»)

1)

»

Prior Influence in
Bayesian Statistics

by

Michael Lavine
University of Minnesota
Technical Report No. 504

November, 1987

Research supported by National Institute of Health Grant No. GM 2527



)

)

PRIOR INFLUENCE IN BAYESIAN STATISTICS

I. INTRODUCTION

Objective

The work described here is motivated by a position that was well
expressed by Berger (1986):

"The robust Bayesian position can be roughly stated as follows: An
answer to a statistical problem is a good answer only if ... the
answer -would approximately equal the posterior Bayes answer for any
reasonable sampling model and prior distributiom...."

But how can we tell whether "the answer would approximately equal
the posterior Bayes answer for any reasonable sampling model and prior
distribution: This report provides a guide by doing two things:
describing classes of sampling models and prior distributions that are
useful surrogates for the class of all ”reas&nable sampling model(s) and
prior distribution(s)", and showing how to compute the resulting classes
of posterior Bayes answers to particular statistical problems.

We will be calculating Bayes answers of the form f@(P)posterior(dP),
or equivalently, Eﬂ[¢(P)|§], where P is a‘possible sampling model for
the data X, ¢ is a real-valued functional of P, posterior is the usual

Bayes posterior measure and E”[.] means expectation using n as the

prior. Four common examples are ¢(P)=P(S) where S is a set, ¢(P)=fXdP,

‘¢(P)=lB(P) where 1B is the indicator function and ¢(P)=L(P,a) where a is

an action and L is a loss function. These make f¢(P)posterior(dP) equal
to the predictive probability that the next observation lies in the set
S, the predictive mean,. the posterior probability that P lies in the set

B and the posterior expected loss of a, respectively. Berger (1987)
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calls these quantities "ratio-linear" because they are the ratios

Je(PYE(X|P)n(dP)/[E£(X|P)n(dP) of linear functionals of the prior = where
£(X[|.) is the likelihood function.

Because we are conditioning on X and treating it as known
conclusions about the set of possible posterior answers apply only to
the particular data set we are using. It can easily turn out that a
single class of sampling models and priors will lead to either small or
large sets of posterior answers depending on the data that were
observed.

Section 2 introduces density-bounded classes of priors for
parametric families and shows how to compute the resultant suprema and
infema of ratior-linéar posterior quantities. Section 3 gives a
variation of density-bounded classes. Section 4 uses density bounds to
define classes of periparametric priors and compute the ranges of ratio-
linearhanswers. Section 5 discusses some issues raised in Section 4
while Section 6 shows how to extend the periparametric results to a
regression setting. Finally, Section 7 presents a technical theorem

relating periparametric classes to the Prohorov metric.



2. DENSITY BOUNDED CIASSES OF PRIORS

Introduction to the Class

This chapter defines I', a class of prior distributions for a
parametric family, and shows how to compute psup = sup“er{E“[¢(0)|§])
where # is a parameter value indexing the sampling model P, ¢ is a real-
valued function and X is the observed data. Berger and Berliner (1986),
Berger and Sellke (1987), Sivaganesan and Berger (1987), DeRobertis and
Hartigan (1981), and others have done similar things for different
classes of priors.

Let {Pozaee} be a parametric family of distributions all having a
density with respect to the same underlying measure and let £(X|4)
denbte the joint density of the data X in the usual fashion. For
measures L and U on 6, we saj 1<U if L(B)<U(B) for all measurable Bc® .
Let Lsﬁ and L(9)<1<U(9)<w. Define I', a density-bounded class of
"~ probability measures by I' = {#:L<a<U;x(8)=1}.

Sometimes we will want to use an upper boundary U that has infinite
mass. That will usually not poée any problem. DeRobertis and Hartigan
(1981) use the related class of measures (n:L<r<U} where n(6) need not
be 1.

The class T is called density-bounded because it is often more natural
to define I by bounds on densities. Without losg of generality, let L
and U have densities £ and u ﬁith respect to some measure v. Then
P={w:2(8)=<p(0)=<u(d) v a.s.; [p(#)v(df)=1) where p is the density of =
with respect to v. In almost all applications we can take v to be

Lebesgue measure,



We will be using I' to represent uncertainty in the prior
distributions. In any particular problem we try to choose L and U so
that T' contains almost all of the plausible or reasonable priors and
almost none of the implausible or unreasonable ones.

L, U and n are defined as measures on the parameter space 6, but are
equivalent to measures on the set of distributions (P0:0691 where 0 is
identified with {PG:BES) and § with PO' We use whichever notation seems
convenient; i.e., we use E[.]d] and E[.lPo] or.¢(0) and ¢(Po)
interchangeably.

One density-bounded class of priors is F-(w:enOSns(l/e)wO:w(9)=l}
where T is a fixed prior and ¢ € [0,1] is a fixed scalar. However,
this class only contains priors with the same type of tail behavior as

Tg- We often want L to have smaller tails and U to have larger tails

than LA
Density-bounded classes of priors are special cases of e—contamination
claéses. An e-contamination class is a set of priors ((1—e)no + eq|gqe€Q)
where T is a fixed prior, e€[0,1] is a fixed scalar and Q is a class of
allowable contaminations. A lower bound L is not a prior because
L(8)<1l. It can be written as (l-¢)+(L/L(8)) where (L/L(8)) is a prior
and e€=(1-L(8)). Any prior that falls between L and U can be written as
(1-¢)+(L/L(8)) + eq where q is a prior from some allowable class that is
determined by L and U. It is not true that every e—contamination class

is a density-bounded class.



Computing sup and inf of E [4(6)[X]

The set P*-{E"[¢(0)|§]:uerl of all possible postérior expectations of

*
¢ is an interval. To see this suppose that ¢ and c, are in T and

¢y = E"i[¢(0)|§] where uier.

Define we-(ewl + (1-5)#2). Then xeer for any e€[0,1] and

*
Eﬂ [4(8)]X] is a continuous function of e. So [cl,cz]er .
€ .

*
We can characterize I'' by its endpoints. Define

psup = sup E [4(6)[X]
nel’

and pinf = inf E_[$(0)]X].
. T -~
nel’ -

We show how to compute psup; the technique for finding pinf is simi;ar.
Usually we do not find psup directly but employ an algorithm that
estimates psup as accurately as desired.

The algorithm is based on being able to test, for any q€[0,1], whether
psup is less than q. The test works by finding ﬁqer such that

psup<q « E_ [$(8)[X] <q.
q

If we can find such a “q then the following algorithm estimates psup

with accuracy "tolerance”:



lowbound = 0 /* bounds on psup */
highbound = 1

while ( highbound - lowbound > tolerance )
{
q = ( highbound + lowbound ) / 2
find =~
q

ptemp = E_ [$(8)|X]

q
/* ptemp is storing the expectation */

lowbound = max ( lowbound, ptemp )

- 1f ( ptemp < q ) highbound = gq
print ( highbound + lowbound ) / 2 /* final estimate of psup */

If this algorithm is implemented on a computer there will be
unavoidable imprecision in computing ptemp. It may be worthwhile to
estimate the error and change two statements of the algorithm to
"lowbound = max (lowbound, ptemp-err)" and "if (ptemp+err < q)
highbound=q." |

Before showing how and why the algorithm works we give some
motivation for it and discuss the ideaé behind finding ™ with the right
posterior expectation of ¢.

For a fixed q ¢ [0,1] we want to construct quF such that

ptemp = E"r [¢(0)|§] satisfies ptemp q <=> psup < q.
q
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By definition
q < pinf > ptemp = q and

q > psup = ptemp < q regardless of how we choose wq.

If we arrange that qe(pinf,psup] = ptemp = q

then péup <q © ptemp < q.

Of course, we do not know whether q € (pinf, psup}. However, if we
assume q ¢ (pinf, psup] and construct nq accordingly then psup < q <=>
ptemp < q even if the assumption is wrong.

Ignoring the endpoint, assume q € (pinf,psup). There exists =el
such that Eﬁ[¢(ﬂ)|§]-q. The idea behind finding "q is to start with
this n and move mass around trying to increase the posterior expectation
of 4. Because q<psup we should be able to achieve that goal. When
using the algorithm we find ﬁq directly without first finding =.

The posterior expectation of ¢ is the weighted avérage of ¢(f) where
each # is given its posterior weight. It may seem obvious that to
increase the posterior expectation we should move prior mass to 9's with
large values of ¢(4). However, this is not always true. A # where ¢(0)
is large may have a small value of f(glﬂ).and hence receive little
posterior weight. Increasing the prior weight on that # would not help

much to <increase the posterior expectation of ¢.

Example 2.1:
Let X, and X2 be Bernoulli random variables that are independent given

the Bernoulli parameter 6. Let the prior v be defined by w(.1)=.8,



n(.8)=n(.9)=.1. What is Prx[XZ-llxl-O]? Begin by computing the
posterior distribution.
Prﬁ[xl-O] = (.9)(.8)+(.2)(.1)+(.1)(.1) = .75.
Prﬁ[a-.1|x1-01 = (.8)(.9)/.75 = ,96.
Pr“[a-.8|X1-0] = (.1)(.2)/.75 = .027.
Prﬂ[ﬂ-.9|xl-0] = (.1)(.1)/.75 = .013.
Therefore, Pr”[xz-llxl-O] - (.1)(.96)
+ (.8)(.027)
+ (.9)(.013) = 1293,
Create the prior n’ by moving mass to the right. Say =’ is defined
explicitly by n’(.1)=.8, n'(.9)=.2. What is Pr“,[X2=1|X1=O]? Again,
start by computing the posterior.
Prﬂ,[xl-O] = (.9)(.8)+(.1)(.2) = .74.
Pr“,[a-.1|x1-01 = (.8)(.9)/.74 = ,973.
Prx,[ﬂ-.lel-O] = (.2)(.1)/.74 = ,027.
Therefore, Pr“,[X2-1|X1-0] - (.1)(.973)
+ (.9)(.027) = .1216.

In the example ¢(0)-Pr[X2-1|0]-0. Moving weight to the right, from
6=.8 to 0=.9, (to large ¢(8)) decreased the predictive probability of a
1 on the next observation. The reason is that #=.9 has a small
likelihood so the extra prior mass on §=.9 is heavily discounted in the
posterior, thereby increasing the posterior mass on f=.1. The effect is
to decrease the predictive probability that Xz-l.

We need a compromise between putting prior mass on #'s with large
values of ¢(8) and putting prior mass on §'s where ¢(4) may be somewhat
smaller but where the likelihood f(X|#) is larger. The following

theorem shows how to make the compromise.



