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SUMMARY

De Finetti's “Fundamental Theorem of Probability” is reformulated as a
computable linear programming problem. The theorem is substantially
extended, and shown to have fundamental implications for the theory and
practice of statistics. It supports an operational meaning for the partial
assertion of prevision via asserted bounds. We extend the theorem to
apply to general quantities, to allow bounds and orderings on previsions
as input to the programming problem, and to yield bounds, even on
conditional previsions, as output. Consequences include the ultimate
strengthening of any probability inequality based on linear constraints,
such as the Bienaymé-Chebyshev inequality and an inequality related to
Kolmogorov's inequality, but based only on the judgement of a sequence
of quantities as exchangeable. Included in the wide variety of potential
applications are the safety assessment of complex engineering systems,
the analysis of agricultural production statistics, and a synthesis of
subjective judgments in macroeconomic forecasting. In our discussion,
prevision is explicitly recognized as a completion of the notion of
logical assertion, introduced by Frege.

Keywards: LOGICAL DEPENDENCE; SUBJECTIVE PROBABILITY; COHERENCE; BOUNDS ON
PREVISION; ORDINAL PROBABILITY; LINEARPROGRAMMING; BIENAYME-CHEBYSHEY
INEQUALIT'Y; KOLMOGOROV'S INEQUALITY; EXCHANGEABILITY; LAWS OF LARGE NUMBERS;
LOGICAL ASSERTION.
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1. INTRODUCTION

WITHOUT elaborating on the choice of name for his theorem, de Finetti (1970,
3.10.1) announced as the “Fundamental Theorem of Probability” a derivation of
bounds on the numerical assessment of the prevision of an event, bounds that are
required by and insure its conerence with coherent previsions already asserted
for N other events. The logic behind the theorem had already been presented in

~ his Paris lectures, “Foresignt: Its Logical Laws, Its Subjective Sources” (1937,
Ch. 1), and the importance of the result had been recognized in the analysis of
finite additivity in his paper “On the Axiomatization of Probability” (1949, 5.9).
In the latter paper, the result is expressed in terms that identify the limitations
under which a coherent prevision function specified over a linear space of events
can be extended to a coherent function over a larger linear space. The analysis
there is presented at such a level of mathematical abstraction that it has drawn
scant attention. The technical prelude to the Fundamental Theorem in de Finett)
(1970) is prolonged over at least 70 pages of introductory concepts and
examples. Particularly important is the discussion of logical dependence,
logical independence, and logical semi-dependence among events.

If a poll were. taken of members of statistics societies throughout the
world, we doubt that even | percent would say they considered “the fundamental
theorem of probability” to be the result so designated by de Finetti. Even among
statisticians who would call themselves “Bayesian”, we doubt that the figure
would reach S percent. In small groups of statisticians to whom we have
addressed the question of identifying the fundamental theorem of probability,
responses have ranged from “the Law of Large Numbers®, to "the Central Limit
Theorem”, to “the Law of the Iterated Logarithm”, to "There is no fundamental
theorem of prabability.” A bold Bayesian would sometimes suggest Bayes’
Theorem, or even de Finetti’s theorem on the representation of exchangeable
distributions.

The present paper is meant to elucidate the Fundamental Theorem in a
constructive computable form, to extend it in useful ways, and to reveal its
fundamental character by showing its comprehensive applicability and the
resolution it provides for substantive issues in probability and statistics. After
preliminary definitions and concepts (Section 2), we characterize the theorem as
a linear programming problem (Section 3), first suggested by Bruno and Gilio
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(1980) and extended by Rahman (1987). The Fundamental Theorem in linear
programming form provides a computational procedure whereby any know ledge
you actively assert via your previsions for N specific quantities enters as input
into the program in terms of linear restrictions. The maximum and minirmum of
an objective function, computed as output from the program, serve as bounds on
the prevision you may assert for a further specific quantity if it is to cohere
with the N previsions you have already asserted as input, These are the
narrowest such bounds. They guarantee the coherence of the full set of N+1
asserted previsions if the first N are themselves coherent.

After a careful discussion, we interpret the Fundamental Theorem of
Probability to support the process of asserting bounds on previsions as an
operationally meaningful representation of uncertain knowledge. With this
interpretation, the theorem provides a standpoint for evaluating the
controversial discussions of interval probabilities that have continued
throughout this century in works such as Keynes (1921), Borel (1924), Koopman
(1940), Reichenbach (1949), Good (1950), Smith (1961), de Finetti and Savage
(1962), Scott (1964), Fishburn (1965,1985), Dempster (1967), Suppes
(1974,1981), Shafer (1976), and Leamer (1986). (The list is not exhaustive.)
we expand the Fundamental Theorem to allow assertions of bounds
on incompletely assessed previsions as the primary input specifications of
uncertain knowledge. Even more generally, assertions of mere orderings of
prevision and other linear inequalities are shown to be meaningful inputs, with
numerical implications computable within the linear programming framework.

Finally, we extend the theorem beyond the domain of events to a
fundamental theorem of prevision for general quantities (Section 4). Any
prevision inequality holding under linear equality or inequality constraints
receives its strongest possible statement as a consequence of our general
resuit. One corollary strengthens and completes the Bienaymé-Chebyshev
inequality in the context of uncertainty about bounded discrete measurements.
Another gives an inequality related to Kolmogorov's inequality, but involving
quantities judged as exchangeable. A final extension has implications for
cohering assertions of conditional previsions. The extension to conditional
prevision requires a nonlinear programming computation, for which we provide a
simple algorithm. The cutput bounds on conditional previsions have direct
applicability in operational-subjective statistical methods.



Our results are illustrated by small-scale computations (Section S).
From the immense scope of potential practical applications, we suggest examples
in engineering, agronomy, and macroeconomic forecasting. Concluding comments
(Section 6) dwell on the logical category of prevision as an assertion, in the
sense introduced by Frege (1879). In this light, we recognize the Fundamental
Theorem of Prevision as a generalization of the deductive Closure result of
Hilbert and Ackermann (1938, 1.§9.).

2. PRELIMINARIES

Most of this section is a concise summary of concepts that are
developed by de Finetti with extensive examples in chapters 2 and 3 of his
treatise (1970). Readers who are not familiar with the de Finetti approach are
asked to pay special attention to the definitions. Familiar sounding terms are
often defined with a different meaning and syntax than in the measure-theoretic
characterization of probability. For example, an event in the usual formulation
is a set; whereas in our terminology, an event is a quantity, a number.

A quantity, X, is the numerical outcome of a particular operationally
defined measurement. Hence, X is a well defined number, although its numerical
value may be unknown at the time X is contemplated. The set of all numbers
that are possible results of performing the operation is called the rea/m of the
quantity, denoted by R(X). Typically, it has a finite number of elements, called
the size of the realm. The analysis in this paper is confined to the realistic
case of a realm with finite size. A quantity, E, whose realm is R(E) = {0,1} is
called an event. If E is an event, then E = (1-E) is also an event. Definitional
restrictions on events specify /ogical relations among them. For example, N
events are said to be /compatible if their definitions imply that their sum
cannot exceed 1. Similarly, N events are exfgust/ve if their sum cannot be less
than 1. N events are said to constitute s partition if they are both incompatible
and exhaustive, that is, if their sum necessarily equals 1. The individual events
in this case are called constitvents of the partition.

Any N events (N 2 1) generate a partition with S(N) constituents. S(N)

is called the s/ze of the partition generated by Ey,....Ey. The constituents of
this partition are those S(N) summands in the multiplicative expansion of the
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expression | = I._,N (E;+E;) that are events. This is to say, their realms contain
j=1 \Ej*Ej y

both (and only) the numbers 0 and 1. A typical summand in this expansion is a
product of N events, such as EE,E3E4~Ey_,Ey. There are, of course, 2N summands

of this form. But some of them may not be events, since some of the summands
necessarily equal zero if there are logical restrictions among the multiplicand
events that generate the partition. For a simple example, suppose N=2, and

E, = 1-E,. Then neither EE, nor E,E, are events, since they both necessarily
equal 0. But both E4E, and EE, are events. Thus, S(2) = 2, rather than 4. If
every summand in the product expansion T,.,N (E;+Ej) is an event, then S(N) = 2N,

Otherwise S(N) < 2N. Throughout this paper, we will denote the constituents of
the partition generated by the events Ej,...,Ey using the symbols Cy, ... .Csqy.

Geometrically, the S(N) constituents of the partition generated by N
events can be represented by points in N-space, specifically, by S(N) designated -
vertices among the 2N vertices of the N-dimensional unit cube. If there are no
logical restrictions among the generating events, then S(N)=2N, and every vertex
of the N-dimensional cube represents a constituent of the partition. In this case
we say the events are completely logically indgpendent. But if there are any
logical restrictions among Ey, ... ,Ey, then some of the vertices must be removed

from the N-dimensional cube in order to represent only the constituents of the
partition generated by the N events. In such a case we say that the operational
definitions of the events entail some degree of /ag/cal dependence. Figures 2.1
and 2.2 exhibit two possible configurations of logical dependence among three -
events. InFigure 2.1, the two events E, and E, are completely logically
independent, while E3 is their logical conjunction. It is defined functionally as
the product Bz = E4E,. InFigure 2.2, the three events Fy, F,, and F3 are
incompatible. Yet none of them is defined functionally in terms of the other
two. De Finetti referred to such events as /ogically semidependent .
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Eigure 2.1. Logically Dependent Eigure 2.2. Logically Semidependent

Events, The two events Ey and E; Events. The three events Fy, F5, and
are completely logically independent, F3 are incompatible. Nevertheless,
whereas event Ez is their logical none of them is a logical function
“conjunction: Ez = EqEp. of the other two.

