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ACCURATE MUL Tl VARIATE ESTIMATION USING 
DOUBLE AND TRIPLE SAMPLING 

Summary 

Any mult1response est1mat1on exper1ment requ1res a dec1s1on about 

the number of observat1ons to be taken. If the covar1ance 1s unknown, no 

f1xed-sample-s1ze procedure can guarantee that the Jo1nt conf1dence reg1on 

w111 have an ass1gned shape and level. Double-samp11ng procedures use a 

pre11m1nary sample of s1ze m to determ1ne the m1n1mum number of 

addtt1onal observations needed to achieve a prescribed accuracy and 

coverage probab111ty for the parameter est1mates. Tr1ple-sampl1ng 

procedures, less sens1t1ve to the choice of m, revise the sample size 

estimate after coJlect1ng a fract1on of the add1t1ona1 observations 

prescr1bed under double samp11ng. Second-order asymptotic results relying 

on conditional inference prov1de correction factors wh1ch make the 

procedures asymptot1cal1y consistent. Double sampling and tr1ple samp11ng 

are both asymptot1cally eff1c1ent; 1n add1t1on, the regret for tf1ple 

sampling 1s a bounded functton of the covariance structure and 1s 

tndependent of m. 



1. I ntroduct 1 on 

Let X 1, x2, ... be a sequence of independent and 1dent1cal ly distributed 

random p-vectors with unknown mean 8 and unknown pos1t1ve definite 

covar1ance matr1x I. The problem addressed tn th1s paper 1s that of 
A 

determin1ng a sample s1ze t such that the resulting estimator 8t accurately 

estimates 8. Accurate est1mat1on 1s used here 1n the sense of F1nster 

C 1985, 1987). A fixed-accuracy set 1s a natural extension of a f1xed-w1dth 

confidence interval to QP: i accurately est1mates 8 w1th accuracy A and 
A 

conf1dence y if Pf 8-8 e A)~ y. Formally, a f1xed-accuracy set 1s a 

compact, orientable Borel-measurable set A e QP which 1s star-shaped with 

respect to O and contains O as an 1nter1or point. The requirement that A be 
A . 

star-shaped ensures that 1f 8 accurately est1mates 8, so does any estimate 
- A 8 between 8 and 8. 

Accurate est1mates are useful in a wide variety of app11cattons. Often 

experimenters want a conf1dence region for a mult1var1ate response which 

1s of a spec1f1ed shape and size and ts easy to interpret. For example, the 

U.S. Environmental Protection Agency guide11nes for so11d waste analysts 

(Office of So11d Waste and Emergency Response< 1982), p. 5) state that 1t 15 

desirable to use as few samples as necessary to achieve, w1th 80~ 

confidence, a target jo1nt accuracy 1n which the log concentration of the 1th 

contaminant 15 estimated to with1n error d1. -In other words, the1r goal 15 a 

f1xed-s1ze rectangular accuracy region A= IT [-d1, d1], rather than Working 

and Hotelling·s < 1929) e111pso1da1 confidence set whose s1ze and or1entatton 
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depend upon the unknown covar1ance matr1x. F1shman < 1977) and Kle1Jnen 

C 1984) describe the problem of determ1n1ng the sample size to est1mate the 

steady-state means of responses 1n a queueing s1mulat1on study. The 

procedures deve1oped 1n th1s paper provide an algorithm for calcu1at1ng the 

sample s1ze and estimator for mu1t1response computer s1mu1at1on studies. 

Dantz1g ( J 940) showed that 1n the mu1tivar1ate normal situation w1th 

unknown covar1ance, a data collect1on procedure wh1ch collects a f 1xed 

number or observations can not guarantee a desired predetermined accuracy 

and confidence level; a sequential or step-sequential procedure is therefore 

necessary. In many cases, however, a purely sequential procedure, 1n which 

the parameters are re-estimated after each observation, is impractical 

because of a delayed response or a difficulty in setting up the experiment, 

or even because the sample-size saving 1s not worth the inconven1ence of 

repeated statistical analysis. Following Stein< 1945), Cox C 1952), and Hall 

( 1981 ), who studied the one-dimensional case of f 1xed-w1dth confidence 

tnterval est1mat1on, we use double and triple samp11ng to limit data 

collection to two or three stages. 

If I were known and the population were normal, any sample size n 

exceeding the solution N of f(N,I) = y, where 

f(n, V) = P{NCO,n- 1 V) e A} 

= IA (n/2n) 1vr 112exp[-(n/2) xTv- 1x1 dx ( 1. 1 ) 

and MO,n- 1 V) represents a random vector w1th that d1stribut1on, would 

ensure that Xn 1s an accurate estimator of 8. For I unknown, the double­

and triple-sampling procedures of this paper both prescribe collecting a 

-.. 
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f1rst sample of s1ze m and est1mat1ng I by 
m 

f = - 1 L (X. - X ) (X. - X /. 
m m-1 i= 1 1 m 1 m _ 

3 

A 

A natural est1mator of N after the p11ot sample has been collected 1s N, the 
A A A A 

solution N to f(N,Im> = y. Theorem 2 will show that N 1s asymptotically 
A 

unb1ased; however, the coverage probab111ty using N is strictly less than y 

up to o(m- 1) terms. tntu1t1vely, the probab1 ltty 1s less than y because only 

a fract1on of the data are used to estimate I: the cond1t1ona1 d1strtbut1on 

of Im -112y (the normal d1str1but1on> 1s used to f1nd N wh11e the actual 

d1str1but1on of im-1,2y ts a mult1var1ate t-d1str1but1on.· Chatterjee ( 1959, 

1960), in fact, uses a mult1variate t-dlstr1but~on 1n h1s Stein-type 

two-stage procedure for accurate multivariate est1mat1on w1th ellipsoidal· 

accuracy. Chatterjee·s procedure g1ves exact coverage probab111ty; this 

exactness, however, 1s achieved only at the cost of considerable 

computational complexity. 

The double-sampling stopping rule used here to g1ve an asymptot1cal1y 

consistent procedure inflates the covariance estimate by a factor< 1 + Lim> 

to compensate for not knowing I. The stopping rule for the double-samp11ng 

procedure, T(L), 1s then the sma11est integer n for wh1ch fCn,( 1 + L/m)Im> ~ 

y. The parameter L can be chosen so that the stopping rule T(L) gives 

coverage probab 111 ty y w 1th error o( m - l ) . 

If m 1s small relative to N, however, the double-samp11ng procedure 

w111 be 1neff1c1ent when compared w1th the purely sequential procedures of 
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Chow and Robb1ns ( 1965) and Woodroofe < 1977) for one-d1mens1ona1 

accurate est1mat1on and Finster< 1987) for mult1-d1mensiona1 accurate 

est1mat1on. The tr1ple-samp11ng procedure achieves f1n1te regret and 

second-order asymptot1c eff1ctency by taking two add1t1onal samples after 

the pilot sample rather than Just one. As 1n Hall < 1981 >, we allow for three 

samples by having the second sample comprise about 100 c,g co< c < 1) of 

the observat1ons 1n the second and th1rd samples. N2, the "opt1ma1" stze of 

the first and second samples 1f I were known, 1s set equal to [[c(N-m)]] + m, 

where [[x]] denotes the smallest integer conta1ning x. Then N2 ts estimated 

after the p11ot sample by the stopp1ng t1me 

t2 = [[c(T(0)-m>.11 + m, 

where T(0) is the double-sampling stopping rule. After the second sample 
. A 

of t2-m observations, the covariance matrix is re-estimated us1ng It
2

, the 

least squares estimate of I using all t2 observations. Then the size of the 

third and final sample 1s [[t3(.l)]]- t2, where t3(.l) satisf1es the relation 

A 

f( t3Cl), ( 1 + /,/ t2>It
2 

> = y. Here J, 1s again a correction for the sequential 

nature of the procedure, g1ving the bounded regret of S1mons < 1968). With L 

defined 1n (3.2), the tr1ple-sampl1ng procedure has f1n1te regret and 

achieves coverage probab111ty 'Y with error o(N- 1 ), the same order obtained 

by F1nster C 1987). With this small order of error, the asymptotic results 

for the tr1ple-samp11ng procedure are valid even for moderate values of N. 

Note that accurate estimates of linear comb1nat1ons of the parameters 

are a by-product of accurate estimates of the parameters 1f the accuracy 

C. 

· .. 
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set 1s a ball. Suppose 

P ( 8- 8 E Bq(d) } = y, 

where BqCd) 1s the LQ-ball of rad1us d. Then 1f q"'= (1-q- 1)- 1, an 

appl1cat1on of HOider's 1nequal1ty yields 

5 

P(lc1(8-8)1 ~dllcllq', 'v'celRP) ~PCll8-8llq ~-d} ~ y. (1.2) 

The values q=2 and q=oo g1ve fixed-accuracy analogues of Scheff e's and 

Tukey·s procedures for obta1n1ng simultaneous confidence intervals. See 

M111er C 1978). 

The defin1tion of accuracy used 1n th1s paper is that g1ven by Finster 

C 1985, 1987). The techniques used to develop the asymptotic properties for 

double and tr1ple sampling, however, are quite different from those of 

Ftnster·s continuously mon1tor1ng procedures or the spherical accuracy 

procedures fn Srivastava C 1967) and Srivastava and Bhargava C 1979). 

Ftnster·s results depend on the fact that the stopping time of a purely 

sequent1a1 procedure 1s the first passage t1me of a function of a process 

stm11ar to a random walk. The procedures 1n this paper are closer 1n sp1r1t 

to those or Cox< 1952) and Hall < 1981 ), us1ng Taylor ser1es expansions and 

cond1t1onal Inference. 

