls of functional programming. I therefore decided to retain the basic Lisp top level syntax. To
make the manipulation of numerical data sets easier I have redefined the arithmetic operators and
basic numerical functions to work on lists and arrays of data.

Having decided to use Lisp as the basis for my environment XLISP was a natural choice
for several reasons. It has been placed in the public domain by its author, David Betz. It is small
(for a Lisp system), its source code is available in C, and it is easily extensible. Finally, it includes
support for object oriented programming in the form of a tree structured class system and message
passing facility. Object oriented programming has received considerable attention in recent years
and is particularly natural for use in describing and manipulating graphical objects. It may also be
useful for the analysis of statistical data and models. A collection of data and assumptions may be
represented as an "object". The model object can then be examined and modified by sending it
messages. Many different kinds of models will answer similar questions, thus fitting naturally into
an inheritance structure. XLISP-ST AT's implementation of linear and nonlinear regression models
as "objects", with nonlinear regression inheriting many of its methods from linear regression, is a
first, primitive attempt to exploit this programming technique in statistical analysis.

Availability
Source code for XLISP-STAT for Sun 3, 4.[23]BSD UNIX and Macintosh versions and
executables for the Macintosh are available free of charge for non-commercial use. (You should,
however, be prepared to bear the cost of copying, e. g. by supplying a disk or tape and a stamped
mailing envelope).

Disclaimer
XLISP-STAT is an experimental program. It has not been extensively tested. The University of
Minnesota, the School of Statistics, the author of the statistical extensions and the author of XLISP
take no responsibility for losses or damages resulting directly or indirectly from the use of this
program.

5

1. Starting and Finishing

You should have the program XLISP-STAT on a Macintosh disk. XLISP-ST AT needs to have
several files available for it to work properly. These files are:

init.lsp
menus.lsp

edit.lsp
belp.lsp

newstats.lsp
newplot.lsp

regr~ion.Isp
f77.rl

xlisp.belp

Before starting XLISP-ST AT you should make sure that these files are in the same folder as the
XLISP-STAT application.

To start XLISP-STAT double click on its icon. The program will need a little time to start
up and read in the files mentioned above. When XLISP-STAT is ready its command window will
look something like this1:

· • File Edit Command

HLISP-STRT
XLISP version 1.6, Copyright (c) 1985, by David Betz

loading "menus. lsp"
loading "edit.lsp"
loading 11help. lsp"
loading "newstats. lsp"
loading '"newplot.lsp'"

, loading '"regression. lsp"
>

The XLISP-STAT prompt is the final ">" in the window.

Any characters you type while the command window is active will be added to the line after
the final prompt. When you hit a return, XLISP-STAT will try to interpret what you have typed
and will print a response. For example, if you type a 1 and hit return then XLISP-STAT will
respond by simply printing a 1 on the following line and then giving you a new prompt:

> 1
1
>

If you type an expression like (+ 1 2) , then XLISP-ST AT will print the result of evaluating the
expression and give you a new prompt:

> (+ 1 2)

Ian a 512K Mac or in a small Switcher or MultiFinder partition a message warning about memory restrictions will
be printed at this point

6

3
>

As you have probably guessed, this expression means that the numbers 1 and 2 are to be added
together. The next section will give more details on how XLISP-STAT expressions work. In this
tutorial I will always show interactions with the program as I have done here: The ">" prompt will
appear before lines you should type. XLISP-STAT will supply this prompt when it is ready; you
should not type it yourself.

Now that you have seen how to start up XLISP-STAT it is a good idea to make sure you
know how to get out As with many Macintosh programs the easiest way to get out is to choose the
Quit command from the File menu. You can also use the command key shortcut Command-Q, or
you can type the expression

> (exit)

Any one of these methods should cause the program to exit and return you to the Finder.

7

2. Introduction to Basics

Before we can start to use XLISP-ST AT for statistical work we need to learn a little about the kind
of data XLISP-ST AT uses and about how the XLISP-STAT evaluator (or interpreter) works.

2.1. Data
XLISP-STAT works with two kinds of data: simple data and compound data. Simple data, or
atoms, are numbers

logical values

1
-3.14

; an integer
; a floating point number

T ; true
nil ; false

strings (always enclosed in double quotes)

"This is a string 1 2 3 4"

and symbols (used for naming things; see the following section)

X

x12
12x
this-is-a-symbol

Compound data are lists

or vectors

(this is a list with 7 elements)
(+ 1 2 3)
(sqrt 2)

#(this is a vector with 7 elements)
#(1 2 3)

Higher dimensional arrays are another form of compound data; they will be discussed below in
Section 10.

All the examples given above can be typed directly into the command window as they are
shown here. The next section describes what XLISP-STAT will do with these expressions.

2.2. The Evaluator
A session with XLISP-ST AT basically consists of a conversation between you and the evaluator.
The evaluator gives you a prompt, you type an expression, XLISP-ST AT evaluates the
expression, prints the result and gives you another prompt 1

1 It is possible to make a finer distinction between the top level, which prints the prompt and then calls the reader to
read your input, the evaluator to evaluate your input, ant the printer to print the results. For simplicity I will use
evaluator to describe any one of these functions.

8

i
·"'-•

The basic rule to remember is that everything is evaluated. Numbers and strings evaluate to
themselves:

> 1
1
> "Hello"
"Hello"
>

Lists are more complicated. Suppose you type the list { + 1 2 3) at the evaluator. This
list has four elements: the symbol+ followed by the numbers 1, 2 and 3. Here is what happens:

> (+ 1 2 3)
6
>

A list is evaluated as afunction application. The first element is a symbol representing a
function (in this case the symbol + representing the addition function) and the remaining elements
are the arguments. Thus the list in the example above is interpreted to mean "Apply the function +
to the numbers 1, 2 and 3". Actually, the arguments to a function are always evaluated before the
function is applied. In this example the arguments are all numbers and thus evaluate to themselves.
On the other hand, consider

> {+ {* 2 3) 4)
10
>

The evaluator has to evaluate the first argument to the function + before it can apply the function.

Occasionally you may want to tell the evaluator not to evaluate something. For example,
suppose we wanted to get the evaluator to simply print the list { + 1 2) back to us, instead of
evaluating it To do this we need to quote our list:

> {quote (+ 1 2))
{+ 1 2)
>

quote is not a function. It does not obey the rules of function evaluation described above: it's
argument is not evaluated. quote is called a special form - special because it has special rules for
the treatment of its arguments. There are a few other special forms that we will need; I will
introduce them as they are needed. Together with the basic evaluation rules described here these
special forms make up the basics of the LISP language. The special form quote is used so often
that a shorthand notation has been developed:

> '{+ 1 2) ; single quote shorthand

a single quote before the expression you want to quote. This is equivalent to { quote { + 1
2)) • Note that there is no matching quote following the expression.

By the way, the semicolon 11
; " is the LISP comment character. Anything you type after a

semicolon up to the next time you hit a return is ignored by the evaluator.

9

Exercises
For each of the following expressions try to predict what the evaluator will return. Then type them
in, see what happens and try to explain any differences.

1) (+ 3 5 6)
2) (+ (- 1 2) 3)
3) I (+ 3 5 6)
4) I (+ (- 1 2) 3)
5) (+ (- (* 2 3) (/ 6 2)) 7)

Remember, to quit from XLISP-STAT choose Quit from the File menu or type (exit) .

10

.
,,

3. Elementary Statistical Operations

This section introduces some of the basic graphical and numerical statistical operations that are
supported in XLISP-STAT.
3.1. First Steps
Statistical data usually consists of groups of numbers. Exercise 2.11 in Devore and Peck (1986)
for example describes an experiment in which 22 consumers reported the number of times they had
purchased a product during the previous 48 week period. The results are given as a table:

0
9

2
2

5
4

0
0

3
2

1
9

8
3

0
0

3
1

1
9

1
8

To examine this data in XLISP-ST AT we represent it as a list of numbers using the 1 ist function:

> (list O 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)
(0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)
>

Note that the numbers are separated by white space (spaces, tabs or even returns), not commas.

The mean function can be used to compute the average of a list of numbers. We can
combine it with the list function to find the average number of purchases for our sample:

> (mean (list O 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8))
3.227273
>

The median of these numbers can be computed as

>· (median (list O 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8))
2
>

It is of course a nuisance to have to type in the list of 22 numbers every time we want to
compute a statistic for the sample. To avoid having to do this I will give this list a name using the
def special fonnl:

> (def purchases (list O 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9
8))
(0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)
>

1def acts like a special form, rather than a function, since its first argument is not evaluated (otherwise you would
have to quote the symbol). Technically def is a macro, not a special form, but I will not worry about this
distinction in this document. def is closely related to the standard LISP special forms set and set q. The
advantage of using def is that it adds your variable name to a list of defed variables kept in the global variable
•variables*. If you use setq there is no easy way to find variables you have defined, as opposed to ones that are
predefined. def always affects top level symbol bindings, not local bindings. It can not be used in function
definitions to change local bindings.

11

.~

Now the symbol purchases has a value associated with it: its value is our list of 22 numbers. If
you type the symbol purchases at the evaluator then it will find the value of this symbol and
print that value:

> purchases
(0 2 5 0 3 1 8 0 3 1 1 9 2 4 0 2 9 3 0 1 9 8)
>

We can now easily compute various numerical descriptive statistics for this data set:

> (mean purchases)
3.227273
> (median purchases)
2
> (standard-deviation purchases)
3.279544
> (interquartile-range purchases)
3.5
>

XLISP-STAT also supports elementwise arithmetic operations on lists of numbers. For
example, we can add 1 to each of the purchases:

> (+ 1 purchases)
(1 3 6 1 4 2 9 1 4 2 2 10 3 5 1 3 10 4 1 2 10 9)
>
and after adding 1 we can compute the natural logarithms of the results:

> (log (+ 1 purchases))
(0 1.098612 1.791759 0 1.386294 0.6931472 2.197225 0 1.386294
0.6931472 0.6931472 2.302585 1.098612 1.609438 0 1.098612 2.302585
1.386294 0 0.6931472 2.302585 2.197225)
>

Exercises
For each of the following expressions try to predict what the evaluator will return. Then type them
in, see what happens and try to explain any differences.

