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ACCURATE MULTIVARIATE ESTIMATION USING
DOUBLE AND TRIPLE SAMPLING

Summary

Any multﬁ‘esponse estimation experiment requires a decision about
the number of observations to be taken. If the covariance is unknown, no
fixed-sample-size procedure can guarantee that the joint confidence region
will have an assigned shape and level. Double-sampling procedures use a
preliminary sample of size m to determine the minimum number of
additional observations needed to achieve a prescribed accuracy and
coverage probability for the parameter estimates. Triple-sampling
procedures, less sensitive to the choice of m, revise the sample size
estimate after collecting a fraction of the additional observations
prescribed under double sampling. Second-order asymptotic results relying '
on conditional inference provide correction factors which make the
procedures asymptotically consistent. Double sampling and triple sampling
are both asymptotically efficient; in addition, the regret for triple
sampling is a bounded function of the covariance structure and is
independent of m.



1. Introduction
Let Xy, X2, ... be a sequence of independent and identically distributed

random p-vectors with unknown mean © and unknown positive definite
covartance matrix 2. The problem addressed in this paper is that of

determining a sample size ¢ such that the resulting estimator 8, accurately

estimates ©. Accurate estimation is used here in the sense of Finster
(1985, 1987). A fixed-accuracy set is a natural extension of a fixed-width
confidence Interval to &°: 6 accurately estimates © with accuracy A and
confidence vy if P{ 6-0¢eA)2 v. Formally, a fixed-accuracy set is a
compact, orientable Borel-measurable set A € ®P which is star-shaped with
respect to 0 and contains 0 as an interior point. The requirement that A be
star-shaped ensures that if & accurately estimates ©, so does any estimate
@ between & and 6.

Accurate estimates are useful in a wide variety of applications. Often
experimenters want a confidence region for a multivariate response which
is of a specified shape and size and is easy to interpret. For example, the
U.S. Environmental Protection Agency guidelines for solid waste analysis
(Office of Solid Waste and Emergency Response (1982), p. 5) state that it is
desirable to use as few samples as necessary to achieve, with 80%
confidence, a target joint accuracy in which the log concentration of the ith

contaminant is estimated to within error d;. -In other words, their goal is a

fixed-size rectangular accuracy region A = 1 [-d, d;], rather than Working

and Hotelling's (1929) ellipsoidal confidence set whose size and orientation
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depend upon the unknown covariance matrix. Fishman (1977) and Kletjnen
(1984) describe the problem of determining the sample size to estimate the
steady-state means of responses in a queueing simulation study. The
procedures developed in this paper provide an algorithm for calculating the
sample size and estimator for multiresponse computer simulation studies.

Dantzig (1940) showed that in the multivariate normal situation with
unknown covariance, a data collection procedure which collects a fixed
number of observations can not guarantee a desired predetermined accuracy
and confidence level; a sequential or step-sequential procedure is therefore
necessary. In many cases, however, a purely sequential procedure, in which
the parameters are re-estimated after each observation, is impractical
because of a delayed response or a difficulty in setting up the experiment,
or even because the sample-size saving is not worth the inconvenience of
repeated statistical analysis. Following Stein (1945), Cox (1952), and Hall
(1981), who studied the one-dimensional case of fixed-width confidence
interval estimation, we use double and triple sampling to limit data
collection to two or three stages.

If £ were known and the population were normal, any sample size n

exceeding the solution N of f(N,Z) = vy, where
f(n,V) =P{MOn" V) eA)
= f, (v2m VI Zexpl-(n/2) xTV " 'x] dx (1.1)
and M0,n" ' V) represents a randoni vector with that distribution, would

ensure that 7}, {s an accurate estimator of ©. For £ unknown, the double-

and triple-sampling procedures of this paper both prescribe collecting a



first sample of size m and estimating X by

A natural estimator of N after the pilot sample has been collected is ﬁ, the

solution N to f(N,£, ) = y. Theorem 2 will show that N is asymptotically

unbiased; however, the coverage probability using N is strictly less than vy
up to om™") terms. Intuitively, the probability is less than vy because only
a fraction of the data are used to estimate X: the conditional distribution

of £ -1/2X (the normal distribution) is used to find N while the actual

distribution of £ -1/2X s a multivariate t-distribution.” Chatterjee (1959,

1960), in fact, uses a multivariate t-distribution in his Stein-type
two-stage procedure for accurate muitivariate estimation with ellipsoidal
accuracy. Chatterjee's procedure gives exact coverage probability; this
exactness, however, is achieved only at the cost of considerable
computational complexity.

The double-sampling stopping rule used here to give an asymptotically
consistent procedure inflates the covariance estimate by a factor (1+£/m)
to compensate for not knowing 2. The stopping rule for the double-sampling

procedure, T(£), is then the smallest integer n for which f(n,(1 +z/m)§m) 2

Y. The parameter £can be chosen so that the stopping rule T(£) gives
coverage probability y with error o(m™ D)

If m is small relative to N, however, the double-sampling procedure
will be inefficient when compared with the purely sequential procedures of



Chow and Robbins (1965) and Woodroofe (1977) for one-dimensional
accurate estimation and Finster (1987) for multi-dimensional accurate
estimation. The triple-sampling procedure achieves finite regret and |
second-order asymptotic efficiency by taking two additional samples after
the pilot sample rather than just one. As in Hall (1981), we allow for three

samples by having the second sample comprise about 100¢® (0 <¢ < 1) of

the observations in the second and third samples. N,, the “optimal” size of
the first and second samples if Z were known, is set equal to [[c(N-m)]] + m,
where [[x]] denotes the smallest integer containing x. Then N, is estimated
after the pilot sample by the stopping time

ty = [[e(T(0)-m), 1] + m,
where T(0) is the double-sampling étopping rule. After the second sample

of t,-m observations, the covariance matrix is re-estimated using ftz, the
least squares estimate of X using all t2 observations. Then the size of the
third and final sample is [[¢3(£)]]- ¢,, where t5(£) satisfies the relation

f(Lz(4), (1 + £/ tz)ftz) = . Here £ s again a correction for the sequential

nature of the procedure, giving the bounded regret of Simons (1968). With £
defined in (3.2), the triple-sampling procedure has finite regret and
achieves coverage probability y with error o(N"1), the same order obtained
by Finster (1987). With this small order of error, the asymptotic results
for the triple-sampling procedure are valid even for moderate values of N.
Note that accurate estimates of linear combinations of the parameters

are a by-product of accurate estimates of the parameters If the accuracy

kY



set 1s a ball. Suppose
P(6-0 €B(d)) = v,

where Bq(d) is the £9-ball of radius d. Then if q°= (I—q")", an

application of Hélder's inequality yields
P(ic'(8-0) = dliclly, VceqP) zP(I6-0llg =d) = v. (1.2)

The values =2 and g=c= give fixed-accuracy analogues of Scheffé’s and
Tukey's procedures for obtaining simultaneous confidence intervais. See
Miller (1978).

The definition of accuracy used in this paper is that given by Finster
(1985, 1987). The techniques used to develop the asymptotic properties for
double and triple sampling, however, are quite different from those of
Finster's continuously monitoring procedures or the spherical accuracy
procedures in Srivastava (1967) and Srivastava and Bhargava (1979).
Finster's results depend on the fact that the stopping time of a purely
sequential procedure is the first passage time of a function of a process
similar to a random walk. The procedures in this paper are closer in spirit
to those of Cox (1952) and Hall (1981), using Taylor series expansions and
conditional inference.

The double-sampling procedures are derived in section 2, and the
triple-sampling procedures are derived and compared with Finster's (1987)
purely sequential procedure in section 3. Section 4 contains the proofs of
the main resuits.