Theorem 2.1: )
Let qe(pinf,psup) and let h(4) = (4(8)-q)-£(X|8). For a scalar z
define Az-{ﬂzh(0)<z), Bz-{azh(o)—z} and Cz—{O:h(0)>z}. If ﬂq is
any prior in I’ satisfying nq(Az)-L(Az) and ﬁq(Cz)=U(Cz) for some

z then

E_[6(0)IX] = q.
- q
Before proving the theorem we show that the conclusion is not

vacuous, i.e., that there is some xqu that satisfies the
conditions of the theorem for some z. Define the functions

g(y) = L(Ay)+L(By)+U(Cy) and E(yl - L(Ay)+U(By)+U(Cy). Let
z=inf(y:g(y)<l}. If g(z)<l and g(z)zl then it is clear that the
required "q exists, although it may not be unique.

g(z+l/k) = g(z) - (U-L){4:h(8)e(z,z+1/k]). Take the limit as
k+o, 1lim g(z+l/k) = g(z) because (U-L) is continuous. But
g(z+1l/k)<l by definition of z so g(z)sl. Similarly,

g(z-1/k) = g(z) + (U-L)(#:h(8)€(z-1/k,2)} and lim g(z-1/k) = g(z)
so that g(z)=1. .

Proof of Theorem 2.1

Because qe(pinf,psup) there exists a =€l such that Eﬂ[¢(0)|§]=q;
Let p be the density of n and pq be the density of wq. Let
S-{0:p(0)>pq(0)} and T-{0:p(0)<pq(0)). Because xq (Az) = L(Az)
and uq(Cz) - U(Cz) SCz and TAz are both empty.

E_[4(0)1X] = q
q

Joo)EXI0)7 (a8) = qf£(X|0)n (46)

3

t

Jo(0)EX|0)n(dd) + f¢<o)f<§|o><«q-«><da)
= qff(X|8)n(d8) + qff(g_(la)(wq-vr)(do)

s

JHOERIO) (r -m)(80) = QfEXIO) (x -m) (dh)

.8

fh(ﬁ)(xq-n)(da) >0



® fih(a)(ﬂq-x)(do)
£ fgh(o)(w-nq)(dO).

But,
S h(8) (x -m) (ab)
> sz(xq-n)(dﬂ) - zfs(xoxq)(da)
= fsh(o)(n-ﬂq)(dﬂ). QED

The third "e" follows because [¢(9)£(X|0)n(df) = qfE(X|0)n(dd). The
equality in the next to last line follows because # and m#_ must both
integrate to one so fT(ﬂ-xq) - fs(ﬂq~ﬂ).

Notice that the theorem is nothing more than the usual argument about
balancing masses on a seesaw. Imagine the line as a seesaw balanced at
the point q as in Figure 2.1. Each €8 occupies a point on the seesaw
corresponding to ¢(#). The weight of each # is its posterior weight so

q=f¢(0)posterior(d0). Let ¢(01) and ¢(02) Both be greater than q, so 01
and 02 are on the right hand arm of the seesaw. Consider moving a small
amount of prior mass from 01 to 82. will this make the right hand side
of the seesaw go up or down? Equivalently, will this decrease or
increase the posterior expectation of ¢? We know that the right hand
side of the seesaw will go up if ( ¢(02)-q pX ¢ Aposterior(az) ) is less
than ( ¢(01)-q )( Aposterior(ol) ). Since Aposterior(ﬂi) is
approximately proportional to ( Aprior(oi) )( f(§|9i) ) and Aprior must
be the same for 01 and 02 we need only look at h(#), as the theorem
tells us.

Theorem 2.1 shows how to implement the step "find nq“ in the

algorithm. Let q be given and define h(§) as in the theorem. We can

find z by a procedure such as
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high z

low_z = (some small number) /* minimum possible value of h */

(some big number) /* maximum possible value of h */

do

z = (high_z + low_z)/2
if (gz)>1) lovz =z
if (g(z) <1l) highz =2z

) until ( g(z)sl & g(z)=1 )

Then we define ﬂq as in the theorem. The conclusion is that

q € (pinf,psup) implies E“ [¢(e)|§] 2 q, and that in turn implies that
q

psﬁp < q <=> E“ [¢(9)|§] < q.” An example shows how the technique works
’ q

in practice.
Example 2.2:
Let xl,...,xh,xn+1 be conditionally i.i.d. Bernoulli § random
variables. We observe X = 1{1,...,)(.n and want to compute the
predictive probability that Xn+1 is equal to 1, that is, Pr[Xh+1=1|§].
Let LA be the uniform prior and fix ee(0,1). Let L-exo and U=(1/e)«o.
Let s be the number of successes and f the number of failures in X.
psup (=sup Pr[xh+1-ll§]) is a function of ¢, s and £. For
es(1,.9,.8,...,.1} and s,f€{0,5,10} the algorithm generated the
results in Table 2.1. Each curve in Figure 2.2 is a plot of psup as a
function of ¢. The left hand set of curves is for s=0 the middle set
is for s=5 successes and the right hand set is for s=10. Within each
set the top curve is for f=0, the middle curve is for f=5 and the
bottom curve is for s=10. Going across the page shows the effect of

increasing s. Going down the page shows the effect of increasing f£.

11



The results for e=l1 are exactly what would have been obtained by an
ordinary Bayesian analysis with a uniform prior. As ¢ decreases the

class of priors increases so psup increases.

For Example 2.2 h is a function that decreases from O, reaches a
minimum, increases through 0 to a positive maximum and decreases again
to 0, as in Figure 2.3. Therefore "q will have a special form. The.
unit interval will be partitioned into tpree sections. Either ”q will
be equal to U on the outer sections and equal to L in the middle or else
wq will be equal to L on the outer sections and equal to U in the
middle. Figure 2.3 illustrates this for pq’ the density of nq.

One way to use the results of this section is to specify beforehand an
L and U that capture our uncertainty about what prior to use. Then we
compute the corresppnding values of psup and pinf, which tell us
something about our posterior state of ignorance concerning future
observations.

But it may be difficult to decide in advance on unique satisfactory
bounds on the prior measure. In that case we can look at the pair
(pinf,psup) as a function of L and U. We may observe that for ail
reasonable choices of L and U the pair (psup,pinf) lies in a small
region and that (psup-pinf) is small. Then we can be confident in
stating our predictions for future values.

- On the other hand (psup,pinf)‘may cover a large area or (psup-pinf)
may be large for reasonable choices of L and U. Then we would know that
our predictions can vary quite a bit over classes of reasonable‘priors.

Examples 2.3 and 2.4 indicate some problems that can be solved by the

algorithm of this section.
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Ex e 2.3: . »

Let xl,...,xh*l be conditionally iid N(4,1l) and let

X = (Xl, e Xn). Let T be a prior for #. Fix ¢€(0,1) and let
L-eﬂo and Ui(l/e)wo. Find the sup and inf of Prw[aeBlgl,
Prx[xh+168|§] and E“[Xn+ll§] over all priors = bounded by L and U.

Example 2.4:
Take the previous example but let L be the 0 measure and U be

proportional to Lebesgue measure.

It is easy to find sup Eﬂ[Xn+1|§] for this last example. For any real
number k we can assign prior probability 1l to a set of #'s satisfying
E[Xn+1|0]>k. The posterior will assign probability 1 to the same set of
8's so the predictive mean will be gréater than k. Therefore sup

E

x[xn+1|§] f -
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TABLE 2.1

Psup as a function of the number of successes, the number of failures

and the bounds on the prior determined by e¢. See Example 2.2.

0 successes 5 successes 10 successes
e= 1 .500 .862 .919
.9 .530 .871 .927
.8 .560 .881 .933
.7 .593 .891 .938
0 .6 .628 .905 .947
.5 .669 917 .956
failures 4 .719 .932 .960
.3 .773 .948 971
.2 .836 .962 .980
.1 .912 .982 .990
e= 1 146 - .504 .650
.9 .156 .516 .661
.8 .169 S .529 .671

.7 .182 .543 .682 .
5 .6 .198 .560 .695
‘ .5 .216 .580 .710
failures 4 241 .605 .730
.3 .270 .632 .751
.2 .309 .670 .780
.1 .371 .718 . .819
€= 1 .087 .358 .504
.9 .093 .367 .513
.8 .100 .377 .522
.7 .110 .389 .533
10 .6 .120 .405 .546
.5 .133 421 .560
failures 4 .149 440 .580
3 .171 .466 .601
.2 .200 .497 .631
.1 .242 .542 .670
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- Pictorial representation of Theorem 2.1

FIGURE 2.1
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psup

0 successes 5 successes 10 successes

L/

epsilon epsilon . epsilon

psup as a function of the number of successes, the number of failures
and epsilon. Within each set of three curves the top one is for 0
failures, the middle one for 5 and the bottom one for 10 failures.

FIGURE 2.2
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Iilustration of the algorithm
FIGURE 2.3
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3. A VARTATION OF DENSITY-BOUNDED CLASSES

Definitions and Examples

This section gives a variation of density-bounded classes of priors.

Let # be a multidimensional parameter. For ease of exposition take

0-(91,92)t although the ideas work for arbitrary dimension. Let e=91x62

where 01681. Sometimes the prior distribution » has a natural
decomposition into a marginal distribution a" for 81 and a conditional
distribution uc(-lal) for 02 given 01. In such a case density-bounded

classes for both " and #° may be a natural way to represent uncertainty

in the prior.

Let L and U be measures on 91 such that L<U and

L(61)<1<U(61)<w. For each 01661 let L(-|01) and U(-lol) be measures on
6, such that L(-|01)5U(-|01) and L(8,]0,)<1<U(8,|0,)<=. Define the

class of priors T by

T = (n: Len"<U; L(-|01)5wc(-|01)50(-|01) U a.s.)

Example 3.1:

Given 8 and o let xl,...,xn be i.i.d. N(0,02). Let , be a prior
distribution for 4 and o defined by a marginal distribution ng for o
and a conditional distribution "8 for 6 given o, say ug-gamma(a,b)
and ﬂg-N(O,aZ). Fix § and ¢ in (0,1). Let I be the class of priors
n satisfying Swgswms(l/S)wg and ewg(o|a)5nc(-|o)$(1/e)n8(ola).

Example 3.2:
I know that in a recent campus election approximately 1000 votes
were cast for my favorite candidate. I do not know n, the total

number of votes cast, or #, the fraction of the votes favoring my

18



range of priors for n and a range of conditional priors for # given

n, where the prior for # given n would be centered near 1000/n.

Example 3.3:
Given f and ¢ let X1 X and Yl""’Y be independent Bernoulli
random variables where each X, has parameter (f+e) and each Y has

i
parameter (4- e) A model like this might arise when there are two

ways of administering a treatment. # represents the average effect
of the treatment and 2¢ .represents the difference in effect between
the two ways of administering the treatment. We may want to use the
class T determined by bounds on the marginal distribution of 4 and
the conditional distribution of ¢ given 4.

Non Example 3.1:

Another way of modeling the previous example leads to a class of
priors not covered by the techniques of this chapter. Again let
Xl,...,Xm and Yl,...,Y be conditionally independent Bermoulli

. -random variables. Let each X have parameter (f#+e ) and each Y
have parameter (0+e ). Let P be a class of priors determlned by a
density-bounded class for the marginal distribution of 4, density-
bounded classes for the conditional distribution of €5 given § and
in which €, and e, are i.i.d. given §. 1In some ways P* is similar
to the class described in Example 3.3. The crucial difference is
that posterior expectations require integrating twice with respect
to the conditional distribution of € given §. This report does not

show how to compute psup in such a case.