These concepts can be generalized to vectors. A vector of quantities,
Xy = (Xy,...,X))7, is @ vector whose components are quantities. The reaim of
such a vector, denoted by R(X,) C RN, is the set of vectors that represent
possible outcome values obtained by performing the operations defining all the
component quantities. The component quantities. of X, are said to be completely
logically independent if R(X,) equals the cartesian product of the reaims of its

components. Otherwise the quantities are said to entail some degree of logical
dependence. A vector of quantities generates a partition whose constituents are

the events of the form (X, = %) where % is in R(X,). Thus, the size S(N) of the

partition generated by N quantities equals the size of the realm of their vector.
[Parentheses around a mathematical relation, such as (X, = %)), should be taken

to define an event equal to 1 if the relation holds, and equal to 0 otherwise.]

Your prevision for a vector of quantities X = (X,...,X))7 is the vector
of numbers P(X) = (P(X,),...,P(X\))T you specify, with the understanding that you

are thereby asserting your indifference to engaging any transaction that would
yield you the net (sum of products) sT[X-P(X)] pounds sterling, where
s =(Sy,....5)" is any vector of scale constants. Your indifference must apply to
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vectors s in every direction. [t may be qualified only that the components of s
must be sufficiently small that the net yield of any relevant transaction does
not transgress the limited region over which your utilities are approximately
linear. For example, you may stipulate that your assertion of indifference
pertains only if s is scaled so that the maximum gain or 10ss you can incur from
the yield sT[X -P(X)] is no greater than 10 pounds. (For detailed discussion of
this feature, see de Finetti, 1970, 3.2.) If any component of X is an event, then
the corresponding component of your prevision vector is called your probab//ity
for that event. : |

In asserting your prevision P(X), you are avowing your willingness to
buy and your willingness to sell a claim to sTX pounds in exchange for payment
of sTP(X) pounds. This is an operational implication of the stipulation that the
vector s in the yield expression sT[X -P(X)] may have any direction. Having
asserted your own P(X), then for any vector py < P(X), you would presumably
also be willing to pay sTp, pounds for a claim to sTX pounds where every
component of s is positive. For this transaction would yield you at least as
much as paying sTP(X) pounds for a claim to sTX pounds. Similarly, for any
vector p, 2 P(X), you would presumably be willing to sell a claim to sTX pounds
in return for payment of sTp, pounds,

Let us tarry a moment to highlight the technical aspect of defining
prevision as an assertion you make regarding the value of X. The realm of X
presumably delineates all the various values of its component measurements
that anyone can validly contemplate as possible: whereas your prevision P(X)
represents your operationally defined judgment of the value of X on the basis of
such contemplation. (Someone else may assert a different value as his/her P(X).
Neither of you are estimating a “true” or "correct” value of X, but rather

asserting your own valuation of X.) This distinction between R(X) and P(X)
parallels that introduced by Frege (1879) in mathematical logic. Within the
confines of two-valued-logic, he introduced notation to distinguish the content
of a declarative sentence, which may be true or false, from a proposition, which
is an assertion by someone that the sentence is true. The rules of two-valued
logic govern the self-consistency of several propositions, requiring that you do
not assert both the truth of a sentence, A, and the truth of its negation, A. The
extension of these rules to the logic of uncertainty is motivated by the desirable
property that your assertions of prevision be coherent.

Paae 7



Your prevision for a vector of quantities, P(X), is said to be comerent
as long as you do not assert by it your indifference to some transaction that
would surely yield you a loss, no matter what the outcome value of X may be
among the possibilities in R(X). Algebraically, the coherency of your specified
P(X) requires that there exists no vector s with sufficiently small components
for which, for some € > 0, s'[x-P(X)] <-¢ < 0 for every vector X € R(X). This
specification of this requirement leads to the algebraic characterization of
coherent prevision as a linear functional over the space of linear functions of X.
By a standard supporting-hgperplaqe argument, the set of all coherent vector
previsions assessable for the vector of quantities X is identical to the convex
hull of R(X) in N-dimensional space. The coherent extendibility of your asserted
linear functional, P, to larger spaces is the subject of the fundamental theorem
of prevision, to be discussed. '

Your conditional prevision for a quantity X conditional on E, denoted
P(X I E), is defined as the number you specify with the understanding that you are
thereby asserting your indifference to engaging any transaction that would yield
you the net gain of s[XE - P(X | E)E] pounds sterling. Such a transaction is
called a contingent transaction for X, contingent on E. For the yield from the
transaction (gain or loss) will differ from 0 only if the event E in fact equals 1.
A conditional prevision assertion P(X | E) coheres with assertions of P(XE) and
P(E) if and only if P(XE) = P(X|E)P(E). This definition of conditional prevision
makes no reference to any assertion of prevision you might make in the future.
Your conditional prevision represents an operationally defined judgment you
make now about the value of X and E, based on your current state of uncertain
knowledge. (See Goldstein 1985 for discussion and developments based on this
distinction.)

We conclude these preliminaries with the observation that any vector
of events, Ey. can be written as a linear. function of the vector of constituents

of the partition the events generate, Cqqyy. Via the equation

Ex = Brnson Cson
Here Ry squy is the [NxS(N)] matrix whose columns are the vector elements of the
realm R(Ey). Since every entry of Ry sqy equals either 0 or 1, each column
vector of Rygqy associates a specific constituent of the partition with some
vertex of the N-dimensional unit cube. The equality of E and RC merely states
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the identity of each event E; with the sum of specific identifiable constituents
of the partition generated by Ey, ... ,Ey. These constituents are identified by
expanding the right side of the equation, Ej = E;[Tj. N (Ej+E})(j=i)], and then
recognizing the proscribed summands in the resulting expression that necessarily
equal 0 due to logical restrictions among the events generating the partition.

For example, the vector of three events whose realm is displayed in Figure 2.1
can be expressed as Ez = R3.4C4:

(En (1001 rCn

le] = foor1] [c]

g looo 1) lc3J
Cq

where C i is the event that the vector E3 equals column j of the matrix Rs,4.

Notice that the columns of Rg3,4 are also the vector elements of the realm R(E3).
represented by bold dots in Figure 2.1. More generally, a similar equation
characterizes any vector of quantities, Xy, as -

Xy =RXCsqp -

where R(X,) is the matrix whose columns are the elements of the realm R(X,),
and Cgqy) is the vector of constituent events (X, =xy). one for each possible
observation vector %, in the realm R(X,).

Finally, notice that although the numerical values of the quantities
K1 -,y @nd Of the constituents Cy, ... ,Cgqyy May well be unknown to you, you

can be certdin that the sum of the constituents equals 1. That is, Csqn = 1.
since Cy,...,.Cqqyy CONstitute a partition, by construction. [We use the notation

Zv for the sum of the components of a vector v. We will also have recourse 1o
denote by 1 the N-dimensional column vector with every component equal to 1.]
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3. THE FUNDAMENTAL THEOREM OF PROBABILITY: [NITIAL EXTENSIONS

The operational-subjective theory of probability allows you to assert,
as your prevision (probabilities) for a vector of events, any vector of numbers
you please, subject only to the restriction that your assertion be coherent. The
coherency restriction will then gesine your prevision operator as a linear
functional on the space of linear functions of the event vector. Notice that your
prevision operator is ot defined for all functions on the basis of some
underlying measure. Rather, your prevision for a vector of quantities becomes
defined only when you actively assert your willingness to engage the
transactions specified in the definition. Coherency requires that when you
assert this willingness, you concomitantly assert your willingness to engage in
specified transactions involving linear combinations of the quantities, whose net
yields would be identical to the yields from transactions you have
expressly asserted to be acceptable. Now suppose you coherently specify your
probabilities for a vector of N events, E,. De Finetti's fundamental theorem of

probability characterizes the numerical restrictions on your assessment of
prevision for any further event, Ey,,, that are required by -- and insure --the

‘coher,encg of your overall prevision for the vector of events
Eys; = (Ey, ... .ENuEyn+y )T. The first theorem we present is a reformulation of the

fundamental theorem as a linear programming problem. It appears first to have
been suggested in such a form by Bruno and Gilio (1980), while the subsequent
extensions in this section were developed and discussed in the thesis of Rahman
(1987).

Fundamental Theorem of Frobability. Let Ey be a vector of events for
which you have specified your prevision vector, P(Ey) = py: and let Ey,, be a7
other event. Depending on the logical relations among the events Ey, ...,Ey.Eny.
they generate a partition of size S(N+1) < 2N*!. Denote by Cq(y. ) the vector

that comprises the constitutents of this partition. By construction, the vector
Ene1 = Buyeqsine1)Csqne1)» fOr the appropriate matrix Ry, g(y.1)- Denote the first

N rows of By, sqne1) DY By s(n+1). and the (N+1)St row by ry,,. Then, for the
coherency of an extended prevision assertion for all components of Ey.;.

P(Ey.1) = (PyT.P(Ey. )T, it is both necessary and sufficient that the numerical
value of your P(Ey.) lie within the interval [ly,,, uy.,]l, where the values of Iy,
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and u,., are determined by solving the following two linear programming
broblems:
Find those S(N+1)-tuples Qgqye;y = (A1.G2, ... Ggqne1y’ that yield the extrema,
et = Minimum (Fy, Qsene ) ANG Uyey = MaXIMUM (P, Qe py)
both subject to the (N+1) linear equality constraints ‘
b & BysounQsgeen = Py 3N Eqgeuepy = 1.7 by
along with the S(N+1)oN-negativity restrictions that each component of qgey.y, Aehiry-Le

be non-negative. The feasible region for these programming probiems 1s empty
if and only if your original assertion of P(E,) = py is incoherent.

