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PRIOR INFLUENCE IN BAYESIAN STATISTICS 

!. INTRODUCTION 

Objective 

The work described here is motivated by a position that was well 

expressed by Berger (1986): 

"The robust Bayesian position can be roughly stated as follows: An 
answer to a statistical problem is a good answer only if ... the 
answer-would approximately equal the posterior Bayes 4nswer for any 
reasonable sampling model and prior distribution .... " 

But how can we tell whether "the answer would approximately equal 

the posterior Bayes answer for any reasonable sampling model and prior 

distribution: This report provides a guide by doing two things: 

describing classes of sampling models and prior distributions that are 

useful surrogates for the class of all "reasonable sampling model(s) and 

prior distribution(s)", and showing how to compute the resulting classes 

of posterior Bayes answers to particular statistical problems. 

We will be calculating Bayes answers of the form J;(P)posterior(dP), 

or equivalently, E [;(P)IX], where Pis a possible sampling model for 
~ - . 

the data!,; is a real-valued functional of P, posterior is the usual 

Bayes posterior measure and E [.] means expectation using~ as the w 

prior. Four common examples are ;(P)-P(S) where Sis a set, ;(P)=JXdP, 

·;(P)-lB(P) where 1
8 

is the indicator function and ;(P)-L(P,a) where a is 

an action and Lis a loss function. These make J;(P)posterior(dP) equal 

to the predictive probability that the next observation lies in the set 

S, the predictive mean,. the posterior probability that Plies in the set 

Band the posterior expected loss of a, respectively. Berger (1987) 
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calls these quantities "ratio-linear11 because they are the ratios 

J,(P)f(!IP)w(dP)/Jf(!IP)w(dP) of linear functionals of the prior w where 

f(!I-) is the likelihood ~unction. 

Because we are conditioning on X and treating. it as known 
. -

conclusions about the set of possible posterior answers apply only to 

the particular data set we are using. It can easily turn out that a 

single class of sampling models and priors will lead to either small or 

large sets of posterior answers depending on the data that were 

observed. 

Section 2 introduces· density-bounded classes of priors for 

parametric families and shows how to compute the resultant suprema and 

infema of ratior-linear posterior quantities. Section 3 gives a 

variation of density-bounded classes. Section 4 uses density bounds to 

define classes of periparametric priors and compute the ranges of ratio

linear answers. Section 5 discusses some issues raised in Section 4 

while Section 6 shows how to extend the peripar.amet~ic results to a 

regression setting. Finally, Section 7 presents a technical theorem 

relating periparametric classes to the Prohorov metric. 
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2,. DENSITY BOUNDED CIASSES OF PRIORS 

Introduction ,l;.Q, the Class 

This chapter defines r, a class of prior distributions for a 

parametric family, and shows how to compute psup - sup er{E [;(B)IX]) 
ff' 1( -

where 9 is a parameter value indexing the sampling model P,; is a real-

valued function and Xis the observed data. Berger and Berliner (1986), 

Berger and Sellke (1987), Sivaganesan and Berger (1987), DeRobertis and 

Hartigan (1981), and others have done similar things for different 

classes of priors. 

Let {P
6

:Se8) be a parametric family of distributions all having a 

density with respect to·the same underlying measure and let f(~IS) 

denote the joint density of the data X in the usual fashion. For 

measures Land U on 8, ~e say~ if L(B):SU(B) ·for all measurable Bee 

Let USU and L(8)<l<U(8)<~. Definer, a density-bounded class of 

probability measures by r - {1r:~1r.SU;1r(8)-l). 

Sometimes we will want to use an upper boundary U that has infinite 

mass. That will usually not pose any problem. DeRobertis and Hartigan 

(1981) use the related class of measures {1r:~1r.SU) where ,r(8) need not 

be 1. 

The class r is called density-bounded because it is often more natural 

to definer by bounds on densities. Without loss of generality, let L 

and U have densities land u with respect to some measure v. Then 

r-(1r:J(8)~p(9)~u(9) v a.s.; fp(8)v(d8)-l} where pis the density of ff' 

with respect to v. In almost all applications we can take v to be 

Lebesgue measure. 
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We will be using r to represent uncertainty in the prior 

distributions. In any particular problem we try to choose Land U so 

that r contains almost all of the plausible or reasonable priors and 

almost none of the implausible or unreasonable ones. 

L, U and ff are defined as measures on the parameter space 8, but are 

equivalent to measures on the set of distributions (P
8

:Se8) where 8 is 

identified with (P8 :0e8) and 6 with P
8

• We use whichever notation seems 

convenient; i.e., we use E[.fS) and E[.fP8] or ;(9) and ;(P9) 

interchangeably. 

One density-bounded class of priors is r-(~:eff0~~(1/E)ff0 :ff(8)=1} 

where ffO is a fixed prior and Ee (0,1] is a fixed scalar. However, 

this class o~ly contains priors with the same type of tail behavior as 

ff0 . We often want L to have smaller tails and U to have larger tails 

than ffo· 

Density-bounded classes of priors are special cases of e-contamination 

classes. An e-contamination class is a set of priors ((1-E)ff0 + eq(qeQ} 

where ffO is a fixed prior, ee[O,l] is a fixed scalar and Q is a class of 

allowable contaminations. A lower bound Lis not a prior because 

L(8)<1. It can be written as (1-E)•(L/L(8)) where (L/L(8)) is a prior 

and e-(l-L(8)). Any prior that falls between Land U can be written as 

(l-e)•(L/L(8)) + eq where q is a prior from some allowable class that is 

determined by Land U. It is not true· that every e-contamination class 

is a density-bounded class. 
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Computing sup and inf of E,r[~(B)l!l 

The set r*-{E [~(B)IX]:ner} of all possible posterior expectations of 
fl' -

; is an interval. * _To see this suppose that c1 and c2 are in r and 

C -i E,r_[;(B)l!] where ,rier. 
1 

Then n er for any EE[O,l] and 
E. 

