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SUMMARY 

5 Nov. 1987 

De Finetti's "Fundamental Theorem of Probability" is reformulated as a 
computable lmear programming pr_oblem. The theorem is substantially 
extended, and shown to have fundamental implications for the theory and 
practice of statistics. It supports an operational meaning for tlie partial 
assertion of prevision via asserted bounds. We extend the theor_em to 
apply to general quantities, to allow bounds and orderings on previsions 
as input to the programming problem, and to yield bounds, even on 
conditional previsions. as output. Consequences include the ultimate 
·strengthening of any probability inequality based on linear constraints, 
such as the Bienayme-Chebyshev inequality and an inequality related to 
Kolmogorov's inequality. but based only on the judgement of a sequence 
of quantities as exchangeable. Included in the wide variety of potential 
applications are the safety assessment of complex engineering systems, 
the analysis of agricultural production statistics. and a synthesis of 
subjective judgments in macroeconomic forecasting. In our discussion, 
prevision is explicitly recognized as a completion of the notion of 
logical assertion, introduced by Frege. 

K@yin,rds= LOGICAL DEPENDENCE; SUBJECTIVE PROBABILITY; COHERENCE; BOUNDS ON 

PREVISION; ORDINAL PROBABILITY; LINEAR PROGRAMMING; BlE~YME-CHEBYSHEV 

INEQUALITY; KOLMOGOROV'S INEQUALITY; EXCHANGEAB ILITY; LAWS OF LARGE NUMBERS; 

LOGICAL ASSERTION. 
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1. I NTRO0UCT ION 

WITHOUT elaborating on the choice of name for his theorem; de Finetti (1970,· 
3.1 o. t) announced as the UF4ndamental Theorem of Probabilitf a derivation of 
bounds on the numerical assessment of the prevision of an event, bounds that are 
required by ana insure its coherence with coherent previsions already asserted 
for N other events. The logic behind the theorem had already been presented in 
his Paris lectures, .,Foresight= Its Logical Laws. Its Subjective Sources" ( 1937, 
Ch. 1), and the importance of the result had been recognized in the analysis of 
finite additivity in his paper uon the Axiomatization of Probability" ( 1949, 5.9). 
In the latter paper, the result is expressed in terms that identify the limitations 
under which a coherent prevision function specified over a linear space of events 
can be extended to a coherent function over a larger linear space. The analysis 
there is presented at such a level of mathematical abstraction that it has drawn 
scant attention. The technical prelude to the Fundamental Theorem in de Finett1 
( t 970) is prolonged over at least 70 pages of introductory concepts and 
examples. Particularly important is the discussion of logical dependence, 
logical independence, and logical semi-dependence among events. 

If a poll were. taken of members of statistics societies throughout the 
world, we doubt that even 1 percent would say they considered "the fundamental 
theorem of probability" to be the result so designated by de Finetti. Even among 
statisticians who would call themselves "Bayesian", we doubt that the figure 
would reach 5 percent. In small groups of statisticians to whom we have 
addressed the question of identifying the fundamental theorem of probability. 
responses have ranged from "the Law of Large Numbers", to '1the Central Lim it 
Theorem", to "the Law of the Iterated Logarithm", to "There is no fundamenta I 
theorem of probability." A bold Bayesian would sometimes suggest Bayes' 
Theorem, or even .de Finetti's theorem on the representation of exchangeable 
distributions. 

The present paper is meant to elucidate the Fundamental Theorem in a 
constructive computable form, to extend it in useful ways, and to reveal its 
fundamental character by showing its comprehensive applicability and the 
resolution it provides for substantive issues in probability and statistics. After 
preliminary definitions and concepts (Section 2), we characterize the theorem as 
a I inear programming problem (Sect ion 3), first suggested by Bruno and G i I io 
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( 1980) and extended Dy Rahman ( 1987). The Fundamental Theorem 1n linear 
programming form provides a computational procedure whereby any knowledge 
you actively assert vi a your pre vis ions for N specific quantities enters as input 
into the program in terms of I inear restrict ions. The maximum and m inirrium of 
an objective function. computed as output from the program, serve as bounds on 
the prevision you may assert for a further specific quantity if it is to cohere 
with the N previsions you nave already asserted as input" These are the 
narrowest such bounds. They guarantee the coherence of the ful I set of N+ 1 
asserted previsions if the first N are themselves coherent. 

After a careful discussion, we interpret the Fundamental Theorem of 
Probabi I ity to support the process of asserting l)ounds on previsions as an 
operationally meaningful representation of uncertain knowledge. With this 
interpretation. the theorem provides a standpoint for evaluating the 
controversial discussions or interval probabi Ii.ties that have continuea 
throughout this century in works such as Keynes ( 1921 ), Borel ( 1924), Koopman 
( 1940), Reichenbach ( 1949). Good ( i 950), Smith ( 1961). de Finetti and Savage 
( 1962), Scott ( 1964). Fishburn ( 1965, 1985), Dempster ( 1967). Suppes 
( 197.4, 1981 ), Shafer ( 1976), and Leamer ( 1986). (The I ist is not exhaustive.) 
We expand the Fundamental Theorem to allow assertions of bounds 
on incompletely assessed previsions as the primary input specifications of 
uncertain knowledge. Even more generally, assertions of mere orderings of 
prevision and other linear inequalities are shown to be meaningful inputs, witn 
numerical implications computable within the linear programming framework. 

Finally. we extend the theorem beyond the domain of events to a 
fundamental theorem of prevision for general quantities (Section 4). Any 
prevision inequality holding under linear equality or inequality constraints 
receives its strongest possible statement as a consequence of our general 
result. One corollary strengthens and completes the Bienayme-Chebyshev 
inequality in the context of uncertainty about bounaed d.iscrete me~surements. 
Another gives an inequality related to Kolmogorov·s inequality. but involving 
quantities judged as exchangeable. A final extension has implications for 
cohering assertions of conditional previsions. The extension to conditional 
prevision requires a nonlinear programming computation. for which we provide a 
simple algorithm. The output bounds on conditional previsions have direct 
~pplicability in operational-subjective statistical methods. 
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Our results are illustrated by small-scale computations (Section S). 
From the immense scope of potential practical applications, we suggest examples 
in engineering, agronomy, and macroeconomic forecasting. Concluding comments 
(Section 6) dwell on the logical category of prevision as an assertion. in the 
sense introduced by Frege ( 1879). In th is I ight, we recognize· the Fundamenta I 
Theorem of Prevision as a generalization of the deductive closure result of 
Hilbert and Ackermann ( 1938, I. §9.). 

2. PRELIMINARIES 

Most of this section is a concise summary of concepts that are 
developed by de Finetti with extensive examples in chapters 2 and 3 of his 
treatise (1970). Readers who are not familiar with the de Finetti approach are 
asked to pay special attention to the definitions. Familiar sounding terms are 
often defined with a different meaning and syntax than in the measure-theoretic 
characterization of probability. For example, an event in the usual formulation 
is a set; whereas in our terminology, an event is a quantity, a number. 

A quantitu, x. is the numerical outcome of a particular operationally 
defined measurement. Hence, X is a well defined number. although its numerical 
value may be unknown at the time X is contemplated. The set of al I numbers 
tt,at are possible results of performing the operation is callecJ tne realm of the 

quantity, denoted by ~(X). Typically, it has a finite number of elements, called 
the size of the realm. The analysis in this pap·er is confined to the realistic 
case of a realm with finite size. A quantity, E. whose realm is !R,(E) = {O. 1} is 
ca I led an event. If E is an event. then t = ( 1-E) is also an event. Def ini t iona I 
restrictions on events specify logical relations among them. For example. N 
events are said to be incompatible if their definitions imply that their sum 
cannot exceed 1. Similarly, N events are exn_austive if their sum cannot be less 
than I. N events are said to constitute a partition if they are both incompatible 
and e>'haustive, that is. if their sum necessarily equals 1. The individual events 
in this case are called constituents of the partition. 

Any N events (N :i? 1) generate a partition with S(N) constituents. S(N) 
is called the size of tne partition generated by E1, •••• EN. The constituents of 
this partition are those S(N) summands in the multiplicative expansion of the 
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expression 1 = rri=IN (Ei+~i) that are events. This is to say, their realms contain 

both (and only) the numbers O and 1. A typical summand in this expansion is a 
product of N events, such as E1E2E3E4···EN_1EN. There are, of course. 2N summands 
of this form. But some of them may not be events, since some of the summands 
necessarily equal zero if there are logical restrictions among the multiplicand 
events that generate the partition. For a simple example, suppose N = 2. and 
E2 = I - E 1• Then neither E1E2 nor t 1t2 are events, since they both necessarily 
equal O. But both E1E2 and E1E2 are events. Thus, 5(2) = 2, rather than 4. It" 
every summand in the product expansion rri=lN (Ej+Ej) is an event, then S(N) = 2N. 

Ott1erwise S(N) < 2N. Throughout this paper, we will denote the constituents of 
the partition generated by the events E1, ••• ,EN using the symbols C1, .... Cs(N)· 

Geometrically. the S(N) constituents of the partition generated by N 
events can be represented by points in N-space. specifically, by S(N) designated · 
vertices among the 2N vertices of the N-dimensional unit cube. If there are no 
logical restrictions among the generating events. then S(N)=2N, and every vertex 
of the N-dimensional cube r~presents a constituent of the partition. In tnis case 
we say the events are completel/J logicall/J independent. But if there are any 
logical restrictions among E1, ••• ,EN, then some of the ~ertices must be removed 
from the N-dimensional cube in order to represent only the constituents of tt1e 
partition generated by the N events. In such a case we say that the operational 
definitions or the events entail some degree of logical dependence. Figures 2.1 
and 2.2 exhibit two possible configurations of logical dependence among three · 
events. In Figure 2 .. 1, the two events E1 and E2 are completely logically 
independent, while E3 is their logical conjunction. It is defined functionally as 
the product E3 = E1E2• In Figure 2.2, the three events F 1, F2• and F3 are 
incompatible. Yet none of them is defined functionally in terms of the other 
two. De Finetti referred to such events as logically semidependent. 
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Figure 2.1. Logical 1u Dependent 
Events. The two events E 1 and E2 
are completely logically independent. 
whereas event E3 is their logical 

· conjunction: E3 = E 1E2. 

0 

Figure 2.2. Logically semideoeQdeot 
Events: The three events F 1, F 2• and 
F3 are incompatible. Nevertheless, 

none of them is a log1cal function 
of the other two. 