The following two examples show that the classes of priors described
in this section are neither special cases nor generalizations of

density-bounded classes.

Example 3.4:
Let X and Y be Bernoulli random variables. Consider the class I' of
distributions given by the following set of marginal distributions

for X and conditional distributions for Y given X.
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Pr[X=-0] = 1-Pr[X=-1] € [.25,.75].

Pr[Y=0|X=0] = 1-Pr[Y=1|X=0] € [O0,.25].

Pr[Y=0|X=1] = 1-Pr[Y=1|X=1] € [.75,1].
For this class of distributions O<Pr[0,0]=<3/16, 3/16<Pr[0,1]=<3/4,
3/16=<Pr[1,0]=<3/4 and 0<Pr{l1l,1]<3/16 and no tighter bounds are
possible. However, not all distributions lying inside the bounds
are members of the class I'. The joint distribution
Pr[0,0]=Pr[0,1]=Pr[1,1]=3/16, Pr[1,0]=7/16 lies within the bounds
but is not in I', therefore I' is not a density-bounded class.

Example 3.5:

Let X and Y be Bernoulli random variables. Consider the density-
bounded class T of diétributions that give no more than probability
1/2 to any of the four points (0,0), (0,1), (1,0) and (1,1). For
this class the marginal distribution for X satisfies O<Pr[X-0]<l,
the conditional distribution for Y given X satisfies O0<Pr[Y=0|X]sl
and no tighter bounds are possible. But these are no restrictions
at all. Consequently, the class I' cannot be described by bounds on

the marginal distribution for X and the conditional distribution for
Y given X. '

Computing psup
We now show how to compute psup for I''s that are defined by
bounds on #° and #°. The technique for pinf is similar. As in the

previous section we test whether psup2q by finding xqer such that

psup =2 q <« E7r (6(8)|X] 2 q. And, as before, we only need show
q ,

qe(pinf,psup) = E_[¢(0)IX] = q.
q

We start defining nq by defining z:(-lﬁl), the conditional
distribution of 02 given 01. Let
h(8) = (4(8)-q) « £(X[(8)).
20



For a fixed 01 h is a function of 02.

distribution that puts as much weight as possible on Gés where h(4)

Take “:("’1) to be the

is large, analogously to the definition of ”q in Theorem 2.1. For
each 01 there will be a number z(01) and sets
- (Bzzh(a) < 2501)}

A
z(01)

= {6,:h(8) = z(8;))
- {02:h(0) > z(ol)} such that

(]

[
xq(Az(gl)lol) - L(Az(01)|ol) and aq(c

|8,) = u(c [6.).
z(ﬁl) 1 z(81) 1
Define in this way x:(-|01) for every 01661.

Let hm(ol) - fh(o)n:(dozlﬂl). Treat h® exactly as h in Theorem 2.1.
T 'm .m =.

There will be a n?mber z and sets Az-{ar.h (01)<z}, an(ol.h (01) Z }

and Cz-{olzhm(01)>z} such that wz will be a prior satisfying

m m

wq(Az)-L(Az) and xq(Cz)= U(Cz).

There is at least one such "q determined by ﬂ: and xz in this
way. The following theorem is the analog of Theorem 2.1 and shows
that ¢ has the required conditional expectation under the prior wq.

Theorem 3,1:
Let mel’ satisfy E"[¢(0)|§] = q. Such a 7w exists by an argument
similar to the one in Chapter 2.

Let ﬂq be defined as above.

Then E_ [4(9)|X] = q.
q
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Proof:
The proof is in two parts. Define an intermediate prior p by
pm-ﬂ’m and p"(-wl)-qr:(.wl). We first prove Ep[¢(0)|§_{] = q and

then show E“ [6(8)IX] = q.
q

Part 1.
E,[4(6)IX] = q

c m, .,
® J U J$@ERI0)7 (d6,10)) 1 7 (d6;)
> [ [ qfEX]|0)n(a0,18,) ] n"(dd.)
~ q 2''1 1
Theorem 2.1 says that the quantity in square brackets on the
left-hand side is greater than or equal to the quantity in square

brackets on the right-hand side for every value of ¢
Therefore Ep[¢(0)|}_§] = q.

1

Part 2.

E_[4(8)[X] = q
q

° J I$OEXI0)mC(d0,10,) m(dd;)

c m
= qf ff(:_ga)nq(dazwl) 7, (40

o ) f¢(a)f(1_c|o)x:(daz|ol) 1rm(d01)

+ fqu(o)fo_gw)n‘;(dazwl) («‘;-«“‘)(dol)

c m
> qf ff(}_gw)wq(dazwl) x (df,)

+qf ff<§|0>w:<d02|ol> («2-«”)(dol>
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We know from Part 1 that the first term on the left is at least
as large as the first term on the right. And the second term on
the left is at least as large as the second term on the right by
the argument in Theorem 2.1.

QED.

For some multidimensional parametric families it seems natural to
specify the prior by giving a marginal prior for the first parameter and
then a sequence of conditional priors for the rest of the parameters.

In these cas;s it may be most natural to specify a class of priors by
giving lower and upper bounds for the marginal and conditional priors.

In other situations it may be natural to specify a prior in which
the‘parameters are independent. For these cases the marginal prior for

.0j is the same as the conditional prior f_or,aj given 0,,... We

.,oj_l.
could specify a class of priors either by giving bounds for the
conditional priors or by giving bounds for the joint prior of all the
parameters. We can use whichever method best captures our uncertainty
about the prior and.then compute psup and pinf using the techniques of
this section or the previous one.

This concludes our discussion of parametric models; In reélity we,
only believe parametric models when the data are multinomial but often
use them when we believe the data follow a distribution that is close to
some known parametric family. The next two sections show how to compute

psup for models that include distributions that are close to, but not

members of, a given parametric family.
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4. PERIPARAMETRIC MODELS
"peri-prefix...l:all around:about:round...2:near...3a:enclosing or
surrounding”, Webster’s Third New Intermational Dictionary of the

English Language Unabridged, G. and C. Merriam Company, Publishers,
Springfield, MA, 1976. '

| Point of View
Let the real-valued random variables Xl,Xz....,thg be independent

observations from the same sampling distribution. Let Q be the set of

all possible sampling distributions for Xl. A typical parametric
Bayesian analysis identifies points in a parameter space 6, usually a
subset of some Euclidean space, say Rk, with points in a subsetlof 0,-
say (By: § ¢ ©). The prior is a probability measure on © and is
equivalent to a probability measure on I that gives probability one to
the subset.

This report take§ the point of view that the distribution on Q is
the fundamental object, not the distribution on the parameter sﬁace.
Henceforth, the terms “"prior" and."posterior" refer to probability
measures on 2, not 6. This point of view is mentioned explicitly by
Lindley (I972) and is implicit in the work of Ferguson (1973). Because
© is identified with a subset of Q it may seem overly nice to call the
measure on {} more fundamental than the measure on 6. But it is both
correct and useful, as explained below.

Consider the parametric famiiy of densities f(xla);ﬂexp(-ax)dx for‘
#e(0,») and the prior density P, (¢)=exp(-6)dd. Each #, a real number,
has been identified with Pa, an element of 1. In this case

|
f = l/foo(dx). Another parameterization of the same set of densities_

is f(x|ﬂ)=ﬂ-1exp(-x/ﬁ)dﬂ. Now the parameterization is 8 = foa(dx).
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The change of variables B=1/0 gives the prior density
P, (B)=B"2exp(-1/8)dp.

Most statisticians would agree that the first parameterization and
prior are equivalent to the second.paramete;ization and prior. 6=(0,«)
is the same in each case but the densities 12 and P, afe different. The-
two situations are equivalent because they describe the same
distribution on Q2. The distribution on I is more fundamental thén the
distribution on 6.

A typical Bayesian analysis might call for the computation of the
posterior mean of the parameter. But the posterior mean has different
interpretations in the two parametrizations. In one case it is
E{l/ka(dx)}. In the other it is E(ka(dx)). Whether either of these
is useful in a real data problem depends on that problem and can only be
determined by thinking about Q.

The elements of Q are distributions, so the term "posterior mean"
should refer to the average of those distributions. It is another
distribution, another element of I and need not correspond to any
parameter value. This interpretation of the posterior mean is usually

called the predictive distribution.

Periparametric Models

Priors on.Q that give probability 1 to a parametric subset are
usually implausible. This section describes a class of priors that put
" their mass on a sﬁbset of 1 that is close to, surrounds and encloses a
parametric family. We call both the subset of 2 and the class of priors
"periparametric."” Computing psup and pinf for this class accounts

explicitly for deviations from the parametric family.
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Generic elements of 2 will be denoted by capital letters like P and
Q, possibly with subscripts. 6 will be a parameter space identified
with (Pozaee)CQ. The notation P0 and Q0 means that these elements are

associated with the parameter value §. Usually P, will be the element

6
of Q identified with § and Q0 will be a point optimizing some function
in a neighborhood of PG'
Periparametric classes of priors can be useful when we believe that

the data are distributed approximately as some parametric distribution

or when a parametric prior approximately describes our a priori beliefs.
xample 4.1:
Let Xl and X2 be random variables that are conditionally independent
given their common distribution. Suppose we believe that the
underlying distribution is close to exponential and also that the
relative likelihood that the distribution is close to
exponential(ﬂi) rather than exponential(aj) is approximately
exp(aj-oi). The standard parametric model given by the two forimulae

f(xla)-ﬂe-axdx and p(ﬂ)-e'oda approximately represents these a

priori opinions. (It is a wonderful circumstance that our opinions
are computationally convenient.) We know how to compute Pr[XZGSIXll
using the standard model. But we want to know how the result will
change if we account for uncertainty about both f(x|4) and p(§).

Here  would be the set of all probability measures on the positive
reals. The standard formulae are equivalent‘to a prior probability
measure m, on . The problem is to find I', a class of priors, that are
all close to T in some appropriate sense and to compute psup and pinf
over thé class I'. Figure 4.1 shows I, 6 and a shaded region fhat is the
set of all distributions that are approximately exponential or close to
exponential, in some sense to be defined later. This section describes

classes of priors that put all their mass on the shaded region. The
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next section shows how to use priors that may put some mass outside of
the shaded region.

Let P& be the probability measure with density Ge.ax

on the positive
reals and N(§)cl be the set of probability measures that are close to
PO’ or for which PO is a good approximation, in this still undefined
notion of closeness. To connote the idea of closeness N(#) is called a
neighborhood, even though it has no topological significance.

Let n be a prior created from L bf spreading each mass or density

element,uo(Pa) throughout N(4). This means w(N(a))zwo(Po), which has a

sensible interpretation even when botﬁ sides are zero:

Prﬂ[ agB N@) ] = Prﬂo[ B ] for every measurable BcQ.

If the neighborhoods are disjoint then the previous relationéhips
become equalities. Often, our vague a priori notions do not distinguish
very well between L and 7 because P and Pﬂ are very similar for every
PeN(4). Therefore we want to include such priors n in the class T of
plausible priors.