2. Double-sampling procedures for accurate estimation

The goal of accurate estimation is to find an efficient stopping rule ¢

for which P{ Yt — @ €A) 2y for a given accuracy set A and confidence

coefficient . Accurate estimation is most expensive when the standard
deviations for the components of the observations are large relative to the
accuracy desired, i.e., when 124 is*small.* Following Anscombe (1953),
asymptotic results for the double- and triple-sampling procedures are
expressed in terms of N increasing to infinity. Note that N increases to
infinity either as Z-o or as the accuracy set decreases to the empty set.
We take “Z 00 as N->eo" to mean that
A' =(NZ™H1/2A 2.1

is a constant set as N—»oo, In other words, 2 -+ along a ray. This
formulation is consistent with the asymptotic results of Stein (1945) and
Chow and Robbins (1965), in which d, the half-width of the confidence
interval, tends to zero: if Ain(1.1) is replaced by dA, then N-<c as d-0.

If one were to perform a double-sampling experiment and had a rough
idea of the sample size needed to achieve the desired accuracy and coverage
probability, one would typically take, say, half of the observations in the
pilot sample. If the apriori estimate of N were much greater than the
actual sample size needed, one would not have wasted too many
observations; on the other hand, an underestimate of N could be corrected
after the pilot sample. Much of the previous double-sampling work
implicitly assumes that the pilot-sample size tends to infinity at the same
rate as N, so that the resulting double-sampling procedure is asymptotically
efficient. We make the weaker assumption that the pilot-sample size m
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tends to infinity as a fractional power of N, so that N = o(mM) for some hzl,
enabling us to determine the convergence rates for the “worst-case”
situation in which the pilot-sample size'is very small relative to N.

In the definition of the double-sampling procedure,

T(L) = [IN(1+ t/m)fm)ll. where the sample size function N(V) is defined as
the solution to

fIN(V),V) = . (2.2)
The following theorem demonstrates that conditionally on the stopping time

T(£) the parameter estimate X—T(L) Is normally distributed with mean © and

covariance 2/ T(£). In other words, conditlonélly on T(L), Zrm has the same

distribution it would have if T(£) were a fixed integer rather than a random
variable. Thus X_ﬂ‘) is unbiased. The proof of theorem follows the proofs of
lemmas 1 through 4 in Robbins (1959).

Theorem 1. Let ¢be an integer-valued stopping time which is a

function of (2 .}. Then

p+ 12 p+2! p+3’ "
(a) tis independent of )(k for all k.
(b) The conditional distribution of X, given t=n is MO0, =/n).

We now state the main result about second-order properties of the
double-sampling procedure. Throughout, let ¢ represent the standard
multivariate normal probability measure and define

M= L A-xxNdoo0 [ [ep-xT00do0 ] @23

Theorem 2. Let X,.X,,... be independent and fdentically distributed
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MO ,Z) random vectors. Let N =N(Z) and T(£) = [[N(( l+t/m)fm)]], where £

is a known constant and the function N(V) is defined in (2.2). Assume m =ce

as a fractional power of N, so that N = o(mM for some hz1. 'Then, as N = oo,

(a)
(b)
(c)

d

(e)

(f)

T(L)/N - 1 almost surely.
For any q € ®, E( [T(&W/NI%) > 1.
E[T(£) = N + N&/m+1/2

+ (N/2m) [ fpe [p - xTx1 do00T ! [ (2p (tr 2) - 420
«(p - xNOl xTx (tr M2 + 1) - 2 xT9Mx] ) dd(x)]
+ (N/2m) [(4 - p) tr(32) - p - 2] + o(N/m).

E[(T() - NY2] = 2N2tr (J12) /m + o(N2/m).
v (T(£) - N)/N converges to a MO0, 2 tr(I2) ) distribution.

P(X; gy~ 0 €AV =y + (4m) {2 £+ 4tr(@D) - p - 20 [ s [p-x"x] d(x)]

+ [ (= 4+ 20+ (- xTx0[ x"x - 2 xT9MX] ) &0} + o(m™").

To attain asymptotically correct coverage probability up to o(m™ h

terms, we find the value £, which solves P[Y.r“) ~0€eA)=y+ om™1). Set

£y =- (2[4 Ip-x"x1 0200 [ [ (20 - 4+ (- x"W)IxTx - 2 x"9Mx] } d(x)]

-2tr(TM2) + p/2+ 1. (2.4)

The first two terms in (2.4) depend upon N and 3 through the set A'. We

substitute the estimates T(0) and fm for Nand 2 in (2.4) and define

A= (T(0) £ -D1/2A,

fi= fa-xx"ae0 [z (0-xT0deo ],



and
I, =-12f4 Ip-xTx1 a1 [ S 3 (20 - 4+ (0 - x"0lx"x - 2xT it} de0)] -
-2tr (M2 +pr2+ 1. (2.5)
The following corollary to theorem 2 states that the results of the theorem

hold when £, Is replaced by the random varfable Z,.
Corollary 1. Let T(Z,) =[INC(1 + Z/m)E)T], where Z, is defined in
(2.5) and N is defined in (2.2). Then the results of theorem 2 hold when 22

is substituted for £ In particular,

(@) E[T(Z,)] = N -pN tr(@?)/(2m)

+ (N/2m) [ fiye [ - XTx1 49001 [fpe 2p (tr m2)

+ (p - x"%) x"x tr M2 ) dd(x)] + o(N/m)
and
() P(Xp(1,) -0 €Al = y+om™),

We see from the theorem and coroliary that the usual first-order
asymptotic properties of pointwise and momentwise efficiency énd
asymptotic normality hold for the stopping ruie T(£). If m {s very small
relative to N, though, the stopping time has infinite regret and large

variance; in addition, for small sample sizes the distribution of T(£) is
positively skewed because £ has a Wishart distribution.

The factor tr (f12) appears in the expressions for the variance of the

stopping times. The matrix M defined in (2.3) shows the effect of the shape
and orientation of the standardized accuracy set A' = (N2~ 1y1/24 on the
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stopping times. From theorem 9.1.25 of Graybill (1983),

p”! =tr(m?) =1. (2.6)
We can get some feel for the meaning of tr (se2) by examining the special
case in which A is a spherical accuracy set. If A is spherical andif 2 1sa
diagonal matrix (i.e., the components of X are independent), then 3 is also
diagonal and hence 2 tr (M2) = 2/p. On the other hand, suppose that the
components of X are highly positively correlated. Then most of the variance
is accounted for in the first principal component, and the stopping times
will be essentially determined by the variance of the first principal
component. In this case, then, 2 tr (32) will be close to two, the variance
for the one-dimensional procedure of Cox (1952).

The theorem and corollary are proven in section 4, assuming

throughout the proof without loss of generality that © is the zero vector and

2 is the pXp identity matrix. The method used to find the coverage

probabilities and expected values, variances, and asymptotic distributions
of the stopping rules relies on a Taylor series expansion of N((1+ t/m)fm)

about Z, using Fréchet derivatives. The Fréchet derivatives guarantee that
all matrices will be positive definite.

The independence of T(£) and X—k allows the coverage probability to be

calculated using the function f, defined in (1.1), as is shown in the following
lemma.
Lemma 1. Let tbe an integer-valued stopping time which is

independent of X, for all k. Then

P(X, €A} = Elf(t,3)]



Proof.

P( XteA]-'Z P(X, €A, t=K) = >k, P(t=K) = Elf(L,3).
k=t - k=1

The second equality uses the independence of X, and t.O
By virtue of Lemma 1, then, the coverage probability is evaluated using
the moments of T(4).

P(X(y) — 0 €A = Elf(T(£),2)]
= f(N,) + £,(N,Z) EL T(O)-N] + (1/2) Elf (%, 5) (T(A)-N)?). (2.7)

Here n* is between Tand N, and f, and f,, denote the first and second

partial derivatives of f with respect to the first argument.