The double-sampl1ng procedures are derived 1n section 2, and the 

triple-sampling procedures are der1ved and compared with Finster·s ( 1987) 

purely sequential procedure 1n sect1on 3. Section 4 contains the proofs of 

the mat n resu 1 ts. 
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2. Double-samp11ng procedures ror accurate est1mation 

The goal of accurate est1mat1on 1s to f1nd an eff1c1ent stopp1ng rule t 

for wh1ch P( Xt - 8 eA) ~Y for a g1ven accuracy set A and confidence 

coeff fcient y. Accurate esttmat1on is most expens1Ve when the standard 

dev1at1ons for the components of the observat1ons are large re1at1ve to the 

accuracy desired, I.e., when I- 112A 1s "smal I." Fol lowing Anscombe ( 1953), 

asymptotic results for the double- and tr1ple-sampl1ng procedures are 

expressed 1n terms of N 1ncreasing to 1nf1nity. Note that N increases to 

1nf1n1ty either as I -+ 00 or as the accuracy set decreases to the empty set. 

We take "I -+oo as N -+00" to mean that 

A' = (NI- 1) 112A (2.1) 

is a constant set as N-+00• In other words, I-+oo along a ray. This 

f ormutat1on 1s consistent with the asymptotic results of Ste1n < 1945) and 

Chow and Robbins ( 1965), 1n which d, the half-w1dth of the confidence 

1nterva1, tends to zero: 1f A 1n C 1.1 > 1s replaced by d.A, then N-+00 as d-+O. 

If one were to perform a double-samp11ng exper1ment and had a rough 

idea of the sample size needed to achieve the desired accuracy and coverage 

probab11ity, one would typically take, say, half of the observat1ons 1n the 

pilot sample. If the a priori estimate of N were much greater than the 

actual sample size needed, one would not have wasted too many 

observations; on the other hand, an underest1mate of N could be corrected 

after the p11ot sample. Much of the prev1ous double-samp11ng work 

imp11c1tly assumes that the p11ot-sample s1ze tends to 1nf1n1ty at the same 

rate as N, so that the resulting double-samp11ng procedure 1s asymptot1ca11y 

eff1c1ent. we make the weaker assumption that the p11ot-sample s1ze m 

· .. 

; 



,· 

7 

tends to 1nf1n1ty as a fractional power of N, so that N = ocmh> for some h~l, 

enabl1ng us to determ1ne the convergence rates for the "worst-case" 

s1tuat1.on 1n which the pilot-sample s1ze 1s very small relat1ve to N. 

In the def1n1t1on of the double-samp11ng procedure, 
.A 

T(L) = [[N(C 1 + L/m)Im)]], where the sample s1ze function N(V) 1s defined as 

the solut1on to 

f(N(V), V) = y. (2.2) 

The fo11ow1ng theorem demonstrates that cond1t1ona11y on the stopp1ng t1me 

T(L) the parameter estimate X,.c1,) 1s normally d1str1buted w1th mean 8 and 

covariance I/T{L). In other words, cond1t1onal1y on T{L), X,-(1,} has the same 

distribution it would have 1f T(L) were a fixed integer rather than a random 

variable. Thus X,.ct> 1s unbiased~ The proof of theorem follows the proofs of 

lemmas 1 through 4 1n Robbins C 1959). 

Theorem 1. Lett be an integer-valued stopp1ng time which is a 
A A A 

funct1on of (Ip+ 1,Ip+2,Ip+3, ... ). Then 

<a> t ts Independent of Xk for all k. 

Cb) The cond1t1onal distribution of Xt gtven t = n ts NCO, I/n). 

We now state the main result about second-order propert1es of the 

double-sampltng procedure. Throughout, let 4> represent the standard 

mult1var1ate normal probab11ity measure and define 

(2.3) 

Theorem 2. Let X 1,x2, ... be f ndependent and f dent 1ca 1 ly distributed 
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A 

MO ,I) random vectors. Let N = N(I) and T(.l) = [[N(( 1 + .l/m)Im)]], where .l 

1s a known constant and the funct1on NCV) 1s def1ned 1n (2.2). Assume m -+oo 

as a fract1onal power of N, so that N = ocmh) for some h~l. Then, as N-+ oo, 

(a) T(.l)/N -+ 1 almost surely. 

(b) For any Q e a?, E( [ ,-(.l)/N)Q ) -+ 1. 

<c> E[ T(.l)] = N + NUm + 1 /2 

+ (N/2m) [ f A' [p - x1 x] d<l>(x>r l Cf A' (2 p (tr m2> - 4 2p 

+ (p - xTx>( x1x (tr m2 + 1 > - 2 xTmxJ) d<l>Cx>] 

+ CN/2m) [(4 - p) ~r<srt2> - p - 2] + o(N/m). 

(d) E[( T(t) - N>2] = 2 N2 tr cm2) /m + o(N2/m). 

Ce) rm< T(L) - N)/N converges to a NCO, 2 trCSR2> > d1stribut1on. 

(f) P( X,-(t) - 8 e AJ = 'Y + (4m)- 1 {r2 L + 4 trcm2) - p- 2] [f A' [p-xT x] d<l>(x)] 

+ JA' (- 4 + 2p + {p- xTx>[ x1x - 2 xlnx] J d<l>Cx>} + ocm- 1>. 

To attain asymptotjcally correct coverage probab111ty up to o(m- 1) 

terms, we f1nd the value t 2 wh1ch solves P( x,.(t) - 8 e A) = y + ocm- 1 ). Set 

L2 = - [2JA, [p-x1x] dcl)(x)]- 1[fA, (2p-4+ (p- x1x>[xlx-2 x1mx]) dt(x>] 

- 2 tr (3112) + p/2 + 1. (2.4) 

The first two terms 1n (2.4) depend upon N and I through the set A'. We 
A 

substitute the estimates T(O) and Im for N and I in (2.4) and define 

A' = ('TCO) I -l) l /2 A, m 

::. 

. ... 

--

~ 
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and · 

22 = - [2f ;., lp- xrxl d4>Cx>1- 1[f ;., (2p- 4 • <p- xrx>lxrx - 2 xr mxn d4>Cx>1 

- 2 tr < m2> + p/2 + 1. (2.5) 

The fo11ow1ng coronary to theorem 2 states that the results of the theorem 
·A 

hold when L2 1s replaced by the random variable l 2. 

A A A A 

Corollary 1. Let 'T(l2) = [[NC C 1 + l 2lm>Im)]], where l 2 1s def1ned in 
,.. 

(2.5) and N 1s defined In (2.2). Then the results of theorem 2 hold when l 2 

is subst1tuted for l In particular, 

Cd> El T(22>1 = N - p N trcm2>1<2m> 

+ (N/2m) [ f A' [p - xlx] dcl>(x)r I [f A' (2 P (tr 31l2) 

+ (p - xlx> xlx tr m2 J dcl>Cx>] + o(N/m) 

and 

(f) P{ X,-(2
2

) - 8 e Al = y + o<m- 1 ). 

We see from the theorem and corollary that the usual first-order 

asymptot1c properties of po1ntw1se and momentwlse efficiency and 

asymptotic normality hold for the stopping rule 'T(l). If m ts very sma11 

relative to N, though, the stopping time has 1nr1n1te regret and large 

var1ance; 1n add1t1on, for small sample sizes the d1str1but1on of 'T{l) 1s 
A 

pos1t1vely skewed because Im has a Wishart d1str1but1on. 

The factor tr cm2> appears In the expressions for the variance of the 

stopping times. The matrix m defined In (2.3) shows the effect of the shape 

and or1entat1on of the standard1zed accuracy set A' = (NI- 1) l /2A on the 



stopp1ng t 1mes. From theorem. 9. 1.25 of Grayb111 ( 1983), 

p- 1 ~trcm2> ~ 1. 

10 

(2.6) 

We can get some feel for the mean1ng of tr (Slt2) by exam1n1ng the spec1al 

case 1n which A 1s a spherical accuracy set. If A 1s spherical and 1f I 1s a 

d1agona1 matrix (1.e., the components .of X are independent>, then m 1s also 

diagonal and hence 2 tr cn2> = 2/p. On the other hand, suppose that the 

components or X are highly posittvely correlated. Then most of the variance 

1s accounted for in the f1rst pr1nc1pal component, and the stopping times 

w111 be essentially determined by the variance of the f1rst pr1nc1pa1 

component. In th1s case, then, 2 tr (&2) w111 be close to two, the variance 

for the one-d1mens1ona1 procedure of Cox < 1952). 

The theorem and corollary are proven 1n sect1on 4, assum1ng 

throughout the proof without loss of genera11ty that 81s the zero vector and 

I 1s the pxp 1dent1ty matrix. The method used to f1nd the coverage 

probab111t1es and expected values, variances, and asymptot1c d1str1but1ons 
A 

of the stopping rules re11es on a Taylor series expans1~n of NC (1 + .l/m)Im> 

about I, us1ng Frechet der1vat1ves. The Frechet der1vat1ves guarantee that 

all matrices w111 be pos1t1ve def1n1te. 

The independence of T(L) and Xk allows the coverage probability to be 

calculated us1ng the function f, def1ned 1n ( 1.1 ), as 1s shown 1n the following 

lemma. 

Lemma I. Lett be an Integer-valued stopping time which 1s 

Independent of Xk for a11 k. Then 

P( Xt EA) = E[f( t,I)]. 
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Proof. 
00 00 

PC xt e A J = L PC xk e A, t = kJ = L rck,I> PC t = kJ = E[rc t,I>J. 
k=1 · k=l 

The second equality uses the independence of Xk and t. D 

By virtue of Lemma 1, then, the coverage probab111ty 1s evaluated using 

the moments of T(L). 

P( XT(L) - 8 EA) = E[f( T(L),I)] 

= f(N,I) + f 1 (N,I) E[ T(.l)-N] + ( 1 /2) E[f 11 (n*,I) ( T(L)-N)2]. (2. 7) 

He~e n* 1s between T and N, and f 1 and f 11 denote the f1rst and second 

part1al der1vat1ves off w1th respect to the f1rst argument. 