Froor. An assertion P(Ey.,) = py.; 15 coherent if and only if the vector
Pusy lies within the convex hull of the set R(Ey.;). Now the event vector Ey,, is
a linear transformation of the constituent vector Cgey.;y it generates. The
transformation takes vectors in S(N+1)-dimensional space into (N+1)-dimensional
space by the transforming matrix Ry.; sene1)r ViZe Enet = RyepsonennCoqne1)-
Under this transformation, the convex hull of R(Ey,,) is the image of R{(Cqy. y.
Thus, the vector py,, lies within the convex hull of R(Ey, ) if and only if it can
be obtained by the same linear tranformation of some vector within the convex
hull of the realm R{(Cg(y. ;). Since the components of Cqy.qy CONStitute 3
partition, the convex null of R(Cqqy,y) is the simplex of vectors
Q513 = (Q1--Qgns 19T WHOSE COmponents are nonnegative and sum to 1. The
assertion P(Ey,,) = Py, is an extension of the assertion P(E,) = p, if and onty it
the first N components of the vector py,; are identical to the components of
Pn = By sqne nQs(n»1y 1Or SOMe quaiifying vector qgey.y. Thus, satistaction of

the linear programming formulation is both necessary and sufficient for an
assertion P(Ey,,) = py. to be a coherent extension of the assertion P(Ey) = py-

The same logic underlies the final statement in the theorem, that tne original
assertion P(Ey) = py is incoherent if and only if the feasible region of the

Specilied programming problems is empty. v
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Let us make a few simple observations before a deeper discussion.

At one extreme, if Ey.q happens to be a linear function of E,,...,Ey, then
P(EN,,) is determined exactly, on account of the linearity property of coherent
prevision. In this case ly,q = Uy, = P(Ey.y). At the other extreme; if Ey., happens
to be completely logically independent of E,,...,Ey , that is, if S(N+1) = 25(N),
that is, if Ey,, and Ey,, are both compatible with every constituent of the
partition generated by Eq,...,Ey ., then ly,;=0and uy.,= 1. In this case, the
boundaries on the coherent assertion of P(Ey.,), as an extension of the assertion
P(E\) = py.. are not affected at all by the specific components af the vector py.

(A coherent prevision assessment for any event, of course, must lie within the
interval [0,1].)

Between these two extremes lie all the intermediate possibilities of
logical dependence conceivable among Ej,...,Ey,;. The tightness of the bound on

P(Ey.;) depends on the numerical values of P(E,), ..., and P(Ey) as well as on the
logical relations among Ey, ... Ey.;. For example, notice that in Figure 2.1 if

P(E,) = P(E,) = .5, then the bounds on P(E3) are 0 and .5. For any value of P(E3)
outside these bounds, the vector P(E3) = (.5,.5,P(E3)) would lie outside the
convex hull of the realm R(Es3), outlined in bold. Whereas, if P(E,) = P(Ep) = .7,
then the bounds on P(E3) are .4 and .7. Within the convex hull of the four
possible outcome vectors, the convex hull of R(E3), all vectors that project
orthogonally onto the point (py,p,) = [P(E;).P(E,)] lie within the bounds specified
by the two linear programming problems.

The major practical difference between de Finetti's characterization of
coherent prevision as a linear functional and the more common measure-theoretic
axiomatization of probability can be seen by comparing this fundamental theorem
with a corresponding axiom of the usual approach. The measure-theoretic
conception supposes that a unique probabi.ity measure is defined on every
"elementary event”, that is, a set corresponding to a constituent of our partition
generated from Ey,...,Ey.,. Then it is axiomatic that the probability of any union

of these disjoint events [note the measure-theoretic and set-theoretic languagel
equals the sum of the probabilities of the elementary events in the union.
Bayesian statistical theorists who have atterpted to use this mathematical

Paqge 12



formulation with a subjective interpretation are justly criticized by the
objecting practitioner who questions "How can | possibly assess my probability
for each of those elementary events?” For S(N+1) can be much larger than N+1,
even as large as 2N*!, The characterization of coherent prevision as a linear
functional allows you, as the practitioner, to assess your prevision for as many
or as few events as you feel able and interested. Notice that any vector qgy. )

satisfying the linear programming constraints would be coherent, and would
cohere with the assertion P(Ey) = py. if it were asserted as a prevision of the

constitutent vector Cg.q)- The usefulness of the fundamental theorem of

probability lies in the fact that the logical relations among the events of
interest to you can be exploited in aiding your assessment of P(Ey.,). without

the necessity that you identify your prevision for every constituent of the
partition generated by Ey, ..., Eye;-

3.1. Discussion: Bounds on-Frevision at the Base or lhe Assessment Frocess

After you have coherently asserted your prevision P(Ey) = py. the
requirement of the fundamental theorem that ly,; < P(Ey.¢) < Uy, has two

practical implications. One is cautionary. The other is behavioural. As a
guideline, the requirement cautions that if you now undertake to specify your
P(Ey.¢). it had better lie within the interval [ly,;.uy.]. OF else you will have

expressed an incoherent opinion. If you desire to be coherent, a reassessment of
P(E,). ... P(Ey) would be in order if you are satisfied with your assertion of

P(Ey.;) outside of the interval [ly,;.uy.). Indeed, this is the language in which

the fundamental theorem has been stated. But in addition, the theorem already
has a benavioural conseguence for you, even if you never assert a prevision value
for Ey.;. The theorem implies that the coherency of your prevision operator

along with the logical relation of Ey,, to Ey and your already specified assertion
of P(Ey). together, amount to your avowed willingness to pay any amount up to
(sly.y) for a claim to the unknown value (sEy,,). [As noted in the preliminaries,

s is qualified to be a small or moderate amount, say 10 pounds sterling.] For a
combiriation of transactions involving only components of Ey can be arrarged

that will surely not return you more than (sEy.,) and for which you have
already asserted your willingness to pay (sly,,). Similarly, you are avowedly
willing to offer for sale a claim to (sEy,,) inreturn for at least (suy.).
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This statement of behavioural implications for de Finetti's Fundamental
Theorem of Probability is related operationally to Leamer’s (1986) suggestion
that a "bid-ask spread” be considered the basic meaningful unit for expressing
one’s uncertainty about a quantity within the operationai-subjective framework.
Although we do not subscribe to the entire argument presented in Leamer’s
paper, his operational meaning for asserting a probability interval is compelling.
A much discussed criticism of the operational-subjective theory of probability
hinges on the requirement that you specify a single price at which you are both
willing to "buy” and willing to "sell” a quantity, in order that the theory have any
content. The behavioural interpretation of the fundamental theorem softens this
requirement. [t is operationally meaningful to make a partial assertion of your
prevision for a quantity X -- that your P(X) lies within the interval [p}.py].

Formatly, you thereby avow your willingness to engage any transaction that
would yield you the net gain of si[X-p;} + sylp, - X]I, so long as s| and s, are
non-negative scalars small enough that your net gain or loss cannot be too large.
Requiring coherency of a partial assertion of prevision, that you neither assert a
willingness to accept a sure 10ss, nor a willingness to foreqo a sure gain,
implies minimally that a coherent prevision interval [p;,p,] must satisfy the

inequalities: min R(X) < pj < py < max R(X).

In higher dimensions, this characterization of a partial assertion 2s the
assertion of a prevision interval expands not merely to a prevision hyperinterval,
but to a prevision polytope, perhaps highly irregular in shape. This follows from
the fact that when you assert your willingness to engage in several individual
transactions, coherence requires your willingness also to engage them in linear
combinations {subject to the qualification that the scale of the net gain or ioss
not be too large). Moreover, a partial assertion regarding an individual quantity
may De redundant in the context of other partial assertions you make. These
ideas are presented most simply by an example.

Suppose that E; and E, are incompatible events, and that event E5 is
defined as their sum: Es =E; + E,. Thus, the convex hull of R(E3) is the piane
triangle connecting the points (0,0,0), (1,0,1), and (0,1, 1). This hull is
depicted in Figure 3.1, projected onto the 2-dimensional space containing R(E;).
Now, suppose further that you make the three partial assertions of prevision,
P(E,) € [.25,.5], P(E,) € [.2,.3], and P(E3) € [.5,.9]. The dark polygon within the
convex hull contains all the vectors in 2-dimensional space that satisfy the
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restrictions specified by your several partial assertions. For any price vector
(P1,P2) outside this polygon, you have effectively asserted your willingness to
engage some transactions that involve buying or selling Ey for py @nd~ar buying
or selling E, for p,. But you have not yet made any assertion of your position on
exchanges involving prices represented by any vector within the polygon.

E>
1.0
25¢P(Ep¢ 5
S
N “
S gP(Ez)« 9

IANERN
<

ol 1 25 5 9 9D o
Eigure 3.1. artiall r revisio e. The events E; and E, are
incompatible, and Ez = E; + E;. The convex hull of R(E3), projected onto the
2-dimensional space containing R(E,), is the heavily outlined half unit-square.
The dark polygon within this convex hull is the partially asserted prevision
polytope specified by the three partial assertions of prevision, P(E,) € [.25, .51,
P(E,) € [.2,.3], and P(E3) € [.5,.9].