These concepts can be generalized to vectors. A vector of quantities, 
XN = (X 1, ••• , XN)T, is a vec~or whose compon~nts are quantities. The realm of 

such a vector. denoted by ~(XN) c RN • is the set of vectors that represent 
possible outcome values obtained by performing the operations defining all the 
component quantities. The component quantities. of XN are said to be completely 

logically independent if ~(XN) equals the cartesian product of the reatms of its 

components. Otherwise the quantities are said to entail some degree of logical 
dependence. A vector of quantities generates a partition whose constituents are 
the events of the form (XN = xN) where xN is in ~(XN). Thus, the size S(N) of the 

partition generated by N quantities equals the size of the realm of their vector. 
[Parentheses around a mathematical relation, such as (XN = xN), should be taken 
to define an event equal to 1 if the re lat ion holds, and equal to O otherwise.] 

Your prevision for a vector of quantities X = (X 1, ••.• XN)T is the vector 

of numbers P(X) = (P(X 1) •••• , P(XN))T you specify. with the understanding that you 
are thereby as:serting your indifference to engaging any transact ion that would 
yield you the net (sum of products) sT[X-P(X)l pounds sterling, where 
s =(st, ... ,sN)T is any vector of scale constants. Your indifference must apply to 
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vectors s in every direct ion. It may be qua I if ied only that the components of s 
must be sufficiently sma 11 that the net y ie Id of any relevant transact ion does 
not transgress the limited regipn over which your utilities are approximately 
linear. For example, you may stipulate that your assertion of indifference 
pertains only ifs is scaled so that the maximum gain or loss you can incur from 
the yield sT[X -P(X)] is no greater than 1 o pounds. (For detailed discussion of 
this feature, see de Finetti, 1970, 3.2.) If any component of X is an event, tnen 
the ·corresponding component of your prevision vector is cal led your proba/Ji/1t11 
for that event. 

In asserting your prevision P(X), you are avowing your willingness to 
buy and your willingness to sell a claim to srx pounds in exchange for payment 
of sTP(X) pounds. This is an operational implication of the stipulation that the 
vector s in the ~ield expression sT[X-P(X)] may have any direction. Having 
asserted your own P(X), then for any vector p1 ~ P(X)! you would presumably 
also be willing to pay sTp 1 pounds for a claim to srx pounds where every 
component of s is positive. For this transaction would yield you at least as 
much as paying sTP(X) pounds for a claim to srx pounds. Similarly, for any 
vector p2 ~ P(X), you would pr~sumably be willing to sell a claim to srx pounds 
in return for payment of sTp2 pounds. 

Let us tarry a moment to highlight the technical aspect of defining 
prevision as an assertion you make regarding the value of X. The r_ealm of X 
presumably delineates all the various values of its component measurements 
that a·nyone can val idly contemplate as possible: whereas your prevision P(X) 
represents your operationally defined judgment of the value of X on the basis of 
such contemplation. (Someone else may assert a different value as his/her P(X). 
Neither of you are estimating a "true" or 11correct" value of X. but rather 
asserting your own valuation of X.) This distinction between ~(X) and P(X) 
para I leis that introduced by Frege ( 1879) in mathematical logic. Within the 
confines of two-valued· logic, he introduced notation to distinguish the· content 
of a declarative sentence, which may be true or false, from a proposition, wt"dch. 
is an assertion by someone that the sentence is true. The rules of two-valued 
logic govern the self-consistency of several propositions, requiring that you do 
not assert botn the truth of" a sentence, A, and the truth or its negation, A. The 
extension of these rules to the logic of uncertainty is motivated by the desirable 
property that your assertions of prevision oe coherent. 
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Your prevision for a vector of quantities, P(X). is said to be coherent 
as long as you do not assert by it your indifference to some transaction that 
would surely yield you a loss, no matter what the outcome value of X may be 
among the possibilities in ~(X). Algebraically~ the coherency of your specified 
P(X) requires that there exists no vectors with sufficiently small components 
for which, for some f > o, sT[x-P(X)] < -f < o for every vector x E ~(X). This 
specification of this requirement leads to the algebraic characterization of 
coherent prevision as a I inear funct iona I over the space of I inear functions of X. 
By a standard support ing-hyperp laQe argument, the set of al I coherent vector 
previsions assessable for the vector of quanUties X is identical to the convex 
hull of ~(X) in N-dimensional space. The coherent extendibility of your asserted 
I inear functional, P.. to larger spaces is the subject of _the fundame~ta I theorem 
of prevision, to be discussed. 

Your c-onditional prevision for a quantity X conditional on E. denoted 
P(X IE), is defined as the number you specify with the understanding that you are 
thereby asserting your indifference to engaging any transaction that would yield 
you the net gain of s[XE - P(X I E)E] pounds sterling. Such a transaction is 
called a contingent transaction for x. contingent on E. For the yield from the 
trar,lsaction (gain or loss) will differ from o only if the event E in fact equals 1. 
A conditional prevision assertion P(X IE) coheres with assertions of P(XE) and 
P(E) if and only if P(XE) = P(X I E)P(E). This definition of conditional prevision 
makes no reference to any assertion of prevision you might make in the future. 
Your conditional prevision represents an operationally defined judgment you 
make now about tne value of X and E, based on your current state of uncertain 
knowledge. (See Goldstein 1985 for discussion and developments based on this 
distinct ion.) 

we conclude these preliminaries with the observation that any vector 
or events, EN, can be written as a linear. function of the vector of constituents 
of the part it-ion the events generate, Cs(N), via the equation 

EN = RN,S(N) Cs (N) 

Here RN,S(N) is the [NxS(N)] matrix whose columns are the vector elements of the 

realm lt(EN). Since every entry of RN,S(N) equals either O or 1, each column 
vector of RN.SCN) associates·a specific constituent of the partition with some 
vertex of the N-dim~nsional unit cube. The equality of E and RC merely states 
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the identity of each event E; with the sum of specific identifiable co~stituents 

of the partition generated by E1, ••• ,EN. These constituents are identified by 
expanding the right side of the equation, Ej = Ej[TTj=1N(Ettj)(j=i)J, and then 

recognizing the proscribed summands in the resulting expression that necessarily 
equal O due to logical restrictions among the events generating the partition. 
For example, the vector of three events whose realm is displayed in Figure 2.1 
can be expressed as E3 = R3•4 C4 : 

[
E1] [100 1]· 
E2 = 0 0 1 1 
E3 0 0 0 1 

wnere c j is the event that the vector E3 equals column j of the matrix R3,4 . · 

Notice that the columns of R3,4 are also the vector elements of the realm ~(E3), 

represented by bold dots in Figure 2.1. More generally, a similar equation 
characterizes any vector of quantities. XN, as 

XN = R(XN) Cs(N) 

where R(XN) is the matrix whose columns are the elements of the rea Im ~(XN). 

and Cs(N) is the vector of constituent events (XN = xNL one for each possible 

observation vector xN in the realm ~(XN). 

Finally, notice that although the numerical values of the quantities 
X1 ••••• XN and of the constituents C1•· ••• ,Cs(N) may well be unknown to you, you 

can be certain that the sum of the canst ituents equals 1. That is. rcs(N) = 1, 
since C 1 •••• ,Cs(N) constitute a part it ion. by construct ion. [We use the notation 

r v for the sum of the components of a vector v. we will also have recourse to 
denote by 1N the N-dimensional column vector with every component equal to 1.] 
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3. THE FUNDAMENTAL THEOREM OF PROBABILITY= INITIAL EXTENSJONS 

The operational-subjective theory of probabi I ity al lows you to assert, 
as your prevision (probabilities) for a vector of events, any vector of numbers 
you please, subject only to the restriction that your assertion be coherent. The 
coherency restriction will then define your prevision operator as a linear 
functional on the space of linear functions of the event vector. Notice that your 
prevision operator is not defined for al I functions on the oasis of some 
underlying measure. Rather, your prevision for a vector of quantities becomes 
defined only when you actively assert your willingness to engage the 
transactions specified in the definition. Coherency requires that when you 
assert this willingness, you concomitantly assert your willingness lo engage in 
specified transactions involving linear combinations of the quantities, whose net 
yields would be identical to the yields from transactions you have 
expressly asserted to be acceptable. Now suppose you coherently specify your 
probabi I ities for a vector of N events, EN. De Finetti's fundamental theorem of 

probab i Ii ty characterizes the nu mer ica I restrictions on your assessment of 
prevision for any further event, EN+I• that are required by -- and insure -- the 
coher:ency of your overall prevision for the vector of events 
EN+I = (E 1, •.. , EN,EN+I )T. The first theorem we present is a reformulation of the 
fundamental theorem as a linear programming problem. It appears first to nave 
been suggested in such a_form by Bruno and Gilio (1980), while the subsequent 
~xtensions in this section were developed and discussed in the thesis of Rahman 
( 1987). 

Fundamental Theorem of Probability. Let EN be a vector of events for 

which you have specified your prevision vector, P(EN) = PN: and let EN+l be any 
other event. Depending on the logical relations among the events E1, ••• ,EN.EN+1, 

they generate a partition of size S(N+ 1) ~ 2N+l. Denote by Cs(N+J) the vector 
that comprises the constitutents of this partition. By construction, the vector 
EN•l = RN+J,S(N+1)CscN+1)• for the appropriate matrix RN+l,S(N•1)· Denote the first 
N rows of RN+l,SCN•I) by RN,S(N•I), and the (N+ t)st row by rN•l· Then, for the 
coherency of an extended prevision assertion for all components of EN•l· 

P(EN. 1) = (pNT,P(EN. 1))T, it is both necessary and sufficient that the numerical 

value of your P(EN .. 1) I ie within the interval [ IN•t , uN•t], where the values of IN•t 
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and uN+l are determined oy solving the following two linear programming 

prot>lerns= 
Find those S(N+ 1 )-tuples Qs(N• t l = ( Q 1 ,q2, ... ,qs(N• 0)T that yield tne t?.xt rema. 

IN+I = minimum (rN+lqS(N+l)) and uN•t = maximum (rN.1qs(N+lJ), 

Doth subject to the (N+l) linear equality constraints 
(..x..h, ••. ~...... ~ RN,S(N+ 1) Qs(N+ I)= PN and r Qs(N+ 1) = l , -:> "hry-n-1..;_J.. 

along with the S(N+t) non-negativity restrictions that each component of QscN•ll ~ryJ.o
be non-negative. The feasible region for these programming problems 1s empty 
if and only if your original assertion of P(EN) = PN is incoherent. 