E [;(B)IX] is a continuous function of E. 
fl' -

E 

- * We can characterizer by its endpoints. Define 

psup - sup 
ner 

and pinf - inf 
. ner 

E [;(B) IX] 
fl' -

E [;(B) IX]. 
fl' -

We show how to compute psup; the technique for finding pinf is similar. 

Usually we do not find psup directly but employ an algorithm that 

estimates psup as accurately as desired. 

The algorithm is based on being able to.test, for any qe[O,l], whether 

psup is less than q. The test works by finding ff er such that q 

psup < q o E [,p(B) IX] < q. 
fl' -q 

If we can find such a ,r then the following algorithm estimates psup 
q 

with accuracy "tolerance": 
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lowbound - 0 

highbound .... 1 

/* bounds on psup */ 

while ( highbound - lowbound 

{ 

> tolerance) 

q = ( highbound + lowbound) / 2 

find 11' 
q 

ptemp - E [;(o)IX] 
11' -q 

/* ptemp is storing the expectation*/ 

} 

lowbound ... max ( lowbound, ptemp) 

if ( ptemp < q) highbound - q 

print ( highbound + lowbound) / 2 /* final estimate of psup */ 

If this algorithm is implemented on a computer there will be 

unavoidaole imprecision in computing ptemp. It may be worthwhile to 

estimate the_ error and change two statements of the algorithm to 

"lowbound - max (lowbound, ptemp-err)" and "if (ptemp+err < q) 

highbound ... q." 

Before showing how and why the algorithm works we give some 

motivation for it and discuss the ideas behind finding ffq with the right 

posterior ·expectation of;. 

For a fixed q E [0,1] we want to construct 11' er such that 
q 

ptemp a E [;(D)lx] satisfies ptemp q <=> psup < q. 
11' -q 
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By definition 

q :S pinf 

q > psup 

ptemp ~ q 

ptemp < q 

If we arrange that qe(pinf,psup] 

then psup < q ptemp < q. 

and 

regardless of how we choose w. 
q 

ptemp ~ q 

Of course, we do not know whether q e (pinf, psup}. However, if we 

assume q E (pinf, psup] and construct fl' accordingly then psup < q <=> q 

ptemp < q even if the assumption is wrong. 

Ignoring the endpoint, assume q e (pinf,psup). There exists wer 

such that E [;(l)IX]-q. The idea behind finding w is to start with 
fl' - q 

this fl' and move mass around trying to increase the posterior expectation 
. . 

of;. Because q<psup we should be able to achieve that goal. When 

using the algorithm we find fl' directly without first finding w. 
q . 

The posterior expectation of; is the weighted average of ;(9) where 

each 9 is given its posterior weight. It may seem obvious that to 

increase the posterior expectation we should move prior mass to l's with 

large values of ;(9). However, this is not always true. A 9 where ¢(9) 

is large may have a small value of f(!II) and hence receive little 

posterior weight. Increasing the prior weight on that 8 would not help 

much to ~ncrease the posterior expectation of;. 

Example 2,1: 

Let x1 and x2 be Bernoulli random variables that are independent given 

the Bernoulli parameter 8. Let the prior_~ be defined by ~(.l)=.8, 
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ff(.8)-w(.9)-.1. What is Pr.[X2-11x1-0]? Begin by computing the 

posterior distribution. 

Prff[X1-0] - (.9)(.8)+(.2)(.1)+(.1)(.1) - .75. 

Pr.[9-.llXi-0] - (.8)(.9)/.75 - .96. 

Prff[9-.81Xi-0] - (.1)(.2)/.75 ~ .027. 

Pr.[9-.91Xi-0] - (.1)(.1)/.75 ~ .013 . 

Therefore, Pr.[x2-11¾-0] 
. 

(.1)(.96) -
+ (.8)(.027.) 

+ (.9)(.013) 
. 

.1293. -
Create the prior•' by moving mass to the right. Say ff' is defined 

explicitly by w'(.1)-.8, •'(.9)-.2. What is Prw,[X2-11x1-0]? Again, 

start by computing the posterior. 

Prff,[Xi-0] - (.9)(.8)+(.1)(.2) - .74. 

Prff,[9-.11¾-0] - (.8)(.9)/.74 ~ .973. 

Prff,[8-.91Xi-0] - (.2)(.1)/.74 ~ .027. 

Therefore, Pr.,[x2-11x1-o] ~ (.1)(.973) 

+ (.9)(.027) ~ .1216. 

In the example ;(8)-Pr[X2-ll9]-8. Moving weight to the right, from 

8-.8 to 8-.9, (to large ;(8)) decreased the predictive probability of a 

1 on the next observation. The reason is that 9-.9 has a small 

likelihood so the extra prior mass on 8-.9 is heavily discounted in the 

posterior, thereby increasing the posterior mass on 8-.1. The effect is 

to decrease the predictive probability that x2-1. 