The O(m' 1) terms in the expression for the coverage probability in
theorem 2(f) result from substituting the sample covariance for the “true"
covariance when determining the stopping time, without accounting for this

substitution. For the one-dimensional case of estimating a mean, f,,(N,2)
is simply the first-order term in the Taylor series expansion of the (l-y)th

percentile of a t-distribution with m degrees of freedom about the (l-'y)th
percentile of the normal distribution.



3. Triple sampling for accurate multivariate estimation

The double-sampling stopping rules of section two work very well if
the pilot-sample size m has the same order of magnitude as the optimal
sample size N. If m/N - 0, however, the stopping time T(£) leads to an
inefficient procedure. The triple-sampling procedure achieves finite regret
and second-order asymptotic efficiency by taking two additional samples
after the pilot sample rather than just one.

In terms of the function N(V) defined in (22), t5(4) =N[(1 +£/t3) £; 1

Since t3(1.) is an implicit function of [}: .J, Theorem 1 implies

p+1° p+2’ .
that conditionally on the stopping time ¢(£), the parameter estimates
Yts( 1) @re normally distributed with mean 0 and covariance 2/tz(£) and

hence are unbiased. We now state the second-order asymptotic properties
of the triple-sampling procedure.

Theorem 3. Let N=N(2), ¢, =[lc(T(£)-m)]], + m, and
t3(£) = NI(1+£/83) ftz ], where £is a known constant and the function N is

defined in (2.2). Assume m->eo as a fractional power of N, so that N = o(mM
for some h>1 but m/N = 0. Let A' be as defined in(2.1). Then, as N-ee,

(@) tz(£)/N - 1 almost surely.
(b) For any q €®, E([ tz(0)/NJ%) > 1.
() El t5(&) = N+ 2/c-2tr M2/ - 1/(26)+ 1/2
+ e [ Sy o - xTx1 00001 ' [fjy (20 (tr M2) -4+ 20

+(p-x"0l xTx (tr M2 + 1) - 2 xTIMx] ) d(x)]
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+(2¢) 1 [(4-p) tr(@M2) - p - 2] +o(1). -
(@ El(t5(0)-N2) = 2Ntr @D /croN).

(&) V{ t(4) - N/ VN converges to a M0, 2 tr(3R2) ) distribution.

(1) Plx—[[ts(l)]]-ee Al =y
e (4cN {124 p - c-21 [ [p - xTx] db(x)]

¢ e (4420 + (p - xT00 x"x - 2 xT3x) ) db0)} + oN"").

To attain asymptotically correct coverage probability up to o(N” h
terms, set

Ly=Ly+2tr (M2)-c/2. 3.1)
We substitute the estimates t3(0) and ftz for Nand 2 in (3.1) and define

At = (85000 2,712,

= [z - xxdow [ [z (0-xTx)de0 ],
and
Iy =-[2f7 - x"x1de00] [ 7 (20 - 4+ (0 - x"x)Ixx - 2 xT §x]) d(x)]

+p/2+1-¢/2 (3.2
The following corollary to Theorem 3 states that the results of

Theorem 3 hold when Ly is replaced by the random variable 23. The proof of
the corollary is similar to that of corollary 1 and is omitted here.
Corollary 2. Let t5(Z3) = Ni(1+ Z3/t3) £, ], where Z is defined in

(3.2). Suppose the conditions of theorem 3 hold. Then, as N 3o,



(@) t3(Z)/N > 1 almost surely.
(b) Forany q € &, E([¢5(Z5/N19) = 1.

(¢) Eltz(Z3) = N -ptr(M2/2c + 1/2

¢ @eY ' Sy o - xTx) a0001™ [ fe 2 (tr M2)

+(p - xTx) xTx tr M2 } dd00] + o(1).

() El(t3(Z3)-N)?] = 2Ntr (2 /¢ + ofN).
(e) Vc(tz(23) - NN converges to a M0, 2 tr(JR2) ) distribution.

(N P (X is)p = ¥+ OND.

Theorems 2 and 3 demonstrate that the double-sampling and triple-
sampling procedures both attain first-order asymptotic eff iciency if the

pilot-sample size tends to infinity as some fractional power of N, the "best”

fixed-sample size. The first-order properties do not depend on the
covariance and do not require a correction factor: we may use the estimate
3 in place of the unknown covarfance X and still have an asymptotically
correct procedure up to first-order asymptotic terms. If vy 1s.95 or .99, an
error of order o(1) can make a substantial difference in the coverage
probability unless N is very large indeed. Lavenberg and Sauer (1977) found
that sequential stopping rules with only first-order asymptotic consistency
perform poorly for relatively small sample sizes. The second-order
asymptotic results apply to more moderate values of N. The effects of
substituting % for I appear In the second-order asymptotic results,
particularly in the terms of order O(m™ 1) in the expression for the coverage

probability in Theorem 2(f).

‘h
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The extra term -2 tr (J2) in the expression for the average sample
number of the triple-sampling procedure (theorem 3(c)) shows the effect of

optional stopping and appears because £, has blas -2 X/2 mz'/2/N,. This
bias is proven in lemma 11 and may be heuristically explained as follows. If
£, significantly overestimates X, then ¢, will overestimate N, and the

second sample wil) be large, tending to correct the original overestimate of

the covariance. Alternatively, if fm underestimates X then tz will
underestimate N,. The second sample will thus not contain as many
observations to compensate for the bias arising in the first sample, so ftz
will be more I1kely to underestimate Z. The argument that ﬁtz Is biased
also applies to £, and £, ;). If one Ignored the fact that these

quantities are obtained sequentially, substituting ftz for a fixed-sample

estimate of the covariance in, say, an F-test for the significance of one of
the means, one would thus obtain more false positive results in repeated
sampling than the nominal significance level indicated.

The one-dimensional results of Cox (1952) and Hall (1981) follow as
special cases of the results in theorems 2 and 3. Let d be the desired
half-width of the confidence interval and let z be the (1 - y)/2 critical
point of the standard normal distribution. Then A’ =[-2, ZJand M = 1.
Evaluating the integrals in theorems 2 and 3, E[ T(£)] = N + (N/m)( £+ 1/2),

Elts( 1= (L-3/20/c+ 1/2,£(N0) = (V2T N Zexp( - 22/2),

and £ {(N,0) = - (8m)71/2N"2( z+ 23) exp( - z2/2). Thus the value of £
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making the coefficient of m™! in theorem 2(f) vanish is Ly = (1+22)/2

and the triple-sampling procedure which uses £z = (1+22)/2 +2-¢c/2for £

will have coverage probability y + o(N™ 1). These are the results obtained by
Cox and Hall.

Hall (1981) recommends using 1/2 for ¢.  An aiternative choice uses
the distribution of T(0). Since the distribution of T(Q) is approximately

MN, 2 N2 tr (12)/m)) and since tr (T2) < 1, T(O) [1 - z, (2/m)'/?] is an

approximate (1 - a) lower confidence bound for N. This suggests taking ¢ to
- 1/2
be 1 - 2z, (2/m)''<, |
Table 3.1 compares the properties of these multivariate double- and
triple-sampling procedures and Finster's (1987) purely sequential
procedure. The quantity £,, which appears In all of the correction factors,

is messy to caiculate exactly but may be bounded by p/2 + pKz, where K is
the radius of the smallest sphere which will circumscribe the standardized
accuracy set A', defined in (2.1). In practice, we may use the radius of the
smallest sphere circumscribing the sampie standardized accuracy set

([T(0)Z,,"111/2A for double-sampling, [t5(0)E,,~111/2A for triple-

sampling) instead of K.