The ocm- 1 > terms 1n the express1on for the coverage probab111ty 1n 

theorem 2(0 result from subst1tut1ng the sample covariance for the "true .. 

covar1ance when determ1n1ng the stopping t1me, without accounting for th1s 

subst1tut1on. For. the one-d1mens1ona1 case of estimat1ng a mean, f 11 (N,I) 

1s simply the f1rst-order term 1n the Taylor series expans1on of the ( 1-y )th 

percent11e of a t-d1str1but1on with m degrees of freedom about the ( 1-y )th 

percentile of the normal d1str1button. 
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J. Tr1p1e samp11ng for accurate mu1t1var1ate estimation 

The double-samp11ng stopping rules of sect1on two work very well 1f 

the p1lot-sample·s1ze m has the same order of magn1tude as the opt1ma1 

sample s1ze N. If m/N-+ O, however, the stopp1ng t1me i(.l) leads to an 

ineff1c1ent procedure. The triple-sampllng procedure achieves finite regret 

and second-order asymptot1c eff1c1ency by tak1ng two add1t1ona1 samples 

after the pilot sample rather than Just one. 
A 

In terms of the funct1on NCV) def1ned 1n (2.2), t3Cl) = N( C 1 + .tlt3> It
2 

]. 

A A 

S1nce t3CL) 1s an 1mp11cit function of (Ip+ 1,Ip+2, ... ), Theorem 1 1mp11es 

that conditionally on the stopping time t 3(.t), the parameter estimates 

Xt
3
(.t) are normally distributed w1th mean o and covar1ance I/t3(.t) and 

hence are unbiased. We now state the second-order asymptot1c propert1es 

of the tr1ple-samp11ng procedure. 

Theorem J. Let N = N(I), t2 = Uc ( T(.t) -m)]]+ + m, and 

A . 

t 3(L) = N[( 1 + L/t3> It
2 

], where L 1s a known constant and the funct1on N 1s 

defined in (2.2). Assume m-+00 as a fract1ona1 power of N, so that N = O(mh) 

for some h> 1 but m/N -+ 0. Let A' be as defined 1n (2. 1 ). Then, as N-+00, 

Ca) t3 (t,)/N -+ 1 almost surely. 

Cb) For any Q ecR, E( [ t3(L)/N)Q) -+ 1. 

( c) E[ t3 (.t )] = N + .l/ c - 2 tr m 2 / c - 1 / ( 2 c) + 1 /2 

+ (2c)-l [ JA' [p ·_ xTx] dcf>(x)r 1 [fA' (2 P (tr & 2) - 4 + 2p 

+ (p - xT x>[ xTx Ctr m2 + 1) - 2 xTmxJ) d<t><x>] 



c-_ 

+ (2c)- 1 [(4 - p) tr(31l2) - p - 21 + o( 1 ). 

(d) E[( t3(L) - N)2] = 2 N tr cm2) / c + o(N). 

Ce) rcc t3(.t) - N)/-/rf converges to a NCO, 2 tr(m2)) d1str1but1on. 

CO _ P ( X [[ t
3 

(L) ]] - 8 e A ) = y 

+ (4cN)- 1 { (2 J, - p - c- 2) [f A' [p - xT x) d4>(x)) 

13 

+ f A' (- 4 + 2p + Cp - xTx>[ xlx - 2 xTax] J d4>Cx)} + o(N- 1 >. 

To attain asymptotically correct coverage probab111ty up to o(N- 1 > 

terms, set 

(3.1) 

We substitute the estimates t3CO) and It
2 

for N and I 1n (3.1) and def-ine 

A' = (t3(0) It2-1) 1/2 A, 

and 

23 s-[2f A' [p- xTx] d4>(x)J- 1[f A' (2p-4+ (p - xT x)[xTx - 2 xlmxn d4>(x)] 

+ p/2 + 1 - c/2. (3.2) 

The follow1ng corollary to Theorem 3 states that the results of 
A 

Theorem 3 hold when 1,3 1s replaced by the random variable 1,3. The proof of 

the corollary is similar to that of corollary 1 and 1s om1tted here. 
A A A A 

Corollary 2. Let t3 (l3> = N[( 1 + l 3/t3> It
2 

], where 1,3 1s defined 1n 

(3.2). Suppose the cond1t1ons of theorem 3 hold. Then, as N -+oo, 



A 

(a) t3(L3)/N ~ 1 almost surely. 

Cb) For any Q e ~, E( [ t3 (23)/N]Q } ~ 1. 

Cc> E[t3(23 )J = N - p tr<&2)/2c + 1/2 

+ (2c)-I [ JA' [p - x1x] dt(x)r l [JA' (2 p (tr m2) 

14 

+ Cp - xT x> xTx tr m2 J dtCx>] + o< 1 ). 

Cd) E[Ct3(23)- N)2] = 2 N tr (&2) / c + o(N). 

Ce) ./cc t3(23) - N)/N converges to a NCO, 2 trca2> > d1str1but1on. 

(f) p ( X[[t3 (l3) 11 = 'Y + o(N- t). 

Theorems 2 and 3 demonstrate that the doub le-samp I ing and tr1p I e­
samp ling procedures both attain first-order asymptotic eff~c1ency 1f the 

pflot-sample size tends to 1nf ln1ty as some fract1onal power of N, the 11best" 

f1xed-sample s1ze. The f1rst-order properties do not depend on the 

covariance and do not require a correction factor: we may use the estimate 
A 

I In place of the unknown covariance I and st111 have an asymptotically 

correct procedure up to f1rst-order asymptotic terms. If 'Y Is .95 or .99, an 

error of order o( 1 > can make a substantial difference In the coverage 

probab111ty unless N Is very large Indeed. Lavenberg and Sauer< 1977) found 

that sequential stopping rules w1th only f1rst-order asymptotic consistency 

perform poorly for relatively sma11 sample s1zes. The second-order 

asymptotic results apply to more moderate values of N. The effects of 

subst1tut1ng I ror I appear In the second-order asymptotic results, 

particularly In the terms of order O(m- 1) 1n the expression for the coverage 

probab111ty 1n Theorem 2(0. 
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The extra term -2 tr cm2> in the expression for the average sample 

number of the triple-sampling procedure (theorem 3(c)) shows the effect of 

optlonal stopping and appears because It
2

has bias -2 I 112 DI 1121N2. This 

btas is proven tn lemma 1 I and may be heurtst1cally explained as follows. If 
A 

Im s1gniftcantly overestimates I, then t2 wi11 overestimate N2 and the 

second sample wtll be large, tendtng to correct the original overestimate or 
A 

the covariance. Altemat1vely, If Im underestimates I then½ will 

underestimate N2. The second sample will thus not contain as many 

A 

observations to compensate for the bias artst~g In the first sample, so It
2 

A 

w111 be more I tkely to underestimate I. The argument that It
2 

ts biased 

A A 

also applies to I'T(.t) and It
3

(t)· If one Ignored the fact that these 

A 

quantities are obtained sequentially, substituting It
2 

for a fixed-sample 

est1mate of the covariance in, say, an F-test for the s1gn1f1cance of one of 

the means, one _would thus obtain more false positive results in repeated 

sampling than the nom1nal sign1f1cance level ind1cated. 

The one-dimensional results of Cox ( 1952) and Hall ( 1981) follow as 

spec1al cases of the results 1n theorems 2 and 3. Let d be the desired 

half-width of the conf1dence 1nterval and let z be the ( 1 - y)/2 cr1t1cal 

point of the standard normal distribution. Then A' = [-z z] and m = 1. 

Evaluating the 1ntegra1s 1n theorems 2 and 3, E[ T(l)] = N + (Nim)( l + 1 /2), 

E[ t3( l)] = ( /,- 3/2)/ c + 112, fl (N,O) = ( v'2iT Nr 1 i exp{ - z212), 

and f 11<N,O) = - canr 112 N-2 ( z+ z3) exp{- z212J. Thus the value of 1, 



16 

mak1ng the coeff1c1ent of m- 1 1n theorem 2(0 vanish 1s L2 = ( 1 + z2)/2 

and the tr1ple-samp11ng procedure wh1ch uses L3 = < 1 + z2)/2 + 2 - c/2 for L 

w111 have coverage probab111ty y + ocN- 1 >. These are the results obtained by 

Cox and Ha 11. 

Hal I < 198 I) recommends using I /2 for c. · An altemat1ve cho1ce uses 

the d1str1but1on of T(O). S1nce the d1str1but1on of T(O} 1s approximately 

N( N, 2 N2 tr < a 2)1m)) and sf nee tr C :nt2) i 1, T(O) ( I - za: (2/m) 112) is an 

approximate < 1 - a) lower conf1dence bound for N. Th1s suggests tak1ng c to 

be 1 - Za (2/m) 112. 