We need a compromise between putting prior mass on 8's with large 

values of ;ce) and putting prior mass on 8's where ;ce) may be somewhat 

smaller but where the likelihood f(!l8) is larger. The following 

theorem shows how to make the compromise. 
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Theorem 2,1: 

Let qe(pinf,psup) and let h(O) - c;co)-q)•f(!IO). For a scalar z 

define A -(0:h(O)<z), B -(0:h(O)-z) and C -(O:h(O)>z}. If ff is . z z z q 
any prior in r satisfying ff (A )-L(A) and fl' (C )-U(C) for some q z z q z z 
z then 

E [;(9)1X] ~ q. 
fl' -q 

Before proving the theorem we show that the conclusion is not 

vacuous, i.e., that there is some w er that satisfies the 
q 

conditions of the theorem for some z. Define the functions 

J(Y) - L(A )+L(B )+U(C) and g(y) - L(A )+U(B )+U(C ). Let 
y y y - y y y 

z-inf(y:1(y)<l). If J(Z)~l and g(z)~l then it is clear that the 

required fl' exists, although it may not be unique. 
q 

aCz+l/k) - J(Z) - (U-L)(9:h(9)e(z,z+l/k]). Take the limit as 

k-+c:o. lim 1(z+l/k) - 1(z) because (U-L) is continuous. But 

1Cz+l/k)~l by definition of z so 1(z)~l. Similarly,. 

g(z-1/k) - g(z) + (U-L)(9:h(9)e(z-l/k,z)) and lim 1Cz-l/k) = g(z) 

so that g(z)~l. 

Proof of Theorem 2.1 

Because qe(pinf,psup) there exists a wer such that E [~(O)IX]=q.· 
. ff -

Let p be the density of fl' and p be the density of fl'. Let 
q q 

S-(9:p(O)>p (9)) and T-(8:p(O)<p (0)). Because w (A) - L(A) q q q z z 
and fl' (C) - U(C) SC and TA are both empty. q z z z z 

E"' c;co> 1x1 ~ q 
q 

J;Ct1)f(XI0)1r (dO) ~ qff(XIO),r- (dO) 
- q - q 

J,(9)f(XIO)w(d9) + J;(O)f(XIO)(w -w)(d9) 
- - q 

~ qff(XIO)w(dO) + qff(XIO)(w -w)(dO) 
- - q 

J~(O)f(XIO)(ff -fl')(d8) ~ qff(XIO)(,r- -fl')(d9) 
- q - q 

~ Jh(O)(,r- -fl')(d9) ~ 0 
q 
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JThCO)Cffq·ff)CdB) 

~ J 5hCO)Cff-ffq)CdO). 

But, 

JThCO)Cff
4

-w)Cd6) 

~ zJTcff
4

-ff)CdO) - zJ8 cw-ff
4

)(dO) 

~ J 5hCO)Cw-ff
4

)Cd8). QED 

The third"~" follows because J;CO)fC!IO)ffCdO) - qffC!IO)ffCdB). The 

equality in the next to last line follows because ff and ff must both q 

integrate to one so JTCff-ffq) - J 5 cw
4

-ff). 

Notice that the theorem is nothing more than the usual argument about 

balancing masses on a seesaw. Imagine the line as a seesaw balanced at 

the point q as in Figure 2.1. Each eee occupies~ point on the seesaw 

corresponding to ;co). The weight of each e is its posterior weight so 

q-J;(O)posteriorCdB). Let ;co1) and ;co2) both be g~eater than q, so o1 

and o2 are on the right hand arm of the seesaw. Consider moving a small 

amount of prior mass from e1 to o
2

• Will this make the right hand side 

of the seesaw go up or down? Equivalently, will this decrease or 

increase the posterior expectation of ;1 We know·that the right hand 

side of the seesaw will go up if C ;ce2)-q )C 6posterior(02) ) is less 

than ( ;co
1
)-q )( ~posterior(01) ). Since 6posterior(8i) is 

approximately proportional to C 6prior(Oi) )( f(!IOi) ) and 6prior must 

be the same for e
1 

and 82 ~e need only look at hCO), as the theorem 

tells us. 

Theorem 2.1 shows how to implement the step "find ff" in the q 

algorithm. Let q be given and define h(O) as in the theorem. We can 

find z by a procedure such as 
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high_z -

low z -

(some big number) /* maximum possible value of h */ 

(some small number) /* minimum possible value of h */ 

do 

z - (high_z + low_z)/2 

if ( !(Z) > 1) 

if ( g(z) < 1) 

low_z - z 

high_z - z 

} until ( g(z)~l & g(z)~l) 

Then we define ff as in the theorem. q 
The conclusion is that 

q E (pinf,psup) implies E c;ce)lx] ~ q, and that in turn implies that 
~ -q 

psup < q <-> E [;(e)lx] < q.· An example shows how the technique works 
. ~q -

in practice. 

Example 2.2: 

Let x1 , .•. ,X ,X 1 be conditionally i.i.d. Bernoulli 9 random n ~ 
variables. We observe X - X-, ..• ,X and want to compute the 

- 7. n 
predictive probability that Xn+l is equal to 1, that is, Pr[Xn+l-11!1· 

Let ~0 be the uniform prior and fix EE(O,l). Let L-Ew0 and U-(l/E)~0 . 

Lets be the number of successes and f the number of failures in X. 

psup (-sup Pr[Xn+l-11!1) is a function of E, sand f._ For 

EE{l,.9,.8, ... ,.1} and s,fe{0,5,10} the algorithm generated the 

results in Table 2.1. Each curve in Figure 2.2 is a plot of psup as a 

function of E. The left hand set of curves is for s-0 the middle set 

is for s-5 successes and the right hand set_is for s-10. Within each 

set the top curve is for f=O, the middle curve is for f=S and the 

bottom curve is for s-10. Going across the page shows the effect of 

increasings. Going down the page shows the effect of increasing f. 
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The results for E-1 are exactly what would have been obtained by an 

ordinary Bayesian analysis with a uniform prior. As E decreases the 

class of priors increases so psup increases. 