Proof. An assertion P(Ew. 1) = PN+t is coherent if and only if the vector 

PN+t lies within the convex hull of the set :R(EN+1). Now the event vector E"'. 1 is 

a I inear transformation of the constitueAt vector ~S(N• I) it generates. The · 

transform~tion takes vectors in S(N+ 1 )-dimensional space into (N+ 1 )-dimensional 
space by the transforming matrix RN+l,S(N+t)• viz., EN•t = RN+l.SCN•l)Cs(N+lJ· 

Under this transformation, the convex hull of ~(EN.1) is the image of 3t(Cs(N.+JJ). 

Thus, the vector PN+l lies within the convex hull of ~(EN., 1) if and only if it can 
be obtained by the same linear tranformation of some vector within the convex 
null of the realm 3t(Cs(N•i)). Since the components of Cs(N•I) constitute a 

partition, tr1e convex null of :R.(Cs(N•ll) is the simplex ot' vectors 

Qs(N•n = (q1, .. -,qs(N•ll)T whose components are nonnegative and sum to 1. The 

assertton P(EN. 1) = PN+l is an extension or the assertion P(EN) = PN if and only it 

the first N components of the vector PN+l are identical to the components of 

PN = RN,S(N•1)Qs(N•1) tor some qualifying vector Qs(N•tl· Thus. satisfaction or 

the linear programming formulation is both necessary and sufficient for an 
assertior1 P(EN. 1) = PN+t to be a coherent extension of the assertion P(EN) = PN· 

The same logic underlies the fmal statement in the tneorem, that tne or1gimil 
assertion P(EN) = PN is incoherent if .and only if the feasible region of the 
_specified programming problems is empty. v 
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Let us make a few simple observations before a deeper discussion. 

At one extreme. if EN+ 1 happens to be a linear function or E1 ••••• EN. then 
P(EN. 1) is determined exactly, on account of the linearity property of coherent 

previ_sion. In this case lN+l = uN+t = P(EN.1). At the other extreme. if EN•t happens 
to be completely logically independent of E1, ••• ,EN • that is, if S(N+ 1) = 2 S(N). 

that is, if EN+t and tN+t are both compatible with every constituent of the 

partition generated by E1, •••• EN • then lN+l = O and uN•l = 1. In this case, the 
boundaries on the coherent assertion of P(EN.1). as an extension of the assertion 

P(EN) = PN ,. are not aff~cted at al 1 by the specific components of the vector PN· 
(A coherent prevision assessment for any event, of course. must lie within the 
interval [O, 1] .) 

Between these two extremes lie all the intermediate possiOilities or 
logical dependence conceivable among E1, •••• EN•l. The tightness of the bound on 

. . 
P(EN+ 1) depends on the numerical values of P(E 1), •••• and P(EN) as wel I as on the 
logical relations among E1, ••• ,EN+I. For example, notice that in Figure 2.1 if 

P(E 1) = P(E2) = .5. then the bounds on P(E3) are O and .5. For any value of P(E3) 

outside these bounds, the vector P(E3) = {.5,.S,P(E3)) would lie outside the 
convex hull of the realm ~(E3), outlined in bold. Whereas, if P(E 1) = P(E2) = .7, 
then the bounds on P(E3) are .4 and .7. Within the convex hull of the four 
possible outcome vectors. the convex hull of ~(E3), all vectors that project 
orthogonally onto the point (p 1,p2) = [P(E 1),P(E2)] lie within the bounds specified 
by the two I inear programming prob I ems. 

The major practical difference between de Finetti's characterization of 
coherent prevision as a I inear functional and the more common measure-theoretic 
axiomatization of probability can be seen by comparing this fundamental theorem 
with a corresponding axiom of the usual approach. The measure-theoretic 
conception supposes that ·a unique probabi: ity measure is defined on every 
"elementary event''. that is, a set corresponding to a constituent of our partition 
generated from E1, ••• ,EN.1• Then it is axiomatic that the probability of any union 

of these disjoint events [note the measure-theoretic and set-theoretic language] 
equals the sum of the probabilities of the elementary events in the union. 
Bayesian statistical theorists who have attempted to use this mathematical 
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formulation with a subje~tive interpretation are justly criticized by the 
objecting practitioner who questions UHow can I possibly assess my probability 
for each of those elementary events?" For S(N+ 1) can be much larger than N+ t. 
even as large as 2N•1• The characterization of coherent prevision as a 1 inear 
functional allows you, as the practitioner, to assess your prevision for as many 
or as few events as you feel able and interested. Notice that any vector qs(N+t) 

satisfy~ng the linear programming constraints would be coherent. and would 
cohere with the assertion P(EN) = PN• if it were asserted as a prevision of the 
constitutent vector Cs(N•l). The usefulness of the fundamental theorem or 
probability lies in the fact that the logical relations among the events of 
interest to you can be exploited in ai.ding your assessment of P(EN+1). without 
the necessity that you identify your prevision for every constituent of the 
partition generated by E 1 ..... EN+ 1 • 

3.1. Discussion: Bounds on.Prevision at the Base of the Assessment Process 

After you have coherently asserted your previsiorJ P(EN) = PN· the 

requirement of the fundamental theorem that IN+l ~ P(EN+ 1) ~ uN+l has two 
practical imp I ications. One is cautionary. The other is behavioural. As a 
guide I ine. the requirement cautions that if you now undertake to specify your 
P(EN.1). it had better lie within the interval [IN•l ,uN+11. or else you will have 
expressed an incoherent opinion. If you desire to be coherent. a reassessment of 
P(E 1) ••••• P(EN) wou Id be in order if you are satisfied with your assert ion of 
P(EN+l) outside of the interval [IN+t •UN+11. Indeed, this is the language in which 
the fundamental theorem has _been stated. But in addition. the theorem already 
has a behavioural consequence for you, even if you never assert a prevision value 
for EN•l· The theorem implies that the coherency of your prevision operator 
along with the logical relation of EN+I to EN and your already specified assertion 
of P(EN), together. amount to your avowed w i 11 ingness to pay any amount up to 
(slN.1) for a claim to the unknown value (sEN.1). [As noted in tne preliminaries, 

sis qualified to be a small or moderate amount. say 10 pounds sterling.] For a 
combination of transactions involving only components of EN can be arranged 
that w i 11 surely not return you ·more than (sEN+ 1) and for which you have 
already asserted your willingness to pay (slN+1). Similarly, you are avowedly 
willing to ofter for sale a claim to (sEN.1) in return for at least (suN. 1). 
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This statement of behavioural implications for de Finetti's Fundamental 
Theorem of Probability is related operationally to Learner's ( 1986) suggestion 
tr,at a "bid-ask spread'' be considered the basic meaningful unit for expressing 
one's uncertainty about a quantity within the operational-subjective framework. 
Although we do not subscribe to the entire argument presented in Learner's 
paper, his operational meaning for asserting a probabi I ity interval is compel I ing. 
A much discussed criticism of the operational-subjective theory of probabi I ity 
hinges on the requirement that you specify a single price at which you are Doth 
willing to "buy" and willing to "sell" a quantity, in order that the theory have any 
content. The behavioural interpretation of the fundamental theorem softens this 
requirement. It is oper~tionally meaningful to make a partial assertion of your 
prevision for a quantity X -- that your P(X) lies within the interval [p I ,Dul. 

Formally, you thereby avow your willingness to engage any transaction that 
would yield you the net _gain of s1[X -pi] + suf Pu - XL so long as sI and Su are 

non-negative scalars small enough that your net gain or loss cannot be too large. 
Requiring coherency of a partial assertion of pr~vision, that you neither assert a 
willingness to accept a sure loss, nor a willingness to forego a sure gain, 
implies minimally that a coherent prevision interval [p1,Pul must satisfy the 

inequalities: min 3t(X) ~ PJ ~Pu~ max ~(X). 

In higher dimensions, this characterization of a partial assertion as the 
assertion of a prevision interval expands not merely to a prevision hypermterva!. 
but to a prevision polytope, perhaps highly irregular in shape. This follows from 
the fact that when you assert your wi 11 ingness to engage in several individual 
transactions, coherence requires your willingness also to engage tt1ern in linear 
combinations (subject to the qua I if ication that the scale of the net gain or loss 
not De too large). ~loreover, a partial assertion regarding an individual quantity 
may De redundant in the context of other part ia I assert ions you mak·e. Tnese 
ideas are presented most simply by an example. 

Suppose that E 1 and E2 are incompatible events. and that event E3 is 
defined as their sum: E3 = E1 + E2• Thus, the convex hull of Jt(E3) is the plane 
triangle connecting the points (0,0,0). (1.0, 1), and (0, 1, 1). This r,ull iS 
depicted in Figure 3.1, projected onto the 2-dimensional space containing :R.(Ez). 
Now. suppose further that you make the three partial assertions of prevision. 
P(E 1) € [.25,.51, P(E2) E [.2,.3]. and P(E3) E (.5,.91. The dark polygon within the 
conve:< hull contains all the vectors in 2-dimensional space that satisfy the 
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restrict ions specified by your several partial assert ions. For any price vector 
(p 1,p2) outside this polygon, you have effectively asserted your willingness to 
engage some transactions that involve buying or selling E1 for p1 and/or buying 
or selling E2 for p2. But you have not yet made any assertion of your position on 
exchanges involving prices represented by any vector within th~J~.Ql.~_qqn. 

E2 

1.0 

.9 

.5 

.3 ----.......... 

. 2 ---

0 .1 .25 .5 .9 1 .0 
E, 

Figure 3.1. A partially asserted prevision polytooe. The events E1 and E2 are 
incompatible, and E3 = E 1 + E2• The convex hu 11 of !R.(E3), projected onto the 
2-dimensional space containing :R.(E2), is the heavily outlined half unit-square. 
The dark polygon within this convex hull is the part ially asserted prevision 
polytope specified by the three partial assertions of prevision, P(E 1) E [.25, .5], 
P(E2) E [.2 , .3]. and P(E3) E [.5,. 9]. 