Table 3.1. Properties of the double-sampling, triple-
sampling, and purely sequential procedures for multivariate

estimation. Below, m is the size of the first sample, ¢ is the fraction of
observations taken in the second sample, N is the “best" fixed-sample

stopping rule, and p corrects for the discreteness of the purely sequential

stopping rule. Also, 3 and £, are defined in (2.3) and (2.4), and

r=(tr M2/2) (-p+ [ Sy lp-xTx) d000)'[ [0 (20 + (0 - xTa0xTx } dix)]

Double Triple Purely
Sampling Sampling Sequential
Correction £ L+2(trM2) L+ 2AtrM)-p
factor £
Regret rN/m r/c r
Asymptotic
variance of 2r MAONZ/m  2(trM2ON/¢c 2(tr M2)N
stopping time ~
Approximate linear
distribution of combination Normal Normal
stopping time of X2,
Coverage y+olm1) y+o(NT) y+o(N-1

probability
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4. Proofs
The stopping rules for the double and triple-sampling procedures are of

the form N(W), with W = (1 + £/m) £ for double sampling and

W=(1+4/ty) £, fortriple sampling. To calculate the Fréchet derivatives
2! %t

of N(W), used in the Taylor series expanstion of N(W) about I, define the
function

n(e) =N(eW+ (1-e) D), 4.1
for positive definite W and 0 = € = 1. The proofs of the theorems involve
evaluating the first two derivatives of n(€) and bounding the third. These
derivatives are more easily evaluated and bounded in a different coordinate
system. Let A be the matrix of eigenvalues of W and P the matrtx-of
eigenvectors of W. Then

eW+ (1 - el =PTL(ep,

where

Le)=elA-1]+1L (42)
Define the set |

axn,e) =inL™(e)'2 pTA (43)
and the functions

g(n,e) =f(n,eW + (1 - )l (4.4)

for f defined in (1.1). Then g(n,€) may be rewritten as
g(n,&) = [T, (V2mP/2IL(eN™ /2 expl-(n/2)xTL™ 1(e)x} dx = $[A*(n, )]
Lemma 2. Let n(€) and g(n,€) be defined in (4.1) through (4.4), and let

K and H denote
Ke =L""2e[A-11L" V2o T (45)
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and |
H(e) = (n'(e)/n(e)] - K(€), (4.6)
respectively. Then

9;(n,& = (1/20) fru(ne) [P - XX1 4O ()

(0, = = (1/2) fu(n.¢) [trK) - X'Kx] dd (x)

9y1(n,€ = (174n2) fpx(n ¢y P - XTXI? - 2p) d ().

915(0,€) = = (1/4m) fe(p ) 1K) = XTKXIp - XTx] - 2xTKx) db(x)

0p(1, € = (1/4) fpu(p £ (Er(K) - XTKx1Z + 2tr{K2] - xTK?x} 0 ()

gy 10, € = 837! fuin o Ll - xTx1® - 6p [p - x"x] + 8p] d&(x)
7€) = 7O Syecncey.e) (K0 - XTKX1 4800 { fpu(a ey e [0 - X¥1 a0}
1@ = [4g,(n(@,a1" {29t HD) - [yuinie) e [trH) - XTHIZ dd(x)

* 4 fpu(ner.e) [UPCHIO - XTHKx] a0 )

() = 189,(n(e), " Suxn(er. )L tr (24 (n(€V n(€)) H - 813 - 24H2K]

+12 [tr(H) - xTHXI[tr(HK-(n"(€)/ n(e)M) - xT(HK-(n"(€)/ n(e))x]
+ 24 [tr((n"(e)/ n(e)K - HK?) - xT((n"(€)/ n(€)K - HK?)x]
- [te(H) - xTHxI® } détx).
Proof. The partial derivatives of g are found directly. Since

g(n(e),€) = v, applying the implicit function theorem gives the derivatives
of n(e). O

The partial derivative g,(n(€),€), appearing in the denominators of the
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/44

expressions for n1e), n(€), and n™(€), is always greater than zero but can
be small. To facilitate finding bounds for the derivatives of n, we apply
Stokes's theorem to express them as integrals over the boundary of

Ax = Ax(n(e),€). Here, dx( is written for dx dxo...dx;_ Xy, y...dX,, OA¥

represents the boundary of A%, and d¢{P(x) = (211)"?/2 exp(-x"x/2) dx(?).
Lemma 3. Let n{e), g(n,€), K(€) and H(€) be defined in (4.1) through
(4.6) and let Hy and K, denote the 1*N diagonal entries of Hand K.

@ ¢;(n(e),0 = 2n(e ! LD £ %, a0,
() nte = l4g,(nce), a1 H{ (-1 H,

Sope % [XTHX = tr(H) + 2H, + 4K,] 0800}

(©) ne = [8g,(n(e), ]!

{-12 3 1" THy fop %, [xTHKx + 2HK,] 0000
¢ 12 2D (7€) n(e)) Sope %y (XTx + 21 a0
+ 24 5 - DK (e nte)} - K foum %, 38D

- Z(‘l)i-'Hi IQA* Xi[(xTHX)z

+ (4H, - 2trlH]) XTHx + 8H.2 + 4tr{H2] - 4 HtriH]] d&( D00 )
Proof. LetC= diag(c,,cz,...,cp) andD = diag(d,,dz,...,dp). Then by
Stokes' theorem, quoted in Spivak (1965),

p
i- i
) f,, [tr(€) - X'Cx] dd(x) = ;(-1)‘ ', f o %, 0800
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X xTDx dd>( g

2% %4 (x)

P
an f px () - x'Cx] x'Dx d&(x) = g(-l)"'ci

p
-1 i
‘ 2%(-:) ¢4, Jye %, 4800 - 29ytriDC)
(i) fpe [tr(©) - xTCxI [XTCx12 d(x) = - ByHC) - 4ytr(CAr(C)
p
e 20 [ x [ixTex? « dc xex + 8c? + atric?] a6 Do
i=1

The lemma follows by applying the identities above to the expressions
for the derivatives inLemma 2. O

All of the derivatives of nwith respect to € involve a linear
combination of the integrals [ (1-%,2) d0c) = (-1 [, x, 4D () in

the denominators. To aid in bounding the derivatives, we show in the
following lemma that these integrais are positive.

Lemma 4. If h(x) >0 for all x and if R s an accuracy set, then
Jo (1 = %2) h(x) dé(x) >0.
Proof. Fory > -1 define
k(y) = fo 2m P2 h(x) (1+y)1/2 expl- (xTx + yx,2)/2] dx.

where X ~ MO,I), I is the pXp identity matrix and Y is the pXp matrix with
(1+y)1/2 - | in the (1,1 entry and zeroes elsewhere, and /g denotes the

indicator variable of the event B. The set (I+Y) R increases with y because

R is star-shaped with respect to zero. Since h(X) > 0, k(y) strictly
increases iny. Hence ’
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2k10) = Jo [(1+y)7 172 - (1+y)172 %2 T N(x) expl-yx;2/2) d¥(x) |y=0
= fa (1 -x2h0) d&x) >0. O

We are now in a position to bound the derivatives of n(e) for all values
of ebetweenQand 1. Let

N =max(\,,1), (47)
and
A=min (A1), (4.8)
where A 2 Ay 2... ) are the eigenvalues of W. For any matrix C, let lICll o
represent the supremum norm of a matrix;
ICll, = sup {lICxll,, / lIxll.o} = max IC; ji.

Lemma 5. Let 0 < € <1, and let L(€), K(€), H(€), X, and ) be as
defined in (4.2) and (4.5) through (4.8). Then
(@) AlsL(e)=XL
(b) AN=n(€) s AN

(c) I n(e) nle) = IIK(eMl.

(d) HIHCel,, = 21IK(eNl,,.

(e) There exists a constant K, independent of €, such that a € A¥(N,0)

implies a'a =K and a € A¥( n(€),€) implies a'a = (X /A) K.