There are two special features to note in this example. First is that
the asserted upper bound, P(E3) < .9, is redundant in light of the other two
assertions of P(E;) < .5 and P(Ey) < .3. For the willingness the latter signify,
to engage in any transaction yielding sy,(.5-E) + s5y(.3-E) as long as s, and
Spy a@re non-negative, implies a willingness to engage in any transaction yielding
s3y (.8 -E1-Ep) = s3,,(.8-E3), signified by the asserticr P(Es) < .8. The second

feature to note is that the assertion P(E3) = .5 signifies a willingness to engage
a transaction yielding s3|(E3-.5) = s3)(E;+E5-.5) = 53)(E1-.27) + s53/(E»-.23),
for example, even though .27 exceeds the lower partial assertion value of P(E,),
and .23 exceeds the lower partial assertion value of P(E,). Thus, the vector
(.27,.23) lies outside the polygon of partially asserted prevision,
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The fundamental theorem of probability supports and even motivates
the point of view that your intervals of part/a/ assertion of prevision for
individual quantities has a definite operational meaning in the representation of
uncertain knowledge. The coherency requirement that you neither willingly
accept sure losses nor willingly forego sure gains characterizes a partially
asserted prevision polytope, the set of vectors that satisfy the inequalities of
a// your partial assertions, as a convex polytope lying within the convex hull of
the realm of the quantity vector. You can be said to have asserted your
prevision for a quantity, as defined in the preliminaries of this paper, only in
the extreme case that your asserted prevision interval for that quantity consists
of a single number. The fundamental theorem actually requires proponents of
the operational-subjective formulation of uncertain knowledge to admit this
viewpoint. For whatever precise prevision assertions you make for whatever
quantities, the theorem shows us how to identify another quantity for which
your avowed assertions are equivalent to a partial assertion.

The terminology part/al assertion of prevision for the statement
P(X) € [py, p,l is expressly meant to connote that, conceivably, you can complete

an assertion of your prevision for this quantity by a process of further
introspection and sharper decision. Would you rather own a claim to X pounds or
a claim to (p| + py)/2 pounds? Once you decide, you will have strengthened your

partial assertion of prevision either to P(X) € [(p;+py)/2, pyl or to
P(X) € [py. (p;*py)/2], depending on the decision. However, there are many

useful ways you might decide to spend your time. So there can be ne requiremsent
that you assert a resolution of any particular value question such as this one.
Several contemporary proponents of “interval probabilities” argue that
probabilities are best considered to be /requcible intervals. Subjectivist
proponents of this view say that "when | assert P(E) ¢ [p.pyl. | mean that |

would pay up to p; for a claim to E, and | would sell a claim to E for py or more.
But at prices between py and py, | will neither buy nor sell a Claim to E." we do

not subscribe to this viewpoint. Without further discussion here, let us merely
state that such a position neglects the linearity of utility presumed in the
qualification that the scale be small for the net yields from any relevant
transactions.
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3.2. £xtensions of the Theorem of Prabability

The fundamental theorem of probability can be extended to describe the
implications of coherency for your partial assertion of probability intervals. The
theorem, in the form stated above, makes only limited use of the rich
possibilities of the linear programming structure. The constraint Zqgey.;) = I,

along with the S(N+1) restrictions that each component of qg(y. ) be
non-negative, together specify the feasible region of vectors gy, as the
convex hull of the realm R(Cg¢y.y)). The matrix Ry, sy.1) transforms these

vectors into (N+1)-dimensional space. Thus, in effect, these [S(N+1)+1]
restrictions on qgy. ;) define a convex polytope in (N+1)-dimensional space.

Each of the further N exact linear constraints specified by the equation P(Ey) =
Pxn = By sone1)9s(ne1y FeQUCeS by 1 the dimension of the transformed feasible
region. When all constraints are met, the coherent assertions P(Ey.,) that are
extensions of the assertion P(E,) = py are restricted to lie along a bounded

one-dimensional line segment. Its endpoints are defined by the extrema of the
designated linear programming problems.

We say this is merely “limited use” of the linear programming setup,
since you need not go so far as to assert fully your prevision vector P(Ey) in

order to compute numerical bounds for P(Ey.,) with a linear programming

algorithm. A computable solution of bounds for coherent assertions regarding
En+1 Can still be achieved on the basis of partial assertions, 1y < P(Ey) < uy.

Although these assertions may not reduce the @imension of your prevision
polytope for Ey.q, they could reduce its volume considerably. This is the tack

we follow in stating our first extension of the f undamental theorem. (Its proof
is contained informally in the preceding discussion.)

The Fundsmental Theorem of Prabability - Extension /. Let Ey be any
vector of events for which you make the partial assertions Iy < P(E,) < uy. And
let Ey., De any other event. The logical relations among components of En+
specify that Ey.; = Ryuy s 1)Csqnery- (Again, let Ry goy. 1y denote the matrix
composed of the first N rows of Ry.; .y, and let rj denote the ith row.) The
conerency of your explicit assertions regarding the vector Ey.; entails that you
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also avow the partial assertion ly.; < P(Ey.;) < Uyey . Where ly., and uy,, are

determined by the solutions to the following two linear programming problems:
Find those SN+ 1)-tuples Qgqy.qy = (qy, ....dg(ne )T that yield the extrema

lye1 = Minimum (P, Qgener)) - @A Uy, = Maximum (Fya Qe 1))
both subject to the linear constraints that
Ru,se 1) Gsoueny 2 In
Ry.sne 1) Qsenen) s Uy and
Zqs(nety = 1
along with the non-negativity restrictions on the components of Qg )-

Moreover, the coherency of your several assertions about Ey,, defines your
prevision polytope for Ey,, as the feasible region in these linear programming
probiems, transformed into (N+1)-dimensional space by the matrix Ry, s 1) -
Thus, for each component event Ej of Ey,,, you avow, in effect, the partial

assertion 1j* < P(Ej) < uj*, where 1;* and u;* are the extreme values attainabie
by the function rjqgy. sy Within the feasible region. JAY

This form of the theorem exhibits the interconnections among all your
partial assertions of prevision that are required by coherency. Your prevision
for each of the N+1 events is constrained in the same fashion, by a bounding
interval. The vector of your previsions for g// of the N+1 events must lie within
a convex polytope, the transformed feasible region of the programming problenis.
Any Turther decisive introspection motivating you to narrow one of your asserted
intervals, {1i*, uj*], could have an effect on the implied bounds for any or all

other quantities, narrowing the associated intervais. For your explicit narrowing
of the interval [1;*,u;*] (for example, asserting P(E;) precisely) would armount

to a rore restrictive specification of the feasible region of vectors Qg . that

are allowed by the programming problems.
Note that the implied intervals [1;*, uj*] are "marginal” rather than

"joint” intervals, in the sense that, because they are merely ong-dimensional
projections of the partial prevision polytope, their cartesian-product
hyperinterval need not consist of points that would be coherent if asserted as
prevision vectors. They are necessary but not jointly sufficient as bounds fof
coherent prevision vectors. The smaller partial prevision polytope is the set of
all the coherent candidate prevision vectors.
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A second useful extension of the fundamental theorem is readily
apparent. In the linear programming context, a mere assertion of orderings
ameng your previsions for several quantities or for.linear combinations of them
is sufficient to generate computable bounds that express your uncertain
knowledge regarding any quantity. For example, you might assert that your
P(E,) =2 P(E,). meaning that you avow a willingness to exchange a claim to sk-
pounds in return for a ciaim to sE; pounds (presuming s is not large). With
similar operational meaning, you might assert that your P(E3)+P(E4) = P(Es), oOr
even that your P(Eg)+2P(E7) 2 P(Eg). Moreover, any assertion of conditional
prevision can be expressed as a linear constraint as well. A coherent assertion
that your P(Ey|E;) = py.o, for example, is equivalent to the assertion that
P{E4E2) = py.2P(Eo), which is to say, P(E4E5) - py.2P(E2) = 0. This is a linear
restriction on your prevision for the events E, and E3 = E4E,. Similarly, the
partial assertion P(E|E,) € [a,b] is representable by linear restrictions:
aP(E;) - P(EEp) < 0, and bP(Ep) - P(EE,) = 0. Each such statement is readily
translated into linear constraints allowable in the linear programming
framework: @Ry g 1)Qs(n+1) < b, fOr a suitably defined row vector a and an

appropriate number b. (Without loss of generality, we will henceforth express
all inequality assertions in such a “less than or equal to” form.) Let us merely.
state this second extension of the fundamental theorem in a summary fashion.

Fundgamental 7heorem ar Frobability - Extension 2. The fundament al
theorem ot probability extends further to allow meaningful partial assertions of
prevision in the form A\ P(Ey) < by as input to the linear programming

problems, and to imply computable bounds on coherent previsior for any linear
combination of constituents, P(r Cgey.y). A

This extension of the fundamenta!l theorem unifies the numerica!
representation of subjective probability with ideas of merely ordinal probability,
as advanced in several works of Shackle (1949, 1955). According to de Fineiti
(1965), ideas behind such an extension were already underlying works in
educational testing by Coombs, Milholland, and Womer (1956), Willey {1950},
Chernoff (1961, 1362), and Dell’Era (19563).