There are two special features to note in this example. First is that 
the asserted upper bound, P(E3) .s .9, is redundant in light of the other two 
assertions of P(E 1) .s .5 and P(E2) .s .3. For the wi llingness the latter signify, 
to engage in any transaction yielding s1uC.5-E 1) + s2u(.3 -E2) as long as s1u and 

s2u are non-negative, implies a willingness to engage in any transaction yielding 

S3u (.8 · E 1 - E2) = s3uC.8 -E3), signified by the assert ic:-, P(E3) .s .8. The second 

feature to note is that the assertion P(E3) ~ .5 signifies a w i 11 ingness to engage 
a transaction yielding s31(E3 -.5) = s31(E1+E2 - .5) = s31(E 1-.27) + s31(E2 -.23), 

for example, even though .27 exceeds the lower part ial assertion value of P(E 1), 

and .23 exceeds the lower partial assertion value of P(E2) . Thus, the vector 
(.27 . . 23) I ies outside the polygon of part ia I ly asserted prevision. 
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The f undamenta I theorem of probab i I ity supports and even motivates 
the point of view that your intervals of partial assertion of prevision for 
individual quantities has a definite operational meaning in the representation of 
uncertain knowledge. The coherency requirement that you neither w-iJlingly 
accept sure losses. nor willingly ·rorego sure gains characterizes a partially 
asserted previsionpolytope, the set of" vectors that satisfy the inequalities ot' 
all your partial assertions, as a convex polytope lying within the convex hull of 
the realm of the quantity vector. You can be said to have asserted your 
prevision for a quantity, as defined in the preliminaries of this paper, only in 
the e:<treme case that your asserted prevision interval for that quantity consists 
of a single number. The fundamental theorem actually requires proponents of 
the operational-subjective formulation of uncertain knowledge to admit this 
viewpoint. For whate~er precise prevision assertions you make for whatever 
quantities, the theorem snows us how to identify another quantity for wnich 
your avowed assertions are equivalent to a partial assertion. 

The terminology partial assertion or prevision for the statement 
P(X) E [P1, Pul is expressly meant to connote that, conceivably, you can complete 

an assertion of your prevision for this quantity by a process of further 
introspection and sharper decision. Would you rather own a claim to X pounds or 
a claim to (P1 + Pu)/2 pounds? Once you decide, you will have strengthened your 

partial assertion ot prevision eitner to P(X) E [(P1 + Pu)/2, Pul or to 

P(X) E [P1,(P1+Pu)/2]. depending on the decision. However, there are many 

usefu I ways you might decide to spend your time. So there can De no requirement 
that you assert a resolution of any particular value question such as this one. 
several contemporary proponents of "interval probabilities" argue that 
probabi I ities are t>est considered to be irreduciole intervals. Subjectivist 
proponents of this view say that "when I assert P(E) E [P1, Pu 1. I mean tr1at I 

would pay up to Pt for a claim to E, and I would sell a claim to E for Pu or more. 

But at prices oetween Pt ana Pu, I will neither buy nor sell a claim to E." we do 

not subscribe to this viewpoint. Without further dis~ussion he~e. let us merely 
state that such a position neglects the linearity of utility presumed in tile 
qualification that the scale be small for the net yields from any relevant 
transact ions. 
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3.2. £.rtensions of the Theorem of Probability 

The fundamental theorem of probabi I ity can be extended to describe the 
imp I ications of coherency for your partial assertion of probability intervals. The 
theorem. in the form stated above, makes only limited use of the rich 
possibilities of the linear programming structure. The constraint i:Qs(N•I) = 1, 

along with the S(N+ 1) restrictions that each component of qs(N•O be 

non-negative, together specify the feasible r~gion of vectors Qs(N•l) as the 

convex hu II of the realm lt(Cs(N• 1l). The matrix RN+ 1,s(N• I) transforms these 
vectors into (N+ 1 )-dimensional space. Thus, in effect, these [S(N+ 1 )+ 1 l 
restrictions on Qs(N•ll define a convex polytope in (N+l)-dimensional space. 
Each of the further N exact linear constraints specified by the equation P(EN) =

PN = RN,S(N+t)Qs(N•l) reduces by 1 the dimension of the transformed feasible 

region. When all constraints are met, the coherent assertions P(EN+t) that are 

extensions of the assertion P(EN) = PN are restricted to lie along a bounded 

one-dimensional 1 ine segment. Its endpoints are defined by the extrema of the 
aesignated linear programming problems. 

We say this is merely "limited ~se" of the linear programming setup, 
since you need not go so far as to assert fully your prevision vector P(EN) in 

order to compute numerical bounds for P(EN.1) with a linear programming 

algorithm. A computable solution of bounds for coherent assertions regarding 
EN+1 can still be achieved on the basis of partial assertions, IN ~ P(EN) ~ uN. 

Although these assert ions may not reduce the dimension of your prevision 
polytope for EN•l • they could reduce its volume considerably. This is the tack 

we follow in stating our first extension of the fundamental theorem. (Its proof 
is contained informally in the preceding discussion.) 

The Fundamental Theorem olProbability - £'(tension I. Let EN be any 

vector of events for which you make the partial assertions IN ~ P(EN) ~ uN. And 

let EN+l be any other event. The logical relations among components of EN+J 

specify that EN+t = RN+l,S(N+t)CS(N+I)· (Again, let RN,S(N+I) denote the matrix 
composed of the first N rows of RN•t,SCN+1), and let ri denote the ith row.) The 

conerency of your exp! icit assertions regarding the vector EN•t entai Is that. you 

Page 17 



also avow the partial assertion lN+t .s P(EN+l) s uN•l , where IN•l and uN•t are 

determined by the solutions to the following two linear programming problems: 
Find those S(N ... I )-tuples qs(N• 1) = ( q 1, .•. ,qs(N• 0)T that yield the extrema 

IN•l = minimum (rN+lQS(N•t)) and uN•l = maximum (rN+lQs(N•l)), 

both subject to the 1 inear constraints that 

RN.s(N+ 11 Qs(N• n ~ IN , 

RN,S(N+ 1) Qs(N+ 1) .s UN , and 

r Qs < N• n = 1 • 
along with the non-negativity restrictions on the components of Qs(N• I)· 

Moreover, the coherency of your several assertions about EN+l defines your 

prevision polytope for EN+J as the feasible region in these linear programming 

problems, transformed ·into (N+ 1 )-dimensional space by the matrix RN•l,S(N+ tJ. 

Thus. for each component event E1 of EN+t• you avow, ih effect. the partial 

assertion lj* ~ P(Ej) ~ ui*, where lj* and uj* are the extreme values attainable 

by t~e function r i Qs(N•ll within the feasible region. ~ 

This form of the theorem exhibits the interconnections among all your 
partial assertions of prevision that are required by coherency. Your prevision 
for each of the N+ 1 events is constrained in the same fashion, by a bounding 
interval. The vector of your previsions for all of the N+l events must lie within 
a convex polytope, the transformed feasible region of the programming problems. 
Any further decisive introspect ion motivating you to narrow one of your. asserte,j 
intervals, [lj*, uj*L could have an effect on the implied bounds for any or all 

other quantities, narrowing the associated intervals. For your explicit narrowing 
of the interval [li* ,ui*] (for example. a·sserting P(Ej) precisely) would amount 

to a more restrictive specification of the feasible region of vectors q5w .. n that 
are allowed by the programming problems. 

Note that the implied intervals U;*, uj*} are "marginal" tatner than 

,, joint" intervals, in the sense that, because they are merely one-dimensional 
projections of the partial prevision polytope. their cartesian-product 
r,yperinterval need not consist of points that would be coherent if asserted as 
prevision vectors. Tr,ey are necessary but not jointly sufficient. as bounds for 
cor,erent prevision vectors. The smat ler partial prevision polytope is tne set of 
atl t.ne coherent candidate prevision vectors. 



A second usefu I extension of tne fundamental theorem is read, ly 
apparent. In the I inear programming context, a mere assert ion of orderings 
among your previsions for several quantities or for. I inear combinations of ttiem 
is sufficient to generate computable bounds that express your uncertain 
know ledge regarding any quantity. For example, you might assert that your 
P(E 1) ~ P(E2). meaning that you avow a w i 11 ingness to excnange a claim to sE2 
pounds in return for a claim to sE 1 pounds (presuming s is not large). With 
similar operational meaning, you might assert that your P(E3)+P(E4) ~ P(E5). or 
even that your P(E6)+2P(E7) ~ P(E8). Moreover, any assertion of conditional 
prevision can be expressed as a linear constraint as welt. A coherent assertion 
that your P(E 1 I E2) = p1•2 , for example, is equivalent to ttle assertion that 
P(E 1E2) = p1•2P(E2), which is to say, P(E 1E2) - p1•2P(E2) = 0. This is a linear 
restriction on your prevision for the events E2 and E3 = E1E2. Similarly, tr,e 
partial assertion P(E d E2) E [a. bl is representable by I inear restr1ctions: 
aP(E2)- P(E 1 E2) ~ 0, and bP(E2)- P(E 1 E2) ~ O. Each such statement is readily 
translated into I inear constraints allowable in the I inear programming 
framework: aRN.S(N•l)Qs(N+l) ~ b, for a suitably defined row vector. a and an 
appropriate number b. (Without loss of generality, we will henceforth express 
all inequality assertions in such a "less than or equal to" form.) Let us merely. 
state this second extension of the fundamental theorem in a summary fashion. 

Fundamental T/Jeorem ol P1·01Jabilit11 - Extension 2. The fundamental ... 
tneorem of prooaDility extends further to allow meanmgfut part1a1 assert;ons of 
prevision in the form Ai<,NP(EN) ~ bK as input to the linear programming 

problems, and to imply computable bounds on coherent prevision for any l ir,ear 
combination of constituents, P(rCs(N+J)). 6 

This extension of the fundamental theorem unifies the numerical 
representation of subjective probability with ideas of merely ordinal probability. 
as advanced in several works of sr,ack le ( 1949, 1955). According to de Finett i 
(1965), ideas behind such an extension were already underlying works in 
Pducatlonal testing by Coombs, Milholland, and Womer (1956), Wtlley (1950). 
Chernoff (1961, 1962), and Dell'Era (1963). 

We can summarize the position to which the fundamental theorem of 
probability r,as led ~s. The requirement of coherency provides that whatever 
know ledge you assert about -a vector of events. no matter how meagre or riov.,: 
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detailed the knowledge may be, delineates a convex polytope that represents 
your prevision to the extent to which you have specified it. We need not 
presume that the volume of the polytope. is reduced to zero by any precise 
specification of your prevision. Yet there is positive operational meaning to tr,e 
know ledge you do specify, 

4. THE FUNOAMENT AL THEOREM OF PREVISION 

Since events are merely quantities whose realm is {O, 1}. it should not 
De surprising that the funaamental theorem of proDabil ity, and each or the 
extensions we have presented above, depicts a special case of a theorem 
applicable to prevision for general quantities. What may be surprismg is the 
breadth of important results in statistical theory that are particular instances 
of the general result. We will state and prove the fundamental theorem of 
prevision in two parts~ The first part is a comprehensive generalization of 
results we have already discussed. The second part reveals the bounds implied 
for coherent conditional prevision. After an intermediate discussion, we will 
dwell on two important corollaries. 