1) (mean (list 1 2 3))
~ (+ (list 1 2 3) 4)
3) (* (list 1 2 3) (list 4 5 6))

3.2. Summary Statistics and Plots
Table 10 on page 54 of Devore and Peck (1986) gives precipitation levels recorded during the
month of March in the Minneapolis-St. Paul area over a 30 year period. Let's enter these data into
XLISP-STAT with the name precipitation:

12

.. _

;

> (def precipitation
1> (list .77 1.74 .81 1.20 1.95 1.20 .47 1.43 3.37 2.20 3.30
2> 3.09 1.51 2.10 .52 1.62 1.31 .32 .59 .81 2.81 1.87
2> 1.18 1.35 4.75 2.48 .96 1.89 .90 2.05))
(0.77 1.74 0.81 1.2 1.95 1.2 0.47 1.43 3.37 2.2 3.3 3.09 1.51 2.1
0.52 1.62 1.31 0.32 0.59 0.81 2.81 1.87 1.18 1.35 4.75 2.48 0.96
1. 8 9 0. 9 2. 05)
>

In typing this expression I have hit return a few times in order to make the typed expression
easier to read. The evaluator responds by changing its prompt slightly: The numbers before the ">"
represent the number of unmatched left parentheses.

The histogram and boxplot functions can be used to obtain graphical representations
of this data set:

> (histogram precipitation)
#<Object: #2>
> (boxplot precipitation)
#<Object: :fl:2>
>

Each of these commands should cause a window with the appropriate graph to appear on
your screen. The windows should look something like this

Jl I [Lo
I I I I I I

0 2 4 5

and this

13

:o BoH Plot

an •

--
V

,.., .

N.

- -
J_

0 -

...

Note that as each graph appears it becomes the active window. To get XLISP-STAT to
accept further commands you have to click on the XLISP-STAT command window. You will have
to click on the command window between the two commands shown here. The two functions
return results that are printed something like this:

#<Object: #7>

These result will be used later to identify the window containing the plot. For the moment you can
ignore them.

When you have several plot windows open you might want to close the command window
so you can rearrange the plots more easily. You can do this by clicking in the command window's
close box. You can later reopen the command window by selecting the Show XLISP-ST AT item
on the Command menu.

Here are some numerical summaries:

> (mean precipitation)
1. 685
> (median precipitation)
1.47
> (standard-deviation precipitation)
1. 0157
> (interquartile-range precipitation)
1.145
>

The distribution of this data set is somewhat skewed to the right. Notice the separation
between the mean and the median. You might want to try a few simple transformations to see if
you can symmetrize the data. Square root and log transformations can be computed using the
expressions

14

•
\

and
(sqrt precipitation)

(log precipitation).

You should look at plots of the data to see if these transformations do indeed lead to a more
symmetric shape. The means and medians of the transformed data are

> (mean (sqrt precipitation))
1. 243006
> (median (sqrt precipitation))
1. 212323
> (mean (log precipitation))
0.3405517
> (median (log precipitation))
0.384892
>

The boxplot function can also be used to produce parallel boxplots of two or more samples.
It will do so if it is given a list of lists as its argument instead of a single list. As an example, let's
use this function to compare serum total cholesterol values for samples of rural and urban
Guatemalans (see Devore and Peck, 1986, p. 19, Example 3):

> (def urban (list 184 196 217 284 184 236 189 206 179 170 205 190
2> 204 330 217 242 222 242 249 241))
(184 196 217 284 184 236 189 206 179 170 205 190 204 330 217 242
222 242 249 241)
> (def rural (list 166 146 144 204 158 143 158 180 223 194 194 175
2> 171 155 143 145 131 181 148 144 220 129))
(166 146 144 204 158 143 158 180 223 194 194 175 171 155 143 145
131 181 148 144 220 129)
>

The parallel boxplot is obtained by

> (boxplot (list urban rural))
#<Object: #6>
>

and looks like this:

15

~

-D BoH Plot
0
~-

_,....

0
~-

0
~-

--
0 ~.

J_
0
II) • - _L

0
0 --

-

Exercises
The following exercises involve examples and problems from Devore and Peck (1986). The data
sets are in files in the folder Data on the XLISP-ST AT distribution disk and can be read in using
the Load item in the File menu or using the load function (see Section 4.3 below). To use the
Load item on the file menu select this item from the menu. This will bring up an Open File dialog
window. Use this dialog to open the Data folder on the distribution disk. Now select one of the
.lsp files (car-prices. lsp for the first exercise) and press the Open button. The file will be
loaded and some variables will be defined for you. Loading file car-prices. lsp will define
the single variable car-prices. Loading file heating. lsp will define two variables, gas
heat and electric-heat.

1) Devore and Peck (1986), p. 18, Example 2, give advertised prices for a sample of 50 used
Japanese subcompact cars. Obtain some plots and summary statistics for this data. Experiment
with some transformations of the data as well. The data set is called car-pr ices in the file
car-prices. lsp. The prices are given in units of $1000; thus the price 2.39 represents $2390.
The data have been sorted by their leading digit.

2) In Exercise 2.40 Devore and Peck (1986) give heating costs for a sample of apartments heated
by gas and a sample of apartments heated by electricity. Obtain plots and summary statistics for
these samples separately and look at a parallel box plot for the two samples. These data sets are
called gas-heat and electric-heat in the file heating. lsp.

3.3. Two Dimensional Plots
Many single samples are actually collected over time. The precipitation data set used above is an
example of this kind of data. In some cases it is reasonable to assume that the observations are
independent of one another, but in other cases it is not. One way to check the data for some form
of serial correlation or trend is to plot the observations against time, or against the order in which

16

they were obtained. I will use the plot-points function to produce a scatterplot of the
precipitation data versus time. The plot-points function is called as

(plot-points x-variable y-variable)

Oury-variable will be precipitation, the variable we defined earlier. As our x
variable we would like to use a sequence of integers from 1 to 30. We could type these in
ourselves, but there is an easier way. The function iseq, short for integer-sequence, generates a
list of consecutive integers between two specified values. The general form for a call to this
function is

(iseq start end).

To generate the sequence we need we use

(iseq 1 30)

Thus to generate the scatter plot we type

> (plot-points (iseq 1 30) precipitation)
#<Object: #7>
>

and the result will look like this:

=D

II) •

~-

~-

N. 0
0

0

0 0 - .
0 0

0

Scatter Plot

0 0

0

0
0

0
0

0

0
0

0

0

0

0

0
0

0

0

0
0

0 0

0 +-----"T".------r--.-----,.
0 10 20 30

There does not appear to be much of a pattern to the data; an independence assumption may be
reasonable.

17

Sometimes it is easier to see temporal patterns in a plot if the points are connected by lines.
Try the above command with plot-points replaced by plot-lines.

The plot-lines function can also be used to construct graphs of functions. Suppose you
would like a plot of sin(x) from -7t to +1t. The constant 1t is predefined as the variable pi. You can
construct a list of n equally spaced real numbers between a and b using the expression

(rseq ab n).

Thus to draw the plot of sin(x) using 50 equally spaced points type

> (plot-lines (rseq (- pi) pi 50) (sin (rseq (- pi) pi 50)))
#<Object: i7>
>

The plot should look like this:

~1 i Line Plot

-4 -2 0 2 4

Scatterplots are of course particularly useful for examining the relationship between two
numerical observations taken on the same subject. In Exercise 2.33 Devore and Peck (1986) give
data for HC and CO emission recorded for 46 automobiles. The results can be placed in two
variables, he and co and these variable can then be plotted against one another with the plot-points
function:

> (def he (list
2>
2>
2>
2>
(0.5 0.46 0.41

.5 .46 .41 .44 .72 .83 .38 .60 .83 .34

.37 .87 .65 .48 .51 .47 .56 .51 .57 .36

.52 .58 .47 .65 .41 .39 .55 .64 .38 .50

.73 .57 .41 1.02 1.10 .43 .41 .41 .52 .70

.52 .51 .49 .61 .46 .55))

18

.
•.

..
:._

> (def
2>
2>
2>
2>
2>

co (list 5.01 8.60
3.95 4.12
6.02 2.03
7.98 4.10
1.85 2.26
7.47))

4.95 7.51 14.59 11.53 5.21 9.62 15.13
19.00 11.20 3.45 4.10 4.74 5.36 5.69
6.78 6.02 5.22 14.67 4.42 7.24 12.30
12.10 14.97 5.04 3.38 23.53 22.92 3.81
4.29 14.93 6.35 5.79 4.62 8.43 3.99

(5.01 8.6 4.95
> (plot-points he co)
#<Object: #7>
>
Here is the resulting plot:

It)
N.

0
N·

It) - .

0 - .

It) •

Scatter Plot

0

0 0
0 0

0
0

o O O

/e
0 8 &,o ,

oe oo fl
0 0

0 8

00

0

0
0

0 +------..---.---.---. ---.
0.2 0.4 0.6 -· 0.8 1.2

Exercises
1) Draw a graph of the function f(x) = 2x + x2 between-2 and 3.

2) Devore and Peck (1986), Exercise 4.2 gives the age and CPK concentration, a measure of
metabolic activity, recorded for 18 cross country skiers during a relay race. These data are in the
variables age and cpk in the file metabolism. lsp. Plot the data and describe any relationship
you observe between age and CPK concentration.

19

.
\

4. Some Useful Shortcuts

This section describes some additional features of XLISP-STAT that you may find useful.

4.1. Getting Help
On line help is available for many of the functions in XLISP-STAT. As an example, here is how
you would get help for the function median.

> (help 'median)

Args: (x)
Returns the median of the elements of the list or array X.
NIL

Note the quote in front of median. help is itself a function, and its argument is the
symbol representing the function median. To make sure help receives the symbol, not the value
of the symbol, you need to quote the symbol.

If you are not sure about the name of a function you may still be able to get some help.
Suppose you want to find out about functions related to the normal distribution. Most such
functions will have norm as part of their name. The expression

(help* 'norm)

will print the help information for all symbols whose names contain the string "NORM":

> (help* 'norm)

NORM
Sorry, no help available on this item

NORMAL-QUANT

Args (p)
Pis number-data with numbers between 0 and 1. Returns the P-th
quantile(s) of the standard normal distribution.

NORMAL-RAND

Args: (n)
Returns a list of N standard normal random numbers.

NORMAL-CDF

Args: (x)
X are number-data. Returns the values(s) of the standard normal
distribution function at X.

NIL
>

The symbol norm does not have a function definition and thus there is no help available.
The term number-data refers to an item that is either a number or a compound data item whose

20

atoms are numbers. These help functions may take some time: information for many functions is
contained in the file xl i sp . help and has to be read in off the disk.

Let me briefly explain the notation used in the information printed by help to describe the
arguments a function expects1• Most functions expect a fixed set of arguments, described in the
help message by a line like

Args: (x y z)

Some functions can take one or more optional arguments. The arguments for such a
function might be listed as

Args: (x &optional y (z t))

This means that x is required and y and z are optional. If the function is named f, it can be called
as (f x-val), (f x-val y-val) or (f x-val y-val z-val). The list (z t) means
that if z is not supplied it's default value is T. No explicit default value is specified for y; it's
default value is therefore NIL. The arguments must be supplied in the order in which they are
listed. Thus if you want to give the argument z you must also give a value for y.