We can summarize the position to which the fundamental theorem of
probability has led us. The requirement of coherency provides that whatever

Ve

Knowledge you assert about-a vector of events, no matter how rmeagre o how
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detailed the knowledge may be, delineates a convex polytope that represents
your prevision to the extent to which you have specified it. We need not
presume that the volume of the polytope.is reduced to zero by any preéc/ss
specification of your prevision. Yet there is positive operational meaning to the
knowledge you do specify. :

4. THE FUNDAMENTAL THEOREM OF PREVISION

Since events are merely quantities whose realm is {0,1}, it should not
be surprising that the fundamental theorem of probability, ang each of the
extensions we have presented above, depicts a special case of a theorem
applicable to prevision for general quantities. What may be surprising is the
breadth of important results in statistical theory that are particuiar instances
of the general result. We will state and prove the fundamental thecrem of
prevision in two parts. The first part is a comprehensive generalization of
results we have already discussed. The second part reveals the bounds imiplied
for coherent conditional prevision. After an intermediate discussion, we will
dwall on two important corollaries. '

In what follows, we presume Xy, = (X, ...,XN)T to be a quantity vector,
with a finite discrete realm R(X,) having S(N) members. We noted at the end of
our preliminaries that X, can be represented in terms of the linear equation

An = Ry ,s00Csw
where Ry gy = R(Xy) is the (Nx S(N)) matrix whose colurans are the vector
elements of the realm R(Xy), and Cgqy is the (S(N)* 1) vector of constituent
events of the form (X, =x,), one for each element vector Xy, in the reaim Ri{X,;.
Individual rows of Ry gy are denoted ry,...,ry. Using the generalization of
prevision to a prevision interval (operationally defined by the assertion of 2
bid-ask spread) and the generalization to the assertion of any preference
representable by aTP(X,,) s b, we can represent any know ledge you would like tu
assert about components of Xy via linear relations of the form Ay \P(Xy) < by .
Based upon the characterization of coherent assertions as the foregoing of any
syre 10sses ang the accepting of all sure gains, wa can now state simpiy and
ganeral iy:
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The Fundamental Theorem of Frevision, Fart /. Let X be any vector

of quantities Tfor which you have partially asserted your prevision via the
specifications Ay P(X)) < by. (The number K may be less than, equal to, or

greater than N.) Then coherency implies that for any component, X, you assert,
in effect, P(X;) € [1j,uj], where the numerical values of |; and uj are calculated

as the extreme values of the objective functions in the linear programming
problems:
Find the two S(N)-tuples qs gy = (qy.....5¢ny)" that characterize

li =minimum riqgqy and uj = maximum rj qs )
both subject to the linear constraints
Agn By snmdsony s D, and

Eqgqeyy =1
along with the non-negativity restrictions on the components of g o)

The common feasible region for these programming problems, translated into
N-dimensional space via the matrix Ry gqy. constitutes your coherent prevision

polytope for X,. This feasible region is non-empty it and only it your origina!
assertion Ay yP(Xy) s by is coherent.

Proot or Part / . This part of the theorem follows immediately from
the second extension of the fundamental theorem of probability discussed in the
previous section. For any general quantity can be represented as a linear
combination of events: X = I %;{X=x;), where the summation extends over aii
the possible observations x; in the realm R(X). A linear programming algorithm

will necessarily yield finite extreme value solutions to these problems as long
33 the feasible region is not empty, since the feasible region is bounded. ¥

It is worth mentioning explicitly the reminder that the assertion of
each individual P(X;) within its associated interval [1j,uj] is necessary but not
sufficient for the coherency of a prevision vector P(X,J. The necessary and
sufficient condition for the Coherence of the prevision vector P(X,) is that it e

w1thin the feasible region for these programming problems, translated into
N-dimensional space via the matrix Ry 5.
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Remember that any assertion of conditional pfevision, such as the
partial assertion P(X |E) € [a,b], can be incorporated into the form of input to the
programming problems specified in this theorem, Due to the coherency require-
ment that P(XE) = P(X|E)P(E), it is equivalent to the two assertions,
aP(E) - P(XE) < 0 and bP(E) - P(XE) = 0. However, bounds on coherent conditiona!
previsions cannot be computed as output from the theorem as stated, since
cohering P(X | E) is not a //inear function of P(XE) and P(E). Indeed, we know, at
least when you assert P(E) > 0, that P(X | E) must equal the quotient P(XE)/P(E).
We can use this fact to derive a sufficient condition for the coherence of a
conditional prevision as an extension of assertions Ay yP(Xy) s by .

For clarity in stating Part 1l of the fundamental theorem of prevision,
we will refer to a further assertion of conditional prevision beyond the
assertions A yP(X,) < be as a statement involving P(Xy., | Xy.p), Where X, is
a quantity and Xy., is an event, denoted distinctly from the components of X,,.
‘You should be aware, however, that there is nothing special about these
quantities. Theg could well both be components of X, about which you have
explicitly made partial assertions of your prevision.

The Fundamental Theorém of Frevision, Part /1. Let X, be any vector
of quantities for which you have partially asserted your prevision via the
specification, Ay yP(Xy) < by, as in Part I. Now let Xy,; and Xy,, be any other

quantity and any event, respectively, and let Xy,3 be defined as their product,
Xnez = Ko Ko SUPPOSIng R(Xy.3) has S(N+3) members, X,z is representable
via the equation Xy.3 = Ry.3 sov+3)Cs(ne3)- Lt Ry gqv.3) denote the matrix
composed of the first N rows of Ry,z gy.3), and denote the final three rows of
Russ sne3) DY Fiyeqs Fyep . 3Nd Py, respectively. Any further assertion of
conditional prevision P(Xy. | Xy.) coheres with A\ P(Xy) < b if it lies within -
the interval [ly,y|xsz « Unet|ne2]. Where the numerical values Iy, |ysz M0 Uy.yiyeg
are calculated as extreme values of the objective functions in the nonlinear
programming problems:
Find those S(N+3)-tuples, g3y = (Q1,.--.Qg o3y, that characterize
et |neg = MINIMUM (M3 Gg gy /T2 Gsueny) 3N
Uyey |neg = MEXIMUM [y Qs ez /s G5 ve3))
both subject to the linear constraints
Acn Basiesy Gsows) s D, and
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sy = 1
along with the non-negativity restrictions on the components of qg .3y

Supposing that the feasible region is not empty, nonlinear-programming
algorithms will yield finite extreme value solutions to these problems if and
only if the coherence of P(Xy.,) with A\ P(Xy) s by requires that P(Xy,,) > C.

Proof of Part //. This result hinges on the coherency requirement that
for any quantity X and event E, the assertion P(X | E) must satisfy the restriction
that P(XE) = P(X |E)P(E). Thus, the coherency of an assertion P(Xy., | ¥y.;) with

the assertions Ag\ P(Xy) < by requires that there be a vector q satisfying the
linear restrictions specified in the theorem, for which P(Xy.,) = ., q and
P(Xy»3) = Fyv3Q, @nd for which P(Xy.; | %yso) Fyep @ = Fya3q. Thus, the relevance
of the non-linear objective function ry.;q/ry.,q to the coherence of the further
assertion P(Xy.{ | Xn.p) is established as long as ry.,q is bounded away from 0.

However, no bound can be computed by these means for the quotient
395 v 3)/ Tie2 G5 w3y @S 10N as there is a vector q satisfying the restrictions,

for which ry,,q = 0. This condition would allow an assertion of P(Xy.,) = 0 to
cohere with Ay P(Xy) < by . On the other hand, if all feasible vectors q entail
that ry., g >0, the quotient Cy,3q/Cy.oq is necessarily bounded, for the feasible

set of vectors q is closed and bounded. ~ v
Figure 4.1 displays the logic of the argument. The numerical value ¢f

N

P(Xy+1 | Kpeg) cOnerent with the assertions of P(Xy,o) and P(Xy, Xy.p) 2Quals the
slope of the vector (P(Xy.;),P(¥y.3)) whenever a unique slope is defined. Suppose

that the convex hull of the realm R(¥Xy,,,Xy.3) is the dark bordered triangle with
vertices (0,0),(1,1), and (1,5). If the coherency of [P(Ky.,) . P(KXy.z)] with the
assertion Ay yP(X,) < by requires that the vector be bound within the inscribed

quadrilateral, for example, then it would also restrict a cohering assertion o
conditional prevision P(Xy, | Xy.p) to lie betwen the minimum and maximurn

slopes of lines through the origin that intersect the quadrilateral. If the
assertion (P(Xy.,),P(Xy,3)) = (0,0) would cohere with A \P(X,) < by, then

every line through the origin would intersect the region of cohering assertions
(P(Xy.z) P(¥y.3)), and thus there would be no bound on a cohering assertion of

P{XNe ]XN,Q) without strengthening the definition of coherency. Further
discussion of this eventuality is beyond the scope of this paper.
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N+3 = Xpay a2

=

— ]N+1|N+2 = min PIXN+1'XN+2]
T Xpe2
{1 2 3 4 S5 6 31 8 95 10
Eigure 4.1. Coher f_conditional previsign. Bold dots represent vectors in

" R(Xpag  Xnez) s Where X,z = XyaXyep. The bold triangle is the boundary of their
convex hull. The inscribed quadrilateral represents assertions of P(Xy.o.Xy.3)
presumed to cohere with the assertions Ay \P(Xy) s by . Then the slopes denoted
N+ 1Ne2 N Upe o2 3r€ the minimum and maximum values of P(Xy,; | Xy.g) that
would cohere with this partial assertion of P(X,,).

It is worth noting that Suppes (1981, p. 24) decried the non-existence
of a result such as our FTP Part Il as a "serious difficulty” for a numerical
representation of uncertain knowledge.

A simple algorithm. The nonlinear programming problem of FTP Part II
can be solved computationally by a one-dimensional monotonic search among
solutions to related linear programming problems, as follows. To maximize the
ratio y/x over points (x,y) of a closed polygon in the open right-half plane,
define the linear function z)(x,y) =y - Ax, parameterized by A . The equation

z)(xy) = c represents a straight line of slope A and the line passes through
the origin (0,0) only if ¢ =0. For given A, we maximize the function zy(x.y)
over allowable (x,y), and write max zy(xy) = z5(%. Yp) = €y . (The line
z)(x,y) = ¢y now touches the allowable polygon only on its boundary, including
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the point (x), y3). ) If a search is conducted and a value A is found for which
¢y =0, then
gn/ %y = A

This slope is maximal since the line passes through the origin and touches the
polygon only on its boundary. (For the minimization problem, use the same
algorithm, with maximization replaced by minimization, throughout.)