In what fol lows, we presume XN = (X 1, ••• ,XN)T to be a Quantity vector, 

with a finrte discrete realm :R.(XN) having S(N) members. we noted at tne end or 
our preliminaries that XN can be represented in terms of the linear equation 

XN = RN ,SCN) Cs(Nl 
where RN,S(N) = R(XN) is the (N x S(N)) matrix whose columns are tr1e vector 

elements of the realm lt(XN), and Cs(N) is the (S(N) x 1) vector of constituent 

events of the form (XN = xN), one for each element vector xN in the realm $:.(XN). 

Individual rows of RN,S(N) are denoted r1, ... ,rN. Using the generalization or 
prevision to a prevision interval (operationally defined by the assert ion of a 
bid-·as~~ spread) and the generalization to the assertion of any preference 
representable by aTP(XN) .:Sb, we can represent any knowledge you would lik~ t,J 

assert about components of XN via I inear relations of the form ~.N P(XN) ~ bK. 

Based upon the characterization of coherent assertions as the foregoing of any 
sure losses ana me accepting of all sure gams, we can now state simply and 
generally: 
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• Tile Fundamental Tlleorem or Prevision. Part I. Let XN be any vector 
of quantities for which you have partially asserted your previsi-0n via the 
spec.if ications J\.N P(XN) ~ bK. (The number K may be less than. equal to, or 

greater than N.) Then coherency implies that for any component Xi, you assert. 
m effect, P(Xj) f [1 1.u11. where the numerical values of li and ui are calculated 

as the extreme values of the objective functions in the linear prograrnm ing 
problems: 

Find the two S(N)-tuples Qs(N) = (q 1, ... ,Qs(N))T that characterize 

Ii = minimum ri Qs(N) and ui = maximum r; Qs(N) 

both subject to the I inear constraints 

AK,N RN,S(N) Qs(N) s bK • and 

r Qs CN• 1 l = 1 . 
along with the non~negativity restrictions on the components of Qs(Nl· 

The common feasible region for these programming problems. translated into 
N-dimensional space via the matrix RN,S(N)• constitutes your coherent prevision 

polytope for XN. This feasible region is non-empty it' ana only it your original 

assertion At<.N P(XN) ~ bK is coherent. 

Proo!" olPart I . This part of the theorem follows immed,ateiy from· 
the second extension of the fundamental theorem of probabi I ity discussed in tt1e 
previous section. For any general quantity can be represented as a I inear 
combination of events= X = r Xi (X = Xj). Where the summation extends over a! i 

the possible observations xi in the realm :R(X). A linear programming algorithrn 

will necessarily yield finite extreme value solutions to these problems as long 
as the feasible region is not empty, since the feasible region is bounded. 'J 

It is worth mentioning -explicitly the reminder that the assertion of 
each individual P(Xi) within its ass~iated interval [ lj ,ui] is necessary but not 

surf icient for the coherency of a prevision vector P(XN). The necessary and 

sufficient condition for the coherence of the prevision vector P(XN) is that it lie 

\-'llthin the feasible region for these programming proolems, translatea into 
N-dimensional space via the matrix RN,S(N)· 

Peae 21 



Remember that any assert ion of cond it iona I prevision, sucn as the 
partial assertion P(X IE) E [a, b], can be incorporated into the form of input to the 
programming problems specified in this theorem, Due to the coherency require
ment that P(XE) = P(X I E)P(E), it is equivalent to the two assertions. 
aP(E)-P(XE) .so and bP(E)-P(XE) ~ o. However, bounds on cot1erent conditional 
previsions cannot be computed as output from the theorem as stated, since 
cohering P(X IE) is not a linear function of P(XE) and P(E). Indeed, we know. at 
least when you assert P(E) > 0, that P(X IE) must equal the quotient P(XE)/P(E). 
We can use this fact to derive a sufficient condition for the coherence of a 
conditional prevision as an extension of assertions ~.N P(XN) .s bK. 

For clarity in stating Part II of the fundamental theorem of prevision, 
we wi II refer to a further assertion of conditional prevision beyond the 

assertions At<.N P(XN) .s bK as a statement involving P(XN+l I XN+2), where XN+l is 

a quantity and XN+2 is an event, denoted distinctly from the components or XN. 

You should be_ aware, however, that there is nothing special about these 
quantities. They could well both be components of XN about which you have 

explicitly made partial assertions of your prevision. 
Tl7e Fundamental Theorem of Prevision, Part II. Let XN be any vector 

of quantities for which you have partially asserted your prevision via the 
spe~if ication. Ai<,N P(XN) ~ bK, as in Part I. Now let XN+t and XN+2 De any otner 

quantity and any event. respectively. and let XN+3 be defined as their- product. 

XN.3 = XN•txN.2 . Supposing ~(XN+3) has S(N+3) members, XN .. 3 is representable 

via the equation XN.3 = RN.3,s{N•3)Cs(N•3). Let RN,S(N•3) denote the matrix 

composed of the first N rows of RN+3,s(N+3), and denote the final three rows of 

RN.3 .s(N•3) by rN._ 1, rN .. 2 . and rN.3. respectively. Any further assertion of 

conditional prevision P(XN+t I XN+2 ) coheres with ~.NP(XN) :!i bK if it lies within 

the interval [IN+l IN+2 , uN•t IN•21. where the numerical values IN+I IN•2 and uN+l !N-2 

are calculated as extreme values of the objective functions in the non! inear 
programming problems: 

Find those S(N+3)-tuples, Qs(N•3) = (q 1, ••. ,qs(N•3))T, that ct1aracterize 

IN+I jN•2 = minimum [rN+3QscN•3) /rN+2 Qs(N•3)] and 

uN .. , IN·2 = maximum [rN•3qS(N+3) /rN•2 Qs(N•3)] 

both subject to the I inear constraints 

~.N RN.S(N+3) Qs(N+3) ~ bl( , and 
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r Qs (N+ 3) = 1 , 

along with the non-negativity restrictions on the components of Qs(N•3). 

Supposing that the fea~1ble region is not empty, nonlinear-programming 
algorithms will yield finite extreme value solutions to these problems if and 
only if the coherence of P(XN.2) with Ai<.N P(XN) ~ bK requires that P(XN+2) > o. 

Proof or Part II. This resu It hinges on the coherency requ 1rement that 
for any quantity X and event E, the assertion P(X IE) must satisfy the restriction 
that P(XE) = P(X I E)P(E). Thus, the coherency of an assertion P(XN•I I XN+2) with 

the assertions Ai<.NP(XN) ~ bK requires that there be a vector q satisfying tne 
linear restrictions specified in the theorem. for which P(XN.2) = rN•:2 q and 

P(XN.3) = rN.3 q, and for which P(XN+l I xN.2) rN+2 q = rN+3 q. Thus, the relevance 

of the non-linear objective function rN.3q/rN.2q to the coherence of the further 

assertion P(XN•t I xN.2) is established as long as rN+2q is bounded away from u. 
However, _no bound can be computed by these means for the quotient 
rN+3QscN+3)/rN+2 Qs(N+3) as long as there is a vector q satisfying the restrictions, 

for which rN.2 q = 0. This condition would allow an assertion of P(XN+2) = o to 

cohere with Ai<,N P(XN) ~ bK . On th~ other hand, if al! feasible vectors q entail 

that rN+2 q > O, the quotient ~.3q/cN+2q is necessarily bounded, for the feasible 

set of vectors q is closed and bounded. 'v 
Figure 4.1 displays the logic of the argument. Tr1e numerical value of 

P(XN+l I XN+2) coherent with the assertions of P(XN+2) and P(XN+lXN+2) equals r.119-

slope of the vector (P(XN+2),P(XN.3)) whenever a unique slope is defined. Suppose 

tnat the convex hull of the realm 3t(XN.2,XN+3) is the dark bordered triangle with 

vertices (0,0),(1,1), and (1,5). If the coherency of [P(XN.2).PG-<N+3)] wittt tr,e 

assertion Ai<,NP(XN) ~ bK requires that the vector be bound within the inscribed 

quadrilateral, for example, then it would also restrict a cohering assertion of 
conditional prevision P(XN•l I XN.2) to lie betwen the minimum and maximum 
slopes of I ines through the origin that intersect the quadrilateral. If the 
assertion (P(XN.2),P(XN+3)) = (0,0) would cohere with ~.NP(XN) ~ bK, then 

every I ine through the origin wou Id intersect the region of cohering assert ions 
( P(XN.2). P(XN.3) ), and thus there wou Id be no bound on a cohering assert ion of 

P(><N+t I XN .. 2) without strengthening the definition of coherency. Further 

discussion of this eventuality is beyond the scope of this paper. 
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Figure 4.1. Coherence of conditional prevision. Bold dots represent vectors in 
· ,t(XN.2 ,XN.3), where XN.3 = XN+lXN.2• The bold triangle is the boundary of their 

convex hull. The inscribed quadrilateral represents assertions of P(XN+2 .XN+3) 

presumed to cohere with the assertions At<,NP(XN) ~ bK. Then the slopes denoted 

IN•l lN•2 and uN•l lN•2 are th~ minimum and' maxi~um values of P(XN•l I xN.2) that 
would cohere with this partial assertion.of P(XN). 

It is worth noting that Suppes (1981. ·p. 24) dec~ied the n~n-existence 
of a result such as our FTP Part II as a "se~ious difficulty" for a numerical 
representation of uncertain knowledge. 

A simple algorithm. The nonlinear programming problem of FTP Part II 
can be solved computationally by a one-dimensional monotonic search among 
solutions to related linear programming problems, as follows. To maximize the 
ratio y/x over points (x.y) of a closed polygon in the open right-half plane, 
define the I inear runct ion zA (x,y) = y - AX , parameterized by A . The equation 

zA(x.y) = c represents a straight line of slope A and the line passes through 

the origin (0,0) only if c = O . For given '.A , we maximize the function z"-(x,y) 

over allowable (x.y). and write max zi (x,y) = zA (xA, yA) = cA . (The I ine 

zA(x,y) = c"- now touches the allowable polygon only on its boundary, including 
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• 
the point (xA., Yi). ) If a search is conducted and a value ')\ is fo1Jnd for which 

cl\ = o . then 

This slope is maximal since the line passes through the origin and touches the 
polygon only on its boundary. (For the minimization problem, use the sarr:,e 
algorithm~ with maximization replaced by minimization, throughout.) 

Let us conclude this section by noticing that the strongest possibl& 
forms of two important inequalities ar"e corollary to the Fundamental Theorem of 
Prevision. 