For Example 2.2 his a function that decreases from 0, reaches a 

minimum, increases through Oto a positive maximum and decreases again 

to 0, as in Figure 2.3. Therefore w will have a special form. 
q 

The 

unit interval will be partitioned into three sections. Either ff will q 

be equal to U on the outer sections and equal to Lin the middle or else 

ff will be equal to Lon the outer sections and equal to U in the q 

middle. Figure 2.3 illustrates this for p. the density of w. 
q q 

One way to use the results of this section is to specify beforehand an 

Land U that capture our uncertainty about what prior ~o use. Then we 

compute the corresponding values of psup and pinf, which tell us 

something about our post~rior state of ignorance concerning future 

observations. 

But it may be difficult to decide in advance on unique satisfactory 
I 

bounds on the prior measure. In that case we can look at the pair 

(pinf,psup) as a function of Land U. We may observe that for all 

reasonable choices of Land Uthe pair (psup,pinf) lies in a small 

region and that (psup-pinf) is small. Then we can be confident in 

stating our predictions for future values. 

On the other hand (psup,pinf) may cover a large area or (psup-pinf) 

may be large for reasonable choices.of Land U. Then we would know that 

our predictions can vary quite a bit over classes of reasonable priors. 

Examples 2.3 and 2.4 indicate some problems that can be solved by the 

algorithm of this section. 
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Example L_l: 

Let x1 , ... ,Xn+l be conditionally iid N(9,l) and let 

! - <Xi, ... , Xn). Let ffo be a prior for 9. Fix Ee(0,1) and let 

L-Effo and u-(1/E)Wo· Find the sup and inf of Prw[9EBl!l, 

Pr [X +leSIX] and E [X +llX] over all priors ff bounded by Landu. ff n - ff n -

Example 2,4: 

Take the previous example but let L be the O measure and Ube 

proportional to Lebesgue measure. 

It is easy to find sup E [X +llX] for this last example. For any real 
ff n -

number k we can assign prior probability 1 to a set of 9's satisfying 

E[Xn+ll9]>k. The posterior will assign probability 1 to the same set of 

9's so the predic~ive mean will be greater thank. Therefore sup 
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TABLE 2.1 

Psup as a function of the number of successes, the number of failures 

and the bounds on the prior determined by E. See Example 2.2. 

0 successes 5 successes 10 successes 

E- 1 .500 .862 .919 
.9 .530 .871 .927 
.8 .560 .881 .933 
.7 .593 .891 .938 

0 .6 .628 .905 .947 
.5 .669 .917 .956 

failures .4 .719 .932 .960 
.3 . 773 .948 .971 
.2 .836 .962 .980 
.1 .912 .982 .990 

E- 1 .146 .. 504 .650 
.9 .156 .516 .661 
.8 .169 

. 
.529 .671 

.7 .182 .543 .682 
5 • 6 .198 .560 .695 

.5 .216 .580 .710 
failures .4 .241 .605 .730 

.3 .270 .632 .751 

.2 .309 .670 .780 

.1 .371 .718 .819 

E= 1 .087 .358 .504 
.9 .093 .367 .513 
.8 .100 .377 .522 
.7 .110 .389 .533 

10 .6 .120 .405 .546 
.5 .133 .421- .560 

failures .4 .149 .440 .580 
.3 .171 .466 .601 
.2 .200 .497 .631 
.1 .242 .542 .670 
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1. A VARIATION OF DENSITY-BOUNDED CLASSES 

Definitions and Examples 

This section gives a variation of density-bounded classes of priors. 

Let B be a multidimensional parameter. For ease of exposition take 

t B-(81 ,92) although the ideas work for arbitrary dimensi~n. Let e-e1xe2 

where o1ee1 . Sometimes the prior distribution ff has a natural 

decomposition into a marginal distribution ffm for o
1 

and a conditional 

distribution ffc(•ID 1) for o
2 

given 91 . In such a case density-bounded 

classes for both ffm and wc may be a natural way to represent uncertainty 

in the prior. 

Let Land Ube measures on e
1 

such that~ and 

L(81)<l<U(81)<~. For each o1ee1 let L(•IB1) an~ U(•IB1) be measures on 

e2 such that L(•l91)SU(•l91) and L(82 IB 1)<l<U(82 1B1)_<=. Define the 

class of priors r by • 

Example 3.1: 
2 Given 9 and u let X-, .•• ,X be i.i.d. N(9,u ). Let w0 be a prior 

-L n m 
distribution for 9 and u defined by a marginal distribution ffo for u 

and a conditional distribution w~ for 9 given u, say w~-gamma(a,b) 

and ff~-~(O,a
2

).m F!x 6 andme in (0~1). Le: r be the cl:5s of priors 

ff satisfying 6w
0

Sff S(l/&)ffO and ew0 (•1u)Sff (•la)S(l/E)ffO(•(u). 

Example 3.2: 

I know that in a recent campus election approximately 1000 votes 

were cast for my favorite candidate. I do not known, the total 

number of votes cast, or 9, the fraction of the votes favoring my 
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range of priors for n and a range of conditional priors for 9_ given 

n, where th~ prior for 9 given n would be centered near 1000/n. · 

Example 3,3: 

Given 9 and, let x1 , ... ,Xm and_Y1 , .•. ,Yn be independent Bernoulli 

random variables where each Xi has parameter (9+e) and each Y1 has 

parameter (9-i). A model like this might arise when there are two 

ways of administering a treatment. 9 represents the average effect 

of the treatment and 2E .represents the difference in effect between 

the two ways·of administering the treatment. We may want to use the 

class r determined by bounds on the marginal distribution of 9 and 

the conditional distribution of, given 9. 