(N In(e) = nte) (XK, IK(EM .2, where K| = 2p + 8 + 2K.
(@ In”(e)l =nle IIK(e)IL,‘,3 (X/2)2 Ko, where Ko s a constant.

() KM, = A~ Iiw - Il for any matrix norm (]
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Proof.

Part (a) follows immediately from the definition of L(€).
(b) Suppose n(€) > X N. Then using (a),

y=ol[nte)L-"()"/2p~ Al 2 8[(1 n(e)/X]'/2P"'A] > ¢[N1/2p-1A] = v,
a contradiction. Therefore n(€) = X N; the other inequality is proven
similarly.
(c) From lemma 2, and using lemma 4 to show that each integral is
positive,

(€)= nE) Sy [trK(ED - XTK(E)X) d(x) [ fpu [p - xTx] db(x) ]
= n(e) [ ZK“ (€) J.A* [1- Xi2] d@(X)] [ Z J'A* (1- Xi2] dd(x) ]-]

= n(e) IK (el

(d) Part (d) follows immediately from part (c), the definition of H, and the
triangle inequality.
(e) Using (a), (c), and the definition of A',

AX(n(e),€) = [ n(e)N 121" 2(e) PTA' C (R/2)/2PTA"
Recall that the standardized accuracy set A* = (N3~ /25452 constant,
bounded set is thus contained in a ball of radius VK for some K < . Thus
dlasKif a e A¥N,0),and d'a=(X/A)KIf aeAX(n(e),@and0 =€ = 1.
(f) From lemma 2,

(e = (@ {22! fpe %, 06D}

{200y Sy xxThx = trik + 2, + 4K,1 00000
Now by (d),
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| Hy[=tr(H) + 2 H, + 4K,] | =4 (p+4) IK (M2 for 1= 1,...,p.

Also, Stokes's theorem implies that

COFT Lo %3 08000 = [0 (2x2+ %2 (1 - %2 dé(x) >0
and

DT e %52 48000 = [ %201 - %2 d(x) >0,

S0
308 iy fype %2 66 D00] 2 IH1L,Z 30D fp x; xTx 0 D),
Let y(), ue®®"!, be an orientation-preserving parameterization of the
boundary 3aA*, with I the region of integration for u. Then

2N [k xTx ad D) = [T yTy expl- yTy/2) J(u) du,

where J(u) is the Jacobian
- (p-l) 0 [ r \'I(U],Uz, .. ,Up_]) ]
or au, au2 aup_I

Now J(u) is always positive; hence for allu in T,
3 @ expl-yT WYW/2) Ju) = (X/AK expl- yF Wy@/2) Jw)
by part (e) since YT () Y(u) € A* whenever u € T. Thus

|10, fyp %, XTHR 08000 |
= (X/AKIHI2 D11 [, 1 %, a8 (x).
Thus In(€)/ n(e)l = (2p + 8+ 2 (/A K IK(eN 2

(g) By an argument similar to that of (f),

I el = (e {12 M1 2 1Kl [(R/A) K + 2]
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+ 121HIl, | 7€)/ n@I (/2K + 2]+ 241Kl [1 n“(€)/n(e) + IHI_IIKI_,]

+ M3 [(X/2)2 K2 + (4+2p) (X/A)K + 8 + 8pl).
Parts (d) and (f) then imply that

Il = e IK(e,S [121(X/a)K + 2]
+ 61 2(X/2)%KZ + (12+2p) (R /M) K + 4p + 16] + 6[2p + 10 + 2(X/AXK]
+ 2[(X/0)2K2 + (4+2p) (X/7) K + 8 + 8p]]
= 78 IK(€)ll (/A2 Ky,
where K = 14K2 + (104 + 16p)K + 196 + 52p.

(h) The result follows from (4.5), part (a), and Theorem 5.6.7 of Graybill
(1983). O | '

The partial derivatives of g with respect to n are then bounded in the
following lemma.

Lemma 6. Supposen >0and 0 <e<1. Thén

(@) 0 <g,(n,€) =p/(2n).
() 1gy,(n, €l =[2n1"2[p? + 2p + (n/n(€N? (X/A)2K2),
() 1gyy4(n,e) =(2n)3 p [4p + (n/ (N X/A K2
Proof.
(a) From Lemma 4, | ax(n.) [P~ X"x] d&(x) >0, 50 g,(n,€) >0. The result
asin.e) 1P~ X'X1 4000 = fpx(n ¢y P 4400 =,

implies that g,(n,€) =p/(2n).
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(0) 1gy,(n, & = [(17402) frun ey Up - xTx12 - 2] db ) |

=0 2[p?+2p+ I (n/n(e) 1/ 2a%(n(e),€) [x"x}? d?(")]'
Now by Lemma 5(e), xx = (X/A)K on A*(n(e),€). Hence
lgy ¢(n,el =(2n)"212p + p2 + (n/ n(EN? (X/A 2 K2,
(c) As in the proof of part (b),
19110 220)73 fpuney [P D2+ (xX)2] + 6plp + xTx] + 8p] 4 (x)]

=203 [15p3 + p (/ neN2 (X /A )2 K2 + 6p (n/ n(e X/AXK]. O
To find the expectations of the derivatives of n we work in the usual
inner product space of pxp matrices, with

<Dy,Dp> = tr [D;D,] = (vec D)V (vec D).
Recall that if D is any pxp matrix, then
Let ® represent the left Kronecker product on matrices and let C be the

p2xp? commutation matrix. In the following, let "" denote convergence in
distribution.

Lemma 7. Suppose that n vec(W - I) = MO,I ® I + C) for some n
increasing to infinity and that the moments of W are bounded. Then

@ EMnp =)o,

® E(nKIwW-TU0_K1=001.

@ e X A7Inknw - k=00,

() E[(nn(OVN)2)=2tr[T2]+o(1)
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(e) E[nZ n(0WN]= [ [y [p- x"x1de00) " [ [, (2p (tr M) - 4+ 2p
+(p - x"0l xTx (tr M2 + 1) - 2 xTAMx] ) dB(x)]
+(4-p)tr(@D -p-2+0(1)
=[ Sy lp - xTx1d@00I! 20T [ x,
[xTx (tr 2 + 1) - 2 xT9x ] d&{V(x)

=4l [ Ip - xTx) d@00T™! [ [1 - TSR] d(x)

+(6 - p) tr(M2) - p + o(1).
Proof. Throughout the proof, let £=W -1 and let X=(n10)/N) I - &
(a) Note that A~! =tr{W™ '] Since nvec(W-1)= MO0,I1 ® I +C),
n (tr{w™ 1] - p) = M0,2p) by the delta method. Thus by dominated
convergence, E [A7J] =€l (tr w1 ] = pl+ o(1).