Corollary I. Completion of tile Bienayme-Clleb!Jsllev Inequality . . Let>< 
be any quantity with finite discrete realm ~(X) = {x 1, x2, •.• ,x5}. Correspondingly, 

x2 is a quantity with realm ~(X2) = {yjy=x2, and xE~(X)} = {x 1
2,xi, ... ,xs2}. 

Each event of the form (X = x;) is equivalent to the associated event (X2 = x;2); 

and all events of the form (X = Xj), where xi E :R(X), together constitute a 

partition. Denoting the vector of these constituents by Cs = [ (X = ~< 1), ••• , (X = x5) ]T, 

we can write r X 1 = r X1 X2 ••• Xs i Cs = R2 ,s Cs . 
Lx2J L X12 xi ... X52J 

Suppose you assert precise numerical values for P(X) and P(X2). Your var",ance 
for X is defined as V(X) = P[X-P(X)]2 = P(X2)-[P(X)J2, the latter equality oeing 
an implication of the coherency of your prevision. Now for any E > o, define tne 
event EE as the event that X differs from your P(X) by at least E, 

EE=(! X-P(X)I ~ E). Finally, let rE denote that row vector with components O 

or 1 for wt1ich EE = r E C5 . Then for any E > O, coherency requires tt1at your P(EE) 

lie within the interval bounded by the solutions to the following two linear 
programming prob I ems: 

Find the vectors q5 that minimize and maximize r E q5 

subject to the restrict ions t~at 
( P(X) 1 = r X 1 X2 •.• Xs 1 Qs 

LP(X2)J l x12 xl ... xs2J 

tr,at r q5 = 1 , and that each component of the vector q5 be non-negative. L 
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The familiar Bienayme-Chebyshev inequality states the weaker 
concJusion that under the conditions specified. P(EE) ~ V(X)/E2 . The major us8 

of that inequality has been in proving various forms of the weak law of large 
numbers. For in practice. the traditional statement of the upper bound is 
notoriously large, often too large to be usef u I. The inequa Ii ty stated above as 

. corollary to the fundamental theorem of prevision actually strengthens the 
inequality as proved by Chebyshev ( 1867) to the most extreme statement tflat 
can be made in any particular application. A computational example showing 
such an improvement appears in Section 5. Moreover. our corollary completes 
the celebrated inequality by specifying a lower bound as wel I as an upper bound 
on your prevision for the event ( I X-P(X) I ~ e) in any given instance. 

As mentioned, the Bienayme-Chebyshev inequality has ·found its widest 
use in theoretical studies of the weak law of large numbers. The weak law 
concerns bounds on your probabi I ity that the average of several quantities 
deviates trom your prevision for the average by more than any specif 1ea amount: 
P{IXN-P(XN)I ~ e). Obviously, the Bienayme-Chet>yshev inequality is relevant if 

you assert your P(XN) and P[(XN)21 . The strong law of large numbers concerns 

bounds on the less restrictive event that at least one member of a sequence of 
averages so deviates: P(Maxo~k~K IXM+k-P(XM+k)I~ E) for specined va!ues of 

M and K. The fundamental theorem of prev1s ion provides as corol iary a 
necessary and sufficient bound for conerent previsions of such extreme event~·
We st.ate this corollary inthe context of any finite sequence of discrete 
,~uantities that you regard as exchangeable, the paradigmatic context for 
statistical inference. Our corollary differs from the usual Kolmogorov 
inequai ity, first. in assuming exchangeabi I ity instead of independence and, 
secondly, b!d involving successive averages directly, rather than sums of 
quantities. 

Let us denote by XN the vector of quantities (X 1, ... ,XN)f, having a 

common realm ~.(Xj) = :R.(X) = {x 1, ... ,x5}. (So S denotes the size or this corr,mi.)n 

realm of the components.) Similarly, X2N denotes the corresponding vector of 

tt1e squares of these quantities, and (Xi X j )N denotes the vector of the N (N - 1 )/ 2 

product quantities Xji< j· where I ~ i < j ~ N. Finally, we denote by Cs(N) the 

vector of constituents of the partition composed of tne events of the form 
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(XN = xN). one for each element xN in the realm 3t(XN). Using this r:iotation, we 

write 
r XN l r R(XN) l 

I X2N I = I R(X2N) I CscN) 
L(x ix j )NJ L R((X ix j )N)J 

Each submatrix R(·) is composed of columns that ~re the appropriate vector 
members of the realm of the quantity vector shown within the parentheses. 
Not ice that S(N) may be any positive integer between S and sN. depending on t.ne 
logical relations embedded in the definitions of the components of XN. 

Con:>llar..11 2. Bounds on Probabilities of £irtreme Seq11el7l.""BS. Let 
X1, •••• XN be a sequence of quantities which you regard as exchangeable. Suppose 

you assert three precise numbers for your P(X 1) = P(Xj). for all i ( 1 ~is N), your 

P(X 12) = P(Xi2) ( 1 sis N). and your P(X 1X2) = P(XjX jH 1 s i < j s N). For each . 

positive integer r1 and each non-negative integer K, and for any c >O, define the 
event EM, K,E = (Max o s ks KI XM+k - P(XM+k) I~ f ), where Xr denotes the 

arithmetic average of the quantities X 1, ••• ,Xr. Your presumed assert ion of 
\ . 

exchangeaOility requires that your P(XM+k) = P(X 1). Finally, let rM
1
K,E oe the 

indicator row vector for which rM.K,cCsCN) = EM,K,f. Then coherency requires 

that your P(EM,K,,) tie within the interval bounded by the extreme values 

of rM,K ,EQs(N)• subject to the appropriate linear restrictions generated from 

your assertions. 
P(XN) = P(X 1) 1 N = R(XN)Qs(N) 

P(X2N) = P(X1 2)1N = R(X2N)Qs(N) , and 

P[(XjXj)N] = P(X1X2)1N(N-1)/2 = R((XjXj)N)Qs(N), 

. along with i:Qs(N> = 1 and all components of Qs(N> non-negative. Moreover. your 

regarding the quantities Xi as exchangeable places additional linear requirements 

on the vector Qs(N)· Any components of Qs(N) must be equal if the corrE:sponding 
columns of the realm matrix R(XN) are permutations of one another. These 

exchangeability restrictions can.be expressed in the form Mqs(NJ = o, v·lt1ere eacr1 
ro'N of the matrix M contains one 1, one -1, and o m the remaining S(N)-:? 
po~itions. 
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Although only corollary to our fundamental theorem of prevision, this 
is a very general and strong statement of its own. It specifies the strictest 
bounds on your prevision (probabi I ity) for events of the form Er1 ,K!f that are 

1mpl ied by your avowed assessment of N quantities as exchangeable and your 
prevision assertions as stated in the theorem. (Kolmogorov's inequality and the 
usual statement of the strong law of large numbers presuppose your stronger 
assertion of independence regarding X 1 ..... ,XN. Such an assertion wou Id be 

representable by a further specification of polynomial restrictions on tt1e 
components of Qs(N) that we will not describe here in detail.) Within the 

minimalist conception of mathematics subscribed to by de Finetti, the iaws of 
large numbers are wet I specified properties of prevision for events of u-,e form 
EM,K,E, where Mand K have specific finite values. Detailed discussion appears 

in several sections of de Finetti (1970: I.6.8: II. 7.5). Our Corollary 2 to the 
fundamental theorem of prevision states precisely the sharpest bounds on a 
prevision P(EM,K.E) that are necessary and sufficient for its coherence with the 

asserted previsions mentioned. Thus, the corollary identifies the asserted 
status of any sequence of quantities vis-a-vis the law of large numbers 
condition. P(t'laxo;!;k ~KI XM+k -P(XM+k) I~ E) ~ S for specified values of M and K. 

that is required by its coherency with the assertion of exchangeability regarding 
component quantities. More standard specifications of the status of exchangeable 
seQuences in terms of limit theorems are compiled in the monograph of Tay !or, 
Doff er, and Patterson ( 1985). It is somewhat ironic that suet, a simple 
characterization of cohe·rent probabilities relevant to tt1e laws of largE! numbers 
1s achieved within the operational-subjective formulation or pr0Dabiiit1J via tr,e 
fundamental theorem of prevision. For the laws of large numbers, so central to 
ob _1ect ivist theories of probabi I ity such as the frequency theory and tr,e 
propensity theory, are only a curiosity in the subjectivist theory, which centers 
upon practical questions of your knowledge about particular finite sequences. 

rn the ne~<t sect ion, we present smal I computational examples and 
suggest realistic applications of our arguments. 

5. COMPUTATIONS AND APPLICATIONS 

To begin, we illustrate our improvement on the Bienayme-Chebysnev 
inequality. 1Nhich pertains to a single quantity. We shall thef1 extend the conte~·.t 
to several quantities regarded as exchangeable, in order to i I lustrate the 
computable bounds on coherent probabi I ities of extreme sequences. 
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' · Example I. Suppose that X is a quantity with realm ~(X) = { 1. 2, 3, 4, 5}. 
Thus. we can write r X 1 = r 1 2 3 4 5 1 c5 = R2,5 c5 

L x2J L 1 4 g 16 2s J 
where C5 is the column vector of events [(X= 1),(X =2).(X=3).(X=4).(X=5)JT. 
The convex hu 11 of the realm ~[(X.X2)TJ is the dark bordered polygonal region 
depicted in Figure 5.1. To be.gin this example, suppose you assert the previsions 
P(X) = 2.2 and P(X2) = 7, or equivalently, your V(X) = P(X2)- [P(X)]2 = 2.16. The 
point [P(X), P(X2)1 = [2.2. 7.0] should be identifiable in the figure. The figure 
also shows that the assertion of P(X2) within the interval [5.0. 8.2] is necessary 
and sufficient for its coherence with the assertion P(X) = 2.2. In the course of 
this extended example. we will also consider alternative assertions, P(X2) = 6.0 
and P(X2) = 7.6. 

x2 

25 

16 

4 

-0 

8.2 ____ .., 

7.0 ---~~ 

5.0 --~~~ 

2 2.2 3 
X 

4 s 

Figure s.1. completion of Bienaume-Chebushev inegual ity. The convex hull or' 
3'(X. X2) is divided into two regions by a diagonal I ine. The lower part. including 
the points connected by the dividing I ine, is the convex hu 11 of the subset of 
possible observations for which I X-2.2 I< E. provided E satisfies the inequality 
1.8 < E i 2.8. 