Non Example 3,1: 

Another way of modeling the previous example leads to a class of 

priors not covered by the techniques of this chapter. Again let 

Xi•···,Xm and Y1 , ... ,Yn be co~ditionally ~ndependent Bernoulli 

-random variables. Let each ;i have parameter (9+E 1) and each Yi 

have parameter (B+e 2). Let r be a class of priors determi~ed by a 

density-bounded class for the marginal distribution of 9, density

bounded classes for the conditional distribution of E. given 9 and 
l.* 

in which e1 and e2 are i.i.d. given 9. In some ways r is similar 

to the class described in Example 3.3. The crucial difference is 

that posterior expectations require integrating twice with respect 

to the conditional distribution of 'i given 9. This report does not 

show how to compute psup in such a case. 

The following two examples show.that the classes of priors described 

.in this section are neither special cases nor generalizations of 

density-bo~nded classes. 

Example 3.4: 

Let X and Y be Bernoulli random variables. Consider the class r of 

distributions given by the following set of marginal distributions 

for X and conditional distributions for Y given X. 
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Pr[X-0] - 1-Pr[X-1] e [.25,.75]. 

Pr[Y-0IX-0] - 1-Pr[Y-llX-0] e [0,.25]. 

Pr[Y-0IX-1] - 1-Pr[Y-llX-1] e [.75,1]. 

For this class of distributions 0~Pr[0,0]~3/16, 3/16~r[0,1]~3/4, 

3/16~r[l,0]~3/4 and 0~Pr[l,1]~3/16 and no tighter bounds are 

possible. However, riot all distribu"tions lying inside the bounds 

are members of the class r. The joint distribution 

Pr[0,0]-Pr[0,1]-Pr[l,1]-3/16, Pr[l,0]-7/16 lies within the bounds 

but is not i~ r, therefore r is not a density-bounded class. 

Example 3_5: 

Let X and Y be Bernoulli random variabl~s. Consider the density

bounded class r of distributions that give no more than probability 

1/2 to any of the four points (0,0), (0,1), (1,0) and (1,1). For 

this class the marginal distribution for X satisfies 0~Pr[X-0]~1, 

the conditional distribution for Y given X satisfies 0~Pr[Y-0IX]~l 

and no tighter bounds are possible. But these are no restrictions 

at all. Consequently, the class r cannot be described by bound~ _on 

the marginal distribution for X and the conditional distribution for 

Y given X. 

Computin~ Rfil!R 

We now show how to compute psup for r's th~t are d~fined by 

bounds on wm and wc. The technique for pinf is similar. As in the 

previous section we test whether psu~q by finding ff er such that q 

psup ::!:: q ~ E c,co) IX] c!:: q. And, as before, we only need show 
fr -q 

qe(pinf,psup) 

We start defining 1r by defining ,rc(•IB1), the conditional 
q q 

distribution of 62 given e1 . Let 

h(S) - (~(9)-q) • f(;l(9)). 
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For a fixed s1 his a function of s
2

• 

distribution that puts as much weight as possible on s2s where h(B) 

is large, analogously to the definition of ff in Theorem 2.1. For q 

each 9
1 

there will be a number z(B1) and sets 

Az(Bl) - (8 2 :h(B) < z(B1)} 

Bz(Bl) - (9 2 :h(S) - z(B1)} 

Cz(Bl) - (92 :h(B) > z(e1)} such that 

•:(Az(9
1

)1 91) - L(Az(9
1

)1 91) and 

C . 
Define in this way •q(•IB1) for every s1ee1. 

Let hm(B1) - Jh(6)ff;(dB 2 1B1). Treat hm exa~tly ash in Theorem 2.1. 

· m m · 
There will be a number z and sets Az-<Br:h (01)<z}, Bz-(91 :h (01)=z} 

and C -co
1

:hm(B
1

)>z} such that wm will be a prior satisfying z . q 

ffm(A )-L(A) and •m(C )= U(C ). q z z q z z 

There is at least one such ff determined by ffc and ffm in this 
q q q 

way. The following theorem is the analog of Theorem 2.1 and shows 

that; has the required conditional expectation under the prior ff. 
q 

Theorem 3.1: 

Let wer satisfy E [;(B)IX] - q. Such aw exists by an argument 
ff -

similar to the one in Chapter 2. 

Let w be defined as above. q 

Then Eff [;(O)IX] ~ q. 
q 
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Proof: 

The proof is in two parts. Define an intermediate priorµ by 
m m c c 

µ -1r andµ (•IB 1)-,rq(•IB1). We first prove Eµ[,(B)l!l ~ q and 

then show E r,cs)IX] ~ q. 
fl' -q 

Part 1-
E [;(B).IX] ~ q 

µ -

Theorem 2.1 says that the quantity in square brackets on the 

left-hand side is greater than or equal to the quantity in square 

brackets on the right-hand side for every value of s1 . 

Therefore E [;(B)IX] ~ q. 
µ -

E c;cs> 1x1 ~ q 
fl' -q 

f J,cs)f(!IB),r-;(d62IB1) fl'm(dBl) 

+ f J;(B)f(!IB),r-;(dB2 1B1) (ff:-ffm)(dB1) 
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We know from Part 1 that the first term on the left is at least 

as large as the first term on the right. And the second term on 

the left is at least.as large as the second term on the right by 

the argument in Theorem 2.1. 