. Because 7 is a.probability measure on § it tells us how to pick a
random Pef. ?or pri&rs that put all their mass in ue(N(o)) we can think
of picking P’'s as a two step process: first choose Paee and then
PeN(8). The disttibution of such a process can be described by the
marginal distribution of'Po and the conditional distribution of P given
Po. To allow for uncertainty in both parts of the prior we use a class

of priors determined by a class of margiﬁal distributions for P, and a

g

class of conditionél distributions for P given Po.
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There are three parts to describing a periparametric class of priors
I' - defining N(#) for each #€8, giving the class of marginal
distributions for Po and giving the class of conditional distribution
for P given Pa. This section gives one way to define each part. The
next section discusses modifications and alternatives to each of' these
parts that lead to different and sometimes more appropriate classes.

Density bounds provide one way to define the neighborhoods N(¢).

Each Po is a probability measure on the sample space x. Let L0 and UG

be two measures on yx satisfyingLasPGSUo and Lo(x)<l<Uo(x)<m. The top

part of Figure 4.1 shows 0,'9, ¢ and N(4). The bottom part shows the

density f(lea) and the two curves £, and u, that are the densities of

0

L0 and Uo. We define N(#) to be the set of all Pefl bounded between L0

and Uﬁ'

Example 4.1 continued:

In the previous example we thought the distribution of the X's was
close to exponential. Let 6 index the set of exponential
distributions so that £(x|P)=fe ’*. Fix e€(0,1) and let

za(x)-ef(x|roy and u (x)=(1/€)£(x|P,). Let N(f) consist of all

distributions on the positive reals with densities between 29 and

u,. Figure 4.1 pictures such a neighborhood.

Of course this neighborhood contains some densities that may seém
implausible, such as the discgntinuous ones. A later section will
discuss that problem.

The second part of describing ' is defining a class of marginal
distributions for P,. But sections 2 and 3 defined classes of

distributions for parametric families. We can use those same classes

here. Or we can use any class of priors over which we can maximize and

28
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minimize E[¢(0)|X]. For speciﬁicity let the class of n''s be a density-
bounded class determined by an L and a U.

The last part of describing I' is defining a class of conditional
di;tribdtions for P given PO' It is hard to think about distributions
on N(4) when éhere is no parametric representation to help us. S; we
adopt the solution of allowing any conditional distribution whatsoever
satisfying Pr[PeN(a)lPaj-l for almost all Po. If, in some applied
situation, we can think clegrly.enough to specify a different set of
conditional distributions then we should use that set. But it is ofgen
too difficult to think about distributions on such éomplicated sets as

N(§).

Example 4.1 continued:
Now we can completely describe a I' for the previous example. Use
the N(4) neighborhoods described there. Fix §€(0,1). Let

fb(a)-e.a. Let I-Sfo and u-(l/&)fo. Use the set of Po

distributions having densities bounded between £ and u. Use the set

of conditional distributions for P given P& such that

Pr[PeN(O)lPO]-l. This completely describes I'. Now the goal is to
compute psup and pinf for this class.

A T described by the three parts‘above may contain some prior
distributioné that seem unreasonable. In particular, both the
Pa-distribution and P may have discontinuous densities. However, it may
be difficult to specify a more reasonable class that is both large
enough and tractable. We can.proceed by computing psup and pinf and
seeing whether the range of posterior answers is large or small. If it
is small then it doesn’t matter that I contained some unreasonable

priors. If the range is large then we can try to see which priors in T
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give answers that are close to psup and pinf. If those priors are
reasonable then again we don’t worry about the unreasonable ones. But
if it is the unreasonable priors that cause the range to be large
then we can try to make a smaller I' and recompute psup and pinf.

: It is difficult to make all the decisions necessar& to describe T
completely. We must supply L, U and La and Ua for each . One approach
is to computé psup and pinf for .several choices of L, U, Lo and U0 and
see which choices lead to large ranges of posterior answers. Without
deciding precisely which choices are reasonable we may be able to decide
that no reasonable choices lead to large:ranges of posterior answers.
Then we needn’t worry about which choice we make. Or, we may see that

some reasonable choices do give large ranges. Then we must conclude

that we really don’t know much about E[¢(P)|§].

Computing psup
To find psup and pinf we use the same algorithm as before. We start

by proving that every value in (pinf,psup) is attainable as a posterior

answer.

Theorem &4.1:
Let q € (pinf,psup). Then there exists a prior measure =€l' such
that E_[4(6) |X]=q.

Proof:
Since qe(pinf,ﬁsup) there exist priors L2 and Ty both in I', such
that

E, [$0)I%) < q <E [$OIZ]-
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Let n? and wg denote the corresponding Pa4distributions and x; and

x;_denote the corresponding conditional distributions for P given
Pa. Any prior B, B with Po-distribution (l-a)ﬂT+aw§ and conditional
distribution for P (1-p)x§+ﬂxg for a,Be[0,1] is also in T.

Ep [¢(8)|X] is a continuous function of a« and 8. QED
@,p
Next we define ﬂq for every qe[0,1]. As always ﬂq is supposed to
put as much mass as possible on P’s where h(P)—(¢(P)—q)f(§|P) is large.

Since wq is a prior in T it can be described by its P, -distribution xz

]
and its conditional distribution n: for.P given P0' It is easiest to
give the conditional distribution first. Assume for the moment that
within each N(4) there is a Qo that.maximizes h(P). That is, h(QG) =
sup { h(P) : PeN(d) }. Then n: (+1P,) is the measure that puts all its

mass on Qa, i.e.

Praq[P°Qo'Pa] -1.

If there is more than one point in N(4#) that maximizes h then it
makeé no difference whether the conditional distribution assigns all its
mass to one of them or spreads the mass around among all of them. The
next section discusses the existence of Q0 and what to do if there is no
maximizing point. For now we assume that there is a maximizer within
each neighborhood.

The last step in defining "q is to give the Po—distribution wﬁ. As
the conditional distribution of P given Po is degenerate at Qo and
because we want to put prior mass where h(P) is large we require the Pa-

distribution to put as much mass as possible where the function

hm(Po) = h(Qo) is large. So we proceed as in Section 3. The marginal
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density for Pa takes its lower bound when hm(Po)<z and takes its upper
bound when hm(Po)>z, for some appropriate value z.
To summarize, ”q is defined in two parts, the marginal distribution

of Po and the conditional distribution of P given Pa. The construction

is similar to that in Section 3. The conditional distribution of P is a

point mass on Qo, which maximizes h over the neighborhood N(4). We
define hm(Pa) to be h(Qo). This is similar to Section 3 where hm(ﬂl)

was defined to be the integral of h(al,ﬂz)t. Finally we take the Pa-

distribution to agree with either L or U according to whether hm(Po) is
less than or greater than z, where z is chosen to make xq a proper
distribution.

The only thing left to do in verifing the algorithm is to prove
psup > q if and only if En [6(P)|X] > q.

. q ’ ‘
The theorem and proef are similar to those in Section 3. P plays the

role of 02 and P0 plays the role of @

1
Theorem 4.2:
Let qe(pinf,psup) and "q be defined as above.

Then E_  [4(p)IX] 2 .
q

Proof:

Same as Theorem 3.1.

Example 4.1 continued:
We used the algorithm to perform some numeric computations. We
computed psupasup“er{Prﬂ[X2>k2|X1-k1]l in the context of Example

4.1. as a function of kl,k § and ¢ where § and ¢ determine the

2 ‘
class of marginal priors for Po and the size of N(4). We performed
the calculations for kl.kze{.5,1,2} and §,es(1,.9,.8,...,.1).
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The results for the example are givenvin Table 4.1 and plotted in
Figure 4.2, Each plot in Figure 4.2 is for a different combination of
kl and k2. Each plot shows the contours of psup as a function of § and
e for th;se fixed value; of kl and k2. The value of psup at the upper
right corner of each plot, where §=e=l, is the value that would have
been attained by an ordinary Bayesian analysis without allowing for
uncertainty in the prior. As § and ¢ decrease the class I increases so
psup increases. When eithgr § or ¢ is equal to O there is en&ugh
freedom fﬁ the Po-distribution or the distribution of P given Po to make
psup equal to 1. psup increases monotonically from the upper right
corner to the left and lower sides of the plot.

The top side of the plot is where § is fixed at 1 and € is free to
véry, so the P;-distribution is fixed and.the'conditional-distribution -
for P can vary. The right side is where ¢ is fixed-and § varies. In
every one of the nine plots the contour lines ére fairly évenly spaced
along the top but are bunched near the bottom of the right hand side.
That means that a small change in the conditional distribution of P has
a greater effect on psup than a small change in the P

)
Changing the Po-distribution without changing the conditional

-distribution.

distribution of P is the same as doing a standard Bayesian analysis of
sensitivity to the prior where the likelihood is kept fixed. The

results here indicate that small uncertainty in the likelihood is more
important than small uncertainty in the distribution of the parameters

of that likelihood, at least for Example 4.1,
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TABLE 4.1

psup = sup Pr [ X2>1c2 | Xl-k1 ] as a function of kl' k2’ 5, €.
6 controls the class of marginal priors for 4.

¢ controls N(§).

See Example 4.1.

k1=.5 k2-.5
5= .1 2 3 4 .5 6 7 .8 9 1.0
€=
.1 .996 .986 .980 .966 .949 .929 .907 .883 .858 .832
.2 .994 .985 °.970 .950 .927 .900 .870 .839 .805 .771
.3 .99 .979 .961 .937 .909 .877 .842 .805 .767 .728
4,992 .976 .953 .926 .893 .857 .818 .777 .736 .693
.5 .991 .973 .947 .916 .880 .839 .797 .753 .709 .664
.6 .990 .969 .941 .907 .867 .824 .779 .733 .685 .640
.7 .988 .966 .935 .899 .856 .810 .763 .713 .665 .617
.8 .987 .962 .931 .891 .846 .797 .747 .696 .646 597
.9 .985 .959 .926 .884 .836 .786 .733 .680 .629 .579
1.0 .984 .958 .921 .877 .827 .775 .721 .666 .613 .563
k1=.5 k2=1