Let us first study an event that is easy to describe geometrically= the 
event that X differs from 2.2. your P(X), by at least 2.8 units. Using the 
notation of C~rollary 1, we write E2•8 = ( f x-2.2 J ~ 2.8) = (0 o o o 1) c5. What 
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does the coherency of your prevision require of your P(E2.8)? Since E2•8 is a 
function of X, you can imagine a third axis for this quantity, rising 
perpendicularly up out of the plane of Figure 5.1. Visualizing the 3-dimensional 
figure, we see the value E2.8 = 1 if X has the value 5. But for the other four 
possible values of X, E2.8 = o. Now the convex hull depicted in the original plan~ 

f1gure can t>e viewed as the projection of the convex hull of 1t(X,X2,E2•8) onto 
the space of (X, X2). The lower half polygon whose vertices are the four points 
(1, 1,0), (2,4,0), (3,9,0), and (4, 16,0) constitutes the bottom face of the 
3-dimensional hull. There are four other faces on this hull. Each is defined by a 
triangle connecting one edge of this bottom face with the point (5,25, 1 ). 

Since any coherent prevision point for the vector of quantities 
(x,x2,E2.8) must lie within the hull in three dimensions, it snould De ev1dent 
why the linear programming solution that minimizes P(E2.8) subject to the 
relevant restrictions yields a lower bound of O (corresponding to the primal 
solution vector q5 = (.6, 0, 0,. 4, O) ). For the associated prevision vector 
P(X,X2,E2•8) = (2,7.0,0) lies on the bottom face of the hull. The mmdmization 
problem subject to the same constraints yields an upper bound of .2 
(corresponding to the primal s.olution vector q5 = (.4, .4, 0, O, .2) ). Tt1e associated 
prevision vector P(X, X2, E2.8) = (2, 7.0, .2) is the highest point in the hull that 
projects onto (2.2, 7.0) [in the space of (X,X2)l. This upper bound on 
P(I x -2.2 I~ 2.8) is sharper than the Bienayme-Chet>yshev bound in this case: 
V(X)IE2 = 2.16/(2.8)2 ~ .276. Notice that Figure 5.1 would be unchanged for 
i l Iustrat ing the logic of coherent prevision for any other event Ef. for which c 
lies within the half-open interval (1.8,2.8]. Events such as 
E 1. 81 E ( I X-P(X) I ~ 1.81) and E2.8 = (IX- P(X) I ~ 2.8) are ident icaily 
equivalent to the event (X =5). 

Figur.a 5.1 can also be used to aid ones intuition in several rnor~ of tt1e 
computational results presented below. Considering a coherent prevision for th8 

event E 1.2 = (IX - 2.2 I~ 1.2), restricted only by the assert ions P(X) = 2.2 and 
P(X2J = 7, one recognizes that the triangle connecting the points ( 1, t., t ). ( 4, 16. l ). 

and (5, 25, 1) constitutes the upp.er face of the convex hull of 3t(X, X2, E 1.2). ·1-1rd 12 
tt1e line connecting (2, 4, O) with (3, 9, 0) constitutes a lower edge. It should 
tr,en be evident that tne upper bound for coherent P(E1,2) is L while the lower 
Douna w 111 exceed 0. Tne precise lower Dound is .6, as listed wan tne upper and 
lower bounds for various values of E and V(X) m Table 5.1, below. As shown for 
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E = 1.2, if you assert P(X) = 2.2 and P(X2) = 6, coherency of prevision will bound 
your assertion of P(E 1•2) within an interval [l.u] that lies strictly within (0, 1). 
The relevant upper bound computed from the inequality of Bienayme-Chebyshev 
appears following our computed interval in each case. 

Reading down the columns of Table 5.1, notice that both the upper 
bound _and the tower bound decrease (weakly) as E increases. But reading across 
a row, say when e = 1.8, not ice that there is not a monotonic pattern in the 
upper bound on P(E 1•8) with increasing values of P(X2). This latter result may 
appear counter-intuitive to readers unduly influenced by their experience with 
the Bienayme-Chebyshev inequality. If one makes the appropriate adjustments in 
visualizing Figure 5.1 to illustrate E1•8 , one will see the interesting reason why 
the upper bound for coherent P(E 1.8) is smaller when P(X2) = 7.6 than it is when 
P(X2) = 7.0. . 

~ 5.1 Bounds* on prevision for Chebyshev's event, P(Ef), 

necessary and sufficient for its coherence with various 
specified values of P(X) and P(X2), followed by the 
Bienayme-Chebyshev upper bound, headed u8_c. 

P(X, X2) (2.2, 6.0) (2.2, 7.0) (2.2, 7.6) 

E coherent bounds Us-c cotlerent bounds ua-c coherent bounds 

0.8 ( .267, 1.0 ] 1.81.3 [ .6 '1.0] 3.375 (.8 , 1.0 l 
1.2 r .267, .5 ] .806 [ .6 I 1.0] 1.5 [.8 1.0 ] I. I 

l.8 [ .025. .233] .358 [ . 15, .4] .667 [ '")t")C' 
,Ll..;J' ,51 • ..) J 

2.8 [0.0 t . 117] .148 [0.0 
' .21 .276 [. 15 I .251 

~rhe Dounds presented are accurate to the nearest one-thousandtn. 

ue-c 

4.., l ~ .) ,:; 

1 :317 
QC:-·'"l .o ... u_ 
"C'"" • :>-OL.. 

£-r-amp/B .?. Expanding consideration to several quantities, we provide 
an example i I lustrat ing Corollary 2, which specifies bounds on coherent 
probat,ilities for extreme events. Suppose tt1at X1, X2, and x3 are logically 
independent quantities witn the common realm :R.(X;) = {1.2. 3,4,5}, as 
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in Example 1. Table 5.2 exhibits the computed upper and lower bounds on 
previsions for events of the form EM,K,E = (MaxosksK IXr--1+k-P(XM+i,)I~ E) 

that would cohere with three different assertion configurations regarding the 
quantities X1, x2, and x3• Along any row that begins with a specification or 
M,K,e, appear the intervals for P(EM.K.e) coherent with the mere assertions for 

all i,j of P(Xj) = 2.2 and P(Xi2) = 6.0, along with P(XjX j) appropriate to 

characterize the specified correlation p(X1,x j) that heads each coiumn. [W!"ien 

P(Xj,Xi2) = (2.2,6.0), the correlations p(Xj,Xj) equal to 0, .25, and .75 are 

implied, respectively, by the additional assertion of P(XjXj) equal to 4.84, 5.13, 

and 5. 71. l In the subsequent row are printed the lower and/or upper bound in 
any case for which the coherent bounding interval is restricted furtr,er by the 
additional assertion of exchangeability regarding X1, X2, and X3 .. Notice that ltie 
additional restriction shrinks the interval further whenever it has any effect. 

Table 5.2. Bounds* on P(EM,k,€) necessary and.sufficient for its conerence \..Ylth 

P(Xj,X?) = (2.2,6.0) and specified values of p(Xj,Xj), without and with the 

assertion of exchangeability for X1i X2, and X3. 

M,K,c 
i.1.0.8 
l. I, 1.8 

i .2,0.8 
1,2, i.8 

2, l,0.8 

2, 1, l.8 

0.0 

[.267 , 1.0 ] 
[.025 , .3 11] 
.026 .233 

[.267 , 1.0 } 
( 0 , .333] 
.026 .233 

[.042 , .920] 
.088 , .7881 

[ 0 I , 175] 
.121 

.25 .75 

(.267 I 1.0 ] [.267 , i .0 ! 
[.025 , .311 J r 0,,5 "8'1 ] L, t.. I -~ C, 

.233 .233 
[.267 , 1.0 1 [.267 , 1.0 J 

(.025 I ,345] [ Q?S - ' ..... 
• - - I ,j I t,J 

.233 .233 
[.059 , 1.0 ] [.101 t 1.0 J 

.068 .974 
[ 0 , .220] [ 0 , .258] 

.158 .230 

~1'ru~ bounds presented are accurate to tne nearest one-tnousandtr1. 
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Example 3. This final example presents computational results 

i I lustrating imp I ications of Part II of the Fundamental Theorefn of Prevision for 
a further conditional prevision. The context for this example continues from 
Example 1. Remember that3<,(X) = {1.2,3,4,5}, and Ee= (Ix -P(X)I ~ E). Each 

column of Table 5.3 is headed by vector values for an assertion of P(X,X2). Each 
row of the table identifies a specific event of the form EE. In the intersection 

of each row and column appear the bounds for a further assertion of P(X I EE) if 

it is to cohere with the assertion identified by the column heading. These 
bounds were computed via the nonlinear programming problems identified in our 
Fundamental Theorem of Prevision, Part II. [Notice by the earlier Table 5.1, that 
the prevision for each of the events Ee listed in Table 5.3 is bounded awa,d from 

o by the requirement that it cohere with the assertions of P(X,X2).l Figure 4. i, 
which appeared in the previous sect ion to illustrate the proof of this part of our· 
theorem, is drawn to a scale that i 1 lustrates this example under the 
specifications P(X,X2) = (2.2,6.0) and e = 1.2. 

. Table 5.3 Bounds* on a conditional prevision P(X I EE) necessary and suH1cient 

for its coherence with various specified values of P(X) and P(X2). 

( I x-2.2 J ~ o.a) 
c I x-2.2 f ~ 1.2) 
( I x-2.21 ~ 1 .a) 

(2.2, 6.0) 

[ 2.200 , 2.750 l 
[ 1.222 , 2.750 ] 
[ 4.000 , 5.000 ] 

(2.2. 7.0) 

[ 2.200 , 2.333 ] 
[ 1.857 , 2.333 ] 

[ 4.000 , 5.000 l 

(2.2, 7.6) 

[ 2.200 , 2.250 J 

[ 2.059 , 2.250 ] 
[ 4.429 , 5.000 l 

ftThe bounds presented are accurate to the nearest one-thousandth. 

Moving beyond these simple computational i I lustrations, we suggest by 
example the vast potential for practical applications. Complex engineer lng 
systems such as nuc_lear power plants or space vehicles are made up of many 
component subsystems, with-various dependencies between components, some 
providing backups for others via intricate linkages. Typically, the operating 
status of the overal I system can be represented as a comp I icated logical 
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function of the status of" many components. Yet quality test tng in the design 
and construct ion of the system usually can be cond·ucted only on a 
component-by-component basis. After such testing, engineers may be able to 
assert their previsions for the status of individual components under various 
conditions, and perhaps even for a few of such components in conjunction. But 
it may be difficult for anyone, and even for a team, to assess directly the 
operating status of the system as a whole. The linear programming methoa 
underlying the fundamental theorem of prevision can be used to keep a running 

track of" the Dounds on coherent prevision for the status of the system implied 
by the changing assert ions of engineers concerning the status of components. 