QED. 

For some multidimensional parametric families it·seems natural to 

specify the prior by giving a marginal prior for the first parameter and 

then a sequence of conditional priors for the rest of the parameters. 

In these cases it may be most natural to specify a class of priors by 

giving lower and upper bounds for the marginal and conditional priors. 

In other situations it may be natural to specify a prior in which 

the parameters are independent. For these cases the marginal prior for 

_Oj is the same as the conditional prior f~r Sj given B1 ,.~.,Bj-l. We 

could specify a class of priors either by giving bou~ds for the 

conditional priors or by giving bounds for the joint prior of all the 

parameters. We can use whichever method best captures our uncertainty 

about the prior and.then compute psup and pinf using the techniques of 

this section or the previous one. 

This concludes our discussion of parametric models. In reality w~ 

only believe parametric models wh~n the data are multinomial but often 

use them when we believe the data follow a distribution that is close to 

some known parametric family. The next two sections show how to compute 

psup for models that include distributions that are close to, but not 

members of, a given parametric family._ 
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!. PERIPARAMETRIC MODELS 

"peri-prefix ... 1:all around:about:round ••• 2:near .•. 3a:enclosing or 
surrounding", Webster's Third New International Dictionary of the 
English Language Unabridged, G. and C. Merriam Company, Publishers, 
Springfield, MA, 1976. 

Point gf View 

Let the real-valued random variables x1 ,x2 , ... ,Xn-! be independent 

observations from the same sampling distribution. Let O be the set of 

all possible sampling distributions for x
1

. A typical parametric 

Bayesian analysis identifies points in a parameter space 8, usually a 

subset of some Euclidean space, say Rk, with points in a subset of 0, 

say (P8 : 8 E 8). The prior is a probability measure on 8 and ·is 

equivalent to a probability measure on O that gives probability one to 

the subset. 

This report takes the point· of view that the distribution on O is 

the fundamental object, not· the distribution on the parameter space. 

Henceforth, the terms "prior" and "posterior" refer to probability 

measures on 0, not 9. This point of view is mentioned explicitly by 

Lindley (l:972) and is implicit in the work of Ferguson (1973). Be.cause 

8 is identified with a subset of o· it may seem overly nice to call the 

measure on O more fundamental than the measure on 8. But it is both 

correct and useful, as explained below. 

Consider the parametric family of densities f(xlD)-Oexp(-Oi)dx for 

Oe(O,~) and the prior density p1(0)-exp(-8)d8. Each 9, a real number, 

has been identified with P
9

, an element of 0. In this case 
I 

9 ... l/fxP
9

(dx). Another par-ameterization of the same set of densities_ 

is f(xlP)-p- 1exp(-x/P)dp. Now the parameterization is P - fxP 6(dx). 
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The change of variables P-1/8 gives the prior density 

-2 
P2<P>-P exp(-1/P)dp. 

Most statisticians would agree that the first parameterization and 

prior are equivalent to the second paramete~ization and prior. 8-(0,~) 

is the same in each case but the densities p1 and p2 are different. The· 

two situations are equivalent because they describe the same 

distribution on 0. The distribution on O is more fundamental than the 

distribution on 8. 

A typical Bayesian analysis might call for the c.omputation of the 

posterior mean of the parameter. But the posterior 'mean has different 

interpretations in the two parametrizations. In one case it is 

E(l/JxP(clx)}. In the other it is E(JxP(dx)}. Whether either of these 

is useful in a real data problem depends on that problem and c~n only be 

determined by thinking about ·o. 

The elements of Oare distributions, so the term "posterior mean" 

should refer to the average of those distributions. It is another 

distribution, another element of O and need not correspond to any 

parameter value. This interpretation of the posterior mean is usually 

called the predictive distribution. 

Periparametric Models 

Priors on.O that give probability 1 to a parametric subset are 

usually implausible. This section describes a class of priors that put 

· their mass on a subset of O that is close to, surrounds and encloses a 

parametric family. We call both the subset of O and the class of priors 

"periparametric." Computing psup and pinf for this class accounts 

explicitly for deviations from the parametric family. 
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Generic elements of O will be denoted by capital letters like P and 

Q, possibly with subscripts. 8 will be a parameter· space identified 

with (P
8

:Be8)dl. The notation P
8 

and Q
8 

means that these elements are 

associated with the parameter value 8. Usually P 
8 

will be the element 

of O identified with 8 and Q8 will be a point optimizing some f~ction 

in a neighborhood of P9. 

Periparametric classes of priors can be useful when we believe that 

the data are distributed approximately as some parametric distribution 

or when a parametric prior approximately describes our a priori beliefs. 

Example 4,1: 

Let x1 and x2 be random variables that are conditionally. ind~pendent 

given their common distribution. Suppose we believe that the 

underlying distribution is close to exponential and also that the 

relative likelihood that the distribution is close to 

exponential(B 
1

) rather than exponential(Bj) h ~pproximately 

exp(Bj-Bi). The standard parametric model given by the two formulae 
-Bx -8 f(xlB)-Oe dx and p(B)-e dB approximately represents these a 

priori opinions. (It is a wonderful circumstance that our opinions 

are computationally convenient.) We know how to compute Pr[X2esix1 J 

using the standard model. But we want to know how the result will 

change if we account for uncertainty about both f(xlB) and p(B). 