Another form of optional argument is the keyword argument. The histogram function for
example takes arguments

Args: (data &key (title "Histogram"))

The data argument is required, the tit 1 e argument is an optional keyword argument. The
default title is "Histogram". If you want to create a histogram of the purchases data set used in
Section 3.1 with title "Purchases" use the expression

(histogram purchases :title "Purchases")

Thus to give a value for a keyword argument you give the keyword2 for the argument, a symbol
consisting of a colon followed by the argument name, and then the value for the argument. If a
function can take several keyword arguments then these may be specified in any order, following
the required and optional arguments.

Finally, some functions can take an arbitrary number of arguments. This is denoted by a
line like

Args: (x &rest args)

The argument x is required, and zero or more additional arguments can be supplied.

4.2. More on the XLISP-ST AT Top Level
After you have been working for a while you may want to find out what variables you have
defined (using def). The function variables will produce a listing:

1 The notation used corresponds to the specification of the argument lists in Common Lisp function definitions.
XLISP's argument lists only allow &options, &rest and &aux arguments, not &key arguments. XLISP also does
not allow default values to be specified for optional variables in the argument list. Keyword arguments to XLISP
functions have to be implemented manually using getf on the remaining arguments, collected using &rest.
2Note that the keyword : tit le has not been quoted. Keyword symbols, symbols starting with a colon, are
somewhat special. When a keyword symbol is created its value is set to itself. Thus a keyword symbol effectively
evaluates to itself and does not need to be quoted.

21

> (variables)
co
HC
RURAL
URBAN
PRECIPITATION
PURCHASES
NIL
>

If you are working on a 512K Macintosh you may occasionally want free up some space
by getting rid of some variables you no longer need. You can do this using the undef function:

> (undef 'co)
co
> (variables)
HC
RURAL
URBAN
PRECIPITATION
PURCHASES
NIL
>

Occasionally a calculation will talce too long, or it will appear to have gotten stuck in some
kind of loop. If you want to interrupt the calculation hold down the COMMAND key and the
PERIOD. This should return you to the evaluator.
4.3. Loading Files
The data for the examples and exercises in this tutorial have been stored on files with names ending
in ".lsp". On the XLISP-STAT distribution disk they can be found on the folder Data. Any
variables you save (see the next sub section for details) will also be saved on files of this form.
The data in these files can be read into XLISP-ST AT with the load function. To load a file named
"randu.lsp" type the expression

(load "randu. lsp")

or just

(load "ran du")

If you give load a name that does not end in .lsp then load will add this suffix. Alternatively, you
can use the Load command in the File menu.
4.4. Saving Your Work
If you want to record a session with XLISP-STAT you can do so using the dribble function. The
expression

(dribble "myfile")

starts a recording. All expressions typed by you and all results typed by XLISP-ST AT will be
entered into the file named "myfile". The expression

(dribble)

22

stops the recording. Note that (dribble "myfile") starts a new file by the name "myftle". If
you already have a file by that name its contents will be lost. Thus you can't use dribble to toggle
recording to a single file on and off. This may be changed in a future version of XLISP-STAT.

dribble only records text that is typed, not plots. However, you can use the standard
Macintosh shortcut COMMAND-SHIFT-3 to save a MacPaint image of the current screen. You
can also choose the Copy command from the Edit menu while a plot window is the active window
to save the contents of the plot window to the clip board. You can then open the scrap book from
the apple menu and paste the plot into the scrap book.

Variables you define in XLISP-STAT only exist for the duration of the current session. If
you quit from XLISP-STAT, or the program crashes, your data will be lost. To preserve your data
you can use the save function. This function allows you to save one or more variable into a file.
(Again a new file is created and any existing file by the same name is destroyed). To save the
variable precipitation in a file called "precipitation. lsp" type

(save 'precipitation "precipitation")

Do not add the " . 1 s p " suffix yourself; save will supply it. To save the two variables
precipitation and purchases in the file "examples. lsp" type1

(save ' (purchases precipitation) "examples")

The files "precipitation. lsp" and "examples. lsp" now contain a set of expression
that, when read in with the load command, will recreate the variables precipitation and purchases.
You can look at these ftles with an editor like MacWrite and you can prepare files with your own
data by following these examples. For more information on data files see Section 11 below.

4.5. The XLISP-STAT Editor
The Macintosh version of XLISP-STAT includes a simple editor for preparing data files and
function definitions. To edit an existing file select the Open Edit item on the File menu; to start a
new file select New Edit. Other commands on the File menu can be used to save your file and to
revert back to the saved version. The editor can only handle text files of less than 32K characters,
does not include a search facility and does not handle tabs properly. It does, however, allow you to
select a section of text representing one or more Lisp expressions and have these evaluated. To do
this select the expressions you want to evaluate and then choose Eval Selection from the Edit
menu. The returned values are not available, so this is only useful for producing side effects, such
as defining functions.

11 have used a quoted list ' (purchases precipitation) in this expression to pass the list of symbols to
the save function. A longer alternative would be the expression (list 'purchases 'precipitation).

23

5. More on Generating and Modifying Data

This section briefly summarizes some techniques for generating random and systematic data.

5.1. Generating Random Data
At present XLISP-STAT only has three functions for generating pseudo-random numbers. They
are the functions uniform-rand, normal-rand and cauchy-rand. The expression

(uniform-rand 50)

for example will generate a list of 50 independent uniform random variables. The other two
functions work similarly.

Cdfs for chi-squared, gamma, t, F and Beta distributions are available, but no quantile
functions. These will hopefully be added later. At present there is also no way to reseed the
random number generator. This may be changed in a future version of XLISP-STAT.

5.2. Generating Systematic Data
We have already used the functions iseq and rseq to generate equally spaced sequences of integers
and real numbers. The function repeat is useful for generating sequences with a particular pattern.
The general form of a call to repeat is

(repeat list pattern)

pattern must be either a single number or a list of numbers of the same length as list. If
pattern is a single number then repeat simply repeats list pattern times. For example

> (repeat (list 1 2 3) 2)
(1 2 3 1 2 3)

If pattern is a list then each element of list is repeated the number of times indicated by the
corresponding element of pattern. For example

> (repeat (list 1 2 3) (list 3 2 1))
(1 1 1 2 2 3)

In Section 6.2 below I generate the variables density and variety by typing them in
directly. Using the repeat function we could have generated them like this:

(def density (repeat (repeat (list 1 2 3 4) (list 3 3 3 3)) 3))
(def variety (repeat (list 1 2 3) (list 12 12 12)))

5.3. Forming Subsets and Case Deletion
The select function allows you to select a single element or a group of elements from a list or
vector. For example, ifwe define x by

(def x (list 3 7 5 9 12 3 14 2))

then (select x i) will return the i-th element of x. LISP, like the language C but in contrast to
Fortran, numbers elements of list and vectors starting at zero. Thus the indices for the elements of
x are 0, 1, 2, 3, 4, 5, 6, 7. So

24

• ..

> (select x 0)
3
> (select x 2)
5

To get a group of elements at once we can use a list of indices instead of a single index:

> (select x (list O 2))
(3 5)

If you want to select all elements of x except element 2 you can use the expression
(remove 2 (iseq O 7)) as the second argument to the function select:

> (remove 2 (iseq O 7))
(0 1 3 4 5 6 7)
> (select x (remove 2 (iseq O 7)))
(3 7 9 12 3 14 2)

Another approach is to use the logical function / = (meaning not equal) to tell you which indices are
not equal to 2. The function which can then be used to return a list of all the indices for which the
elements of it's argument are not nil:

> (/= 2 (iseq 0 7))
(T T NIL TT TT T)
> (which (/= 2 (iseq 0 7)))
(0 1 3 4 5 6 7)
> (select x (which (/= 2 (iseq O 7))))
(3 7 9 12 3 14 2)

This approach is a little more cumbersome for deleting an element, but it is more general. The
expression (select x (which (< 3 x))) , for example, returns all elements in x that are
greater than 3:

> (select x (which(< 3 x)))
(7 5 9 12 14)

S.S. Combining Several Lists
At times you may want to combine several short lists into a single longer variable. This can be
done using the append function. For example, if you have three variables x, y and z constructed by
the expressions

(def x (list 1 2 3))
(def y (list 4))
(def z (list 5 6 7 8))

then the expression

(append x y z)

will return the list

(1 2 3 4 5 6 7 8).

25

5.6. Modifying Data
So far when I have asked you to type in a list of numbers I have been assuming that you will type
the list correctly. If you made an error you had-to retype the entire def expression. Since you can
use cut and paste this is really not too serious. However it would be nice to be able to replace the
values in a list after you have typed it in. The setf special form is used for this. Suppose you
would like to change the 12 in the list x used in the previous subsection to 11. The expression

(setf (select x 4) 11)

will make this replacement:

> (setf (select x 4) 11)
11
> X
(3 7 5 9 11 3 14 2)

The general form of set f is

(setf form value)

where form is the expression you would use to select a single element or a group of elements
from x and value is the value you would like that element to have, or the list of the values for the
elements in the group. Thus the expression

(setf (select x (list O 2)) (list 15 16))

changes the values of elements O and 2 to 15 and 16:

> (setf (select x (list O 2)) (list 15 16))
(15 16)
> X

(15 7 16 9 11 3 14 2)

A note of caution is needed here. LISP symbols are merely pointers to different objects.
When you assign a name to an object with the def command you are not producing a new object.
Thus

(def x (list 1 2 3 4))
(def y x)

means that x and y are two different names for the same thing. As a result, if we change an element
of (the object referred to by) x with setf then we are also changing the element of (the object
referred to by) y, since both x and y refer to the same object. If you want to make a copy of x and
store it in y before you make changes to x then you must do so explicitly using, say, the copy-
1 is t function. The expression

(defy (copy-list x))

will make a copy of x and set the value of y to that copy. Now x and y refer to different objects and
changes to x will not affect y.

26

) ..

5.7. User Initialimtion File
After loading in all its program files and before giving you your first prompt XLISP-ST AT looks
to see if there is a file named statinit.lsp in the startup folder. If there is one it will be loaded. You
can use this file to load any data sets you would like to have available or to define functions of your
own. See Section 8 below for more information on defining functions.