A more standard statistical application involves conditional prevision 
assertions regarding characteristics of a finite population of which some 
subgroup t,as been observed. One application with which we are familiar
concerns the annual milk yields of a group of 27 thousana dairy cows whose 
yields are regarded as exchangeable by a dairy expert. An exact yield has been 
recorded for some 850 of these cows. Specific assertions made by the expert 
about the yields from cows of this type can be inserted as input in the 
programming problems to determine the bounds on cohering conditional prevision 
assertions about the unobserved yields given the observed yields. 

Tt1e practitioner may well react with horror at the huge computational 
dimension of the programming problems that could be involved in realistic 
applications. (Annual yields from individual cows of this particular type can 
range realistically from 12 thousand pounds to 40 thousand pounds, so even the 
realm of each observation can be immense. depending on the fineness of 
resolution in the reported yield.) Two quieting remarks are in order. First, 
without elaboration here, let us mention that large reductions in the dimension 
of the programming problems can be achieved algebraically by making mere 
efficient computational use of the exchangeability which has been specified. In 
example 2 discussed above, the dimension of the activity vector in our actual 
computations was reduced from 125 to 35. Secondly, the computational tirn8 ror 
solving large Hnf?ar programming problems is reduced from exponent.1al to 
polynomial time by the etlipsoiel methoas of Shor and Khachian (1979). and more 
.recently, Karmarkar (1984). The survey article by Bland, Goldfarb, and Todd 
( 1981) and the textbook introduction of Walsh ( 1985) are hetpfu l. Coup! ing 
these with the Dehefits of simultaneous processing achieved by supercomputt!rs, 
or banks of microcomputers, we feel that even realistically large scale problernti 
could be acc8ssible to computation. 
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In this tentative happy mood, let us comment on the appl icabi I ity of 
the fundamental theorem of prevision to another sizeable practical problem. 
Economists at several institutions regularly produce quarterly forecasts for 
macroeconomic measurements of the U.S. econ~my. Brayton and Mauskopf ( 1985) 
described a recent version of the Federal Reserve Board forecasting mode I 
containing some 332 equations and 124 forecast variables. In conventional 
statistical terminology, it is recognized that the large size of such moaels. and 
their many lags and nonlinearities, preclude the application of simultaneous 
estimation techniques. Thus, the many equations are usually estimated singly. 
Litterman ( 1986) and McNees ( 1986) each noted that forecasters' subjective 
judgments are typically app~nded to model-based computations to produce a 
useful forecast. These judgments are based on both an analysis of residuals 
from individual equations and on intermediate monthly observations of those 
components of the quarterly statistics that are also recorded monthly. 
Moreover, applied economists who are knowledgeable of even daily information 
on particular sectors such as housing construction, inventories, capital 
investment, or capacity utilization can provide a wealth of relevant information 
which is not amenable to systematic recording in a prior-formatted data file. 
How are all these sources of information to be incorporated into a coherent 
prevision assessment for quantities which are of interest for policy decisions? 
The fundamental theorem of prevision provides a computational framework in 
which judgments based on a variety of information sources can be accumulated 
and their coherency checked. 

6. CONCLUSIONS 

We hope that the substantive statistical results of this paper wrll 
lead you to consider the Fundamental Theorem of Prevision deserving of its 
appellation. Our concluding discussion will run in a philosopriical vein. We us8 
both standard logical notation and the arithmetical notation for logical 
reiat ions. The latter was established by Boole ( 1847) and was used Dy de. 

Fmetti ( 1967). In arithmetic notation, the sentence (E 1 A E2) is expressed as tt1e 
product E 1E2 , and the sentence "'E is expressed as ( 1 -E). Thus, for example, · 

the sentence "E 1 implies E2", written in logical notation as "'[E 1 A ...... E21, is 

eApressed arithmetically as {1 -[E 1(l-E2)]}, or (J-E 1+E 1E2). Such a sentence 
can be true or false (the arithmetic quantity can equal 1 or 0) depending on tt1e 
truth of the component propositions E1 and E2 (their numerical values). 

..-,£.11[ 
' "' 

PaQe 35 



That the syllogism is without content has long been a subject of 
logicians' musings. An important development in the programme of devising how 
the notion of "content" could be integrated into the formal expression of 
knowledge was Frege's ( 1879) distinction between a contemplated sentence, 
denoted by E. and an asserted proposition (by you. by someone), denoted by ~E. 
Ostensibly, Frege was no friend of the subjectivist stance. Known among 
statisticians for his ranting against "psychologism" in the field of logic (Frege, 
1893). and perhaps for his provocation of Russell's paradox (Van Heijenoort, 
1967), he is unfortunately less wet I known for the acumen of many of his ideas 
(Resnik. 1980). 0e Finetti, for example (1970.2.6), mistakenly attributed the 
proposed distinction between contemplated and asserted propositions to Koopman 
( 1940). And Jeffreys ( 1961, I,§1.51) noted only its use by Whitehead and 
Russell (1910). Levy"(1980) contains insightful critical discussion. 

De Finetti lauded the distinction, however. remarking that we should 
recognize prevision as an assertion (by you. by someone). But he declined to use 
the assertion notation. supposing that this distinction would be clear from the 
context. In two-valued, "deductive", logic, your asserting something aDout a 
sentence such as (E 1 ~ E2) may take only two possible forms: you may assert 
that the sentence is true, 1-( 1 - E 1 + E 1E2) = 1: or you may assert u·,at it is 
false. t- ( 1- E 1 + E 1E2) = O. This is the rule ·or two-valued logic. In the 

many-valued logic of coherent prevision, your assertion can tate the r"orrn 
P( l - E 1 + E 1E2) = #, where this number may be any number in the interval [O,, J. 
Thus, the symbol P replaces and expands the assertion symbol I- of tv,o-valued 
logic. 

Frege·s distinction allows you to contemplate a sentence without 
asserting either that it is true, or that it is false. Indeed. within tr,e confines 
of two-valued logic, this is the oniy weakening possible from the fuil throated 
assertion tnat a sentence is true or that it is false. The syllog.isms of deducUve 
logic specify equivalence relations among well-formed-formulae wi~hm the 
logic. The considered formulae are equivalent irrespective of whether or not 
anyone asserts the sentences to be either true or fa ise. A person's willingness 
to be understood in this logic is signified by accepting the logical law of 
noncontradiction, E,l = E(1-E) = 0, along with all its consequences, sucr1 as 
Ev E = E + ( 1- E) - E ( 1 - E) = 1. Thus, within this logic, any assert ion regarding 
a sentence E that is equivalent to the assertion t-(EvE) = 1 amounts to no 
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assert ton at all about E. It is a redundancy relative to the person·s presumed 
willingness to be understood in this logic. To be sure, no one can be .forced to 
make an assertion about any sentence that is not determined by the principle of 
noncontradiction. You need neither assert L 1-E = 1, nor assert E, 1-E = O. In 
the extreme, you may find yourself in the non-assertive contemplative position= 
1-(Evt) = 1, an assertion without content. The principle of coherency is rnere\y 
the extension of the principle of non-contradiction to the many-valued logic of 
uncertain knowledge. As in deductive logic, there is no compulsion that anyone 
make an assert ion about any quantity. Just as 1-(E v t) = 1 is a redundant 
"assertionu without content for anyone committed to communication within the 
confines of deductive logic, your partial assertion that your 
P(X) E (min :R(X), max ~(X)] is a redundant assertion without content in tr,e 
logic of prevision. It amounts to no _assertion at all if you accept the principle 
of coherency, which is necessary for communication within this logic. 

Long a stumbling block to the acceptability of subjective Bayesian 
statistical procedures has been the objection "But for many quantities, I am in 
no state of mind to assert my prevision. I cannot now assert anything about X." 
Suo jectivists have annoyedly responded, "Sure you can. It just ta1<es elf ort on 
your part to elicit your prevision. Just try to do the best you can:' Shafer 
( 1976) has spiritedly and repeatedly suggested that the (non)assertion 
P(><) E [min :R(X), max !R.(X)] is what represents one's know ledge (that is, lack or 
knowledge) in such instances. Both Shafer's insistence that probability bounds 
are not meant to represent betting odds, and his general proposed scrH~rna of . 
inference .have drawn appropriate criticism that his probabi I ity intervals 11ave no 
operational meaning, and that his schema supports incoherent assessments. [See 
tor instance the comments of Lindley, ot' Good, and of Hi 11 in the discussion to 
Shafer ( 1982).J But Learner's insight ( 1986) that a bounding statement, such as 
P(X) E [a,b], cou Id be interpreted operationally as a "bid-ask spread" resolves the 
impasse to accepting Shaf er·s proposal in this instance. In the context of tr,e 
Fundamental Theorem of Prevision, this appears to be a beautfful resolution to 
the search for a distribution that represents ''ignor~nce", a search wt1ich 
unfortunately has intrigued many. There is no distribution that can represent 
uniquely the assertion of ignorance: P(X) c [min 3t(X), max ~(X)]. It is a 
prevision polytope identical to the convex hull of ~(X) tr,at represents this lack 
of knowledge, this lack of sufficient motivation to assert anything about~:. 
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Their commitment to the operational-subjective f'ormulation of 
probabi I ity notwithstanding, both Savage and de Finetti were disconcerted by the 
practical problem of identifying one's prevision exactly - though expressly no 
more than by the prospect of measuring anything exactly (de Finetti, 1970, 
Appendix 19.3). Savage recorded his qua I if ications already in t 954 (Ch. 4). 
Together (de Finetti and Savage, 1962) they wrote extensive commentary on tr,e 
relevant article of Smith ( 1961 ). And de Finett i ·s final appendices ( 1970, 
Appendices 14-19) discuss the issues with his customary exhausting bri II ,ance. 
One important insight which eluded their analysis was the understanding of an 
operational meaning to a partially asserted prevision polytope. 

We submit that the complete extension of our understanding of 
representations for all forms of uncertain knowledge, no matter how rich nor 
how meagre. is provided by the Fundamental Theorem of Prevision. It supports 
tne conclusions which we have expressed above. Coherent uncertain know1eage 
of a quantity vector is representable by a convex polytope within the convex hull 
of the realm of the quantity vector. Central to de Finetti's minimalist approach 
to mathematical construction was his rejection of a "preconceived preference 
for that which yields a unique and elegant answer even wllen tile exact a,r;swer 
should /Je 'any value lying between t/Jese limits'. " ( 1970, 6.3) The Fundamental 
Theorem of Prevision applies the framework of weak mathematical formulations 
to the characterization of states of uncertain know ledge by means of an 
asserted prevision polytope. 
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