Here O would be the set of all probability measures on the positive 

reals. The standard formulae are equivalent to a prior probability 

measure ffO on O. The problem is to find r, a class of priors, that are 

all close to ffO in some appropriate sense and to compute psup and pin£ 

over the class r. Figure 4.1 shows 0, 8 and a shaded region that is the 

set of all distributions that are approximately exponential or close to 

exponential, in some sense to be defined later. This section describes 

classes of priors that put all their mass on the shaded region. The 
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next section shows how to use priors that may put some mass outside of 

the shaded region. 

-Bx Let P8 be the probab~lity measure with density Se ~n the positive 

reals and N(S)C:O be the set of probability measures that are close to 

P8 , or for which P8 is a good approximation, in this still undefined 

notion of closeness. To connote the idea of closeness N(B) is called a 

neighborhood, even though it has no topological significance. 

Let ff be a prior created from ffO by spreading each mass or density 

element .ff0 (P
8

) throughout N(S). This means ff(N(8))~0(P8), which has a 

sensible interpretation even when both sides are zero: 

~ Pr [ B] for every measurable Bal. 
ffo 

If the nei~borhoods are disjoint then the previous relationships 

become eqUS:lities. Often, our vague a priori notions do not distinguish 

very well between ffO and ff because P and P8 are very similar for every 

PEN(B). Therefore we want to· include such priors ff in the class r of 

plausible priors. 

Because ff is a.probability measure on O it tells us how to pick a 

random Pe1l. For priors that put all their mass in u
8

(N(8)) we can think 

of picking P's as a two step process: first choose P
8
ee and then 

PeN(O). The dist~ibution of such a process can be described by the 

marginal distribution of P8 and th~ conditional dist~ibution of P given 

PB. To allow for uncertainty in both parts of the prior we use a class 

of priors determined by a class of margi~al distributions for PB and a 

class of conditional distributions for P given P
8

• 

27 



There are three parts to describing a periparametric class of priors 

r - defining N(9) for each 9e8, giving the class of marginal 

distributions for P9 and giving the class of conditional distribution 

for P given P8• This section gives one way to define each part. The 

next section discusses modifications and alternatives to each of,these 

parts that lead to different and sometimes more appropriate classes. 

Density bounds provide one way to define the neighborhoods N(S). 

Each P8 is a probability measure on the sample space X· Let L8 and u6 

be two measures on x satisfyingL9:si>9su9 and L9(x)<l<U9(x)<~. The top 

part of Figure 4.1 shows O, 8, 9 and N(9). The bottom part shows the 

density f(xtP9) and the two curves 1
9 

and u9 that are the densities.of 

L
8 

and u8 . We define N(9) to be the set of all PEO bounded between L6 

and u
8

. 

Example~ continued: 

In the previous example we thought the distribution of the X's was 

close to exponential. Let 8 index the set of exponential 
-Bx distributions so that f(xtP9)-9e . Fix ee(O,l) and let 

l
9

(x)-ef(xtP
9

) and u8(x)-(l/e)f(xtP8). Let N(8) consist of all 

distributions on the positive reals with densities b~tween 18 and 

u
8

. Figure 4.1 pictures such a neighborhood. 

Of course this neighborhood contains some densities that may seem 

implausible, such as the discontinuous ones. A later section will 

discuss that problem. 

The second part of describing r is defining a class of marginal 

distributions for P
9

. But sections 2 and 3 defined classes of 

distributions for parametric families. We can use those same classes 

here. Or we can use any class of priors over which we can maximize and 
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minimize E[;(B)I~]. For specificity let the class of wm's be a density

bounded class determined by an Land a U. 

The last part of describing r is defining a class of conditional 

di~tributions for P given P
8

• It is hard to think about distributions 

on N(B) when there is no parametric representation to help us. So we 

adopt the solution of allowing any conditional distribution whatsoever 

satisfying Pr[PeN(8)1P8]-l for almost all P8 . If, in some applied 

situation, we can think clearly enough to specify a different set of 

conditional distributions then we should use that set. But it is often 

too difficult to think about distributions on such complicated sets as 

N(B). 

Example 4,1 continued: 

Now we can completely describe a r for the previous example. Use 

the N(B) neighborhoods described there. Fix 6e(O,l). Let 
-8 f 0(8)-e . Let l-&f0 and u-(l/6)f0 • Use the set of PS 

distributions having densities bounded between land u. Use the set 

of conditional distributions for P given PS such that 

Pr[PeN(9)IP6]-l. This completely describes r. Now the goal is to 

compute psup and pin£ for this class. 

Ar described by the three parts above may contain some prior 

distributions that seem unreasonable. In particular, both the 

PS-distribution and P may have discontinuous densities. However, it may 

be difficult to specify a more reasonable class that is both large 

enough and tractable. We can proceed by computing psup and pinf and 

seeing whether the range of posterior answers is large or small. If it 

is small then it doesn't matter that r contained some unreasonable 

priors. If the range is large then we can try to see which priors in r 
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give answers that are close to psup and pinf. If those priors are 

reasonable then again we don't worry about the unreasonable ones. But 

if it is the unreasonable priors that cause the range to be large 

then we can try to make a smaller rand recompute psup and pinf. 

It is difficult to make all the decisions necessary to describer 

completely. We must supply L, U and LB and UB for each 9. One approach 

is to compute psup and pinf for .several choices of L, U, LB and UB and 

see which choices lead t~ large ranges of posterior answers. Without 

deciding precisely which choices are reasonable we may be able to decide 

that no reasonable choices lead to large'ranges of posterior answers. 

Then we needn't worry about which choice we make. Or, we may see that 

some reasonable choices do give large ranges. Then we must conclude 

that we really don't know much about E[~(P)l;J. 