€=

.1 .991 .992 .985 .974 .964 .949 ,934 .916 .897 .877
.2 .990 .988 .977 .963 .946 .927 .905 .881 .855 .828
.3 .995 .983 .970 .953 .,932 .908 .882 .853 .822 .791
400994 979 .964 943 .920 .892 .862 .830 .796 .76l
.5 .993 .979 .959 .935 .909 .878 .845 .809 .773 .735
.6 .992 .976 .954 .929 .898 .865 .829 .791 .752 .712
.7 .991 .973 .950 .921 .889 .854 .815 .774 .733 .691
.8 .990 .971 .946 .916 .881 .843 .802 .759 .716 .672
.9 .989 .969 .943 .910 .873 .833 .790 .745 .700 .655
1.0 .988 .967 .939 .905 .866 .824 .779 .733 .686 .640
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oOwoR~NNOTULPWLWNDH

k,=.5

.992
.984
.986
.982
.979
.979
.977
974
.972
.970

.995
.991
.988
.984
.982
.979
.977
.979
.978
.977

.978
.968
.958
.951
.943
.936
.930
.925
.920
915

.989
.981
.979
974
.970
.966
.963
.961
.960
.957

.959
.939
.922
.908
.895
.883
.873
.863
.854
.845

TABLE 4.1 continued

.982
974
.966
.958
.954
.949
.944
.940
.937
.933

.934
.903
.879
.858
.840
.823
.808
.793
.781
.768

.976
.962
.952
.944
.935
.928
.921
.916
.910
.906

.904
.863
.831
.803
.780
.758
.739
721
.704
.689

35

.968
.951
.937
.925
.914
.905
.896
.889
.882
.875

.872
.819
.780
.746
.717
.691
.669
.648
.629

.611

.958
.936
.919
.904
.891
.879
.869
.859
.851
.843

.836
774
.727
.688
.655
.627

..601

.578
.557
.536

.947
.921
.900
.882
.866
.852
.839
.828
.817
.808

.800
727
.674
.631
.595
.564
.537
.513
.490
.469

.935
.905
.880
.859
.840
.823
.809
.795
.783
772

.763
.681
.622
.577
.540
.507
.478
454
431
.410

1.0

.922
.886
.858
.833
.812
.793
JT77
.761
.747
.735

1.0

.726
.635
574
.527
487
454
.425
.401
.380
.360



klml k2=1

o
]
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]
=

.99%
.992
.990
.988
.986
.983
.981
.982
.981
.979
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k1=1 k2=2

™
[}
o
0
-

.990
.995
.993
.992
.990
.988
.987
.986
.985
.984

oOowvwo~NONULMPWLWN

[

.985

974
.969
.963
.957
.953
.949
944
.941
.938

.990
.983
.979
.975
.971
.967
.964
.961
.959
.958

.971
.954
.942
.930
.920
.912
.904
.896
.890
.883

.979
.969
.959
.952
.945
.940
.934
.929
.925
.921

TABLE 4.1 continued

- .933
.929
.909
.892
.877
.864
.852
.840

-..830
.820

.969
.951
.937
.925
.915
.905
.897
.890
.883
.877

.931
.899
.872
.850
.829
.812
.795
.780
.767
.754

.954
.930
911
.894
.880
.867
.856
.846
.836
.827

36

.907
.865
.832
.803
779
757
.737
.718
.701
.686

.940
.908
.883
.861
.843
.826
.811
.798
.786
775

.880
.829
.789
.756
.727
.701
.678
.656
.637
.619

.922
.883
.852
.826
.803
.783
.765
.749
.734
.721

.852
791
745
.707
.674
.645
.619
.596
.575
.556

.904
.857
.820
.788
.762
.738
717
.699
.681
.666

.822

.752
.700
.658
.622
.591
.564
.540
.517
497

.883
.829
.786
.750
.720
.693
.670
.649
.630
.613

1.0

.792
714
.657
.611
.573
.541
.512
.487
.465
YA

1.0

.861
.800
.752
.712
.678
.649
.623
.601
.581
.563

»



k1-2 k2-.5

e-

.985
.976
.969
.962
.958
.953
.949
.946
.942
.938

owvwo~NONUB WD

H

k=1 -

!

On
[
-

m
]

.983
.982
.977
.973
.968
.964
.960
.959
.956
.953

OWORNOWVE S WN

.968
.950
.937
924
914
.905
.896
.888
.881
.874

.922
.886
.857
.833
.812
.79
777
.762
.747
.731

.942
.912
.887
.868
.850
834
.819
.806
.793
.782

TABLE 4.1 continued

.881
.830
.789
.757
.728
.704

.680

.656
.632
.607

911
.868
.833
.805
.780
.757

.737 .

.719
.701

.684

.836
.769
.718
.679
.643
.611
.580
.549
.520
492

.876
.819
.776
.739
.707
.679
.654
.629
.605
.582

37

.788
.708
.649
.602
.561
.523
487
454
424
.397

.839
.769
.716
.672
.635
.602
2571
.541
.514
.489

.740
.648
.581
.528
484
442
.406
.375
.347
.322

.799
.717
.656
.607
.565
.528
494
462
.435
.410

.691
.588
.516
462
414
.374
.341
.312
.286
.264

.759
.666
.598
.545
.500
.460
.425
.395
.368
.345

.642
.531
.458
.400
.355
.318
.286

©.261
.239
.219

.718
.615
.543
.486
440
.401
.367
.339
.314
.293

1.0

.598
.479
.404
.348
.305
271
244
.220
.200
.184

1.0

.677
.567
491
.433
.387
.349
.318
.292
.269
.250



.978
.967
.956

.949°

.942
.935
.930
.924
.920
.915

.961
.939
.921
.906
.893
.882
.872
.862
.854
.845

TABLE

4

.939
.906
.880
.858
.840
.823
.807
.79
.780
.768

.915
.871
.836
.807
.782
.760
.740
.722
.705
.689
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continued

.6 .7
.889 .861
.833 .794
.790 .742
.754 .700
.723  .664
.696 .633
.672 .606
.650 .581
.630 .557
.611 .536

.832
.754
.694
.646
.607
.572
.542
.515
491
.469

.802
.713
.647
.595
.551
.515
.483
.456
431
.410

1.0

.770
.672
.601
.545
.500
.462
.431
404
.380

.360

)
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5. MORE PERIPARAMETRIC MODELS

This section discusses some issues raised in the previous section.
First is the question of Qﬂ‘ Is there a Qa in each neighborhood that
maximizes the function h? If so, what is it? If not, how does the
algorithm work? Next we discuss alternatives for the three critical
choices that determine M: defining N(8), defining the set of conditional
distributions for P given_Po and defining the set of marginal
distributioﬁs for P,. Lastly we talk about Prohorov metric

6

neighborhoods as another way to get classes of priors.

Qa"

QG is supposed to maximize h(P)=(#(P)-q)£(X|P) subject to the
- restriction that LGSPSUG' Apart from the restriction only two aspects
of P matter, ¢(P) and £(X|P). It is almost true that we can choose Q,
to optimize these two aspects of P independently of each other. For
ease of exposition we assume every Pefl has a density with respect to
Lébesgue measure and that f(g]P)-f(XIIP).

If we try to optimize the two parts separately then, because £(X|P)
is nonnegative, we should choose QB to maximize ¢(P). For most useful
choices of ¢ this is possible. For example, when J(P)-P(S), the P
probability of the set S, then maximizing ¢(P) means assigning as much
probability ;s possible to the set S.

Let.S be the complement of S. If Ua(S)+L0(§) < 1 we take
Qa(S)=U9(S) a?d define Qg on the set S so that Qa is a probability

measure. - Otherwise, if Uo(S)+L0(§) 2 1, we take Q, (§)=La )
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and define Qﬂ on the set.S so that Q0 is a probability measure. In
either case Qo maximizes P(S) subject to the restrictions.

After Qa(S) has. been determined we can tell whether (Qo(S)-q) is
positive or negative. Q0 should either maximize or minimige f(XllP)
according to the sign of (Qa(S)-q). f(XllP) is just the density of P -
evaluated at the observed value Xl. To maximize or minimize f(xllP) Qﬁ
should have density either u, or 20 at Xl. That is f(XllQo)-ua(Xl) if
Qa(S)>q and f(X1|Q0)—20(X1) if Q0<q.

Once Qa(S) and f(XllQo) have been determined any other features of
—Qo are irrelevant. We can extend the definition of Qo in any way at all
that makes Q0 a probability measure.

To summarize, Qﬂ is determined by these three rules.

1) If Uo(S)+Lo(§) s .1 then for every TcS Q,(T) = U, (T),

else, for evefy TcS, Qa(Ti - LG(T)'
2) If Qu(S) = q then £(X)1Q,) = uy (X)),
else f(XllQo) - 20(X1).
3) Extend rules 1 and 2 so that Qo is a probability measure and

QaeP.

There is a problem with defining Q, By these rules. Since densities
are defined only up to sets of measure 0 rule 2 looks like it might be
nénsensé, or at least meaningless. In other words f(X1|P) is not well
defined. There are two ways to resolve this. We can require that all
thq f(x|P) be continuous functions of x, or we can define f(x|P) to be
the derivative of the c.d.f. and only consider those P for which the

derivative exists.
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Both éf these solutions give meaning to rule 2 in a way that

. preserves the intuition about densities being infinitesimal probability
masses. However, they can lead to another problem, namely that rule 2
can conflict with rule 1. For example, rule 1 might specify that Qo has
density u, on S, but if XleS, QO(S)<q and we uge continuous densities
then rule 2 might require f(leo);la(Xl) in a neighborhood of X,
contradicting rule 1.

In that case.consider a sequence {Qﬂ,n} in which Qv,n obeys rule 2
in a-neighborhood about Xl of size 1/n and othe;wise obeys rule 1.
Posterior and predictive probabilities of sets computed along this
sequence will approach the posterior and predictive probabilities
computed using the Qﬂ with a density discontinuous at Xl’
-f(xllQa)-ﬁa(Xl). Therefore we get the same psup regardless of whether
the £(x|P) are'required to be continuous. From now on we will use
discontinuous densities and not worry about their uniqueness. We do
require that the densities are bounded between 20 and u, for all x, not
just for almost all x.

It might seem that the Qa's we use are, in some instances,
unreasonable, should not be in the support of any reasonable prior, and
therefore I' is too big. It is not trivial to say exactly which
distributions are reasonable. As we have mentioned, simply requiring
continuity of f(x|P) does not change the value of psup. It may be that
we want to bound the modulus of continuity, or make f(x|P) smoother in
some other way. Such restrictions, while they may capture our sense of
reasonableness better, can be harder to specify and work with. For the

present we will continue to allow P's with discontinuous densities.
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N0

Levy metric, L' norm on either densities or cdf’s and total
variation norm are a few extensively studied metrics on I that could be
used to define N(#). Another possibility is to elicit quantiles‘from
‘the expert and define N(f) to be the set of probability measures with
the specified quantiles. Why not use one of these methods to define
neighborhoods?

One answer is that we can use these other definitions of N(4). If
we really think of closeness in @ according to one of those definitions
then computing the corresponding psup and pinf will tell us something
useful. However, I contend, it is usually more natural, or at least
useful, to think of closeness in Q being determined by density bounds.
An‘example will show some problems that arise when computing psup. For
specificity, we take neighborhoods determined by Levy metric (Léeve
(1977, p228)). The Levy distance between two cdf’s is the size of the
largest square that fits between them. This distance has the properﬁy

that a seqﬁence (Fn} of cdf’s converges to F in Levy metric'if and only

if {Fn) converges weakly to F.

xample 4.1 continued:

Consider again Example 4.1 in which the X's have approximately an
exponential distribution. Fix ¢>0 and define N(4) to be the
e-neighborhood of Pa'in the Levy metric. Use the same class of
marginal distributions for Po and conditional distributions for P

given P9 as before. Let S=(l,). Compute
psupnsup"er{Prﬂ[XzeS]Xl-xl]}.
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The solution to the example problem is psup=l for every value of X,

We will show that for every ke(0,1) there exists a prior =€l such that
Prn[xzeSIXl-xl] = k. Within each N(4) there exists a Qﬂ such that

f(xllQo)-O. Figure 5.1 shows P, and Qd’ Take the conditional

0

p to be P—Po if Pa(S)>k and P-Qﬂ if Po(S)sk.