27

6. More Elaborate Plots

The plots described so far were designed for exploring the distribution of a single variable and the
relationship among two variables. This section describes some plots and techniques that are useful
for exploring the relationship among three or more variables. The techniques and plots described in
the first four subsections are simple, requiring only simple commands to the evaluator and mouse
actions. The fifth subsection introduces the concept of a plot object and the idea of sending
messages to an object from the command window. These ideas are used to add lines and curves to
scatter plots, and the basic concepts of objects and messages will be used again in the next section
on regression models. The final two subsections are somewhat more advanced. The sixth
subsection shows how Lisp iteration can be used to construct a dynamic simulation - a plot movie,
and the final subsection shows how to attach a function of your own to a mouse click in a scatter
plot window.

6.1. Spinning Plots
If we are interested in exploring the relationship among three variables then it is natural to imagine
constructing a three dimensional scatterplot of the data. Of course we can only see a two
dimensional projection of the plot on a computer screen - any depth that you might be able to
perceive by looking at a wire model of the data is lost. One approach to try to recover some of this
depth perception is to rotate the points around some axis. The spin-plot function allows you to
construct a rotatable three dimensional plot.

As an example let's look at the data of Example 6 on p. 509 of Devore and Peck (1986).
The relationship between a phosphate absorption index and the amount of extractable iron and
aluminum in a sediment is of interest The data can be entered with the expressions

(def iron (list 61 175 111 124 130 173 169 169 160 224 257
333 199))

(def aluminum (list 13 21 24 23 64 38 33 61 39 71 112 88 54))
(def absorption (list 4 18 14 18 26 26 21 30 28 36 65 62 40))

The expression

(spin-plot (list absorption iron aluminum))

produces the plot shown below on the left. The argument to spin-plot is a list of three lists or
vectors, representing the X, Y and Z variables. You can rotate the plot by pointing at one of the
Pitch, Roll or Yaw squares and pressing the mouse button. By rotating the plot you can see that the
points seem to fall close to a plane. The plot on the right shows the data viewed along the plane. A
linear model should describe this data quite well.

28

00Pitch 00 Roll OO vaw 00Pitch 0 0Roll 00 Yaw

As a second example, with the data defined by

(def stren gth (list 1 4 . 7 48.0 25 . 6 10.0 1 6 . 0 1 6.8 20.7 38 . 8
16.9 27.0 1 6 . 0 24.9 7.3 12 . 8))

(def depth (l i st 8 . 9 36 . 6 36.8 6 . 1 6 . 9 6 . 9 7 . 3 8 . 4 6.5 8.0
4.5 9.9 2.9 2 . 0))

(def water (list 31. 5 27 . 0 25 . 9 39 .1 39.2 38 . 3 33 . 9 33 . 8
27 . 9 33 . 1 26 .3 37.8 34 . 6 36 . 4))

(taken from Devore and Peck, 1986, problem 12.18) the expression

(spin-p l ot (list water depth strength)
:variable- labels

(list "Water" "Depth" "Strength"))

produces a plot that can be rotated to look like this:

29

,·

DDPitch DDRoll DDvaw

These data concern samples of thawed permafrost soil. strength is the shear strength, and
water is the percentage water content. depth is the depth at which the sample was taken. The
plot shows that a linear model will not fit well. Devore and Peck (1986) suggest fitting a model
with quadratic terms to this data.

The function spin-plot also accepts the additional keyword argument scale. If scale is
T, the default, then the data are centered at the midranges of the three variables, and all three
variables are scaled to fit the plot. If scale is NIL the data are assumed to be scaled between -1 and
1, and the plot is rotated about the origin. Thus if you want to center your plot at the means of the
variables and scale all observations by the same amount you can use the expression

(spin-plot (list (/ (- water (mean water)) 20)
(/ (- depth (mean depth) 20)

Exercises

(/ (- strength (mean strength) 20))
:scale nil)

1) An Upstate New York business machine company used to include a random number generator
called RANDU in its software library. This generator was supposed to produce numbers that
behaved like i. i. d. uniform random variables. The data set randu in the file r a ndu. lsp in the
Data folder consists of a list of three lists of numbers. These lists are consecutive triples of
numbers produced by RANDU. Use spin-plot to see if you can spot any unusual features in this
sample.

6.2. Scatterplot Matrices
Another approach to graphing a set of variables is to look at a matrix of all possible pairwise
scatterplots of the variables. The scatterplot-matrix function will produce such a plot. The data

(def hardness (list 45 55 61 66 71 71 81 86 53 60 64 68 79 81 56
68 75 83 88 59 71 80 82 89 51 59 65 7 4 81 86))

30

(def tensile-strength (list 162
189
119
144

233 232 231
210 210 196
161 151 165
134 127))

231 237
180 200
151 128

224 219
173 188
161 146

(def abrasion-loss (list 372 206
113 82
155 114

175 154 136
32 228 196

341 340 284

112 55 45 221
128 97 64 249
267 215 148))

were prcxluced in a study of the abrasion loss in robber tyres and the expression

(scatterplot-matrix
(list hardness tensile-strength abrasion-loss)
:variable-labels

(list "Hardness" "Tensile Strength" "Abrasion Loss"))

produces this scatterplot matrix:

89 00 00
0

0 0 0

0 00 0 0 00 O ooo 0 0 0

0 0 0 0
0 00 00 0

Hardness 0 0 0 0
0 0

0 \ 0

0 0 0 0 " 0 0
0 0 oO

0
0 0

0

45 0 0

0 0 O : 237 0
ooo 0

0 0 00

0 0 0 0
Oo

0 0 ' 0 0 O 0
0 Tensile Strength 0

0 0

0 0 0 Oo 0 0 0 O 0

0 0 0 0 0 0 00 0 0
0

oO 0 O
0

0 119 0
C) 0 372

0 0 0 0

0 0
0 0

0 0
00 0 0 0 0 0,

0 0 00
0 Abrasion Loss

0
'9oo 0 0 0

Oo 0 0 0

o: 0 0 0
0 0 0 0

00 0
0

0 0 0 00 32 0 0 0

203
161
148

166 164
219 186

The plot of abrasion-loss against tensile-strength gives you an idea of the
joint variation in these two variables. But hardness varies from point to point as well. To get an
understanding of the relationship among all three variables it would be nice to be able to fix
hardness at various levels and look at the way the plot of abrasion-loss against
tensile-strength changes as you change these levels. You can do this kind of exploration in
the scatterplot matrix by using the two highlighting techniques Selecting and Brushing.

Selecting: Your plot is in the selecting mode when the Brush Plot item in the
Scatmat menu does not have a check mark in front of it. This is the default setting.
In this mode select a point by clicking the mouse on top of it. To select a group of

31

points drag a selection rectangle around the group. If the group does not fit in a
rectangle you can build up your selection by holding down the shift key as you
click or drag. If you click without the shift key any existing selection will be
unselected; when the shift key is down selected points remain selected.

Brushing: You can enter the brushing mode by choosing Brush Plot from the
Scatmat menu. In this mode the Brush Plot item will be checked in the menu and a
dashed rectangle, the brush, will be attached to your cursor. As you move the brush
across the plot points in the brush will be highlighted, points outside of the brush
will not be highlighted. unless they are marked as selected. To select points in the
brushing mode (make their highlighting permanent) hold the mouse button down as
you move the brush.

In the plot below the points within the middle of the Hardness range have been highlighted
using a long, thin brush (you can change the size of your brush using the Resize Brush command
on the Scatmat menu). In the plot of Abrasion Loss against Tensile Strength you can see that the
highlighted points seem to follow a curve. If you want to fit a model to this data this suggests
fitting a model that accounts for this curvature.

89 00 00
0

0 0 0

0 00 0 0 00 O ooo 0 0 0

• • • • • •• •• •
Hardness • • • • • • • \ •

0 0 0 • - 0 0
0 0 oO

0
0 0

0

45 0 0

0 . . : 237 • ••• 0

0 0 00

•• • • Oo
0 0

~

0 • • 0
0 Tensile Strength ~ • •

0 0 0 00 0 0 0 O 0

0 • • 0 0 • •• 0 •
0

oO 0 0
0

0 119 0
0 0 372

0 Cl 0 0

• • • • oc 0

00 • 0 0 • ~
0 Abrasion Loss • o•

it ..
0 • 0 • Oo 0 0 • . : • • • 0 0 • • 00 0

0
0 0 0 00 32 0 0 0

A scatterplot matrix is also useful for examining the relationship between a quantitative
variable and several categorical variables. In the data

(def yield (list 7.9 9.2 10.5 11.2 12.8 13.3 12.1 12.6 14.0 9.1
10.8 12.5 8.1 8.6 10.1 11.5 12.7 13.7 13.7 14.4
15.5 11.3 12.5 14.5 15.3 16.1 17.5 16.6 18.5 19.2
18.0 20.8 21 17.2 18.4 18.9))

(def density (list 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4))

32

. ..
'

(def variety (list 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3))

from Devore and Peck (1986), p. 595, Example 14, the yield of tomato plants is recorded for an
experiment run at four different planting densities and using three different varieties. In the plot
below a long, thin brush has been used to highlight the points in the third variety. If there is no
interaction between the varieties and the density then the shape of the highlighted points should
move approximately in parallel as the brush is moved from one variety to another .

21 • •
• • • • • • • i • .. • 0 0 • • • 0 0 I> 0
0 0 0

i
i;,

0 0 ! 0
0

...
8 ! 8 8 0

7.9 ; 0 ~
! !!,

0 00 0 0 ... 4 I> 0 -.
00 000 0 • • ~ 0 •

<O 000 • •• ~ 0 •

00.0.00 ···-· 1 ~ 0 • •• • • • 7

00 0 c» Cit 00 0 0 0 0 0

1>_0t_@.O/JIIO.O ,,._o_o __ o1

Like spin-plot, the function scatterplot-matrix also accepts the optional
keyword argument scale.

Exercises
1) Devore and Peck (1986), Exercise 13.62, describe an experiment to determine the effect of
oxygen concentration on fermentation end products. Four oxygen concentrations and two types of
sugar were used. The data are

(def ethanol (list .59 .30 .25 .03 .44 .18 .13 .02 .22 .23 .07
.00 .12 .13 .00 .01))

(def oxygen (list 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4))
(def sugar (list 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2))

and are on file oxygen.lsp. Use a scatterplot matrix to examine these data.

2) Use scatterplot matrices to examine the data in the examples and exercises of Section 6.1 above.

33

•,

6.3. Interacting with Individual Plots
Rotating plots and scatterplot matrices are interactive plots. Simple scatter plots also allow some
interaction: If you select the Show Labels option in the Plot menu a label will appear next to a
highlighted point. You can use either the selecting or the brushing mode to highlight points. The
default labels are of the form "Point O", Point l ", (In LISP it is conventional to start
numbering indices with 0, rather than 1.) Most plotting functions allow you to supply a list of case
labels using the :case-labels keyword.