Table 3.1 compares the properties of these multivariate double- and 

triple-samplfng procedures and F1nster's ( J 987) purely sequential 

procedure. The quantity L2, which appears in all of the correction factors, 

1s messy to calculate exactly but may be bounded by p/2 + pK2, where K 1s 

the rad1us of the smallest sphere which will c1rcumscr1be the standardized 

accuracy set At. def1ned 1n (2 .. 1 >. In practice. we may use the radius of the 

smallest sphere c1rcumscr1b1ng the sample standardized accuracy set 

( [T(O)Im-1]112A for double-samp11ng, [t3(0)It
2
- 1]112A for tr1ple-

samp 11ng) instead of K 



; 
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Table l. I. Properties of the double-sampling, triple­

sampHng, and purely sequential procedures for multivariate 

estimation. Below, m is the s1ze of the first sample, c 1s the fraction of 

observat1ons taken 1n the second sample, N 1s the .. best" f1xed-sample 

stopp1ng rule, and p corrects for the d1screteness of the purely sequential 

stopping rule. Also, n and Lz are def1ned 1n (2.3) and (2.4), and 

r = (tr m212> ( - p + [f A' (p- xTx] d4>Cx)]- 1[f A' ( 2P + (p - xT x>x1x} d4'Cx>l 

Correction 
factor L 

Regret 

Asymptotic 
variance of 
stopp1ng t1me 

Approximate 
distribution of 
stopp1ng t1me 

Coverage 
probab 111 ty 

Double 
Sampling 

rN/m 

Tr1ple 
Samp11ng 

Purely 
Sequent ta I 

L2 + 2 Ctr 3112) L2 + 2Ctr SJl2) - p 

r/c r 

2 Ctr &2) N2/m 2 Ctr 31[2) N/ c 2 Ctr 3112) N 

linear 
combination Normal Normal 
of x21 
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4. Proofs 
The stopping rules for the double and tr1ple-sampl1ng procedures are of 

A 

the form N(W), with W = < 1 + Lim> Im ror double sampling and 

A 

W =<I + L!t2> It
2 

for triple sampling. To calculate the Frechet derivatives 

of NCW), used in the Taylor series expansion of N(W) about I, def1ne the 

function 

n< e> = N ( e W + < 1-e> I), (4.1) 

for pos1t1ve def1n1te Wand O ~ e ~ 1. The proofs of the theorems Involve 

evaluat1ng the f1rst two dertvat1ves of n(e) and bounding the third. These 

der_lvatives are more easily evaluated and bounded in a different coordinate 

system. Let A be the matr1x of eigenvalues of Wand P the matrix of 

eigenvectors of W. Then 

eW + { 1 - e )I = PT L( e )P, 

where 

l(e) = E [A - I]+ I. (4.2) 

Define the set 

(4.3) 

and the f unct 1 ons 

g<n,e) = fCn,ew + < 1 - e>n (4.4) 

for f defined In ( 1.1 ). Then g(n,e) may be rewritten as 

g(n,e> = f PTA (n/2n)P12 1Ue>r 112 exp{-Cn/2)xTL- 1<e>x} dx = 4'[A*Cn,e)]. 

Lemma 2. Let n(e) and g(n,e) be defined in (4.1) through (4.4), and let 

Kand H denote 

(4.5) 



and 

H(e) = (n'(e)/n(e))I - K(e), 

respectively. Then 

g1 (n,e) = (1 /2n) JA*(n,e) [p - x1 x] d4>(x) 

g2Cn,e) = - (-1/2)JA*(n.e) [tr(K) - x1Kx] d4>(x> 

g11 <n,e) = (1/4n2>JA*(n.e) ((p- x1x]2 - 2p) d4>(x). 

g12<n,e> = - C 1/4n)JA*(n.e) ([tr<K) - x1Kx][p - x1x] - 2x1Kx) d4>(x> 

g22<n,e> = C 1 /4)f A*(n.e> {[tr(K)- xTKx]2 + 2tr[K2]-4x1K2x} d<f>(x) 

g1 n<n,e> = can3>- 1 JA*(n.e) ([p- x1xJ3 - 6p [p- xlx] + Sp] d<f>(x> 

19 

(4.6) 

n'Ce) = n(e) JA*(n(e),e) [tr<K> - xTKx) dt(x) (JA*(n(e),e) [p - xTxJ dtCx>}-
1 

n''(e) = [4g 1(n(e),e)r 1 {2-ytrCH2) - fA*(n(e),E) [tr(H) - x1Hx]2 d<f>(X) 

+ 4 f A*(n(e),e) [tr(HK) - x1HKx] d<f>(x)} 

nw(e) = (8g 1(n(e),e)r 1 fA*(n{e),E) { tr [ 24 (n"(e)/n(e)} H - 8H3 - 24H2K] 

+ 12 [tr<H) - x1Hx][trCHK-(n''(e)/n(e)}I) - x1CHK-(n''(e)/n(e)}l)x] 

+ 24 [tr((n''(e)/ n(e))K - HK2 ) - x1((n"'(e)/ n(e))K - HK2>x] 

- [tr<H) - x1HxJ3 } d4>Cx). 

Proof. The part1a1 der1vat1ves of g are found d1rectly. S1nce 

g(n(e),e).= 'Y, applying the 1mp11c1t funct1on theorem g1ves the der1vat1ves 

of n(e). o 

The part1a1 der1vat1ve g1< n< e),e), appear1ng 1n the denominators of the 
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express1ons for n''( e), n"'C e), and n"'"( e), 1s always greater than zero but can 

be small. To facilitate f1nd1ng bounds for the der1vat1ves of n, we apply 

Stokes's theorem to express them as integrals over the boundary of 

A*= A*(n(e),e). Here, dx(O is written for dx1dx2 ... dx1_1dx1+ 1 ... dxp, aA* 

represents the boundary of A*, and dt<Ocx> = C2n)-P12 exp(-x1x/2} dx<O. 

Lemma 3. Let nee>, g(n,e), KCe) and H(e) be defined in (4.1 > through 

(4.6) and let Hi and K1 denote the 1th diagonal entries of Hand K. 

(a) 91<n{e),e) = (2n(e>r 1 Lc-01- 1 IaA* Xt dct,<Ocx). 

Cb> n""Ce> = [4g1<n<e>,e)]- 1{L<-D1- 1H1 

( C) n"'"( E) = [ 8g l ( n( E), E) r l 

{-12 L (-1 >1- 1 H1 f aA* X1 (x1HKx + 2H1K1l dcl>( 0cx) 

+ 12 L<-o1- 1H1 (n"'(e)/n(e)} f aA* x1 [xTx + 21 dt<Ocx) 

+ 24 L<-1 >1- 1K1 C(n''(e)/n(e)}- H1K1) J aA* x1 d4>( 0cx> 

- Lc-ni- 1H1 Ja,..* x1[cxTHx)2 

+ ( 4H1 - 2tr[H]) x T Hx + SH.2 + 4tr(H2] - 4 H1 tr{H]] dt< 0 (x)}. 

Proof. Let C = diag(c1 ,c2, ... ,cp> and D = d1agCd1 ,d2, ... ,dp). Then by 

Stokes· theorem, quoted in Spivak C 1965), 
. p 

(1) JA* [tr<C>- x1cxJ d4<x> = L <-tt\ J.M* x1 d~(l)<xl 
1= 1 

.. -

... 



.. 

21 

p 

cm JA* [tr<c> - icxJ iox d«x> = L <-01
-\ f M* x1 xrox di 0cxl 

t= 1 

p 

+ 2 L <- I t \d1 f M* x1 d4>(1) (xl - 2 ytr[DCJ. 
t= 1 

CiD JA* [tr<C> - x1cxJ [x1 cxJ2 d4>Cx> = - aytrcc3> - 4ytrec2>tr<c> 

p 

+ L c-01- 1 c f x [rx1Cx]2 + 4c x1cx + 8c 2 + 4tr(C2J] dt<0cx) 
1= I i aA* i 1 i · 

The lemma follows by apply1ng the ldent1t1es above to the express1ons 

tor the derivat Ives in Lemma 2. D 

All of the derivatives of n with respect to e involve a 1tnear 

combination of the Integrals JA* CJ -xt2> dcf>(x) = (-1 >1- 1 J aA* x1 def>( 0cx> In 

the denominators. To aid in bounding the derivatives, we show In the 

following lemma that these Integrals are positive. 

Lemma 4. If h(x) > o for all x and If R ts an accuracy set, then 

JR< I - xt2> h(x) d<l>(x) > o. 

Proof. For y > -1 define 

k(y> = JR c2nrP12 h<x> C1+y> 112 exp[- cx1x + yx?>12J dx. 

= E [ h(X) /(I +Y)R(X)]. 

where X - N(O,I>, I ts the pxp Identity matrix and Y ts the pxp matrix with 

CI +y) 112 - I In the (1,nth entry and zeroes elsewhere, and 18 denotes the 

Indicator variable of the· event B. The set (l+Y) R Increases with y because 

R ts star-shaped with respect to zero. Since h(X) > O, k(y) strictly 

Increases In y. Hence 
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2 k '(O) = f R [( I •y>- 112 - (I +y) 112 x? 1 h(x) exp(-yxi212l d4'Cx) I y=O 

= JR CJ - xt2> h(X) d<l>(x) > 0. D 

We are now 1n a position to bound the der1vat1ves of n(e) for a11 va1ues 

of e between O and 1. Let 

(4.7) 

and 

(4.8) 

where A 1 t A2 t ... ~ AP are the eigenvalues of W. For any matr1x C., let IICll00 

represent the supremum norm of a matrix; 

IICll00 = sup ( IICxll00 / llxll00} = max IC1JI· 

Lemma 5. Let O < e < 1, and let U e). KC e}, HC e), X, and 1 be as 

defined 1n (4.2) and (4.5) through (4.8). Then 

(a) 11 ~ U e) ~ X I. 
Cb) 1 N ~ n{e) ~ X N. 

(c) I n'(e)/ n(e) I ~ IIK( e)ll
00

• 

(d) IIHC e)ll
00 

~ 2 IIKC e~l00• 

Ce) There exists a constant K., independent of e., such that a e A*CN,O) 

implies aT a~ Kand a e A*( n(e).,e) implies aT a~(~ /1) K. 

(f) I r("(e)I ~ n(e) (~/1) K1 IIK(e~l
00 

2., where K1 = 2p + 8 + 2 K. 

Cg) I r(''(e)I ~ n(e) IIK(e)ll
00

3 (~/1)2 K2, where K2 is a constant. 

(h) IIK (e)ll
00 

~ 1-1 IIW - Ill tor any matr1x norm 11-11 



Proof. 

Part (a) follows tmmed1ately from the def1nitton of LCe). 