(b) For any evenk, E[IBIK1= D El &£ jk ] Theentry (n &, j) has either

MO, 1) or MO0,2) as its limiting distribution. Thus for any evenk,
dominated convergence implies that

ELoK 18I ] 3 Elnk &K1 22K p2 oy + o(D),
where ay is the kth moment of the standard normal distribution. The result

for odd k follows from the Cauchy-Schwarz inequality.
(c) By Holder's inequality,

ELN AT ki @1 K]
s AU PIUSD g X nky g kit pt/agen,

Now (E[A™U* D )70 <pJ + o(1) by part (a) of this lemma, and
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ELCX AR @I K T T =EL(aA - T, + Dink i g ikt
SELCT+ @I D ok g KU* D )= 001)
by (b).
(d) Changing variables, we rewrite n{0) =N tr (&83). The result follows
since the asymptotic variance of n tr ( LI ) = n (vec ) (vec &) is

(vec S)T(E ® T + C) (vec M=2tr [m2)
(e) Again changing variables and simplifying,

A0 = [2 [ Ip - x"x] d®00) ' [2ytr(H2) - [, [tr(30) - X" Hx)208x)]

+ 2tr(RLSIM). , (49)
We find the expectation of each term in (4.9) separately. The asymptotic
variance of (n vec 1) = n [(vec IXvec M) - I @ Il vec & is
[(vec D(vec )T -1 @I J[1®1+Cl[(vec Divec )T -1 @1 1T
= 2 [(tr M2)(vec Divec DT - (vec M)vec DT - (vec Divec M)+ I QI +C.
Thus, by dominated convergence,
E(n? t(%2) ] = tr £ [ n? (vec J)Xvec 10T ]
=2p(trM2) - 4+ plp+1) + o(1), (4.10)
Also,
E(n2(tr3-xT3x)2)=E (Intr (31 -xx"N}2)
=E [ (n(vec (I - xx"))T[ (vec Dtvec T - 1 ® 1 ] (vec £))2]
=2 (tr (1 - xx"D2(tr M2) - 4 (tr (1 - xx"D tr [ [T - xx') 3D
+2.tr[ (1 - xx1)2)
= 2(p - x %)2(tr (92]) - 4(p - xTx) (1 - xT9Mx)
+2[p - 2x"x + (X"%)2) (4.1
Finally part (b) implies that



29

E[n? tr(RSNM) | = E[ {n tr(IM £)2 - n? tr(3M £2))]

=2 t(3M2) - (p+1) + o(1). (4.12)
The first expression of part (e) is thus proven by combining (4.9) through
(4.12) and lemma 2, and the second expression results from applying
Stokes's theorem to the first. O |

Lemma 8. Let H(x) = P [ f(x,W) 2 ¥ }, and suppose that

nvec(W - I) = MO,I ® I + C) for some n increasing to infinity and that the
moments of W are bounded. Then E [ [[n(1)]] - n(1)]=1/2 +r, where

IM< S ool dx + oN"1/2),
Proof. Note that P (n(1) =x} =P ( f(x,W) 2y} = H(x). From Hall

(1981), the expectation of R = [[n(1)]] - n(1) is
ERR)= 172+ [ ((172) HU-r) - HI-r) + D [ HAx-r) (x - n -.1/2) dx}dr,

and the integral does not exceed 2H(1) + [ o IH0)l dx in absolute value.
But H(1D <P (N SN2 NT1/2E 7] = oN"1/2) by 1emma 7(a),

completing the proof. O
Proof of Theorem 2.
Recall from (4.1) that

n(e)=NCe(l + £/m) £, + (1 - @)
so that the lemmas of this section may be applied with W= (1 + £/m) fm-

From Wishart (1928), E [, 1= 1 and Cov (vec £, ) = (m-1)"! (1®I+C). In

addition, all the moments of W are finite, so vim vec (W -I) = M0, I8I+C )
by the muitivariate central limit theorem and the dominated convergence
theorem may be applied throughout the proof.
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(@) The mean value theorem implies that n(1) - N = n’(€) for some € N
between 0 and 1, so by Lemma 5(c),

L) =Nl =1+ @1 +2/m) E-Tll, = 1 + (RANIC+ £/m) £ -1l
Now (1 + £/m) £, converges almost surely to the identity matrix and

(X/2) s+ 1Q+ 2/m) E-T0) (1 + N £ 7T-10,,), 50 [ T(4) - NI/N -0
almost surely.
(b) By lemmas 5(b) and 7(c),
EICT(L)/NF) L + X)) <o0 forg> 0
and

ELCTCOMNGTSEAN S 1+ (1 + £/mIELC+ Il £7 -9 <o forq <O,

Hence by dominated convergence and part (a), E[ (T(£)/N)3]1 - 1 as N - oo,
(c) The proofs of parts (c) and (d) use the following third-order Taylor
sertes expansion of nabout 0,

T(£L) - N =(1(L) - n(1)) + n(0) + (1/2) n(0) + (1/6) n™e),
where € is between 0 and 1. Now lemma 8 shows that -

E[T()-nD]=1/2+ [ IH0 dx + oN"V/2),

A = (V: HV-1728) 2 y).

Direct computation using the Wishart density then shows that

Here HOO) = P (£,,/x €1 + £/m)”! R.(A)), where R

J o IH ) dx = o(1). Also, lemmas S and 7 imply that
E[m3/2 | n (e ) sm3/2ZNKYE X3 A5 N1+ 2/m) £p-1,,3 1= 0C1), s0 -

Ell n”(€)l] = otN/m). Thus E[T(£)-N]= 172+ E[n7(0)] + (1/2) E[n(O)] + o(N/m),
where E [0/ =E [ tr({(1 « £/m) £, - 1] M} = £/m and E [n(O)] Is given
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explicitly in lemma 7(e).
(d) We square the second-order Taylor expansion of n(1) about 0 to give
ELCT(2) - N2 1 =E[ [(n(0)2 + (179 ()2 + w(0) n(e) )
E[ (7012 is shown to equal 2 N2 tr [ 912] / m + o(N/m) in lemma 7, and
the other terms are shown to be o(N/m) by applying lemmas S and 7.
(e) A second-order Taylor series expansion gives
v (T() - N)/N = vm [ T(£) - n(1) + n7(0) + (1/2) n (&)} / N
for some €between 0 and 1. Now E [In"(e) 1] = o(1) by lemmas S and 7(c), so
vm | n”(€) I/N converges in probability to zero. Thus the limiting
distribution of v (T(£) - NN is the same as that of

Vi a0) N = vim tr [((1+£/m)E,~1 )3, shown to be 0,2 tr [312]) in the

proof of Lemma 7(d).
(f) Since f(n,X) = g(n,0), (2.7) may be rewritten as

Elg(T(£),00] = v+ g,(N,O) E[T(£) - NI + (1/2) g, ,(N,0) El(T(£) - N)?]

+ (1/2) E[ {g; ,(n%,0) - g;,(N,0)) (T(£) - N)Z],
where n* is between T(£) and N. Using resuits (c) and (d), then,

Elg(T(£),0)] = y +g,(N,O)N L/m+ Eln"(0) + (1/2) g4,(N,0) El(n’(0))2]
+ (1/2) EL (g, 1(n*,0) - g, ,(N,0)) (T(£) - N)?]
+ £ [g,(N,0) o(N/m) + g, ,(N,0) oN2/m) ],
- where g,(N,0) = (1/2N) f,» [p - xTx] dé(x) and
gy¢(N,0) = ( 174N%) [, ar (lp- x'x)2 - 2p) dd(x). The inequalities in lemmas 5

and 6 imply that E [g,(N,0) o(N/m) + g,,(N,0) o(N2/m) ] = om™1).
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The proof is completed by showing that
ELIgy (n%,0) - g, (N,O)I (T(£) - N)?]
is also o(m™1). By the mean value theorem,
ELIgy 1(n*,0) = gy, (N,OX (T(£) = N)?] = EL g, ; (0,0 (T(£) - N)?] for some n'
between n* and N. Since n(€) is a continuously differentiable function of €,

n' = n(e') for some €' between 0 and 1. Lemmas S and 6 then demonstrate
that

lgy 1 (n(€®),0) =(2 n(€%) )3 p [4p + ( n(e*/N (XA KI2
=p (8N)3(4p + K02 (X325,
Thus |
ELIgy; (0", 00 (T(£) - N1} <E[p (8NY™3 (4p + KIZ (X3/2D) (T(£)-N¥) = o(m™ ).

by lemma 7(c), part (b), and the Cauchy-Schwarz inequality. This completes
the proof of the theorem. O |
Proof of Corollary 1. Using the mean value theorem,

NIC+ Zo/mEg]) - NICT + £y/m)E,)
=N+ £2m)E 110+ L*mYml™ (2, - £,)

for some 12* between 22 and 12. Applying lemma 5, then,

| NCH+ Zy/m)E ) - NG+ £oym)E )|
SINM L+ (Zy + LoYmE L, (Zy - £y) (4.13)
We show that (22 - £,) 1s small except on a set of small probability.

et §=m~'/2andB = (II£,, - Ill, = 6). On the set B, the symmetric

difference of the sets A' and A’ tends to the empty set: using Lemma S and
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the relationships between different matrix norms,
12,-12-1, 75 = o IA"12-1Il, 7= Vb &,

where A is the matrix of eigenvalues of )'fm. Thus

(A'- A" 75 C ICTOVN)/2E 1V/2-1)|  A* C 2 VD 8A,
so by lemma 5(e),

IS e xxT d®(x) - S 36T 00000 l,, 75 = f 55 1XXTll, d0(X) =2p 6K,
This resuit then implies that
| 4y = Lyl Iy = 1(8), (4.14)

for 7(8) a nonrandom function of & which tends to 0 as § = 0.