Let us conclude this section by noticing that the strongest possible
forms of two important inequalities are corollary to the Fundamental Theorem of
Prevision.

Corollary /1. Completion or the Brengymeé-Chebyshev inequality. Let ¥
be any quantity with finite discrete realm R(X) = {xy, %y, ... Xs). Correspordingly.
X2 is a quantity with realm R(X2) = {y|y=x2, and xeR(X)} = {x,2,%,2,... %2}
Each event of the form (X=x;) is equivalent to the associated event (X2=x;2);
and all events of the form (X=x;), where x; € R(X), together constitute a
partition. Denoting the vector of these constituents by Cg = [(X=x}),...,(X=x)IT,
wecanwrite Xy - (%1 % " X)) €5 = R, 4Cq

Lx2) Ug2 x,2 - XSU

Suppose you assert precise numerical values for P(X) and P(x?). ‘vour variance
for X is defined as V(X) = P[X -P(X)]2 = P(x2)-[P(X)I2, the latter equality being
an implication of the coherency of your prevision. Now for any € > 0, define the
event E, as the event that ¥ differs from your P(X) by at least ¢,
Ee = ([X-P(X)| = €). Finally, let r, denote that row vector with components ¢
or 1 for which ¢ =rCg. Then for any €>0, cohérencg requires that your P(E.)
lie within the interval bounded by the solutions to the following two linear
programming problems:

Find the vectors qq that minimize and maximize rqg

subject to the restrictions that
PRIy = % % v odg ) Qg
that £qg =1, and that each component of the vector qq be non-negative. A



The familiar Bienayme-Chebyshev inequality states the weaker
conclusion that under the conditions specified, P(E.) s V(X)/e2. The major use
of that inequality has been in proving various forms of the weak law of large
numbers. For in practice, the traditional statement of the upper bound is
notoriously large, often too large to be useful. The inequality stated above as
. corollary to the fundamental theorem of prevision actually strengthens the
inequality as proved by Chebyshev (1867) to the most extreme statement that
can be made in any particular application. A computational example showing
such an improvement appears in Section 5. Moreover, our corollary compietes
the celebrated inequality by specifying a lower bound as well as an upper bound
on your prevision for the event (| X-P(X)| = €) in any given instance.

As mentioned, the Bienaymé-Chebyshev inequality has found its widest
use in theoretical studies of the weak law of large numbers. The weak law
concerns bounds on your probability that the average of several quantities
deviates from your prevision for the average by more than any specified amount:
P(| % ~P(X\)| 2 €). Obviously, the Bienaymé-Chebyshev inequality is relevant if
you assert your P(Xy) and P[(Xy)2] . The strong law of large numbers concerns
bounds on the less restrictive event that at least one member of a sequence of
averages so deviates: P(Maxg ¢k <k | XMek = P(XMek)| 2 €) for specified values of
Mand K. The fundamental theorem of prevision provides as coroiiary a
necessary and sufficient bound for coherent previsions of such extreme events.
We state this corollary in-the context of any finite sequence of discrete
Juantities that you regard as exchangeable, the paradigmatic context for
statistical inference. Our corollary differs from the usual Kolmogorov
inequatity, first, in assuming exchangeability instead of independence and,
secondly, by involving successive averages directly, rather than sums of
quantities.

Let us denote by X, the vector of quantities (X, ...,X)", having 2
common realm R(x;) = R(X) = {xy,... xs}. (S0 S denotes the size of this commin
realm of the components.) Similarly, X2N'denotes the corresponding vector of
the squares of these quantities, and (X;X j )y denctes the vector of the N(N-1)/2
product quantities Xix;, where | < i< j<N. Finally, we denote by Cqyy the
vector of constituents of the partition composed of the events of the form
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(Xy = %), one for each element %, in the realm R(X,). Using this notation, we
write |

r ¥ 1 r BXY

| X% | = | RX%Y | Cqy

XX LRI(% % j )
Each submatrix R(-) is composed of columns that are the appropriate vector
members of the realm of the quantity vector shown within the parentheses.
Notice that S(N) may be any positive integer between S and SN, depending on tne
logical relations embedded in the definitions of the components of X,.

Corollary 2. Bounds on Probabilities of Extreme Sequences. Let
X1....,%y De @ sequence of quantities which you regard as exchangeable. Suppcse

you assert three precise numbers for your P(X,) = P(X;), for all i (1 <isN), your
P(x,2) = P(¥;2) (1 sisN), and your P(X;X,) = P(XjXj) (1si<j<N). For each
positive integer M and each non-negative integer K, and for any € >0, define the
event Ep g ¢ = (Maxg ok <k | XMek = P(XKpak) | 2 €), where X; denotes the
arithmetic average of the quantities Xy,...,Xy. Your presumed assertion of
exchangeability requires that your P(Ryai) = P(X,). Finally, let ryy g ¢ be the
indicator row vector for which rM.K,eCsny = EM K e+ Then coherency requires
that your P(Ey g () lie within the interval bounded by the extreme values
of I k. ey SUDject ta the appropriate linear restrictions generated from
your assertions,

P(Xy) = P(X4)1y = R(X\) Gy

P(sz) P(X12)]N = R(XZN)qs(N) , and

P[(X,X])N] = P(X1X2)|N(N_l)/2 = R((X,X] )N) Qs -

~along with Zqgqy =1 and all components of Qg NON-Negative. Moreover. your
regarding the quantities X; as exchangeable places additional linear requirements
on the vector qgqy). ANy components of Ggqyy Must be equal if the corresponding
columns of the realm matrix R(X,) are permutations of one another. These
exchangeability restrictions can be expressed in the form Mqgqy = 0, where each

row of the matrix M contains one 1, one -1, and 0 In the remaining S(N)-2
positions. A ‘
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Although only corollary to our fundamental theorem of prevision, this
is 3 very general and strong statement of its own. It specifies the stricCtest
bounds on your prevision (probability) for events of the form Ey i ¢ that are

implied by your avowed assessment of N quantities as exchangeable and your
prevision assertions as stated in the theorem. (Kolmogorov's inequality angd the
usual statement of the strong law of large numbers presuppose your stronger
assertion of independence regarding Xy,...,Xy. Such an assertion would be

representable by a further specification of polynomial restrictions on the
components of qsqyy that we will not describe here in detail.) Within the

minimalist conception of mathematics subscribed to by de Finetti, the laws of
large numbers are well specified properties of prevision for events of the form
EM. Kk e, Where 1M and K have specific finite values. Detailed discussion appears

in several sections of de Finetti (1970: [,6.8; 1I, 7.5). Our Corollary 2 to the
fundamental theorem of prevision states precisely the sharpest bounds on a
prevision P(Ey ¢ ¢) that are necessary and sufficient for its coherence with the

asserted previsions mentioned. Thus, the corollary identifies the asserted
status of any sequence of quantities vis-a-vis the law of large numbers
condition, P(Maxg ¢k <k | KMek = P(XMsk) |2 €) < & for specified values of M ard K,

that is required by its coherency with the assertion of exchangeability regarding
component quantities. More standard specifications of the status of exchangeable
sequences in terms of limit theorems are compiled in the monograph of Taylor,
Doffer, and Patterson (198S). It is somewhat ironic that such a simple
characterization of coherent probabilities relevant to the laws of large numbers
'is achieved within the operational-subjective formulation of probabiiity via the
furndamental theorem of prevision. For the laws of large numbers, so central in
objectivist theories of probability such as the frequency theory and the
propensity theory, are only a curiosity in the subjectivist theory, which center
upon practical questions of your knowledge about particular finite sequences.

In the next section, we present small computational examples and
suggest realistic applications of our arguments.

w

5. COMPUTATIONS AND APPLICATIONS

To begin, we illustrate our improvement on the Bienaymeé-Chebysheyv
inequality, which pertains to a single quantity. We shall then extend the Context
to several quantities regarded as exchangeable, in order to illustrate the
computable bounds on coherent probabilities of extreme sequences.
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Example 1. Suppose that X is a quantity with realm R(X) = {1,2,3,4.,5}.
Thus, wecanwrite Xy = 123 4 53 €5 = Ryg Cs

Lx2J L1 4916 25/

. where Cg is the column vector of events [(X=1),(X=2),(X=3),(X=4),(X=5)IT.
The convex hull of the realm RI(X.X2)T] is the dark bordered polygonal region
depicted in Figure S.1. To begin this example, suppose you assert the previsions
P(X) = 2.2 and P(X2) = 7, or equivalently, your V(X) = P(X2) - [P(X)¢ = 2.16. The
point [P(X),P(X?)] = [2.2,7.0] should be identifiable in the figure. The figure
also shows that the assertion of P(X2) within the interval [5.0,8.2] is necessary
and sufficient for its coherence with the assertion P(X) = 2.2. In the course of
this extended example, we will also consider alternative assertions, P(X2) = 6.0
and P(x2) = 7.6.

X2

25 1

16 1

1 222 3 4 5

Eigure 5.1. Completion of Bienaymé-Chebyshev inequality. The convex hull of
R(X,X2) is divided into two regions by a diagonal line. The lower part, including
the points connected by the dividing line, is the convex hull of the subset of
possible observations for which |x 2.2 | < €, provided € satisfies the inequality
1.8<€<28.