(b) Suppose n(e> > X N. Then using <a>, 
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y = <I> [[ n( e) L - 1 ( e)] 112 p- 1 A] ~ ct, [[ I n ( e) /X] 112 p- 1 A] > <I> [N 112 p- 1 A] = y, 

a contradiction. Therefore n(e) ~ X N; the other lnequa11ty Is proven 

s1m11ar1y. 

<c> From lemma 2, and using lemma 4 to show that each Integral ts 

pos1t1ve, 

n"(e) = n(e) JA* [tr(K(e)) - x1K(e)x] d4>(x) [ JA* [p - x1 x] dt(x) 1- 1 

= n(e) [ LK1 (e) JA* [ 1 - x?J d4>Cx>] [ L JA* [ 1 - x?J dt(x) 1-1 

~ n< e> IIK ( e)J100• 

Cd) Part Cd) follows Immediately from part Cc), the definition of H, and the 

triangle inequal1ty. 

Ce) Using Ca), Cc), and the deflntt1on of A1
, 

A*Cn(e),e) = [ n(e)/N ]112 L- 112(e) pT A' C ('x/1)112 PT A'. 

Recall that the standard1zed accuracy set A'= (N I- 1) 112A 1s a constant, 

bounded set 1s thus contained 1n a ball of rad1us Ji< for some K < oo. Thus 

a1a ~ K 1f a e A*CN,O), and a1a ~ (X/1) K 1f a e A*( n(e),e) and o ~ e ~ 1. 

(f) From lemma 2, 

rr'C e> = n< e) {2Lc-1 >1- 1 f aA* x1 d<l>c Ocx> J- 1 

{~c-D1- 1H1 faA* x1[xTHx - trCH> + 2 H1 + 4 K1J d<t><Ocx>} 

Now by (d), 



I H1 [-tr(H) + 2 H1 + 4 K1] I ~ 4 (p+4) IIK(e~l00 
2 for 1 = 1, ... ,p. 

Also, Stokes's theorem 1mp11es that 

c-1 >1- 1 Ja,,.* x? dt<Ocx> = f A* (2x? + x? < 1 - x?> dt(x) > o 

and 

so 
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ILL<-t >1- 1 H1HJ JM* x1xJ2 d<Z>Wcx>I :1 IIHII_ 2 L<-t >1- 1 J~. x1 x1x d<1>< 0cx>. 

Let tlf(u)., u e ~P- 1, be an or1entat1on-preserv1ng parametertzat1on of the 

boundary aA*., w1th r the regton of 1ntegrat1on for u. Then 

,Lc-01- 1 faA* x1 xlx dt<0cx> = fr tlfrtlf exp(- "11"112) J(u) du, 

where J(u) is the Jacobian 

r- c p-, > a [ r ljf(u l'u2, ... ,u~_ 1 > ] 

ar au 1 au2 ... aup-l 

Now J(u) 1s a1ways pos1t1ve; hence for a11 u in r, 
$T {U)\ll(U) exp{-lJ,1 (U)${U)/2) J(u) ~ {)J},,)K exp{- $T {U)$(U)/2) J(U) 

by part Ce) s1nce "11 (u) tlf (u> e A* whenever u e r. Thus 

IL<-1 >1- 1H1 f.~A* x1 x
1Hx dq,<Ocx> I 

~ cX11>K IIHll00 
2 ,Lc-1 >1- 1 f aA* x1 dc1>< 0cx>. 

Thus ln#(e)/ n(e)I ~ (2 p + 8 + 2 ()J1) K) IIK(e)ll00 
2. 

Cg) By an argument similar to that of (f), 

I n"'C e>I ~ (n< e)/ 4) { 12 IIHll00 
2 IIKll00 [ (X/1) K + 2] 



J. 

• 
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+ 12 IIHll00 I n"(e)/ n (e) I [ (i/1)K + 2) + 24 IIKll00 [ I n"(e)/n (e)I + IIHll00IIKll00J 

+ IIHll
00 

3 [(~/1)2 K2 + (4+2p) (X/1) K + 8 + Sp]}. 

Parts (d) and (f) then 1mply that 

I n"'( e)I ~ n( e) II K ( e )11
00 

3 { 12( (X/ 1 )K + 2) 

+ 6( 2(X/1>2K2 + (12+2p)(X/1) K + 4p + 16) + 6[2p + 10 + 2(X/1)K] 

+ 2 [(X/1)2 K2 + (4+2p) (X/1) K + 8 + Sp]} 

~ n(e) IIK(e)ll00 
3 ()J1)2 K2, 

whereK2 = 141<2 +(104+ 16p)K+ 196+52p. 

Ch) The result follows from (4.5), part Ca), and Theorem 5.6.7 of Graybill 

(1983). D 

The partial derivatives of g with respect ton are then bounded In the 

fo11ow1ng lemma. 

Lemma 6. Suppose n > o and o < e < 1. Then 

Ca) 0 < g1 Cn,e) ~ p/(2n). 

Cb) lg1 1<n, e>I ~ [2nr2 [p2 + 2P + Cn/nCe»2 CX/'~)2 K2]. 

Cc) lg 111 <n,e>I ~ C2nr3 p [4P + Cn/ n(e)>CX/1)K ]2. 

Proof. 

Ca) From Lemma 4, JA*(n,e) [p - xTx] d<f>(x) > 0, so g1Cn,e) > 0. The result 

f A*(n,e) [p - xf x] dcf>(x) ~ f A*(n,E) p d<f>(x) ~ p, 

imp11es that g1Cn,e) ~ p/(2n). 
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(b) lg 11 Cn,e)I = l<1t4n2) JA*(n.e) [[p- x1xJ2 - 2p] dcl>(x) I 

~ (2nr2 [p2 + 2p + J(n/n(e)) 1/2A*(n(e).e) [xT x]2 d<ll(x>l 

Now by Lemma S(e), x1x ~ CX/1) Kon A*(n(e), e). Hence 

lg11 <n,e)I ~ (2nr2 [2p + p2 + Cn/ n(e)>2 cXt:A)2 K21. 

<c> As 1n the proof of part Cb), 

lg 111 <n,e>I ~ (2n)-3 fA*(n.e) [ p [p2 + <x1x>21 + 6p[p + x1x] + Sp] d4>Cx>] 

~ C2n>-3 [ 1 Sp3 + p Cn/ n(e))2 C X/1 )2 K2 + 6p Cn/ n(e))C X11 )K J. o 

To find the expectattons of the dertvattves of n we work 1n the usual 

inner product space of pxp matrices, with 

<o 1,o2> = tr [D 1021 = Cvec D 1 > T (vec o2>. 

Recall that 1f D 1s any pxp matr1x, then 

vec D = (011 D21 ... Dpl D12 022 ... DP2 D13 ... DP~]T. 

Let ® represent the left Kronecker product on matr1ces and let c be the 

p2xp2 commutation matrtx. In the followtng., let"=>" denote convergence tn 

d1str1but ton. 

Lemma 7. Suppose that n vec(W - n ~ NCO.,I 8 I + C) for some n 

1ncreas1ng to Infinity and that the moments of Ware bounded. Then 

Ca> E [Ap-JJ ~ pJ + oC D. 

Cb) E [ nk II W - I 11
00 

k 1 = O( 1 ). 

Cc) E[ x11-J nk IIW - 111
00 

kl= 0( 1 ). 

Cd) E [ { n n'CO)/N 12 l = 2 tr [ a 2 J + o( 1 ). 

• 
. . .,, 
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Ce> E ( n2 n"(O)/N J = [ f A' [p - x1 x] dt(x>]- 1 Cf A' {2 p Ctr m2> - 4 + 2p 

+ (p - x1x>[ x1x (tr m2 + 1 > - 2 x1mx] l dt(x>] 

+ < 4 - p > tr(& 2 > - p - 2 + o( 1) 

= [ JA, [p - x1xJ dt<x>]- 1 Lc-01- 1 SM* x1 

[x1x <tr a2 + 1 > - 2 x1mx J dt<Ocx> 

- 4 [ JA,rp - xTx] d4>Cx>J- 1 JA,[1 - xTax] dt<x> 

+ (6 - p) tr<m2> - p + o< 1 >. 

Proof. Throughout the proof, let ~ = W - I and let K = Cn'(O)/N) I - ~ 

Ca) Note that .A - l ~ tr(w- 1 ]. Since n vec(W - I> ~ N(O,I ® I + C), 

n (tr[w- 1 J - p) => N(0,2p) by the delta method. Thus by dominated 

convergence, E [.~ - JJ ~ E[ Ctr w- 1 )J ] = pJ + o< 1 ). 

Cb) For any even k, E( 11£1100 kl~ LE( ~ 1/ ]. The entry (n £ 1J> has etther 

NCO, 1) or NC0,2) as its I tmft1ng distribution. Thus for any even k, 

dominated convergence lmpl les that 

E[ nk II~ 1100 k ]_ ~ L E[ nk ~ 1 / ] ~ 2k P2 ak + o( 1 ) , 

where ak is the kth moment of the standard normal d1str1button. The result 

for odd k follows from the Cauchy-Schwarz tnequal1ty. 

<c> By Holder·s tnequa11ty, 

E[ X11-J nk II ~ 11
00 

kJ 

~ (E[ 1-<J+ 1) uJl(J+ 1) (E( C X1 nk II ~ lloo k] )J+ 1 ]} 1 /(j+ 1 >. 

Now ( E( 1-<J+ 1 > J JJICJ+ 1 > ~ p_J + o( 1) by part Ca) of thts lemma, and 
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E[ C X1 nk II £ 11
00 

k )J+ 1 l ~ El { CIIA - 111
00 

+ 1 ) 1 nk II £ 11
00 

k JJ+ 1 1 

~ E[ < 1 + ll~ll
00

>1<J+ 1) nk II £11
00 

k(j+ 1 > J = 0( 1 > 

by (b). 