Another option, useful in viewing large data sets is to remove a subset of the points from
your plot. This can be done by selecting the points you want to remove and then choosing Remove
Selection from the plot menu. This option is available for histograms as well.

6.4. Linked Plots
When you brush or select in a scatterplot matrix you are looking at the interaction of a set of
separate scatterplots. 1 You can construct your own set of interacting plots by choosing the Link
View option from the menus of the plots you want to link. For example, using the data from
Exercise 1 in 6.2 we can put ethanol and oxygen in a scatterplot and sugar in a histogram.If
we link these two plots then selecting one of the two sugar groups in the histogram highlights the
corresponding points in the scatterplot:

~
0

"<f:
0

~
0

0

.,W: ::. .:?

Scatter Plot

0 D
8

0

• 8

•
•
2 3 4

If you want to be able to select the points with a particular label you can use the name
list function to generate a window with a list of names in it. This window can be linked with
any plot, and selecting a name in a name-list will then highlight the corresponding points in the
linked plots. You can use the name-list function with a numerical argument; e.g.

1 According to Stuetzle (1987) the idea to link several plots was first suggested by McDonald (1982).

34

....

(name-list 10)

will generate a list with the names "Point 0" , ""."' "Point 9", or you can give it a list of case labels
of your own.

Exercise
Try to use linked scatter plots and histograms on the data in the examples and exercises of Sections
6.1 and 6.2.

6.5. Modifying a Scatter Plot
After producing a scatterplot of a data set we might like to add a line, a regression line for example,
to the plot. As an example, Devore and Peck (1986), p. 105, Example 2, describe a data set
collected to examine the effect of bicycle lanes on drivers and bicyclists. The variables given by

(def travel-space
(list 12.8 12.9 12.9 13.6 14.5 14.6 15.1 17.5

19.5 20.8))
(def separation

(list 5.5 6.2 6.3 7.0 7.8 8.3 7.1 10.0 10.8 11.0))

represent the distance between the cyclist and the roadway center line and the distance between the
cyclist and a passing car, respectively, recorded in ten cases. A regression line fit to these data,
with separation as the dependent variable, has a slope of 0.66 and an intercept of -2.18. Let's
see how to add this line to a scatterplot of the data.

We can use the expression

(plot-points travel-space separation)

to produce a scatterplot of these points. To be able to add a line to the plot, however, we must be
able to refer to it within XLISP-STAT. To accomplish this let's assign the result returned by the
point-plot function to a symbol1:

(def myplot (plot-points travel-space separation))

The result returned by plot-points is an xlisp object .. To use an object you have to
send it messages. This is done using a special syntax of the form

(object message argumentl ...)

I will use the expression

(myplot :abline -2.18 0.66)

to tell myplot to add the graph of a line a+ bx, with a= -2.18 and b = 0.66, to itself. The message
is : abline, the numbers-2.18 and 0.66 are the arguments. Messages are always Lisp keywords;
that is, they are symbols that start with a colon. Before typing in this expression you might want to

1The result returned by plot-points is printed something like #<Object: #5>. This is not the value returned
by the function, just its printed representation • There are several other data types that are printed this way; file
streams, as returned by the openi and openo functions, are one example. For the most part you can ignore these
printed results. There is one unfortunate feature, however: the form f< ... > means that there is no printed form of
this data type that the Lisp reader can understand. As a result, if you forget to give your plot a name you can't cut
and paste the #<Object: #5> into a def expression - you have to redo the plot

35

resize and rearrange the command window so you can see the plot and type commands at the same
time. Once you have resized the command window you can easily switch between the small
window and a full size window by clicking in the zoom box at the right end comer of the window
title bar. The resulting plot looks like this:

0

.. +--------------...... --.....
12 14 16 18 20 22

Scatter plot objects understand a number of other messages. One other message is the
:he 1 p message:

> (myplot :help)
Two Dimensional Plot

To get help on a particular topic for an object m type

(m : help topic) .

TOPIC should be a keyword (i.e. it should start with a colon).

Help is available on the following topics:
:CLASS
:SET-MOUSE
:ABLINE
:ADD-FUNCTION
:ADD-LINES
:ADD-POINTS
:CLEAR
:HELP
:CLASS
:SHOW-WINDOW
:UNLINK
:LINK
:COPY-TO-CLIP
:REDRAW

36

·,

:REMOVE
:REFCON
:IS-SHOWING
:IS-HILITED
:IS-SELECTED
:HELP

The list of topics will be the same for all scatter plots but will be somewhat different for rotating
plots, scatterplot matrices or histograms.1

The : clear message, as its name suggests, clears the plot and allows you to build up a
new plot from scratch. Two other useful messages are : add-points and : add-lines. To
find out how to use them we can use the help message with : add-points or : add-lines as
arguments:

> (myplot :help :add-points)

Message args: (x y &key case-labels)
Adds points given by X and Y to the plot. CASE-LABELS, if
supplied, should be lists of character strings.
NIL

> (myplot :help :add-lines)

Message args: (x y)
Adds connected lines between points given by X and Y to the plot.
NIL

The plot produced above shows some curvature in the data. A regression of separation
on a linear and a quadratic term in travel-space produces estimates of -16.41924 for the
constant, 2.432667 as the coefficient of the linear term and -0.05339121 as the coefficient of the
quadratic term. Let's use the : clear, : add-points and : add-lines messages to change
myplot to show the data along with the fitted quadratic model. First we use the expressions

(def x (rseq 12 22 50))
(defy(+ -16.41924 (* 2.432667 x) (* -0.05339121 (*xx))))

to define x as a grid of 50 equally spaced points between 12 and 22 and y as the fitted response at
these x values. Then the expressions

(myplot : clear)
(myplot :add-points travel-space separation)
(myplot :add-lines x y)

change myplot to look like this:

1Note that the :help message, like all other messages, can only be sent to an object you have created, not to the
function you would use to create it. For example, (plot-points : help) will not work since plot-points
is a function, not an object.

37

.
~-

...

12 14 16 18 20 22

Of course we could have used plot-points to get a new plot and just modified that plot
with : add-lines, but the approach used above allowed us to try out all three messages.

6.6. Dynamic Simulations
As another illustration of what you can do by modifying existing plots let's construct a dynamic
simulation - a movie - to examine the variation in the shape of histograms of samples from a
standard normal distribution. To start off, use the expression

(def h (histogram (normal-rand 20)))

to construct a single histogram and save its plot object ash. The : clear message is available for
histograms as well. As you can see from its help message

> (h :help :clear)

Message args: (&optional draw t)
Clears the plot data. If DRAW is nil the plot is redrawn;
otherwise its current screen image remains unchanged.
NIL

it talces an optional argument. If this argument is nil then the plot will not actually be redrawn until
some other event causes it to be redrawn. This is useful for dynamic simulations. Rearrange and
resize your windows until you can see the histogram window even when the command window is
the active window. Then type the expression1

ldotimes is one of several Lisp looping constructs. It is a special form with the syntax (dotimes (var
count) expr) . The loop is repeated count times, with i bound to 0, 1, ... , count - 1. Other looping
constructs are dolist, do and do*.

38

(dotimes (i 50)
(h :clear nil)
(h :add-points (normal-rand 20)))

This should produce a sequence of 50 histograms, each based on a sample of size 20. By giving
the optional nil argument to the : clear message you have insured that each histogram stays on
the screen until the next one is ready to be drawn. Try the example again without this argument and
see what difference it makes.

Programmed dynamic simulations may provide another approach to viewing the relation
among several variables. As a simple example, suppose we want to examine the relation between
the variables abrasion-loss and hardness introduced in Section 6.2 above. Let's start with
a histogram of abrasion-loss produced by the expression

(def h (histogram abrasion-loss))

The messages : is-selected, : is-hilited and : is-showing are particularly useful for
dynamic simulations. Here is the help information for: is-selected in a histogram:

> (h :help :is-selected)

Message args: (point &optional set)
Without the SET argument returns T if POINT is selected, NIL
otherwise. If set is supplied POINT is selected if set is not NIL,
unselected if SET is NIL.
NIL

Thus you can use this message to determine wh~ther a point is currently selected and also to set its
selection state. Again rearrange the windows so you can see the histogram while typing in the
command window and type the expression

(dolist (i (order hardness))
(h :is-selected it)
(h :is-selected i nil))

The expression (order hardness) produces the list of indices of the ordered values of
hardness. Thus the first element of the result is the index of the smallest element of hardness, the
second element is the index of the second smallest element of hardness, etc .. The loop moves
through each of these indices and selects and unselects the corresponding point.

The result on the screen is very similar to the result of brushing a hardness histogram
linked to an abrasion-loss histogram from left to right. The drawback of this approach is that
it is harder to write an expression than to use a mouse. On the other hand, when brushing with a
mouse you tend to focus your attention on the plot you are brushing, rather than on the other linked
plots. When you run a dynamic simulation you do not have to do anything while the simulation is
running and can therefore concentrate fully on the results.

Like most Lisp systems XLISP-STAT is not ideally suited to real time simulations because
of the need for garbage collection, to reclaim dynamically allocated storage. This is the reason that
the simulations in this section will occasionally pause for a second or two. Nevertheless, in a
simple simulation like the last one each iteration may still be too fast for you to be able to pick up
any pattern. To slow things down you can add some extra busy work to each iteration. For
example, you could use

39

(dolist (i (order hardness))
(h :is-selected it)
(dotimes (i 100))
(h :is-selected i nil))

in place of the previous expression.

6.7. Customizing Plot Actions
This section requires some more advanced Lisp concepts. It is placed here for reference and should
probably be skipped by most readers.

All plot objects allow a user defined action to take place when the plot is redrawn. To install
this action use the :set-redraw message. As a simple example, the expression

(myplot :set-redraw
i' (lambda (plot) (princ "Plot has been redrawn")))

will print a message each time myplot is redrawn. A more interesting use of this feature might be
to recalculate a regression model after a set of points have been removed from a related plot

The scatter plot object is set up to allow you to replace or supplement the default action
taken on a mouse click by an action of your own. To do this you use the message : set-mouse.
As an example, the expression

(myplot :set-mouse i' (lambda (plot x y) (print (list x y))))

installs a mouse action that will print the coordinates at which the mouse was clicked. A more
elaborate use of this feature might be to redraw the plot in a way that depends on where the click
occurred. If the function installed with : set-mouse returns NIL the standard mouse action will
be taken after the function is evaluated; otherwise no further action is taken by the plot

40

.
.:.

7. Regre~ion
Regression models have been implemented using XLISP's object and message sending facilities.
These were introduced above in Section 6.5. You might want to review that section briefly before
reading on.