We then show that | £, + 22l is bounded by a function of A on BC.
Equation (2.6) implies that tr (M2) =1 and tr (%) = 1. We use resdlts
from Lemma 7 to bound the remaining terms in | Ly + Zzl. By part (e) of that
lemma and equation (2.6),
~ (/2 [ Sy o~ X"X1 00T [0 (29 - 4+ (p - xT0)XTx - 2 XTSMX]) db(x)

=[Spr o -x"x1de00) " [ (24 (p - xT) xT8Mx } db(x)

=[ [ lp-x"x1d@00) [ 2011 fue %, xTax de{ ix)

+2 for (1 - xT9x) dé(x)]
slamil, + 2 tr (2

SpK+ 2
Similarly, using Lemma 5(e),

=/2) [ [0 Ip-xTx1de00T" [ (20 - 4+ (p - xTx0Ix"x - 2 xT fitx]) ddix)
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SpKA A2
Consequently, |
(Zy+ L)) Sp+6+2pKA AT, (4.15)
Equations (4.13), (4.14), and (4.15) imply that
| N1+ Zo/m)E ] - NI+ Ly/m)E )|
sTINA (14 (41 By = £, 0/m) | 2y - 45
=m IN A (r(8)+ 0(m™1))
+m7IN A Kg (X/D) (2 + Kg (X/A)/m) Zgc.  (4.16)

Inequality (4.16) and the fact that P(BS) = o(1) by Chebychev's

inequality are then used to prove the corollary. Since A, and (X/)) tend to
1 almost surely as N tends to infinity, and since /gc - 0 almost surely,

(4.16) implies that | 7(22) = T{£5) | /N =0 almost surely as N - e, This

proves part (a) of the corollary. Part (b) foilows since the qth power of the
right-hand side of (4.16) is dominated by a function with finite expectation,
as in the proof of theorem 2.

To prove (), note that

El T(Z,) - T(,) 1 =E[ T(Z;) =NI(1 + ZyymE, )]
-l T(2y) - N1 + LoymE ]+ EDNICT + Zo/m)E ] - NICH + £y/m)E 1]
The first two expectations on the right-hand-side are both equal to 1/2 +

o(1) by lemma 8 and the proof of Theorem 2(c). The Cauchy-Schwarz
inequality and inequality (4.16) imply that

EL M1+ Z/mZ 1= N1+ £y/m)E 1]



35

sm™INE [ A P(8) + Kg (X/A) (2 + Kg (X/AV/m) Jgel
= o(N/m), (4.17)
proving (c). o
It is similarly shown that E[ ( T(Z,) - T(£,))2 1= o(N®/m?), proving
part (d) of the corollary. Inequaitty (4.17) also implies that
Elvm| T(2)) = T(£)) | /N] >0 asN - e,
Thus vm IT(ZZ) ~ T(£,)l /N converges in probabflity to zero, so

vim T(Z,)/N has the same limiting distribution as vm T(£,)/N. This proves

part (e).
Because the stopping rule T is an increasing function of £, a first-order
‘Taylor series expansion about the first argument gives

E[g(T(Z,),00] = E[g(T(£,),00] * El g,(T(£,%),0) (T(Z,) - T(£,)),
where £,* is between £, and 22. Lemma 6(a), the result from the proof of
part (d) that E[ ( T(Z,) - T(£,))? ] = o(N?/m?) and the Cauchy-Schwarz
inequality imply that
Elgy(T(£,%),0) IT(Z5) - T(£,0] = (E [0/ T(£*N2 1EL (T(2,) - T(£,021)1/2
=o(m™1)
by part (b) of this corollary. Thus
Elg( 7(22),0)] = Elg(T(£,),00] + om )= y+om™)
by Theorem 2(f) and the definition of £, in(2.4). O

The proof of theorem 3 and its corollary resembles that of theorem 2,

with the added complication that ftz no longer follows a Wishart |
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&

distribution, but in fact systematically underestimates Z.
Let X1y = X 1y = &, and let X(2) and £,y be the least squares

estimates of the mean and covariance using only the observations in the
second sample. Then the estimated covariance using both samples may be

expressed as a function of X(y), £(1y, X5, £(2), and ¢,, as is shown in

the following lemma.
Lemma 9.

$e,= (L= T M=) £py+ (2 m-1) £y
Fm(eymmy eyt Xy - Xl (Xyy - Xp)' )

Lemma 9 is used in the following lemma to evaluate the conditional R
expectation of ftz‘

Lemma 10.

Eley-D £, 1 £ 1=m-1XE - D+ (ty-DL
Proof. The result follows from Lemma 9 because
[iEl) ‘i{z)] I im ~ /V(O, [m" +( tz‘ m)"] I O
We then may approximate the moments of ¢, and ftz.

Lemma 1 1. Suppose the conditions of theorem 4 hold. Then

(@) E[1ty-Nol J tz"k] = oKy fork =0,1,2, ..., [[(m-p)/21] - 1, j2 1.
0 Elt, K =N,K+oNK) tork=1,2, ..., llm-p)/2ll - 1. -
() ELE,] = 1-23/Ny+ 0N,

Proof. Let
D =(1(0) >m])
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and let

C=( £, -1, =1/2)

Lemma S fmpiies that | T(0) - N| 7/, =N/2. Then, using Cramér's theorem on
large deviations (see Varadhan (1984)),
P(CC) =2 p2 exp( ~(m-1)/24)

and hence

P(DC) = P( (17(0) - NI >N-m )} NC) + P(CE) =2 p? exp( -(m~-1)/24) (4.18)
for sufficiently large N. Thus

E[1t, - Nyt 178K Zpel = (cN-m)/m) P(DC) = o(NI~*)
and ‘
ELIE, - Nl I/ 8K 7p) = ELL [Te(T)-m)l} - oN-m) I /( [Te(T©)-m)]) + m}¥ /)
smK+ cELI TO) -NII 7 70 K] = o(N7K)
by theorem 2(b), completing the proof of (a).
To prove part (b), note that

ElL,7K) = Ny K EI(T - (2, - NI/ £)K]
k
_a k -k K - J
=N, N, j;( j JEL(C2 = N/t )]
by the Binomial theorem. The result then follows from (a).
For part (c), Lemma 10 implies that
Bl 5, 1=E(ELS, 1 5, 1) =1 +El(ty-1)""m-1)(E, - D]
Now
(Eg=17T =Ny =Ny 2 (ty Ny 1) # Ny 2 (5= 1071 (E)Ny- 102

S0
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ELCEy -1 m=-1)(E, - D1=(m-DN,"2[ - cEL(E, - D(T(O)-N) ] _
| + EL(E, - D {Te(TOm)]] - e(T(0)-m)) /p)
- cEL(E, - D (T(0)-m) /iyl
+EL(E - D (8- 17T (E57Np- 12 1) (419)