(d) Changing var1abJes, we rewrite n'(O) = N tr (2a). The result foJlows 

s1nce the asymptotic var1ance of n tr ( ~-• ) = n Cvec SIU Tcvec £) 1s 

<vec m>1 (I ® I + C) (vec 311) = 2 tr (31121. 

Ce) Aga1n changing var1ables and s1mplify1ng, 

n'"(O}/N = [2JA' [p - x1x] d4(x)r 1 [2ytr(JC2)- JA' [tr(Jt)- x1 Kx]2d4(x)] 

+ 2 tr<K£1l). (4.9) 

We find the expectation of each term 1n (4.9) separately. The asymptotic 

variance of (n vec K) = n [(vec l)(vec Sil) T - I ® I] vec ~ is 

[ Cvec ncvec al - I ® I 1 [I® I+ C] [ Cvec ncvec sruT - I ® I iT 
= 2 [Ctr a2)Cvec l)(vec n1 - <vec ll)(vec 1>1 - Cvec ncvec mi]+ I® I+ c. 

Thus, by dominated convergence, 

E [ n2 tr<X2>) = tr E Cn2 (vec X)Cvec JC) T] 

~ 2 p Ctr m2> - 4 + p(p+ D + o< D. 

Also, 

E ( n2 [ tr JC - x T K x]2 } = E ( [n tr ( K (I - xx T)) 12 } 

= E [ ( n Cvec (I - xxl) l[ Cvec ncvec·sruT - I ® I 1 Cvec £) 12 1 

= 2 (tr [I - xxTn2ctr m2 > - 4 Ctr [I - xxT]) (tr [ [I - xxTJ mD 
+ 2 tr[ (I - xxT>2J 

= 2(p - xTx>2<tr [1t2] > - 4 (p - x1x> < 1 - xTmx> 

(4.10) 

+2[p-2xTx+cxTx>2]. (4.11) 

Finally part Cb) 1mp11es that 

. 
•-:; 
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E[ n2 trcx~m> J = E[ (n tr<m~))2 - n2 tr(mJ!2»J 

= 2 tr<a2> - Cp+ 1 > + oc 1 >. (4.12) 

The first expression of part Ce) is thus proven by combining (4.9) through 

(4.12) and lemma 2., and the second expression results from applying 

Stokes's theorem to the first. o 

Lemma 8. Let H(x) =- P ( f(x, W) ~ y ), and suppose that 

n vec(W -1) ~ NCO.,I 8 I + C) for some n increasing to infinity and that the 

moments of Ware bounded. Then E [ [[n(I)]] - n(l) 1 = 1 /2 + r, where 

lrl i f o 00 IH'''(x)I dx + o(N- 112>. . 

Proof. Note that P ( n(J > ~ z} = P ( f(z.,W> ~ y J = HCz>. From Hall 

( 1981)., the expectation of R = [[ n(l)]] - n(l > is 

E [R] = I /2 + fr (( 1 /2) H'( 1-r> - H( 1-r) + L f H''Cx-r) Cx - n - .1 /2) dx}dr, 

and the integral does not exceed 2HC I)+ f O 
00 IH"(x)I dx 1n absolute value. 

But H( 1) i P ( )} ~ N- 112 } i N- 112 E [)> -1] = O(N- 112> by lemma 7{a), 

completing the proof. o 
Proof or Theorem 2. 

Rec a 11 from C 4. 1 > that 
A 

n ( e) = N( eC 1 + LI m > Im + < 1 - e > n 
A 

so that the lemmas of th1s section may be applied w1th W = C 1 + Lim) Im· 

From Wishart ( 1928), E [Im J = I and Cov (vec Im ) = (m-1 >- 1 (l®l+C). In 

add1t1on, all the moments of Ware finite, so rm vec (W -1) =+ NCO, I®l•C > 

by the mult1var1ate centra111m1t theorem and the dom1nated convergence 

theorem may be app11ed throughout the proof. 



(a) The mean value theorem imp11es that n( 1) - N = n"(e) for some e 

between 0 and 1, so by Lemma S(c), 
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A - A I T(.l)-N I~ 1 + n(e)II ( 1 +·.l/m) Im-11100 ~ 1 + (X/1)N II ( 1 + .l/m) Im-11100. 

A 

Now < 1 + .l/m) Im converges almost surely to the 1dent1ty matr1x and 

(M.A) ~ Cl + II Cl + .l/m) Im-11100> Cl + II Im - 1-11100>, so I T(L)- NI/N-+ O 

almost surely. 

(b) By lemmas SCb) and 7(c), 

E(( ,(.l)/N)Q) ~ E[( 1 + X>Q) < oo for q > 0 

and 

E( ( i(L)/N)Q J ~ E[l Q] i 1 + (1 + L/m)Q E[ ( 1 + II Im - 1 -Illoo>Q) < 00 for Q < 0.' 

Hence by dom1nated convergence and part Ca), E[ < ,(t)/N)Q l ~ 1 as N ~ 00• 

Cc> The proofs of _parts Cc) and Cd) use the following third-order Taylor 

series expansion of n about o, 
T(L) - N = ( i(L) - n(I)) + rr(O) + ( 1 /2) n''(O) + ( 1 /6) n'"'(e), 

where e 1s between O and 1. Now lemma 8 shows that · 

E [ i(.l) - n(l)] = 1 /2 + Jo 00 IH'''(x)I dx + o(N- 112). 

Here H(x) = P (Im/x e CI + L/mr 1 Ry<A>J, where Ry<A> = (V: 4><v- 112A) ~ y}. 

Direct computat1on ustng the W1shart density then shows that 

f O 
00 IH'''(x)I dx = o< 1 ). Also, lemmas 5 and 7 1mply that 

E [ m312 1 n'''(e)I] ~ m312 N K2 Er~ 31-s II ( 1 + L/m) Im-11100 3 ] = 0( 1 ), so 

EU n"'(e)l1 = o(N/m). Thus E( T(L)-N] = 1 /2 + E[ n'(O)] + ( 1 /2) E[ n'"( 0)) + o(N/m), 

where E [ n'(O)] = E [ tr( [C 1 + J,/m) Im - I] m) = l/m and E [ n"CO)] ts given 

,._ ... 

. 
·-= 

.-
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exp11c1tly 1n lemma 7(e). 

(d) We square the second-order Taylor expans1on of n(I) about o to gtve 

E [ ( T(L) - N)2 ] = E [ ( n'(0)}2 + (I/ 4)( n''( e)}2 + n'(O) n'"( e) ]. 

E [ ( n"(O>J2 J 1s shown to equal 2 N2 tr [ a 2J / m + o(N/m) 1n lemma 7, and 

the other terms are shown to be o(N/m) by applying lemmas 5 and 7. 

Ce> A second-order Taylor series expansion gives 

rm ( T(L) - N)/N = rm [ T(L) - n(I) + n'(O) + ( 1 /2) n'"(e)] / N 

for some e between O and I. Now E [ln'"(e) I]= o( 1 > by lemmas 5 and 7(c), so 

rm I n''Ce) I/N converges 1n probab111ty to zero. Thus the 11m1t1ng 

distribution of rm c T(L) - N)/N is the same as that of 

rm r((O)/ N = rm tr [(( 1 +L/m)Im-1 )m], shown to be N(0,2 tr [m2n 1n the 

proof of Lemma 7(d). 

(f) S1nce f(n,I) = g(n,O), (2.7) may be rewritten as 

E[g(T(L),0)] = 'Y + g1CN,O) E[T(L)- N] + (1/2) g11 CN,0) E[(T(L}- N)2] 

+ ( 1 /2) E[ {g 11 (n*,O) - g 1 1 (N,0)) ( T(.l) - N)2], 

where n* 1s between T(L) and N. Us1ng results Cc) and Cd), then, 

E[g(T(.l),0)] = 'Y + 91CN,O){N Lim+ E[n""(O)]) + (1/2) 911 <N,0) E[Cn'(0))2] 

+ ( 1 /2) E[ (911 (n*,0) - 911 (N,0)) ( T(.l) - N)2] 

+ E [g1<N,O) o(N/m) + 911<N,O) o(N2lm)]. 

· where g1 (N,O) = C 1 /2N) f A' [p - x1 x] d<l>(x) and 

911 <N,O) = (1/4N2>JA, ([p - x1xJ2 - 2p) d4>(x). The inequa11t1es in lemmas 5 

and 61mp1y that E [91(N~O) o(N/m_> + g11 CN,O) oCN2tm) J = o(m-1 ). 



The proof 1s completed by show1ng that 

E[ 1911<n*,O) - g11 <N,O)I (T(.l)- N)2] 

1s also o(m- 1 ). By the mean value theorem, 
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E[ lg11 <n*,O) - g11 <N,O)I (T(.l)- N)2] = E[ lg111 Cn',O)I (T(.l) - N)2] for some n• 

between n* and N. S1nce n<e> 1s a continuously d1fferent1able funct1on of e, 

n• = n( e• > for some e• between O and 1. Lemmas 5 and 6 then demonstrate 

that 

lg 111<n(e*),O)I ~ {2 n(e*> >-3 p [4P + < n(e*)/N HX/1) K]2 

i p CSN>-3 c4p • K>2 < x 3115>. 

Thus 
"' 

E[ lg 111 Cnt,O)I ( 'T(.l)- N)2] ~E( p (8N)-3 (4P + K)2 ( X 3 t.6.5) C T(L)- N)2] = o(m- 1). ~ 

by lemma 7(c), part Cb), and the Cauchy-Schwarz 1nequal1ty. This completes 

the proof of the theorem. D 

Proof of Corollary 1. Usfng the mean value theorem, 
A A A 

N[( 1 + L2/m)Iml - N[( 1 + L2/m)Iml 

= N[( 1 + L2 */m)Im][(I + L2 *An) mr I <22 - L2> 

A 

for some L2 * between L2 and L2. AppJytng lemma 5, then, 

I N[( 1 + 22/m)Iml - N[( J + L2/m)Im1 I 
(4.13) 

We show that (22 - L2) fs small except on_a set of smal1 probabf 11ty. 