Let's fit a simple regression model to the bicycle data of Section 6.5. The dependent
variable is separation and the independent variable is travel-space. To form a regression
model use the regression-model function:

> (regression-model travel-space separation)

Least Squares Estimates:

Constant
Variable 0:

R Squared:
Sigma hat:
Number of cases:
Degrees of freedom:

#<Object: :ft6>

-2.182472
0.6603419

0.922901
0.5821083

10
8

(1.056688)
(0.06747931)

The basic syntax for the regression-mcxlel function is

(regression-model x y)

For a simple regression x can be a single list or vector. For a multiple regression x can be a list of
lists or vectors or a matrix. The regression-model function also takes three optional keyword
arguments, : intercept, :print, and : weights. Both : intercept and :print are T by
default. To get a mcxlel without an intercept use the expression

(regression-model x y :intercept nil)

To form a weighted regression model use the expression

(regression-model x y :weights w)

where w is a list or vector of weights the same length as y. The variances of the errors are assumed
to be inversely proportional to the weights w.

The regression-model function prints a very simple summary of the fit model and
returns a model object as its result. To be able to examine the model further assign the returned
model object to a variable using an expression Iikel

(def bikes
(regression-model travel-space separation :print nil))

lRecall from Section 6.5 that #<Object: #5> is the printed representation of the model object returned by
regression-model. Unfortunately you can't cut and paste it into the def, but of course you can cut and paste
the regression-model expression.

41

J_

I have given the keyword argument : pr int ni 1 to suppress the printing of the summary, since
we have already seen it To find out what messages are available use the : help message:

> (bikes :help)
Normal Linear Regression Model

To get help on a particular topic for an object m type

(m :help topic).

TOPIC should be a keyword (i.e .. it should start with a colon).

Help is available on the following topics:
:CLASS
:PLOT-BAYES-RESIDUALS
:PLOT-RESIDUALS
:COEF-STANDARD-ERRORS
:XTXINV
:COEF-ESTIMATES
:R-SQUARED
:SIGMA-HAT
:SUM-OF-SQUARES
:RESIDUALS
:FIT-VALUES
:LEVERAGES
:X-MATRIX
:DF
:NUM-COEFS
:NUM-CASES
:BASIS
:WEIGHTS
:INTERCEPT
:Y
:X
:DISPLAY
:COMPUTE
:SAVE
:HELP

NIL
>

Many of these messages are self explanatory, and many have already been used by the
: display message, which regression-model sends to the new model to print the
summary. As examples let's try the : coef-estimates and : coef-standard-errors
messages1:

10rdinarily the entries in the lists returned by these messages correspond simply to the intercept, if one is included in
the model, followed by the independent variables as they were supplied to regression-model. However, if
degeneracy is detected during computations some variables will not be used in the fit; they will be marked as aliased
in the printed summary. The indices of the variables used can be obtained by the : basis message; the entries in the
list returned by : coef-estimates correspond to the intercept, if appropriate, followed by the coefficients of the
elements in the basis. The messages : x-matrix and : xtxinv are similar in that they use only the variables in
the basis.

42

> (bikes :coef-estimates)
(-2.182472 0.6603419)
> (bikes :coef-standard-errors)
(1.056688 0.06747931)
>

The : plot-residuals message will produce a residual plot. To find out what residuals
are plotted against let's look at the help information:

> (bikes :help :plot-residuals)

Message args: (&optional x-values)
Opens a window with a plot of the residuals. If X-VALUES are not
supplied the fitted values are used. The plot can be linked to
other plots with the link-views function. Returns a plot object.
NIL

Using the expressions

(plot-points travel-space separation)
(bikes :plot-residuals travel-space)

we can construct two plots of the data. By linking the plots we can use the mouse to identify points
in both plots simultaneously. A point that stands out is observation 6 (starting the count at 0, as
usual):

N -
Q -
CD

0

8

0

0

0

•Point 6

0

0
0

"It' +---------.----------
12 14 16 18 20 22

0

0

IQ
0

0

0

0

0 0

0

~
0 0
I

•Point 6
0

-I
12 14 16 18 20 22

The plots both suggest that there is some curvature in the data; this curvature is particularly
pronounced in the residual plot if you ignore observation 6 for the moment. To allow for this
curvature we might try to fit a model with a quadratic term in travel-space:

43

·.
'·

> (def bikes2
1> (regression-model (list travel-space (A travel-space 2))
2> separation))

Least Squares Estimates:

Constant
Variable 0:
Variable 1:

R Squared:
Sigma hat:
Number of cases:
Degrees of freedom:

t<Object: #9>
>

-16.41924
2.432667

-0.05339121

0.9477923
0.5120859.

10
7

(7.848271)
(0. 9719628)

(0. 02922567)

I have used the exponentiation function "A" to compute the square of travel-space. Since I
am now forming a multiple regression model the first argument to regression-model is a list
of the x variables.

You can proceed in many directions from this point. If you want to calculate Cook's
distances for the observations you can first compute internally studentized residuals as

(def studres (/ (bikes2 :residuals)
(* (bikes2 :sigma-hat)

(sqrt (- 1 (bikes2 :leverages))))))

Then Cooks distances are obtained as1

> (* (A studres 2) (/ (bikes2 :leverages) (- 1 (bikes2
:leverages)) 3))
(0.166673 0.00918596 0.03026801 0.01109897 0.009584418 0.1206654
0.581929 0.0460179 0.006404474 0.09400811)

The seventh entry - observation 6, counting from zero - clearly stands out

Another approach to examining residuals for possible outliers is to use the Bayesian
residual plot proposed by Chaloner and Brant (1987), which can be obtained using the message
:plot-bayes-residuals. The expression (bikes2 :plot-bayes-residuals)
produces the plot

1The / function is used here with three arguments. The first argument is divided by the second, and the result is then
divided by the third. Thus the result of the expression (/ 6 3 2) is 1.

44

N

0 l

r.,._ _____________ _
4 6 8 10 12

The bars represent mean ± 2SD of the posterior distribution of the actual realized errors, based on
an improper uniform prior distribution on the regression coefficients. The y axis is in units of
sigma-hat. Thus this plot suggests the probability that point 6 is three or more standard deviations
from the mean is about 3%; the probability that it is at least two standard deviations from the mean
is around 50%.

Exercises
1) Using the variables absorption, iron and aluminum introduced in Section 6.1 above
construct and examine a model with absorption as the dependent variable.

2) Using the variables abrasion-loss, tensile-strength and hardness introduced in
Section 6.2 above construct and examine a model with abrasion-loss as the dependent
variable.

45

'• ·,
'

8. Defining Your Own Functions

You can use the XLISP language to define functions of your own. Many of the functions you have
been using so far are written in this language. The special form used for defining functions is
called de fun. The simplest form of the defun syntax is

(defun fun args expression)

where fun is the symbol you want to use as the function name, args is the list of the symbols you
want to use as arguments and expression is the body of the function. Suppose for example that you
want to define a function to delete a case from a list. This function should take as its arguments the
list and the index of the case you want to delete. The body of the function can be based on either of
the two approaches described in Section 5.3 above. Here is one approach:

(defun delete-case (xi)
(select x

(remove i (iseq O (- (length x) 1)))))

I have used the function length in this definition to determine the length of the argument x. Note
that none of the arguments to defun are quoted: defun is a special form that does not evaluate its
arguments.

Unless the functions you define are very simple you will probably want to define them in a
file and load the file into XLISP-STAT with the load command You can put the functions in the
statinit.lsp file or include in statinit.lsp a load command that will load another file. The version of
XLISP-STAT for the Macintosh includes a simple editor that can be used from within XLISP
STAT. The editor is described briefly in Section 4.5 above.

You can also write functions that send messages to objects. Here is a function that takes
two regression models, assumed to be nested, and computes the F statistic for comparing these
models:

(defun f-statistic (ml m2)
"
Args: (ml m2)
Computes the F statistic for testing model ml within model m2."

(let ((ssl (ml :sum-of-squares))
(dfl (ml : df))
(ss2 (m2 :sum-of-squares))
(df2 (m2 : df)))

(/ (/ (- ssl ss2) {- dfl df2)) (/ ss2 df2))))

This definition uses the Lisp let construct to establish some local variable bindings. The string
following the arguments is a documentation string. When a documentation string is present in a
defun expression defun will install it so the help function will be able to retrieve it.

The discussion in this section has only scratched the surface of what you can do with
functions in the XLISP language. To see more examples you can look at the files that are loaded
when XLISP-STAT starts up. The first file to be loaded is init.lisp, and it forces several other files
to be loaded as well. For more information on options of function definition, macros, etc see the
XLISP documentation and the books on LISP mentioned in the references.

46

'. • 1

'

9. Adding Your Own Regression Methods

XLISP allows you to add your own methods to an existing class of objects and to define new
classes of objects as refinements of existing ones. In this section I will only give some simple
examples to show what is possible. For more details see Betz (1986) and look over the files
regression.Isp and newplot.lsp.

In Section 8 we calculated Cook's distances for a regression model. If you find that you are
doing this very frequently then you might want to define a : cooks-distances method. The
general form of a method definition is

(object-class :answer :new-method arg-list body-list)

object-class is the class your objects belong to. In the case of regression models this class is
called regression-model-class. The argument : new-method is the message you want to
send to invoke your new method; in our case this would be : cooks-distances. The argument
a r g-1 is t is the list of argument names for your method, and bod y-1 is t is a list of
expressions. When the message is received each of these expressions will be evaluated, in the
order in which they appear. Note that the expression used to define a new method in fact sends a
message to an object - a class object. As a result, its arguments will be evaluated. Thus you will
usually have to quote arg-list and body-list.

Here is an expression that will install the : cooks-distances method:

(regression-model-class :answer :cooks-distances '() ' (
"
Message args: ()
Returns Cooks distances for the model."

(let* ((leverages (self :leverages))
(studres (/ (self :residuals)

(* (self :sigma-hat)
(sqrt (- 1 leverages))))))

(* (" studres 2)
(/ leverages (- 1 leverages) (self :num-coefs))))))

I have used a let* construct to define two local variables, studres and leverages. The
let* construct differs from the let construct in that it assigns the variables sequentially rather
than in parallel. Thus the definition of the second variable, st udre s, can use the first variable,
leverages. The symbol self refers to the object that is receiving the message.

47

',

10. Matrices and Arrays
XLISP-STAT includes support for multidimensional arrays patterned after the Common Lisp
standard described in detail in Steele (1984). The functions supported are listed in the appendix.

In addition to the standard Common Lisp array functions XLISP-STAT also includes a
number of linear algebra functions such as inverse, solve and transpose. These functions
are listed in the appendix as well.