Because f(XllP)>0 only if P(S)>k the posterior assigns probability 1 to

distribution of P given P

distributions that put at least mass k on the set S. Therefore, the
predictive probability of S is greater than k.

What has gone wrong here? One answer is that nothing is wrong. If
we really think of closeness as being similar to weak convergeﬁce, or
Levy metric, then we feally don’t know much about the predictive
distribution of future observables. But this is an unsatisfactory
answer; there is a problem with the definition of N(4). Pa and Qe have
vaétly different densities at some points, x1~inc1uded. Q0 can have
density 0 on a set of positive P6 measure. We get psup~l, and pinf=0,-
because f(x1|Pa)/f(x1|Q0) can be very different from 1.

One way of thinking about whether t&o densitieg are close is to ask
whether you could tell them apart by observing data that was coming from
one of them. In the case of Pﬂ and QG it is easy to tell them apart
when % ié observed. Hoﬁever, when N(4) is defined by properly chosen
density bounds the likelihood ratio cannot get too large or too small
and it is much harder to distinguish between densities in N(#). That is
why we must at least consider neighborhoods determined by bounds on

densities. We may want to have more restrictions as well, say by

bounding the densities and the Levy metric. But density bounds must be

considered.
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Distribution of P given g#

After defining the neighborhoods (N(#):6€8} the second critical
point in describing T was to give a set of conditional distributions for
P given Pa. Section 4 allowed any conditional distribution satisfyihg
Pr[PeN(a)[PG]-l. We now consider other possibilities.

One reason to consider other distributions is that we may not be
completely sure that the true sampling distribution is close to ﬁhe
parametric family. There may be a small probability, say a, that the
sampling distribution lies far from the family. We can model this
uncertainty by using a class of priors satisfying ﬁ(QaeeN(ﬂ))zl-a. We
- give a brief description of how to find " for two sets of conditional
distributions for P given Po that satisfy the previous inequality.

One model for the distribution of P is that after selecting‘Pa we
choose PeN(#) with probability at least l-a. This means
Pr[PeN(f)|P,]2l-e for all ¢e8. For this setup we find Q, as in section
4, and also find Qefl maximizing h. That is, h(Q)-supPen(h(P)). Then
the conditional distribution Pr[P-QolPa]fl-a and Pr[P-Q|P9]=a puts as
much weight as possible where h is large. If T has this conditional
distribution for P given Po then a revised version of Theorem 412 holds
'and the algorithm works.

A second set of conditional distributions that give priors ﬁith
n(ereN(a))zl-a is that in which for some § P is in N(4) with
probability 1 but for other § P is arbitrary. More formally,
Pr[Pr[PeN(0)|P9]=l]21—a. In this expression Pr[PeN(€)|Pa] ?s random, it

depends on~P9. It is equal to 1 with probability at least 1l-a.
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For this set of conditional distributions we should take
Pr[P-Qolro]-l if h(Q0)>z and Pr[P—QlPo]-l if h(Q9)<z. This choice puts
as much weight as possible where h is large. Again, a revised.version
of Theorem 4.2 obtains.

Another reason to consider different sets of conditional
distributions is to control how mass is spread around the neighborhood
of each Pﬂ‘ Instead of associating with each § a single neighborhood
N(8) that gets conditional probability 1 we can construct an increasing
sequence of neighborhoods {Ni(a)} where the i-th neighborhood gets
probability Py- Then we would use the set of conditional probabilities
satisfying Pr[PeNi(0)|Pa]-pi. To find "q we would find Qo,igNi(a) such
that h(Qo'i)-sup{h(P):PeNi(o)} and let "q have conditional distribution
Pr[P’Qo,iipﬁ]-pi-pi-l' Then we define hm(Po)-z(pi-pi-l)h(Qa,i) and take

uq to have marginal distribution for P that puts as much weight as

§
possible where n® is large. This generalizes section & where pl-l and

m
B"(2,)=h(Q,).

Distribution of go

The third and final critical point in defining I' was giving the set
of marginal distributions for P,. Section 4 used density-bounded
classes. One variation is to use the classes of distributions discussed
in section 3. There 4§ was multidimensional, at-(ol,...,ok) say, and a
class of priors was given by lower and upper bounds on all the
conditional distributions wc(01|01,...,01_l). In this notation the aj's

can be vector valued and have different dimensions. Section 3 explained

how to choose nq to optimize the posterior expectation of ¢.
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Another possibility is the DeRobertis-Hartigan (1981) class of
priors, Fmi(ﬁ:LSISU) where n is any measure, not necessarilj proper. If
L has infinite mass then so will x. DeRobertis and Hartigan discuss an
example in which both L and U are proportional to Lebesgue measure on
the real line. They also solve the problem of maximizing and minimizing
the posterior expectation of g(f) over the class. If we define
g(0)-¢(Q0) thgn we can use I'" as the class of Pa—distributions and find
psup by the usual algorithm.

Several authors including Huber (1973), Sivaganesan (1986) and
Sivaganesan and Berger (1987) give results on maximizing and minimizing
the posterior expectation of ¢(P) over e-contamination clagses. The
results are for particular choices of the function ¢ and the class of
allowable contaminations. The general rule is that whenever we can
figure out what "putting as much.prior mass as possible where S

large” means then we can apply the algorithm.

Example 5.1:

Consider the e—contamination class Fmi(z - (1—e)n0 + €y : yeG) where
ec(0,1) is fixed, T is a fixed prior and G is the class of all
possible distributions on 6. If there exists §’'€® such that
hm(ﬂ')-supoeeh(ﬂ) define v’ to be the distribution degenerate at §'.
Clearly (l-e)n-o + ey’ puts as much prior mass as possible where n"

is large. We can use the algorithm by proving a version of Theorem
4.2.

Example 5.2:

Berger (1987) mentions the quantile class of distributions

{r : cist(i)r(dﬂ)sdi, i=1l,...,m) where I(i) is the i-th ele?ent of
a partition of ©, and ci,die[o,ll are fixed bounds on the prior

probability of I(i). We can find “q as follows. Choose 0ieIi to
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maximize h"(¢). Within I(i) assign mass ¢; to .. Then find j such
that hm(oj)-max{hmgoi)) and give oj all the remaining mass, but not
more than dj-cj' Continue until all the mass is assigned. The
resulting marginal prior for P0 puts as much mass as possible where
h" is large, so we can prove the appropriate theorem and apply the
algorithm.

A Prohorov neighborhoods

We have des¢ribed classes of priors on §I by classes of P,-marginals

0
and P-conditionals. A different class of priors is the set
{r : d(ﬁ,no)Se) where d is the Prohorov metric (Billingsley (1968)), L1
is gome fixed prior and ¢ is a fixed scalar in (0,1). d(w,wo) is
defined to be the infimum of a’s satisfying «o(B) =< w(Ba)+a fo: all
measurable B where B® is the union of all open balls of radius «
centered at a point in B. This definition requires a distance defined
between members of O so that B® is defined.

The Prohorov metric is aﬁpealing both for its interpretation of
closeness of priors and because convergence in the Prohorov metric is
equivalent to weak convergence (Billingsiey (1968)). The interpretation
for us is that d(n,wo)Se means that if % puts mass c on the set B then
7 must put approximately the same amount of mass, at least c-¢, on a
nearby set, B®. There is a close relétionship between Prohorov
neighborhoods and the I''s we have been studying.

One aspect of the relationship is that N(#) and p% are both supposed
to represent the set of points near a given boint. We are required to
use a metric to define P%. We may, if we choose, use the same metric to
define N(4). ﬁe discussed previously what happens to psup when N(f) is

defined by a standard metric and when the conditional distribution for P
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given PO satisfies either Pr[PeN(0)|P0]21-e or Pr[Pr[PeN(ﬂ)IPG]al]zl-e.
Those conditions both satisfy E[Pr[PEN(G)IPO]]Zl-e so those results are
relevant here.

Another aspect of the relationship is that the I''s we use have
interpretations similar to Prohorov neighborhoods. Suppose that N(8)=P¢
is defined by some metric and.that the conditional distribution of P
given Po satisfies E[Pr[PeN(ﬂ)lPa]]al-e. Then, for Bcl and =€l
l-¢ < fPr[PeN(o)lPa]

- fIBPr[peN(mro] + f(l-IB)Pr[PeN(0)|P0]

< [I Pr[PaN(d)|P,] + 1 - 7" (B)

> [1Pr(PeN(d)|B,] = x(B)=e¢.

Hence n(B®) = Pr([P,€B,PeN(d)] = [I,Pr[PeN(8)|B,] 2 ar"i(s)-e. So
d(ﬁ,ﬁm)Se and I’'c{n : d(w,nm)se). This leads naturally to t?e question
"Is I'={m : d(w,xm)Se}?" I don't know.the complete answer but Appendix A

‘proves a related result for the case where T, is discrete.
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6. REGRESSION

This section generalizes the previous discussion, which has been
primarily about conditionally i.i.d. random variables, to the regression

setting. In a typical regression setting the observation for the i-th

case consists of the random variable Yi and the covariate X, which may

i

be multidimensional. We assume that Yi has a distribution in

some parametric family indexed by 4, say Yi - Po
i

and that 01 is a function of Xi and an unknown, possibly
multidimensional, parameter 8. The regression function is known, say
Bi = r(xi,ﬁ).

The Yis are assumed to be independent given § and the Xis. We also
require that someone, usually the "expert,"” provides a prior opinion

about B expressed by a probability measure. Of course the ¢
notation is superfluous. Instead of P, we could write P .

0, r(X,,B)
We use whichever notation is more convenient.

Example 6.1 Probit Regression:
Racine et al (1986) consider a probit regression in an acute
toxicity test. They say "Typically such a test proceeds by

administering various dose levels of the substance to batches of

animals and subsequently observing their responses. The latter are
most often characterized in terms of a simple dichotomy: for

example, alive or dead." The Racine data are in the following
table.
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Dose (mg/ml) Number of Animals Number of Deaths

422 5 0
744 5 1
948 5 3
2069 5 5

In this eiample Xi is the i-th dose and Yi is the number of deaths

in the i-th group of animals. Yi is taken to be binomially
distributed with parameter (01,5)t where 01 - Q(ﬂ°+ﬂ11n(xi)) and &
is the standard normal cdf. Some experts had a prior opinion about
the chemical substance that some statisticians summarized as a
bivariate normal prior distribution for g= (ﬁo,ﬁl) with mean
p=(=17.31, 2. 57) and covariance matrix

T = [ 1053.72 -156.45)

| -156.45.  23.24 ).