Let 6 = m- I12 and B = { IIIm - 11100 ~ 6 }. On the set B, the symmetr1c 

dtrterence· or the sets A' and A· tends to the empty set: using Lemma 5 and 



.,,-
the relat1onsh1ps between d1fferent matr1x norms, 

IIIm -112 - 11100 18 ~ v'i>IIA- 112 - 11100 18 ~ "v'i> 8, 

A 

where A 1s the matrix of eigenvalues of Im· Thus 

CA' - A') 18 C ll(T(O)/N)1I2fm 112 - 11100 A' C 2 Jp' 8 At, 

so by lemma S(e), 
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II J A' xxT dcl>(X) - JA' xxl dcl>(X) 1100 / 8 ~ J 2p6A' llxxTnoo dt<x) ~ 2p 6 K. 

This resu1t then 1mp1 tes that 

I L2 - 22 I / 8 ~ r< 6), (4.14) 

for rC6) a nonrandom function of 6 which tends to Oas 6 -.·o. 
We then show that I L2 + 2211s bounded by a runct1on of A on ac. 

Equation (2.6) tmpl1es that tr C31l2) ~ 1 and tr ca2> ~ 1. We use results 

" from Lemma 7 to bound the remaining terms 1n I J.2 + li'- By part Ce) of that 

lemma and equation (2.6), 

- ( 1/2) [JA, [p- xlx] dtl>(x)]-l JA' (2p- 4+ (p- xlx)[xlx-2 xTMlx]J dtl>(x) 

~ CJ A' [p - xT x] dtCx>]- 1 f A' ( 2 + (p - xT x) xT mx} dt(x) 

= CfAdp-xTx]d4>Cx>J- 1 CL<-D1- 1 Ja,.., x1xT:ntxdt<Ocx> 

+ 2 J A' Cl - x1ax> d4>Cx>] 

~ II m1100 + 2 tr ca2> 

~ pK + 2. 

Sim11arly, using Lemma S(e), 

- < 1/2) Cf A' [p-x1xJ d4>Cx>]-l f A' (2p-4+ Cp-xTx>[xTx-2 xT3ftxn cM><x> 



~ p K X1 Ap - 1 + 2. 

Consequently, 

(22 + .t2) ~ p + 6 + 2 p K X1 XP - 1. 

EQuat1ons (4.13), (4.14), and (4.15) imply that 

I N(( 1 + -½lm)Iml - N[( 1 + ,½lm)Im] I 
:im- 1N X1 Cl+ (,½+I ,½-,½lllm>l 22 -,½I 

:i m- 1N x1 < rC6) + ocm- 1 » 
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(4.15) 

+ m- 1N x1 K6 CX/1) (2 + K6 CX/A)/m) J8c. (4.16) 

Inequality (4.16) and the fact that P(BCJ = o( 1 > by Chebychev·s 

1nequalfty are then used to prove the corollary. S1nce >.. 1 and C X/1) tend to 

1 almos_t surely as N tends to infinity, and s1nce I 8c-+ o almost surely, 

(4.16) Implies that I ,-(22) - 'T(L2) I IN~ O almost surely as N ~ 00• This 

proves part Ca> of the corollary. Part (b) fol lows since the qth power of the 

right-hand s1de of (4.16) Is dominated by a function wtth fintte expectation, 

as in the proof of theorem 2. 

To prove (c), note that 

E[ ,-(22) - 'T(.l2)] = E [ ,-(22) - N[( 1 + 22/m)ImJ] 

- E[ T(L2) - N[( 1 + L2/m)Im11 + E [ N(( 1 + 22/m)Iml - N(( 1 + L2/m)Im11. 

The first two expectations on the right-hand.:..stde are both equal to 1 /2 + 

o( 1) by lemma 8 and the proof of Theorem 2(c). The Cauchy-Schwarz 

1nequa11ty and 1neqtia11ty (4.16) tmply that 

E [ I N(( 1 +· 22/m)Im] - N(( 1 + ,½lm)Im] I 

.. 

,. 
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~ m- 1N E [ x1c r(S) + K6 < X/1) (2 + K6 < X/1)/m) 18c] 

= o(N/m)., (4.17) 

prov1ng Cc>. 

It ts stmtlarly shown that E( < ,-(22) - 'T(L2) >2 1 = o(N2/m2)., proving 

part Cd) or the corollary. lnequa11ty (4.17) also 1mp11es that 

E [ rm1 ,-(22) - 'T(L2) I/NJ-. 0 as N-. oo. 

Thus rm1,-c22) - 'T(L2» /N converges in probab111ty to zero., so 

rm 'T(L2)/N has the same 1tm1t1ng d1str1but1on as rm 'T(L2)/N. This proves 

part Ce). 

Because the stopping rule 'T ts an Increasing function of L., a first-order 

· Taylor series expansion about the first argument gives 

E(g( 'T(L2),0)] = E(g{ 'TCL2),0)] + E[ 91< 'T{L2 *),0) ( T{22> - 'T(L2)>], 

A 

where L2 * is between L2 and L2. Lemma 6(a), the result from the proof of 

part Cd) that E[ C T(22) - T(L2) >2 ] = oCN2 lm2> and the Cauchy-Schwarz 

1nequa11ty 1mply that 

E[g1C'T(.l2*),0) l'T(22)- 'T(.l2J] ~ { E [ (p/,-(.l2*))2] E[ (,-(22)- T(.l2))2]} 1 /2 

= o(m- 1 > 

by part (b) of th1s corollary. Thus 

E[g( T(22),0)] = E[g( T(L2),0)] + o(m- 1) = 'Y + o(m- 1) 

by Theorem 2(0 and the def1n1tion of L2 1n (2.4). o 

The proof of theorem 3 and tts corollary resembles that of theorem 2, 
A 

w1th the added comp11cat1on that It
2 

no longer follows a W1shart 
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d1str1but1on, but tn fact systematically underestimates I. 
- - A A - A 

Let X< 1 > = Xm, Ic 1 > = Im, and let Xe 2> and Ic 2> be the least sQuares 

est1mates of the mean and covariance ustng only the observations fn the 

second sample. Then the estimated covar1ance using both samples may be 
- A - A 

expressed as a function of Xe 1)• Ic 0 , Xc 2), Ic 2), and t2, as 1s shown tn 

the f o11ow1ng lemma. 

Lemma 9. 

It2 = < t2 - n-1 { <m-1> Ic o + c t2- m -o Ic2> 

+ m< t2- m> t2 -1 [ Xe o - ~<2>H Xe o - Xc2>JT }. 

Lemma 9 1s used 1n the following lemma to evaluate the conditional 
A 

expectation of It
2

. 

Lemma 10. 
A A A 

E[( t 2 - 1) I t
2 
I Im ] = (m-1 )( Im - I) + ( t2 -1) I. 

Proof. The result follows from Lemma 9 because 

A 

We then may approximate the moments of t2 and It
2

· 

Lemma 11. Suppose the conditions of theorem 4 hold. Then 

(a) E[ I t2 - N21 J t 2 -k] = o(NJ-k) fork = o, 1,2, ... , [[(m-p)/2]] - 1, j ~ 1. 

(b) E[ t 2 -k] = N2 -k + o(N-k) fork= 1, 2, ... , [[(m-p)/2)) - 1. 

Cc) E[It
2

l = I-231/N2 +o(N- 1). 

Proof. Let 

D = ('T(O) >m} 

-. .., 

} 

;; 

.. 
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and let 
A 

C = ( II Im - I 1100 ~ 1 /2 ) . 

Lemma 5 tmpl tes that I 'T(O) - N I / c ~ N/2. Then, using Cramer's theorem on 

large deviat1ons (see Varadhan < 1984)), 

P{Cc) ~ 2 p2 exp{ -Cm-1 )/24) 

and hence 

P(DC) ~ P( ( l'T(O) - NI > N-m ) n CJ + P(cCJ ~ 2 p2 exp( -(m-1 )/24) (4.18) 

for suff1c1ently large N. Thus 

E( lt2 -N2I i;t2k J0c] = Cc<N-m)/m)J P(DCJ = ocNJ-k> 

and 

E[ lt2 - N21 J / tl I 0] = El I [[c('T(O)-m)]]- dN-m) IJ /( [[c('T(O)-m)]] + m)k / 0] 

~ m-k + c E[ I 'T{O) - NI J / 'T(O) k] = ocNJ-k) 

by theorem 2Cb)., completing the proof of Ca). 

To prove part Cb)., note that 

E[ t2 -k] = N2 -k E[( 1 - ( t2 - N2)/ t2Jk] 

k 
= N/ + N/ L ( jk )E((<tz - N2)/tz }j 1 

J=l 

by the B1nomial theorem. The result then follows from (a). 

For part Cc), Lemma 1 o imp11es that 

E[ ~t
2

1=E(E[It
2

1Im ])=I +E[(t2 -o- 1<m-1)(Im-I)]. 

Now 

<t2-o-1 = N2-1 -N2-2 <t2-N2-1) + N2-2 <t2-o-1 <t2-N2-1)2 

so 
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E( ( t2 -1 )- 1 (m-1) (Im - I)]= Cm-1) N2 -
2 [ - c E[ <Im - I) ( T(O)-N) ] 

+ E( <Im - U {((c(T(O>-m)]] - c(i-(0)-m)} I 0] 

- c El <Im - I) (T(O)-m) / 0c] 

+ E[ (Im - I) <t2-o-1 <t2-N2-1>2 ]]. (4.19) 

We find the expectat1o·ns of each term 1n (4.19) separately. A second­

order Taylor ser1es expansion g1ves that for some e* between O and 1, 
A A 

E[ (Im - I) ( T(O)-N)] = El (Im - I) ( n"(O) + ( 1 /2) n"'(e*)) ] 

A A A 

=NE[ <Im -1) tr (a <Im - I)) 1 + (1/2) E[ <Im -1) n"'(e*) ]. 