At present XLISP-STAT does not provide any facility for nice printing of matrices and
other arrays. An array is printed using the standard Common Lisp format. For example, a 2 by 3
matrix with rows (1 2 3) and (4 5 6) is printed as

#2A ((1 2 3) (4 5 6))

The select function can be used to extract elements or sub arrays from an array. If A is a
two dimensional array then the expression

(select a O 1)

will return the element 1 of the row O of A. The expression

(select a (list O 1) (list O 1))

returns the upper left hand comer of A.

48

,, ..
'}. ,

11. Reading Data Files

The data files we have used so far in this tutorial have been processed to contain XLISP-ST AT
expressions. XLISP-STAT also provides two functions for reading raw data files. The simpler of
the two is read-data-file. The expression

(read-data-file file)

where file is a string representing the name of the data file, returns a list of all the items in the
file. Items can be separated by any amount of white space, but not by commas or other punctuation
marks. Items can be any valid Lisp expressions. In particular they can be numbers, strings or
symbols. The list can then be manipulated into the appropriate form within XLISP-STAT.

The function read-data-columns is provided for reading data files in which each row
represents a case and each column a variable. The expression

(read-data-columns file cols)

will return a list of cols lists, each representing a column of the file. Note that this function
determines the column structure from the value of cols, not from the structure of the file. The
entries of file can be as for read-data-file.

These two functions should be adequate for most purposes. If you have to read a file that
does not fit into the form considered here you can use the raw file handling functions of XLISP

49

',
> ,

12. Nonlinear Regression
XLISP-STAT allows the construction of nonlinear, normal regression models. The present
implementation is experimental (even more experimental than the rest of the program). The
definitions needed for nonlinear regression are .in the file nonl in . 1 sp on the distribution disk.
This file is not loaded automatically at start up; you should load it now, using the Load item on the
File menu or the load command, to carry out the calculations in this section.

As an example, suppose we have data sets x and y given by

(def x (list 2.000 2.000 0.667 0.667 0.400 0.400
0.286 0.286 0.222 0.222 0.200 0.200))

(defy (list 0.0615 0.0527 0.0334 0.0258 0.0138 0.0258
0.0129 0.0183 0.0083 0.0169 0.0129 0.0087))

and we would like to fit a normal nonlinear regression model with the Michaelis-Menten mean
function

to this data. The function f defined by

()
81x

T\X =---
82 + X

(defun f (b) (/ (* (select b 0) x) (+ (select b 1) x)))

will compute the list of mean response values at the points in x for a parameter list b. Using these
definitions, which are contained in the file mikement . lsp in the Data folder of the distribution
disk, we can construct a nonlinear regression model using the nreg-model function:1

> (def mikement (nreg-model #'f y (list 1 1)))

Least Squares Estimates:

Parameter 0:
Parameter 1:

R Squared:
Sigma hat:
Number of cases:
Degrees of freedom:

t<Object: #6>
>

0.1056427
1. 702 69

0.9379065
0.004483935

12
10

(0. 01760005)
(0.4757766)

The function nreg-model requires three arguments, a mean function, a list or vector of
observed response values, and an initial guess for the parameter vector. In addition it can take two
keyword arguments, : epsilon specifies a convergence criterion and : count-limit a limit on

1The expression #' f is short for (function f) and is the standard Lisp method for obtaining the function
definition associated with the symbol f. In XLISP it is not really needed since XLISP symbols do not have distinct
function and value cells.

50

) . - ,.

the number of iterations. By default these values are .001 and 20, respectively. A simple,
unmodified Gauss-Newton algorithm based on numerical derivatives is used for fitting the model.

To see how you can analyze the model further you can send mikement the : help
message. The result is very similar to the help information for a linear regression model. The
reason for this is simple. Nonlinear regression models have been implemented as model objects.
The class structure in XLISP allows new classes to be defined as subclasses of old classes. The
new class inherits all the methods defined for the old class. If some of these methods don't apply
directly to the new class they can be redefined, and new methods that only make sense for the new
class can be added. I have defined nreg-model-class, the class of nonlinear regression models, as a
subclass of the linear regression model class. The internal data, the method for computing
estimates and the method of computing fitted values have been modified, but the other methods
remain unchanged. Once the model has been fit the Jacobian of the mean function at the estimated
parameter values is used as the X matrix. In terms of this definition most of the methods for linear
regression, the methods :coef-standard-errors and : leverages for example, still make
sense, at least as first order asymptotic approximations.

51

.). .
•

13. One Way ANOVA
XLISP-STAT allows the construction of normal one way analysis of variance models. The
definitions needed are in the file oneway. lsp on the distribution disk. This file is not loaded
automatically at start up; you should load it now, using the Load item on the File menu or the
load command, to carry out the calculations in this section.

As an example, suppose we would like to model the data on cholesterol level in rural and
urban Guatemalans, examined in Section 3.2, as a one way ANOV A model. The boxplots we
obtained in Section 3.2 showed that the samples were skewed and the center and spread of the
urban sample were larger than the center and spread of the rural sample. To compensate for these
facts I will use a normal ANOV A model for the logarithms of the data:

> (def cholesterol Coneway-model (list (log urban) (log rural))))

Least Squares Estimates:

Group 0:
Group 1:

R Squared:
Sigma hat:
Number of cases:
Degrees of freedom:

Group Mean Square:
Error Mean Square:

#<Object: #6>

5.377172
5.099592

0.4343646
0.1621069

42
40

0.8071994
0.02627865

(0. 03624821)
(0.03456131)

(1)
(40)

The function oneway-model requires one argument, a list of the lists or vectors
representing the samples for the different groups. The model cholesterol can respond to all
regression messages as well as a few new ones. The new ones are

:BOXPLOTS
:ERROR-MEAN-SQUARE
:ERROR-OF
:GROUP-MEAN-SQUARE
:GROUP-OF
:STANDARD-DEVIATIONS
:GROUPED-DATA

52

References

Becker, Richard A., and Chambers, John M., (1984), "S: an interactive environment for data
analysis and graphics," Wadsworth, Belmont, Ca.

Becker, Richard A., and William S. Cleveland, (1987), "Brushing Scatterplots", Technometrics,
vol. 29, pp. 127-142.

Betz, David, (1985) "An XLISP Tutorial", BYTE, pp 221.

Betz, David, (1986), "XLISP: An experimental object-oriented programming language," Reference
manual for Version 1.6.

Chaloner, Kathryn, and Brant, Rollin, (1987) "A Bayesian approach to outlier detection and
residual analysis", Technical Report, School of Statistics, University of Minnesota.

Devore, J. and Peck, R., (1986), "Statistics, the exploration and analysis of data", West
Publishing Co., St. Paul, Mn.

McDonald, J. A., (1982), "Interactive Graphics for Data Analysis," unpublished Ph.D. thesis,
Stanford University, Department of Statistics.

Oehlert, Gary W., (1987), "MacAnova User's Guide," Technical Report 493, University of
Minnesota.

Steele, Guy L., (1984), "Common Lisp: The Language", Digital Press.

Stuetzle, W., (1987), "Plot windows," J. Amer. Statist. Assoc., vol. 82, pp. 466 - 475.

Weisberg, Sanford, (1982), "MULTREG Users Manual," Technical Report 298, University of
Minnesota.

Winston, Patrick H. and Berthold K. P. Hom, (1984), "LISP", Addison-Wesley, New York.

53

.. ~ ..

Appendix: Selected Listing ofXLISP-STAT Functions
AL Arithmetic and Logical Functions
*
**
+

I
I=
1+
1-
<
<=
=
>
>=
A

ABS
ACOS
ASIN
ATAN
CEILING
cos
EVENP
EXP
EXPT

FLOAT
FLOOR
LOO
LOO-GAMMA
MAX
MIN
MINUSP
ODDP
PLUSP
PROD
R-AND
R-NOT
R-OR
RANDOM
REM
ROUND
SIN
SQRT
TAN
TRUNCATE
ZEROP

A 2. Constructing and Modifying Compound Data and Variables
DEF UNDEF
ISEQ VARIABLES
LIST VECTOR
REPEAT WlilCH
RSEQ
SELECT

A 3. Basic Statistical Functions
BETA-CDF
CAUCHY-CDF
CAUCHY-QUANT
CAUCHY-RAND
CIDSQ-CDF
COVARIANCE-MATRIX
DIFFERENCE
F-CDF
FIVNUM
GAMMA-CDF
INTERQUARTILE-RANGE
lvlEAN
lvlEDIAN
NORMAL-CDF

A 4. Plotting Functions
BOXPLOT
BOXPLOT-X

NORMAL-QUANT
NORMAL-RAND
NREG-MODEL
QUANTILE
READ-DATA-COLUMNS
READ-DATA-FILE
REGRESSION-COEFFICIENTS
REGRESSION-MODEL
ROWS-TO-COLUMNS
SORT
STANDARD-DEVIATION
T-CDF

IIlSTOGRAM
LINK-VIEWS

54

NAME-LIST
PLOT-FUNCTION
PLOT-LINES
PLOT-POINTS
PROBABILITY-PLOT

QUANTILE-PLOT
SCAITERPLOT-MATRIX
SPIN-PLOT
UNLINK-VIEWS

A 5. Some Useful Array and Linear Algebra Functiom
%* INVERSE
ARRAY MAKE-UST
ARRA Y-Dll\IBNSION MAKE-SWEEP-MATRIX
ARRAY-DIMENSIONS MAP-ELE:MENTS
ARRA Y-IN-BOUNDS-P MAPARRA Y
ARRAY-RANK MATMULT
ARRAY-ROW-MAJOR-INDEX MATRIX
ARRAY-TOTAL-SIZE MATRIXP
ARRAYP OUTER-PRODUCT
BIND-COLUMNS ROW-LIST
BIND-ROWS SIZE
COLUMN-LIST SOLVE
COPY-ARRAY SPLIT-LIST
COPY-LIST SUBARRA Y
COPY-VECTOR SUBLIST
CROSS-PRODUCT SUM
DETERMINANT SWEEP-OPERATOR
DIAGONAL TRANSPOSE
IDENTITY-MATRIX VECTORP
INNER-PRODUCT

A 6. System Functions
EXIT
HELP
HELP*
WAD

SAVE
VARIABLES

A 7. Some Basic Lisp and XLISP Functiom and Special Fonm
Except where noted these functions should have a significant subset of their Common Lisp
functionality as defined in Steele (1984).