We find the expectations of each term in (4.19) separately. A second-

order Taylor series expansion gives that for some €* between O and 1,
EL(E, - D (TO-N) )= EL(E, - D (7(0) + (1/2) n*(e*)] )

=NEL(E, - Dtr (R(E, - D) ]+ (/D ENE, - D (e ]

Now E[(E, - D tr (M (£, - D)1= 2(m-1)"" 90, it was shown in the proof

[ )

~ of theorem 2(d) that E[ | n"(e*) 121 = 0(N2/m), and lemma 7(b) implies that
ELNE, - T2 1= 0tm 1), so ELUE,, - T, | n"(€*) 1= o(N/m) by the
Cauchy-Schwarz inequality. Combining terms,
EL(E, - D(TO-N) 1= 2N (m-1)"" 9 + o(N/m).  (420)
It 1s easily seen that
ELNE,, - Tl | Ic(TO)-m)) - c(TO»m) | Zp) SELUE, - Tl 1= o(1). (421)
Also, equation (4.18) and the Cauchy-Schwarz inequality imply that
ELIE, - Hly, 17(0)-ml Zgel =m (tr E(E, -D?) P(DC) ) /2
=2mp (p+1) exp( ~(m-1)/48) = o(1). (4.22) i
To show that E[(Z - I (t,-1)7" (£,-Ny=1)2 ] 15 o(N/m), let §=m"1/2
and let

B=(lIZ, - I, =8)ND.
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By Cramér's theorem (Varadhan (1984)), P(B€) =(2p+p?) exp { - m'/4/12), so
ELIE,, - Ty, (82-1)7" (8-Ny=1)2 Zgc 1= o(N/m). Then, using lemma S(b) to

show that | T(0)-NI /g =8N,
ELIS,, - Ml (E5- 17" (E5Ny-1)2 75 15 83 N,/(1-8) = o(N/m).

Thus E[ 112, - T, (£~ 17" (£5-Ny=1)2 1= o(N/m). (4.23)

Thus, using (4.19) through (4.23),

EL(m-1) (¢5-D71 (£, -D]=-23/N, + oN"D),

completing the proof of (c). O

Proof of Theorem 3. For any constant n, Graybnl (1983, Theorem
10.10.1) implies that E[ £, 1= T and Cov (vec £) = (n-1)"1 (1 @1 + ©.
By the multivariate central limit theorem, then,

vnvec[£,-1] > MO, 1®1+C).

Now for any constant n, v vec [ fn - 1] is uniformly continuous in
probability since it may be rewritten as a normalized partial sum. Since
(t,/N,) converges in probability to one by Lemma 11(b), and since £/t,
converges in probability to zero, Anscombe’s (1952) theorem implies that
Ny vec[(1+ £/t) 8, -1]1 = MO, 18@1+C).
Dominated convergence may be applied throughout the proof since by
lemma 9, for k 20, ELE, K1 <E[(5(;)+ 2y * [X(yy - X( )1 X1y ~ X2 K],

and the expectation on the right is shown to be finite by using successive
conditioning. Recall from (4.1) that for triple sampling,
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n(e)=NCe(l+ L) & + (1 - D) (424)

s0 that lemmas 1 through 8 may be applied with W= (1 + £/ ) ftz. _
Results (a) and (b) follow the same proofs as parts (a) and (b) of

theorem 2 once it is noted that (1 + t/tz)ftz converges almost surely to

the identity matrix since fm - I almost surely and since ¢, is defined to be

larger than m.
(c) As in the proof of theorem 2(c),

- E[t3(£) - N1=E[ £5(£)-n()]+ E[n0)+ (172)E[n(O)] + (1/6) El n™(€)], (425)

where € is between 0 and 1. Lemma 5(g,h) and lemma 7(c) imply that
ElIn™(e)l]=0(1), and E [0}/ ] is evaluated explicitly in lemma 7(e), so

the proof of (c) is completed by evaluating E[ tz(£)-n(1)]and E[n(0)).
E[n(O) }=Ntr [E((1+2/t%, -1)]

=Ntr{SRE((1+4/NpE, )]

Now E (£, ) =1~ 29/N, + ofN"") by Lemma 11(c). Also,

E{(y- Nty ISy, llg ) = (EIE) - N2E, 2B LI S 102 )12 = 0(1)

by parts (a) and (b) of Lemma 11 and the Cauchy-Schwarz inequality. Thus,
since the entries of JN are bounded,

E[n(0))=Ntr[TR{(L/N)I-2TM/N,y ]+ o(1)
= £/c-2[tr M2}/ c+ o).
From lemma 8, E [ ( t5(£) - n(1))1=1/2+ [¢™ H(x) dx + o(1). To show

kY
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that f o H0)l dx = o(1), note that by using a Helmert-type transformation,
£n= 0107 vy T, where ¥ = (it+ DY 1720,y - 3X)), 50 that the Y,
are independent MO,I) random vectors. Let R={V: &V~ 1/2a) z y). Then
H) = P S, 7% €R) = ELPLE,- 17T (VYT + m-DE Ix eRI £ 1],
and the conditional probability may be written using a2 Wishart (tz-m- 1,D
distribution. By chariging variables and differentiating, it is shown directly
that [(5™ IH(x)l dx = o 1), proving that E [ ( £3(£) - n(1)]=1/2 + o(1).
(d) We square the right-hand side in (4.25) to give

E[(25(£) - N)2]1=E [ (n(0)2 ] + remainder terms;

E [ {n(0))2 ] is given explicitly in lemma 7(d), and the remaining terms are
shown to be o(N) by lemma 5.
(e) By equation (4.25),

N, (£3(8) - NI/N = VN, [ 70) + (1/2) n(€)] / N
for some € between 0 and 1. Now VN, n(0)/ N= VR, tr[(1+ £/¢5) £, d]
converges in distribution to a M0,2 tr [982]) random variable by
Anscombe's (1952) theorem, and E I n”(€) 1] = o(1) by lemmas 5(f) and 7, so
the limiting distribution of v, (¢5(4) - NJ/N is 0,2 tr [T2)).

(f) The proof of (f) depends on the following second-order Taylor expansion
of g about its first argument,

Elg(e5(0,0] = v+ g,(N,0) ElE5(4) - N+ (1/2) gy (N,0) El(t5(£) - N¥]

+ (172) EL (g ,(0%,0) - g, (N,0)) (£5(£) - N)2),
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where n* is between ¢ (£) and N. Using resuits (c) and (d), then,
Elg(tz(0,00] = v+ g,(N,0) { £/c- 2 (tr :2)/ ¢+ E[n*(0)])
+(1/2) g,(N,0) E[('(0)2)
+ (1/2) E[ (g, ,(n*,0) - g, (N,0)) (£5(£) - N)?]
+o(N"1)
since E [ Ig,(N,0)l ] sp/2Nand E [1 g, ,(N,0) 115 (2N)"2 9(p? + 2p + K2) by
lemma 6. The proof is completed by showing that
EL1gy1(n*,0) - g, ,(N,0)l (¢3(£) - N)?] is also o(N™!). By the mean value
theorem and lemma 6(b),
Ell g, (n%,0) - g, {(N.O) (£5(£) - N2 <E [sup,« Ig, | ,(n(€¥),0)l (£5(£) - N)?]
SE [ sup.x (2 n(€¥)7™3 pldp + (R(e*WNXX/AK 12 (t5(4) - NY?),
where the supremum is taken over all €*between 0 and 1. Thus
EL1g1(n%,0) - g, (N,O)l (¢5(£) - N)?]
SE[(2p3+K2+ 1(n(e®) 3 + n(e® 2X/0) + n(e®) (X/M2)(E3(£) - N
=3NS (2p3KZ D ELR3 /O + 2 ) £y - TIP= oNT)

by lemmas S(c) and 7(c). This completes the proof of the theorem. O

L L

LY}

“y
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