Example 6.2 Linear Reg;essiog

The usual linear regreSSLOn setting assumes (Yi) ~ N(Xiﬂ, o ).

The regression function is r(xi,ﬂ,a ) = (X ﬂ, 02) Weighted

regression, non-linear regression, non-normal regression and
generalized linear models all fit into the framework we have
described.

A choice of parametric family~(Pozﬂee}, regression function r and
distribution for B is equivalent to a prior distribution on OxOx...xQ
where Yi has distributioﬁ Pi’ an elemenf of the i-th factor of Q. The
Yis are assumed to be independent given the Pis. The number of factors
can be large enough to accomodate future cases for which prediction is
desired. Of course we usually can’t specify a unique satisfactory prior
distribution on OxQOx,...,xQ so we want to consider a class of plausible

priors and see how much our inference varies over the class. We will

define a class of priors using neighborhoods N(Oi)cn and lower and upper
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bounds on both the regression function and the distribution of g. The
new features are the regression function and the corresponding set of
lower and upper bounds.

We are taking the Xis to be fixed and known. If desired, errors in
measurement could be modeled by the following scheme. Let Xg be the set
of possible "true values" for the covariate in thé i-th case and define
N(xi) - U{N(r(Xi,ﬂ)):Xiexil. N(xi)-contains all the points in I close
to the parametric distributions corresponding to any possible "true
value" of the covariate. To model the situation in.which the Xis are
fixed but are measured with a small amount of error use N(xi) instead of
N(ﬂi)‘in the definition of the class of priors.

We canldecompose the prior distribution on OX(X...xQ into two parts,

the harginal distribution of 20 - (PG ,Pa ,..;,Po ) and the conditional
) 1 "2 n

distribution of P = (Pl’PZ""'Pn) given (Pol,Pa ""'P0 ).

2 n
We define I', a class of priors, by a class of marginal distributions

for gd and a class of conditional distributions for P given P For the

’E
class of conditional distributions we take the set of

all distributions satisfying Pr [PieN(oi)lPo ] =1 for all ie{l,...,n}.

A marginal distribution for Po ,...,Po is determined by a regression

1 n
function and a distribution on 8. For the class of marginal
distributions we take the set of all distributions determined by any
regression function between a set of lower Qnd upper bounds and any
distribution for B between another set of lowe; and upper bounds. That

is, if r is real valued, 20 can have any distribution determined by r
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8 <rT = up..

vector valued the description of the bounds is different. When x is a

and n where zr(xi,ﬂ) =< r(Xi,ﬁ) < ur(Xi,ﬂ) and £ If r is

prior let 7" denote the distribution of the B's and x° denote the

distribution of P given 20.

Before proceeding further we must resolve one more issue. Should

xi-xj imply P -Pj? We usually want X j to imply ai-oj and hence

i)-N(aj). But this does not mean P,=P, or even that P and PJ have

173
the same conditional distribution given Pa. Many possibilities would

N(d

have their uses. In some circumstances we might require Pi 3 In
others we might require Pi and Pj to-be independent but have the same

conditional diséfibution given 20' In still others we might not require
ﬁhe conditional distributioné to be the same. Each possibility says
something different about our prior opinion. We will discuss how to
fiﬁd psup when we allow different c;nditiopal distributions. The
modification for identical distributions is easy.

Now the question is how to compute psup for this type of I' 1In
general we can find psup for any function ¢(P). As a specific example
suppose we are interested in the predictivg distribution of a future
observable and take ¢(£)-Pn(8).

First we express the conditional distribution of Yn given

xl""’xn'Yl""’Yﬁ-l and some particular regression function r.
Pr | Yﬁss | xl""’xn’Yl”°"Yn-1 ] =
n-1
JB () I £(¥,|P,) =(dB)
i=1
n-1
J o £(Y;1B;) m(dP)
i=1
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Using the same idea as before we see thaf this probability is greater
than or equal to q if and only if |

n-1
[@ -0 T £ [P;) =(ap) = 0.
We look for choices for 7 and r that make the inequality true when .
qe(pinf,psup). As in Section 4 we first try to maximize Pn(S) and then
either ﬁaximize or minimize the product of the f(YiIPi) according ;o the
sign of (Pn(S)-q). The Xis are fixed and we are constrained by
PieN(ﬂi)-N(r(Xi,ﬂ)). Theldevelopment here is similar to that in
previous sections. '

We start by treating r and f as fixed and finding w:(-lr,ﬂ). For
each B we find r:’r’ fEN(Z(X_,6)) that maximizes B(S) over all
PEN(r(X_,8)). Then for each ie(l,...,n-1) ve find P:’r’ eN(x(X,,5))
that maximizes or minimizes f(YilP), according to whether (P:’r’ﬂ(S)-q)
is positive or negativé. We take w:('[r,ﬂ) to be degenerate at

* * t
(Pl,r,ﬂ’°'°’Pn,r,ﬂ)’

That gives the conditional distributions of the Pis for a fixed pair

(r,B). Now we treat only B as fixed and find the best regression

function for that 8.

Since we know what the P! s are for each r and we are treating B

i,r,B

as fixed we can think of the integrand (Pn(S)-q)Hf(YilPi) as a function -

of r. We want to choose r* to maximize the integral.

Now r is itself a function and the only aspect of r that matters is
the set of values r(Xl,ﬁ),...,r(Xn,ﬁ). We start defining r* by choosing
the value r*(Xn,ﬁ). We take r*(xn,ﬂ)‘to be that value in

[ﬂr(Xn,ﬂ), ur(Xn,ﬁ)] that maximizes
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* *
(Pn,r,ﬂ(s) - q) n[i:Xi-Xn}f(YiIPi,r,ﬁ)' Then we choose the other

values. We take, for example, r*(Xk,ﬂ) to be the value in

[Zr(xk,ﬂ), ur(Xk,ﬂ)] that either maximizes or minimizes

*

‘ %*
f(Yi1Pi,r,ﬁ) according to whether (Pn,r,ﬂ(s)-q)

n .
[i.Xi Xk}
is positive or negative.

Now we know what r and the Pis should be for any fixed value of 8.

The only thing left to do is choose nz to maximize the integral. But we
have done this sort of thing before. We treat the integrand as a

funciton of B8, say h(B8). We take the density of wz to be up whenever

h(8)>z and to be zﬂ whenever h(8)<z. We choose z to make nz be a

probability measure. We know from previous results that

Pr r*[ Y£§S|X1,...,Xh,Yl,...,Yh_l 12g¢q ¢ psup = q.

Example 6.1 continued
Example 6.1 discusses a probit regression with a bivariate normal
marginal prior ﬂg for B and a regression function ro(X,ﬂ) -
@(ﬂo+ﬂ11n(X)). Consider the following bounds on the regression
function and the prior for 8.
rO(X//Z.ﬁ) s rX,p) = ro(JZX{ﬁ) and

7o (8)/J2 s 7 (B) < J2my(B)

Compute psup and pinf, the largest and smallest probabilities of

success (death) for a dose X as r and = range over their permissible

values,

Predictions were made for the following six dosages in the context
of Example 6.1.
X= 245 403 665 1097 1808 2981

In(X)= 5.5 6.0 6.5 7.0 7.5 8.0
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pinf and psup were computed under eight conditions that form a 23

design. The three factors and their levels are

1) use the original x, let r vary as described above
2) use the original xg let #° vary as described above
3) make predictions before make predictions after looking
looking at the data at the data (posterior)
(prior)

Computed values of pinf and psup are in Table 6.1.

When we use a range for.che regression function then pinf and psup
are closer together before performing the experiment than afterward. It
is as though collecting data has increased our uncertainty or décreased

our understanding of the drug’s hazards. One possible explanation is

that there are more variables we can use in the posterior case either to

increase psup or to decrease pinf. Suppose we are trying to predict the
probability of a success at dosage X=x. In the prior case, before
observing data, the only part of the regression function that matters is
r(x,f). In the posterior case, after observing data, r(422,8),
r(744,8), r(948,8) and r(2069,8) are also important. We can manipulate
those parts of the regression function to lower pinf and raise psﬁp.

The posterior probability of success is fr(x,ﬁ) posteri&r(dﬁ). When
we have data at xl,...,xh to work with we can choose r(Xi,ﬁ) to give
more posterior weight to ﬁ; where r(x,8) is large and hence increase
psup. However, we expect this effect to disappear as we collect even
more data because any values for r(Xi,ﬂ) that are far from the mle =
(# of successes)/(# of trials) will be severely downweighted by the

likelihood.
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(pinf, psup) for Example 6.1, the regression example

In(dose)

fixed =
fixed r

Prior predictions

5.5
6.0
6.5
7.0
7.5
8.0

Posterior predictions
.001)
.007)
.112)
.854)
.985)
.997)

5.5
' 6.0
6.5
7.0
7.5
8.0

(

(
(
(
(
(

(.
(.
(.
(.
(.
(.

042,
.072,
.215,
.804,
.929,
- 958,

001,
007,
112,
854,
985,
997,

.042)
.072)
.215)
.804)
.929)
.958)

TABLE 6.1

" bounded n
fixed r

PN N N SN NN

.029,
.051,
.161,
.743,
.901,
.941,

.000,
.004,
.086,
.788,
975,
.995,

.060)
.103)
.279)
.856)
.951)
.971)

.003)
.013)
.141)
.866)
.991)
.999)
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PN AN N AN N

fixed n

bounded r

.032,

.092,
.376,
.870,
.942,

PN SN SN SN N A

.000,
.000,
.000,

.048,

.060)
.139)
.667)
.912)
.953)
.969)

.243)
.512)
.980)
.025,1.000)
.396,1.000)

(.670,1.000)

bounded =«

bounded r

.023,
.034,
.065,
311,

PN SN SN N NN

.918,

(.000,
(.000,
(.000,

.821,

.085)
.190) .
.731)
.938)
.967)
.978)

.282)
.543)
.986)

(.019,1.000)
(.364,1.000)
(.723,1.000)



.7. CLOSING REMARKS

Statisticians often perform analyses that begin by assuming a
parametric distribution for the random variables. We hope that the
assumption, made for computational convenience, doesn’t lead us too far
astray. The basis for the hope is usually a belief that the parametric
model is approximately right or that the analysis is robust in some
appropriate sense.

The research described in this paper was motivated by a
dissatisfaction with that approach. We have seen how to do Bayesian
analyses on classes of distributions that are not limited to parametric
‘families. But neither are éhey completely gene:al. They are
periparametric and therefore tied to the underlying parametric family.
Periparametric families are useful when there is a parametric family we
believe to be approximately right.

Here is a list of key points in the technique for computing psup
over periparametric classes of priors.

1) Use a class of priors rather than a single prior.

2) Priors are measures on {}, not 6.

3) Define a prior by its marginal on 6 and its conditional on Q

given 4.

4) For every q€[0,1] we caﬁ test whether psup is greater than q.