Let us first study an event that is easy to describe geometrically: the
event that X differs from 2.2, your P(X), by at least 2.8 units. Using the

notation of Corollary 1, we write E; g = (|X-2.2|22.8)=(00001)Cs. What
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does the conherency of your prevision require of your P(E; g)? Since E> 5 is a
function of X, you can imagine a third axis for this quantity, rising
perpendicutarly up out of the plane of Figure 5.1. Visualizing the 3-dimensional
figure, we see the value £y g = 1 if X has the value 5. But for the other four
possible values of X, E» g = 0. Now the convex hull depicted in the original plane
figure can be viewed as the projection of the convex hull of R(X,X2,E; ¢} onto
the space of (X,%2). The lower half polygon whose vertices are the four points
(1,1,0), (2,4,0), (3,9,0), and (4,16,0) constitutes the bottom face of the
3-dimensional hull. There are four other faces on this hull. Each is defined by 2
triangte connecting one edge of this bottom face with the point (5,25,1).

Since anyj coherent prevision point for the vector of quantities
(X,%2,E5.9) must lie within the hull in three dimensions, it should be evident
why the linear programming solution that minimizes P(E, g) subject to the
relevant restrictions yields a lower bound of 0 (corresponding to the primal
solution vector gs = (.6,0,0,.4,0)). For the associated prevision vector
P(X,X2,E, ¢) = (2,7.0,0) lies on the bottom face of the hull. The maximization
praoblem subject to the same constraints yields an upper bound of .2
{(corresponding to the primal solution vector qs = (.4,.4,0,0,.2)). The assuciated
prevision vector P(X,X2,E,¢) = (2,7.0,.2) is the highest point in the hull that
projects onto (2.2,7.0) [in the space of (X,X2)]. This upper bound on
P(}%-2.2]22.8) is sharper than the Bienaymé-Chebyshev bound in this case:
V(X)/e2 = 2.16/(2.8)2 = .276. Notice that Figure 5.1 would be unchanged for
illustrating the logic of coherent prevision for any other event E, for which ¢

l1es within the half-open interval (1.8,2.8]. Events such as
Eygi = ([X-P(X)| 21.81) and Epg=(|X-P(X)| 22.8) are identically
equivalent to the event (X=5).

Figure 5.1 can aiso be used tc aid ones intuition in several more of the
carnputational resuits presented below. Considering a coherent prevision for the
event £y, = (| X-2.2]21.2), restricted only by the assertions P(X) = 2.2 and
P(X2) = 7, one recognizes that the triangle connecting the points (1,1,1), (4,16,1),
and (5,25.1) constitutes the upper face of the convex hull of R{X,%2,E, ;). while
the line connecting (2,4,0) with (3,9,0) constitutes a lower edge. It shiouid
then be evident that the upper bound for coherent P(E, ,) is 1. while the lower
bound will exceed 0. The precise lower bound is .6, as listed with the upper and
lower bounds for various values of € and V(X) 1n Tabie 5.1, below. As shown far
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€ = 1.2, if you assert P(X) = 2.2 and P(X?) = 6, coherency of prevision will bound
your assertion of P(E; ,) within an interval [l,u] that lies strictly within (0, 1).
The relevant upper bound computed from the inequality of Bienaymeé-Chebyshev
appears following our computed interval in each case.

Reading down the columns of Table S.1, notice that both the upper
bound and the lower bound decrease (weakly) as € increases. But reading across
arow, say when € = 1.8, notice that there is not a monotonic pattern in the
upper bound on P(E; g) with increasing values of P(X2). This latter result may
appear counter-intuitive to readers unduly influenced by their experience with
the Bienaymé-Chebyshev inequality. If one makes the appropriate adjustments in
visualizing Figure S.1 to illustrate E; g, one will see the interesting reason why
the upper bound for coherent P(Ey g) is smaller when P(X2) = 7.6 than it is when
P(X?)=7.0.

Table S.1 Bounds™ on prevision for Chebyshev's event, P(E¢),

necessary and sufficient for its coherence with various
specified values of P(X) and P(X2), followed by the
Bienaymeé-Chebyshev upper bound, headed ug- .

P(¥, X2) (2.2,6.0) (2.2,7.0) (2.2,7.8)

€  coherent bounds ug_.  coherent bounds ug..  Coherent bounds ug_

08 [.267,1.0 1 1.813 [ 6 ,1.0] 3375 (8 ,1.0] 4312
12 1267, 5 1 .806 [ 6 .10] 15 (8 ,101 1917
1.8 [.025 .233] .358 [ .15, 4] 667 [.225, .25} 852
28 [0.0 , 117]  .148 (0.0, .21 276 .15, .25] 392

*The bounds presented are accurate to the nearest one-thousandth.

£xample 2. Expanding consideration to several quantities, we provide
an example illustrating Corollary 2, which specifies bounds on coherent
probabilities for extreme events. Suppose that X, Xy, and %3 are logically
independent quantities with the common realm R(X;) = {1,2,3,4,5}, as

Page 3|



in Example 1, Table 5.2 exhibits the computed upper and lower Dounds on
previsions for events of the form Ey g ¢ = (Maxg ¢ <k | Xpek = PRyeid {2 €)

that would cohere with three different assertion configurations regarding the
quantities Xy, X,, and X3. Along any row that begins with a specification of
M,K.€, appear the intervals for P(Ey  ¢) coherent with the mere assertions for

all i,j of P(Xj) = 2.2 and P(X;?) = 6.0, along with P(X;X ) appropriate to
characterize the specified correlation p(X;.X;) that heads each column. [when
P(X;.%;2) = (2.2,6.0), the correlations p(Xj.X ) equal to 0, .25, and .75 are
implied, respectively, by the additional assertion of P(Xixj) equal to 4.84, S.13,

and S5.71.] Inthe subsequent row are printed the lower and/or upper bound in
any case for which the coherent bounding interval is restricted further by the
additional assertion of exchangeability regarding Xy, X,, and X3. .Notice that the
additional restriction shrinks the interval further whenever it has any effect.

Table 5.2. Bounds™ on P(Ep \ ¢) necessary and sufficient for its coherence with
P(Xj.%j?) = (2.2.6.0) and specified values of p(X;.X ). without and with tne
assertion of exchangeability for Xy, X,, and Xs.

p(xi,xj) 0.0 25 75
MK €
1,1,0.8 [.267,1.0 ] [.267,1.0 ] [.267,1.0 ]
1,1.1.8 [.025, .311] (025, .311] [.025, .288]
- .026 .233 233 233
1,.2,0.8 [.267 , 1.0 ] (267, 1.0 ] [.267 , 1.0 ]
1,2,1.8 [ 0 ,.333] [.025, .345] (025, .318]
026 233 233 233
2,1,0.8 [.042 , .920] [.0S59, 1.0 ] [L101, 1.0 ]
.088 , .788] 068 .974
2,1,1.8 [0 ,.179] [ 0 ,.220] [ 0 ,.258]
121 .158 230

*The bounds presented are accurate 1o the nearest one-thousandtn.
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Example 3. This final example presents computational results
illustrating implications of Part Il of the Fundamental Theorem of Previsicn for
a further conartions/ prevision. The context for this example continues from
Example 1. Remember that R(X) = {1,2,3,4,5}, and E¢ = (] X - P(X}| > €). Each

column of Table 5.3 is headed by vector values for an assertion of P(X,X2). Each
row of the table identifies a specific event of the form E.. In the intersection

of each row and column appear the bounds for a further assertion of P(X |E,) if

it is to cohere with the assertion identified by the column heading. These
bounds were computed via the nonlinear programming problems identified in our
Fundamental Theorem of Prevision, Part Il. [Notice by the earlier Table 5.1, that
the prevision for each of the events E, listed in Table 3.3 is bounded away from

0 by the requirement that it cohere with the assertions of P(X,X2).] Figure 4.1,
which appeared in the previous section to illustrate the proof of this part of our
theorem, is drawn to a scale that illustrates this example under the
specifications P(X,X2) =(2.2,6.0) and €= 1.2.

Table 5.3 Bounds* on a conditional prevision P(X | E.) necessary and sufficient
for its coherence with various specified values of P(X) and P(X2).

P(X, %2) (2.2,6.0) (2.2,7.0) (2.2,7.6)
Ee

(]%-2.2]20.8) [2200,2750] [2.200,2.333] [2.200,2.250]
(1%-2.2]21.2) [1.222,27501 [1.857,2333] [2.059,2.250]
(|%-2.2|21.8) [4.000,5.0001 [4.000,5.000] . [4.429,5.000]

*The bounds presented are accurate to the nearest one-thousandth.

‘ Moving beyond these simple computational illustrations, we suggest by

example the vast potential for practical applications. Complex engineering
systems such as nuclear power plants or space vehicles are made up of many
component subsystems, with-various dependencies between components, some
providing backups for others via intricate linkages. Typically, the operating
status of the overall system can be represented as a complicated logical
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function of the status of many components. Yet quality testing in the design
and construction of the system usually can be conducted only on a
component-by-component basis. After such testing, engineers may be able to
assert their previsions for the status of individual components under varicus
conditions, and perhaps even for a few of such components in conjunction. But
it may be difficult Tor anyone, and even for a team, 10 assess directly the
operating status of the system as a whole. The linear programming method
underiying the fundamental theorem of prevision can be used to keep a running
track of the bounds on coherent prevision for the status of the system implied
by the changing assertions of engineers concerning the status of components.