ALLOC
AND
APPEND
APPLY
APROPOS
APROPOS-LIST
AREF
ASSOC
A1'0M

(XLISP specific) CONS
CONSP
DEBUG

(differs from Common Lisp) DEFMACRO
DEFUN
DO

(XLISP function modified) DO*
OOLIST
OO'IDAES
ELT BOUNDP

C[AD]R
CAR
CASE

up to four A's or D's are supported EQ

CDR
CLOSE
COERCE
COND

EQL
EQUAL
EXPAND

(differs from Common Lisp) FILEP
(differs from Common Lisp) FIRST

FORMAT

(XLISP specific)

55

FUNCALL
FUNCTION
GC
GE'IF
GET-MACRO-CHARACTER
GO
IDENTITY
IF
LAMBDA
LAST
LENGTH
LET
LET*
LIST
LISTP

(XLISP specific)

MAKE-ARRAY (XLISP function modified)
MAP
MAPC
MAPCAN
MAPCAR
MAPCON
MAPL
MAPLIST
MEM
MEMBER
NODEBUG
NOT
NTH
NTHCDR
NULL
NUMBERP
OBJECTP
OPENI
OPENO
OR
PRINl
PRINC
PRINT
PROO
PROO*
PROGi
PROG2
PROGN
PROVIDE
QUOTE
READ
REDUCE
REMOVE
REMOVE-IF
REMOVE-IF-NOT
REQUIRE
REST
RETURN
REVERSE

(XLISP specific)

(XLISP specific)

(XLISP specific)
(XLISP specific)
(XLISP specific)

(differs from Common Lisp)

SECOND
SET
SET-MACRO-CHARACTER
SETF
SE'IQ
STRCAT (XLISP specific)
STRING (differs from Common Lisp)
STRINGP
SUBLIS
SUBST
SYMBOL-NAME
SYMBOL-PLIST
SYMBOL-VALUE
SYMBOLP
TERPRI
TIME
TYPE-OF (differs from Common Lisp)
UNLESS
UNWIND-PROTECT
WHEN
Y-OR-N-P

56

\.

Index
+ 9, 12
/=25
active window 14
arrays 48
atoms 8
Bayesian residual plot 44
boxplot 13
brushing 31
cauchy-rand 24
clip board 23
compound data 8
Cook's distance 44, 47
copy-list 26
def 11
defun46
dribble 22
dynamicsimulation38
elementwise arithmetic 12
evaluator9
exit7
Gauss-Newton algorithm 51
help 20
help* 20
histogram 13
index base 24
inheritance 51
intercept 41
interquartile-range 12
interrupt 22
iseq 17
let46
linkview34
list 8, 11
load 16, 22
log 12
matrices48
mean 11
median 11
message 35
messages

answer47
cooks-distances 47

methods 47
multidimensional array 48
multiple regression 41, 44
name-list 34
nonlinear regression 50
normal-rand 24
meg-model50
object 35
order 39

parallel boxplot 15
pi 18
plot messages

abline 35
add-lines 37
add-points 37
clear37
help 36
is-hilited 39
is-selected 39
is-showing 39
set-mouse 40

plot-lines 18
plot-points 17
quit7

. quote9
read-data-columns 49
read-data-file. 49
reading data 49
regression 41
regression messages

coef-estimates 42
coef-standard-errors 42
plot-bayes-residuals 44
plot-residuals 43

regression-model 41
remove25
repeat24
residual plot 43
residuals 43
rseq 18
save23
scattetplot-matrix 30
select24
selecting 31
setf 26
simple data 8
simple regression 41
spin-plot 28

changing origin 30
sqrt 15
standard-deviation 12
statinit.lsp 27
studentized residuals 44
symbol value 12
undef22
uniform-rand 24
value 12
variables 22
vectors
which25

57

XILII§JP> .. §'Ir A 'Ir
Quick Reference Card

(Apple Macintosh Version 1.0)

Expressions typed to the command window
are evaluated. Numbers and strings evaluate to
themselves. Lists are interpreted as function
applications. For example,

(+ 12)

means apply the function + to the arguments 1 and
2.

Notation and Terminology
In the argument lists for the basic functions

described below

[name]
means NAME is an optional argument,

[:print logical]
means print is an optional keyword argument.

A sequence is a list or a vector. Compound
data is a list or an array.

Special Characters

Single quote. Items following a single quote
are not evaluated. 'x is short for (quote x).

Comment character. Text on a line following
a semicolon is ignored.

Arithmetic Functions
(+ x ...) addition
(- x ...) subtracion

With one argument, negates it (elementwise)
(* x ...) multiplication
(/ x ...) division

With one argument, returns reciprocal(s).

(expt x y) exponentiation
(** x y) exponentiation
(" x y) exponentiation

raises x to the power y (element-wise).

(abs x) absolute value
(exp x) exponential

e raised to the power x (element-wise)
(log x) natural logarithm
(sqrt x) square root

(min x .•.) minimum
(max x ...) maximum

minimum or maximum of all elements.
(sum x ...) sum of elements
(prod x ...) product of elements

(randomx)
If X is an integer generates a uniformly

distributed pseudo-random integer between zero
(inclusive) and X (exclusive). If Xis a list or an
array, returns the list or array of the results of
applying RANDOM to each element of X.

Relational Functions
(= X y) equal?
(/= x y) notequal?
(< X y) increasing?
(<= x y) nondecreasing?
(> X y) decreasing?
(>= x y) nonincreasing?

If x and y are numbers returns T if its
arguments are numerically equal, numerically not
equal, or in the specified order, respectively;
otherwise NIL is returned. If one or both
arguments is compound, returns the results of the
elementwise comparison.

Defining and Constructing Variables
(def var fonn)

VAR is not evaluated and must be a symbol.
Assigns the value of FORM to VAR and adds
VAR to the list of def ed variables.

(iseqn m)
List of consecutive integers from n to m.

(list ...)
Returns a list of its arguments

(repeat vals times) .. 1,
Repeats V ALS as specified by TIMES. " t'J .

Examples: .fl~
(repeat 2 5) returns (2 2 2 2 2)
(repeat '(l 2) 3) returns (1 2 1 2 1 2)
(repeat '(4 5 6) '(1 2 3)) returns (4 5 5 6 6 6)

(rseq ab num)
List of NUM equally spaced points starting at

A and ending at B.

(select xi ...)
X can be a sequence or an array. If X is a list

and I is a single number then the appropriate
element of X is returned. If X is a list and I is a
list of numbers then the sublist of the
corresponding elements is returned. SELECT can
be used in setf.

(setf form val)
Modifies lists and arrays. FORM can be a

select expression and VAL is the new result this
expression should return.

(whichx)
List of the indices where X is not NIL.

Probability Distributions
Cumulative Distribution Functions:

(beta-cdf X alpha beta)
(cauchy-cdf x)
(chisq-cdf X elf)
(f-cdf x numerator-df denominator-elf)
(gamma-cdf x alpha)
(normal-cdf x)
(t-cdfxdf)

X is a number or a sequence of numbers.
Additional parameters should either be single
numbers or sequences the same length as X.

Quantile Functions:
(cauchy-quant p)
(normal-quant p)

P is a number between O and 1 or a sequence
or array of such numbers.

Random Number Generators:
(cauchy-rand n)
(normal-rand n)
(unifonn-rand n)

Generate a list of N numbers from the
distribution.

Summary Statistics
(interquartile-range x)
(meanx)
(medianx)

(quantile x p)
X is a list or array of numbers and Pa number

between O and 1 or a sequence of such numbers.
Returns the p-th quantile(s) of X

(standard-deviation x)

Sorting Functions
(order x)
(rank x)
(sort x)

Plotting Functions
(boxplot data [:title string])

DATA is a sequence, a list of sequences or a
matrix.

(histogram data [:title string])
DATA is a sequence.

(name-list names [:title string])
NAMES is a number or a list of strings.

(plot-lines x y [:title string [:axis-labels strings]])
X and Y are sequences of equal length.

(plot-points x y [:title string
[:axis-labels strings
[:case-labels strings]]])

X and Y are sequences of equal length.

(scattetplot-matrix data [:title string
[:variable-labels strings
[:case-labels strings
[:scale logical]]]])

DAT A is a list of two or more sequences of
equal length.

(spin-plot data [:title string
[:variable-labels strings
[:case-labels strings
[:scale logical]]]])

DATA is a list of three sequences of equal
length.

Statistical Models
(nreg-model mean-function y

[:epsilon number
[:count-limit number
[:print logical]]])

Nonlinear regression model with normal
errors. MEAN-FUNCTION takes parameter
sequence and returns the mean sequence. Y is the
observed response and THETA is an initial guess
for the parameter sequence.

(oneway-model data [:print logical])
Analysis of variance model with nonnal

errors. DAT A is a list of sequences.

(regression-model x y [:intercept logical
[:print logical
[:weights sequence]]])

Linear regression model with normal errors.
For a simple regression X is a sequence of
numbers. For a multiple regression X is a list of
the independent variables or the X matrix. The
sequence Y is the dependent variable. If WEIGHTS
is supplied it should be a sequence the same length
as Y; error variances are assumed to be inversely
proportional to WEIGHTS. Returns a regression
mode~ object To examine the model further assign
the result to a variable and send it messages.
Example:
(data are in file absorbtion.lsp in the Da1a folder)
> (def m (regression-model (list iron aluminum)
2> absorbtion))
> (m :help)
> (m :plot-residuals)

Objects
Plotting functions and model functions return
objects. To examine these further assign them to a
symbol and send them messages. To find out what
messages an object can respond to send it the help

.. ,
message. For example, if myplot is a plot ob\.V ·
use the expression (myplot :help). r, ._ . · /

,~/"IQ. .·

Other Functions and Special Forms \'
(defun name lambda-list [doc] fonn ...)

Defines a function as the global definition of
the symbol NAME.

(map-elements function data ...)
FUNCTION must take as many arguments as

there are DATA arguments supplied. DATA
arguments must either all be sequences or all be
arrays of the same shape. Returns the result of
applying FUNCTION elementwise to the DATA
arguments.

System Functions
(dribble [string])

With an argument, dribble causes all further
input and output to be saved in the file named
STRING. Without an argument, stops dribbling.

(exit)
Quits from the program. You can also exit by

selecting Quit from the File menu.

(help [symbol])
Prints the documentation associated with

SYMBOL.

(help* string)
Prints the documentation associated with

those symbols whose print names contain
STRING as a substring. STRING may be a
symbol, in which case the print-name of that
symbol is used.

(load filename [verbose-flag [print-flag]])
Loads the file named by FILENAME into

XLISP. You can also use Load on theFile menu.

(save vars file-name-root)
VARS is a symbol or a list of symbols.

FILE-NAME-ROOT is a string (or a symbol
whose print name is used) not ending in .lsp. The
VARS and their current values are written to the
file FILE-NAME-ROOT.lsp in a form suitable for
use with the load command.