Section 4 uses those four points to define periparametric classes of
priors and compute the corresponding set of posterior answers. Sections
5 and 6 discuss some issues raised in Section 4 and give some

generalizations.
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Density bounds arise naturally in defining the neighborhoods (N(4))
that are used in constructing periparametric priors. As a bonus we can
use them as in Sections 2 and 3 to define classes of ﬁriors on
parametric families.

Box and Tiao (1962) discuss something that might be called
sensitivity to the likelihood. But what are called differ;nt
likelihoods in the usual terminology are different subsets of Q@ in our
terminology. Sensitivity to the likelihood deals with the effects of
different priors on @ and is really just aﬁother aspect of sensitivity

to the prior.

This research was supported by the National Institute of General

Medical Sciences GM 2527.
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8. APPENDIX

Theorem:

Let u be a measure on a measurable space x. Suppose ux has finite
support, say {xl,xz,...,xn}, and that p(x)<w. For each ie{l,...,n} let
there be an associated measurable set Nicx. Suppose v is another finite

measure on x satisfying

® v (UN) = (U x)

iel iel
for every Ic{1,2,...,n): Then v has a representation as
v =uv + vy + ... + v + a where

. "

a) each vy is a measure satisfying ui(Ni) = ui(x) = p(xi) and

b) a is a measure. ‘
The first equality in condition a) says that vy assigns mass only to the
i-th set. The second equality says that the total mass of vy is the
same as p(xi). It is as though the point mass from u were spread
throughout the set Ni to become the measure v,

This theorem is related to Prohorov neighborhoods and the class T' of
Section 5. Let d be the Prohorov metric and B be the e-neighborhood of
B. If d(v,u)<e, then v(Be)Zp(B)-e. Suppose u is a discrete probability
measure on ©, a parametric subset of Q. The theorem says that the

collection of probability measures v satisfying the stronger condition

U(Be)Zp(B) is the periparametric class I', of priors with Pa-marginal u

o

and P-conditional satisfying Pr[PeP;|P0]=1. Clearly every vel satisfies

u(Be)Zp(B). But if u(Be)Zy(B) the theorem says u=2ui where

q)
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ui(P;)-ui(O). v is equal to the measure that has p as its marginal and

ui/ui(P;) as its conditional. So verl.

Proof of Theorem:

The proof is by induction on n, the number of points in the support of
p. The theorem is obviously true for n=1 and is not hard to show
directly for n=2.

Assume the theorem holds when the support of s is n-1 points. We
want to show that it is also true when the support is n points. Let u.
be a finite measure with support (xl,...,in] aﬁd v be a finite measure
satisfying (*). When m is a measure and S is a measurable set let (m|S)
denote the measure m restricted to tﬁe set S, i.e. (m|S)(B) = m(BS) for
all measurable sets B.

Because v satisfies (*) in relation to u,v also satisfies (*) in
relation to (u| {xl, eee ,xn_l}) , a measure with n-1 support points.,
Therefore v has a representatioh

v=v. +v, + ... + v + a where
1 n-1

2
a) each vy is a measure satisfying ui(Ni) - vi(x) - p(xi) and
b) a is a measure.

If a(Nn) = p(xn) we could define

B(x)
vy = m . (aan) and
n
*
a =a-vy_.
n
*
Then we would be done becausekul,.,.,un,a would satisfy a) and b). So

assume that a(Nn) < p(xn). The idea behind the proof is to start with
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‘ * *
ViseeoaVy 0@ and modify them to create ViseoosVp 11@ in such a way

that v:,...,v:_l,a* still satisfy a) and b) and a*(Nn)Zp(xn). If we can

*

show that such modifications exist we will be done.

9)

Partition the set {1,...,n-1) into two.subsets I and I such that i€l

if and only if there exists a sequence of indices a

1) ual(Nn) > 0 and

1

2) v (RN ) >0 for j € (2,...,k).

i T8

Claim: I is not empty and a ( ﬁn V) Ni) > 0.
I

If = ui( Nn )=0
1
then c(Nn) - v(Nn) = p(xn) by (*).

assuming c(Nn) < p(xn). But

: n-1
if f ui( Nn )y>0

ie

This is impossible

.,ak-i such that

. 9

ai

because we are

then there exists some particular i’ such that ui'(Nn) >0. I is not

empty because i'e€l.

By the definition of I if i€l and j€I then yj(Ni)ﬂo. Let

A= Nn u( u N1 ). Again using (%)

iel

plx) + = p(x;) = v()
o ojer Gt
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- 3 vi(A) + a(A)
iel

- T v A) +aN) + a(ﬁn UN

)
iel fer &

- 3 Mg)+ﬂ%)+ﬂ& UN

)
iel fer 1

= p(x) - a(N) = a(ﬁn UN).

iel

We are assuming that the left hand side is strictly positive, which

proves the claim.
Any sequence of distinct indices (al,...,aj:aiél) will be called a
chain of length j. If the quantities

“(ﬁnuéj)' yaj(N5N35-1)' vaj-l(NnNaj-z)....,uaz(NnNal), ual(Nn)

are all positive the chain is said to be available. Otherwise the chain

is said to be broken. The claim implies that there is at least one

available chain.
We can use an available chain to define new v’s and a new a.

Suppose the chain (al,...,a ) is available. Let r be the minimum of

J
a(NN ), v (NN ), v (NN Yoo (NN D), v (N)
naj aj naj-l aj-l naj_z ‘82 nal al n
We can define
* r —
@ - @ - (][N N )
‘ a(¥ N ) 8y
na .
]
r
+ (v_ IN))
v (N) s
al n
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v - v - (v, INN_ )
a a v, (Nnua y & B 3.1
J j-1
r —
+ (¢|NN )
a(N N_) nay
na
J
* r
1 74 = )74 - (u IN )
3541 85-1 ve (®N_ ) %51 "o
-1 -2
r
) + (-' ) y& l nNa )
v. (NN 5 §-1
aj n.aj_l
* r
v -V - — (v INN )
) 89 v, (EN ) %2 7%
2 1
r —-—
+ (v. INN )
3 2
r
v: - v, - (Va INn)
1 1 v (N) 1
a n
1
r -—
+ — (v. |INN_ )
v, ("N_°) 8 3
2 1
For an index i not in (al,...,aj} define v: = v Every tgrm that

appears with a plus sign also appears with a minus sign so it isvstill
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* *
true that v = vit ...ty 4 ta. Every term that was added or

subtracted is a measure with total mass r. For every k the measure that

k

‘ *
conditions .a) and b) above. Also a (Nn) - a(Nn) + r so we are closer to

. *
was added to vy put all its mass on N, . So vl,...,u:_l,a satisfy

the goal of a*(Nn)zp(xn).

We want to proceed in this fashion, using available chains to
redefine the measures until we reach the goal. We will always use a
superscript * to indicate the next redefinition of the process and a
lack of superscript to indicate the current state. We know from the
‘claim that as long as we have not reached the goal.there are still
available chains. The question is whether we can reach the goal in
finitely many steps.

When a chain is used to redefine the measures that chain becomes
broken. Since there are only finitely many chains it may Appear that we
must reach the goal in finitély many steps. However, it is possible for
a broken chain to be fixed 5y a 'subsequent redefinition. If, in
addition, r, the amount of mass by which we are able to increase a(Nn),
is decreasing fast enough, we may never reach the goal. To conclude the
proof of the theorem we show that if the chains are used in the proper
order then no broken chain can be fixed and made available by any
subsequent redefinition. |

The ordering is simple. Order the chains by length and use the
shortest chains first. For chains of the same length the ordering does
not matter. We’ll look first at what happens to chains of length 1 and
then consider longer chains.

Suppose a chain of length 1 is available and we use it to rédefine

the measures. By renumbering we can let 1 be the only index in the’
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chain. So, a(ﬁan)>0 and vl(Nn)>O. After the redefinition either
a*(ﬁan)-O or u:(Nn)-O. We see by the general form for redefining the
measures fhat a increases on Nn and decreases on ﬁn so that a*<ﬁhN1) can
never become positiﬁe again once it has reached 0. Likewise, VI can
only decrease on Nn’ Therefore a chain of length 1 can never become
available again once it has been broken.

For longer chains the argument is more complex. We will examine the
conditions that must hold at the first time any chain is made available
by a redefinition that comes from a chain of equal or greater length.

We will see that such a situation is impossible and conclude that there
is no such first time.

Say that Chain 1 has indices al,...,aj and is now broken. Chain 2
with indices bl,...,bk is available and, if we redefine the measures
using Chain 2, Cha;n 1l will become available. Assume k=j. Here are the

quantities of interest for the two chains.

Chain 1 - Chain 2
a¥ N ) a(M N )
n aj n bk
v (NN ) v, (NN )
a.j n a.j_1 bk n k-1
v (NN ) v (NN )
ai+1 n ai b£+1 n b£
v. (NN ) v, (NN )
ai n a._l b£ n b2-1
v (NN ) v, (NN )
a, n a1 b2 n bl
ual(Nn) ubl(Nn)
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We know from the discussion on chains of length 1 that neither

a(NnNa ) nor v, (Nn)
1 1
will increase when we update the process. If the redefinition is to

make Chain 1 available it must be by changing one of the other

quantities. To be specific let’s say that

- * =
v (NN ) = 0 but that v (NN ) will be positive.
a;'ma; 5 a; na; )

Also we’ll assume that the other quantities from Chain 1 are positive
and leave the interested reader to deal with the case when more than one

quantity becomes positive simultaneously. The redefinition will change

v, only if a, appears in Chain 2. To be specific let’s say a

inbj.

From the general form for redefinition we see that v, "y will
i "2

increase on the set NnNa only if vy (NnN )>0 or a(NnNa )>0.

i-1 41 M3 i-1

But if o(N N )>0 then the chain a
nasa

1’82""’31-1 is available

and is shorter than Chain 2. Because we use short chains first
(al"'°’ai-1) must have been broken at some earlier point and then

repaired. But repairing Chain 1 is supposed to be the first instance of

repair. Therefore a(N N )=0 and hence v. (NN )>0.
nai bor P35

Now consider two more chains.

b b

Chain 3 = (31,32,...?8-:1-1, £+1!

£+2""’bk) and

Chain 4 = (bl’bZ""'bﬂ-l’ai’ai+l""'aj)'
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Because vy (N N, ) >0 Chain 3 {is available.
241 M8

Also, v_ (NN ) = v, (NN ) > 0, so that Chain 4 is available.
a;, n bz_1 bz n b£_1

Because Chain 4 is available and we are contemplating using Chain 2,
Chain 4 must be at least as iong as Chain 2. Hence j-i = k-£ > k-(£+1)
and Chain 3 is shorter than Chain 1. Therefore Chain 3 was used and
broken earlier but is now available again. That contradicts the
assumption that Chain 1 will be the first chain to be repaired by a
 subsequent redefinition. |
Assuming that Chain 1 is the first chain to be repaired by a

subsequent redefiniton leads to a contradiction. We conclude'that there
is no such first chain and hence that no chains are repaired by

subsequent redefinitions. Therefore there can be only finitely many

redefinitions. The proof is complete.
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