A more standard statistical apptication involves conditional prevision
assertions regarding characteristics of a finite population of which some
subgroup has been observed. One application with which we are familiar
concerns the annual milk yields of a group of 27 thousand dairy cows whose
yields are regarded as exchangeable by a dairy expert. An exact yield has been
recorded for some 850 of these cows. Specific assertions made by the expert
about the yields from cows of this type can be inserted as input in the
programming problems to determine the bounds on cohering conditional prevision
assertions about the unobserved yields given the observed yields.

The practitioner may well react with horror at the huge computational
dimension of the programming problems that could be involved in realistic
applications. (Annual yields from individual cows of this particular tiype can
range realistically from 12 thousand pounds to 40 thousand pounds, so even the
realm of each observation can be immense, depending on the fineness of
resolution in the reported yield.) Two quieting remarks are in order. First,
without elaboration here, let us mention that large reductions in the dimension
of the programming problems can be achieved algebraically by making mcre
efficient computational use of the exchangeability which has been specified. In
example 2 discussed above, the dimension of the activity vector in our actuai
computations was reduced from 125 to 35. Secondly, the computationat time 1o
solving large linear programming problems is reduced from exponential to
polynomial time by the etlipsoid methods of Shor and Khachian (1979), and mare
recently, Karmarkar (1984). The survey article by Bland, Goldfarb, and Todd
(1981) and the textbook introduction of Walsh (1985) are helpful. Coupling
these with the benefits of simultaneous processing achieved by supercomputers,
or banks of microcomputers, we feel that even realistically large scaie probiems
could be accessible to computation.
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In this tentative happy mood, let us comment on the applicability of
the fundamental theorem of prevision to another sizeable practical problem.
Economists at several institutions regularly produce quarterly forecasts for
macroeconomic measurements of the U.S. economy. Brayton and Mauskopf (1985)
described a recent version of the Federal Reserve Board forecasting model
containing some 332 equations and 124 forecast variables. In conventional
statistical terminology, it is recognized that the large size of such mogels, and
their many lags and nonlinearities, preclude the application of simultaneous
estimation techniques. Thus, the many equations are usually estimated singly.
Litterman (1986) and McNees (1986) each noted that forecasters’ subjective
judgments are typically appended to model-based computations to produce a
useful forecast. These judgments are based on both an analysis of residuals
from individual equations and on intermediate monthly observations of those
components of the quarterly statistics that are also recorded monthiy.
Moreover, applied economists who are knowledgeable of even daily information
on particular sectors such as housing construction, inventories, capital
investment, or capacity utilization can provide a wealth of relevant information
which is not amenable to systematic recording in a prior-formatted data file.
How are all these sources of information to be incorporated into a coherent
prevision assessment for quantities which are of interest for policy decisions?
The fundamental theorem of prevision provides a computationat framework in
which judgments based on a variety of information sources can be accumulated
and their coherency checked.

6. CONCLUSIONS

We hope that the substantive statistical results of this paper will
tead you to consider the Fundamental Theorem of Prevision deserving of its
appeliation. Our concluding discussion will run in a philosophical vein. we use
both standard logical notation and the arithmetical notation for logical
relations. The latter was established by Boole (1847) and was used by de.
Finetti (1967). In arithmetic notation, the sentence (E; A E,) is expressed as the
product E,E,, and the sentence ~E is expressed as (1-E). Thus, for example,

the sentence "Ey implies E;", written in logical notation as ~[Eyr~E>], Is wEvE,

gspressed arithmetically as {1 - [E,(1 -1}, or (1-E,+E4E5). Such a sentence
can be true or false (the arithmetic quantity can equal 1 or 0) depending o the
truth of the component propositions E; and E, (their numerical values).
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That the syllogism is without content has long been a subject of
logicians’ mysings. An important development in the programme of devising how
the notion of "content” could be integrated into the formal expression of
knowledge was Frege's (1879) distinction between a confemplated sentence,
denoted by E, and an asserted proposition (by you, by soreone), denoted by kE.
Ostensibly, Frege was no friend of the subjectivist stance. Known among
statisticians for his ranting against “psychologism” in the field of logic (Frege,
1893), and perhaps for his provocation of Russell's paradox (Van Heijenoort,
1967), he is unfortunately less well known for the acumen of many of his 1deas
(Resnik, 1980). De Finetti, for example (1970, 2.6), mistakenly attributed the
proposed distinction between contemplated and asserted propositions to Koopman
(1940). And Jeffreys (1961, 1,§1.51) noted only its use by Whitehead and
Russell (1910). Levy'(1980) contains insightful critical discussion.

De Finetti lauded the distinction, however, remarking that we should
recognize prevision as an assertion (by you, by someone). But he declined to use
the assertion notation, supposing that this distinction would be clear from the
context. In two-valued, "deductive”, logic, your asserting something abeut a
sentence such as (E; = E,) may take only two possible forms: you may assert
that the sentence is true, b=(1-Ey + E\Ep) = 1: or you may assert that it is
false, #=(1-E, +EE5) = 0. This is the rule of two-valued logic. In the
many-valued logic of coherent prevision, your assertion can take the form
P(1-E,+EE,) = =, where this number may be any number in the intervai [0,1].
Thus, the symbol P repiaces and expands the assertion symbol b= of two-valued
fogic.

Frege’'s distinction allows you to contemplate a sentence without
asserting either that it is true, or that it is false. Indeed, within the coniines
of two-valued logic, this is the only weakening possible from the fuil throated
assertion that a sentence is true or that it is false. The sylliogisms of deductive
logic specify equivalence relations among well-formed-formutae within the
logic. The considered formulae are equivalent irrespective of whether or not
anyone asserts the sentences to be either true or faise. A person’s willingness
tc be understood in this logic is signified by accepting the logical law of
roncontradiction, EaE = E(1-E) = 0, aiong with all its consequences, such as
EvE=E+(1-€) - E(1-E) = 1. Thus, within this logic, any assertion regarding
3 sentence E that is equivalent to the assertion = (EvE) = 1 amounts to no
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assertion at all about E. It is a redundancy relative o the person’s presumed
witlingness to be understood in this logic. To be sure, no one can be 7arced to
make an assertion about any sentence that is not determined by the principle of
noncontradiction. You need neither assert E, b=E = 1, nor assert £, +E=0. In
the extreme, you may find yourself in the non-assertive contemplative position:
k- (EvE) = 1, an assertion without content. The principle of conherency is merely
the extension of the principle of non-contradiction to the many-valued logic of
uncertain knowledge. As in deductive logic, there is no compulsion that anyone
make an assertion about any quantity. Just ask=(EvE) = 1 is a redundant
“assertion” without content for anyone committed to communication within the
confines of deductive logic, your partial assertion that your

P(X) € [min R(X), max R(X)] is a redundant assertion without content in the
logic of prevision. It amounts to no assertion at all if you accept the principle
of coherency, which is necessary for communication within this logic.

Long a stumbling block to the acceptability of subjective Bayesian
statistical procedures has been the objection "But for many quantities, I am in
no state of mind to assert my prevision. [ cannot now assert anything about X."
Subjectivists have annoyedly responded, "Sure you can. It just takes ettort on
your part to elicit your prevision. Just try to do the best you can.” Shafer
(1976) has spiritedly and repeatedly suggested that the (non)assertion
P(%) € [min R(X), max R(X)] is what represents one's knowledge (that is, lack of
knowledge) in such instances. Both Shafer's insistence that probability bounds
are not meant to represent betting odds, and his general proposed schema of
inference have drawn appropriate criticism that his probability intervais have no
operational meaning, and that his schema supports incoherent assessments. [See
for instance the comments of Lindley, of Good, and of Hill in the discussion to
Shafer (1982).] But Leamer’s insight (1986) that a bounding statement, such as
P(X) € [a,b], could be interpreted operationally as a "bid-ask spread” resolves the
impasse to accepting Shafer’s proposal in this instance. In the context of the
Fundamental Theorem of Prevision, this appears to be a beautiful resolution to
the search for a distribution that represents "ignorance”, a search which
unfortunately has intrigued many. There is no a/siribution that can represent
uniquely the assertion of ignorance: P(X) € [min R(X), max R(X)]. It is a

prevision polytope identical to the convex hull of R(X) that represents this lack
of knowledge, this lack of sufficient motivation to assert anything about ».
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Their commitment to the operational-subjective formulation of
probability notwithstanding, both Savage and de Finetti were disconcerted by the
practical problem of identifying one’s prevision exact/y - though expressly no
more than by the prospect of measuring anything exact/y (de Finetti, 1970,
Appendix 19.3). Savage recorded his qualifications already in 1954 (Ch. 4).
Together (de Finetti and Savage, 1962) they wrote extensive commentary on the
relevant article of Smith (1961). And de Finetti's final appendices (1970,
Appendices 14-19) discuss the issues with his customary exhausting brilliance.
One important insight which eluded their analysis was the understanding of an
operational meaning to a partially asserted prevision polytope.

We submit that the complete extension of our understanding of
representations for all forms of uncertain knowledge, no matter how rich nor
how meagre, is provided by the Fundamental Theorem of Prevision. It supports
the conclusions which we have expressed above. Coherent uncertain know ledge
of a quantity vector is representable by a convex polytope within the convex huil
of the realm of the quantity vector. Central to de Finetti's minimalist approach
to mathematical construction was his rejection of a "preconceived preference
for that which yields a unique and elegant answer ewven when the exact answer
should be any valve lying between these /imits’. " (1970, 6.3) The Fundamental
Theorem of Prevision applies the framework of weak mathematical formulations
to the characterization of states of uncertain knowledge by means of an
asserted prevision polytope.
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