Now E[ <Im - I) tr {S <Im - U) J = 2 (m-1 >- 1 31, 1t was shown 1n the proof 

of theorem 2Cd) that El I n""(e*> 12 1 = o(N2/m), and lemma 7(b) 1mp11es that 

E[ II Im - 11100 
2 l = ocm- 1 ), so E[ II Im - 11100 I n""(e*) I 1 = o(N/m) by the 

Cauchy-Schwarz 1nequality. Comb1n1ng terms, 

El <Im - D ( T(O)-N)] = 2 N (m-1 )- 1 Sil + o(N/m). (4.20) 

It 1s easny seen that 
A A 

E[ II Im - 111
00 

I [[c(T(O)-m)]] - c(T(O}-m) I / 0] ~ E( II Im - 111
00

·] = o( 1 ). (4.21) 

A1so, equation (4.18) and the Cauchy-Schwarz 1nequaltty imply that 

E( IIIm - 111
00 

IT(O)-ml t 0c] ~ m (tr E[(Im-1)2] P(Oc)} 112 

~ 2mp (p+ 1} exp( -(m-1 )/ 48} = o( 1 ). (4.22) 

. 
•-; 

· Toshowthat E[<Im-I>(t2-1>- 1 (t2-N2-D2 ]iso(N/m), 1et8=m- 112 .-: 

and let 
A 

B = ( II Im - 11100 ~ 6} n D. 
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By Cramer's theorem (Varadhan C 1984)), P(BC] ~ C2p+p2) exp { - m 1141121, so 

E[ IIIm - 111
00 

(t2-o- 1 (t2-N2-o2 / 8c 1 = o(N/m)._ Then, us1ng lemma 5Cb) to 

show that 1,(0)-NI 18 ~ 8 N, 

E[ IIIm - Illco Ct2-n- 1 Ct2-N2-02 le]~ s3 N2/C1-6) = o(N/m). 

Thus E[ II Im - Illco ( t2- l )- 1 ( t2-N2- I >2 ] = o(N/m). (4.23) 

Thus, using (4.19) through (4.23), 

E[ (m-1) Ct2-o- 1 (Im -1)] = - 2 Ml/N2 + o(N- 1), 

complet1ng the proof of Cc). o 
Proof of Theorem 3. F_or any constant n, Grayb111 C 1983, Theorem 

10.10.1) 1m~11es that E[ In J = I and Cov Cvec In> = (n-1 )- l O ® I + C). 

By the mult1var1ate central 11m1t theorem, then, 

Jn vec [ In - I ] => N( 0, I ® I + C). 

Now for any constant n, rn vec [ In - I ] is uniformly continuous 1n 

probability since it may be rewr1tten as a norma11zed part1al sum. S1nce 

C t2/N2) converges in probab111ty to one by Lemma 11 Cb), and since l/t2 

converges 1n probab111ty to zero, Anscombe's C 1952) theorem 1mp11es that 

v'N2 vec [ C 1 + llt2) It
2 

- I ] => NCO, I ® I + ~). _ 

Dominated convergence may be applied throughout the proof s1nce by 
A k A A Tk 

lemma 9, fork ~ 0, E [ It
2 

1 ~ E [ <Ic 1) + Ic 2) + [ Xe 1) - Xc 2))[ Xe 1) - Xc 2)J ) ], 

and the expectation on the r1ght 1s shown to be f1n1te by us1ng success1ve 

conditioning. Recall from (4.1 > that for tr1ple sampling, 
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A 

n ( e) = NC e< 1 + Litz > I tz + < 1 - e > n (4.24) 

, A 

so that lemmas 1 through 8 may be applied w1th W = ( 1 + Litz > Itt _ 

Results <a> and Cb) r o11ow the same proofs as parts (a) and (b) of 
A 

theorem 2 once it is noted that ( 1 + L/t~>It
2 

converges almost surely to 

A 

the 1dent1ty matr1x s1nce Im -+ I almost surely and s1nce t2 1s def1ned to be 

larger than m. 

(c) As 1n the proof of theorem 2(c), 

. E[ t3(L)- N] = E( t3(L)-n(l )] + E[ n'(O)] + ( 1 /2)E[ n"(O)] + ( 1 /6) E[ n'"( e)], (4.25) 

where e 1s between o and 1. Lemma S(g,h> and lemma 7(c) 1mply that 

E [ I n"'(e>I ] = o( 1 ), and E [ n"(O)/ c] is evaluated exp11c1tly in lemma 7(e), so 

the proof of (c) 1s completed by evaluat1ng El t3{L)-n(1 >land E[ n'(O)}. 

E [ n'(O) 1 = N tr [ 3ll E { < 1 + LI½> It
2 

- I l l 

= N tr [ 31 E ( ( 1 + L/N2> It
2 

) 1 

. - N .l N2 - 1 tr [ a E ( c t2 - N2 > t2 -
1 I t

2 
l 1. 

Now E ( It
2

) = I - 2 ll/N2 + o(N- 1) by Lemma 11 (c). Also, 

E ( ( t2 - N2> t2 - l II It2 Hoo ) ~ ( E[( t2 - N2>2 t2 - 21 E [ II f t2 llco 2 J 1I2 = o( 1) 

by parts (a) and (b) of Lemma 11 and the Cauchy-Sch~arz inequa l 1ty. Thus, 

s1nce the entr1es of Sil are bounded. 

E [ n'(O) ] = N tr [ Sil ( ( UN2)I - 2 3R/N2 ] + o( 1) 

= Lie- 2 ( tr a2]/ c + o( 1 ). 

From lemma 8, E [ < t3(l) - n(l)) 1 = 1 /2 + JO 
00 IH"(x)I dx + o( 1>. To show 

-
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that f 0 
00 IH""(x)I dx = o( 1 ), note that by us1ng a Helmert-type transformat1on, 

I0 = <n-O-1 L:V1v?. where v1 = (!Cl+ ni-112ox1+ 1 - D1>. so that the v1 

are independent NCO,)) random vectors. Let R = (V: «v- 112A> ~ y). Then 

H<x> = P{ It
2 

/x e Rl = E [ P{ Ct2-1 >- 1 ( Lv1v? + <m-1 >.Im)/x e RI Im}], 

and the cond1t1ona1 probab111ty may be written us1ng a Wishart Ct2-m-1,U 

d1str1but1on. By changing variables and d1fferent1at1ng, 1t 1s shown directly 

that f 0 
00 IH''Cx>I dx = o( 1 >, proving that E [ < t3(L) - n(l)) l = 1 /2 + o( 1 ). 

Cd) We square the right-hand s1de 1n (4.25) to g1ve 

E [ < t 3(.l) - N>2 1 = E [ ( n'(0>J2 1 + remainder terms; 

E [ { n"(0>J2 1 1s given exp11citly 1n lemma 7{d), and the remaining terms are 

shown to be o(N) by lemma 5. 

Ce) By equation (4.25), 

JNi ( t3(L) - N)/N = JNi [ 7((0) + ( 1/2) rr'(e)] / N 

ror some e between o and 1. Now JN; r((0)/ N = JN; tr f C 1 + LI t2> It
2 

~J 

converges 1n distribution to a N(0,2 tr [&2 1> random variable by 

Anscombe's ( 1952) theorem, and E [I n""(e> 11 = o{ 1 > by lemmas 5(0 and 7, so 

the 11mit1ng d1str1but1on of JN; < t3 (.l) - N>IN 1s N(0,2 tr [ a2 D. 

CO The proof of (f) depends on the following second-order Taylor expans1on 

of g about 1ts f1rst argument, 

E[gCt3(L),O)] = y + g1CN,O) E[t3(L)- NJ+ ( 1 /2) g11 CN,O) E[(t3(L) - N)2] 

+ ( 112) E[ (g 11 (n*,0) - g 11 (N,0)) ( t3 (L) - N)2J, 



where n* 1s between t3 (L) and N. Us1ng results (c) and Cd), then, 

E[g(t3(L),O)] = y + 91<N,O) ( L/c- 2 (tr m2>1c+ E[n""(O)]) 

+ (1/2) g11 CN,0) E[(n"(0))2] 

+ ( 1 /2) E[ {g11 (n*,0) - g11 (N,0)) ( t3 (L) - N)2] 

+ o(N- 1) 
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s1nce E [ 191 (N,O)I] -~ p/2N and E [ I 91 r<N,0) I] ~ (2N)-2 9Cp2 + 2p + K2) by 

lemma 6. The proof 1s completed by show1ng that 

El I 911 Cn*,O) - g11 CN,O>I < t3(L) - N>2J 1s also ocN- 1 ). By the mean value 

theorem and lemma 6(b), 

E[lg 11 Cn*,O)-g 11CN,O)l(t3(L)-N)2J ~E[supe* lg 111 Cn(e*),O)I (t3(L)-N>2] 

~ E [ supe* C2 n(e*)r3 p[4p + < n(e*)/N)( X/1)K J2 ct3(L) - N)2J, 

where the supremum ts taken over all e* between O and 1. Thus 

E[ I g 11 (n*,0) - g 11 CN,O)I ( t3 (L) - N>2J 

i E [(2p3+K2+ 1 )( n(e*r3 + n(e*r2c X/1) + n(e*r 1 ( X11>2J.c t3 (L)- N)2] 

~ 3 N-3 c2p3+K2+ 1 > E [ cX3 ;:~5) II< 1 + Litz > It
2 

- I 1121 = ocN- 1 > 

by lemmas S(c) and 7(c). Thts completes the proof of the theorem. o 
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