Computing R§.YR 

To find psup and pinf we use the same algorithm as before. We start 

by proving that every value in (pinf,psup) is attainable as a posterior 

answer. 

Theorem !L.,l: 

Let q e (pinf,psup). Then there exists a prior measure 1rer such 

that E,r[;(B)l;J-q. 

Proof: 

Since qe(pinf,psup) there exist priors 1r1 and 1r2 , both in r, such 

that 

E [;(B)IX] < q < E,r [;(9)1~]. 
11'1 - 2 
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m m · c Let ffl and ff2 denote the corresponding P9-distributions and ffl and 

ff~_ denote the corresponding conditional distributions for P given 

P9 . Any prior µa,p with P9-distribution (1-a)ff~+aff; and conditional 

distribution for P (1-P)ff~+pff~ for a,pe[O,l] is also in r. 

E [;(B)IX] is a continuous function of a and p. QED 
l'a,p -

Next we define ff for every qe[O,l]. As always ff is supposed to 
. q . q 

put as much mass as possible on P's where h(P)-(;(P)-q)f(!IP) is large. 

Since ffq is a prior in r it can be described by its P9-distribution ff: 

and its conditional distribution ff; for P given P9 . It is easiest to 

give the conditional distribution first. Assume for the moment that 

within each N(9) there is a Q
8 

that maximizes h(P). That is, h(Q9) -

sup { h(P) : PEN(9) ). C Then ffq (•IP0) is the measure that puts all its 

mass on Q
9

, i.e .. 

If there is more than one point in N(9) that maximizes h then it 

makes no difference whether the condition~l distribution assigns all its 

mass to one of them or spreads the mass around among all of them. The 

next section discusses the existence· of Q
9 

and what to do if there is no 

maximizing point. For now we assume that there is a maximizer within 

each neighborhood. 

The last step in defining ffq is to give the P9-distribution ff:. As 

the conditional distrioution of P given P
8 

is degenerate at Q
0 

and 

because we want to put prior mass where h(P) is ~arge we require the P -e 
distribution to put as much mass as possible where the function 

m 
h (P8) a h(Q8) is large. So we proceed as in Section 3. The marginal 
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m density for P
1 

takes its lower bound when h (P1)<z and takes its upper 

m bound when h (P1)>z, for some appropriate value z. 

To summarize, ff is defined in two parts, the marginal distribution . q 

of P
1 

and the conditional distribution of P given P
1

. The construction 

is similar to that in.Section 3. The conditional distribution of Pis a 

point mass on Q
8

, which maximizes hover the neighborhood N(I). We 

m m ~efine h (P
1

) tQ be h(Q8). This is similar to Section 3 where h
1 

(81) 

was defined ·to be the integral of h(81 ,e
2
)t. Finally we take the P

8
-

distribution to agree with either Lor U according to whether hm(P9) is 

less than or greater than z, where z is chosen to make ff a proper 
q 

distribution. 

The only thing left to do in verifing the algorithm is to prove 

psup > q if and only if Eff t,(P)IX] > q. 
q 

The theorem and proef are similar to those in Section 3. P plays the 

role of e2 and P8 plays the role of e1 . 

Theorem 4.2: 

Let qe(pinf,psup) and ff be defined as above. q 

Then Eff t,(p)I~] ~ q. 
q 

Proof: 

Same as Theorem 3.1. 

Example 4.1 continued: 

We used the algorithm to perform some numeric computations .. We 

computed psupssupffer{Prff[X2>k2 1X1-k1]) in the context of Example 

4.1. as a function of k1 ,k2 ,& and E where 6 and E determine the 

class of marginal priors for P
8 

and the size of N(B). We performed 

the calculations for k
1

,k2e{.5,l,2) and S,ee{l,.9,.8, ... ,.1). 
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• 

The results for the example are given in Table 4.1 and plotted in 

Figure 4.2. Each plot in Figure 4.2 is for a different combination of 

k1 and k2 . Each plot shows the contours of psup as a function of 6 and 

E for those fixed values of k1 and k2 . The value of psup at the upper 

right corner of each plot, where 6-E-l, is the value.that would have 

been attained by an ordinary Bayesian analysis without allowing for 

uncertainty in the prior. As 6 and E decrease the class r increases so 

psup increases. When either 6 or Eis equal to O there is enough 

freedom in the P
8
-distribution or the distribution of P given P8 to make 

psup equal to 1. psup increases monotonically from the upper right 

comer to the left and lower sides of the plot. 

The top side of the plot is where 6 is fixed at 1 and Eis free to 

vary, so the P
8
-distribution is fixed and the conditional distribution -

for P can vary. The right side is where Eis fixed-and 6 varies .. In 

every one of the nine plots the contour lines are fairly evenly spaced 

along the top but are bunched near the bottom of the right hand side. 

That means that a small change in the conditional distribution of P has 

a greater effect on psup than a small change in the P8-distribution. 

Changing the P8-distribution without changing the conditional 

distribution of Pis th~ same as doing a standard Bayesian analysis of 

sensitivity to the prior where the likelihood is kept fixed. The 

results here indicate that small uncertainty in the likelihood is more 

important than small uncertainty in the distribution of the parameters 

of that likelihood, at least for Example 4.1. 
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TABLE 4.1 

psup - sup Pr [ x2>k2 I x1-k1 ] as a function of k1 , k2 , 6, e. 

& controls the class of marginal priors for 9. 

kl-.5 k2-.5 

&- .1 .2 .3 .4 
E-

.1 .996 .986 .980 .966 

.2 .994 .985 ·. 970 .950 

.3 .994 .979 .961 .937 

.4 .992 .976 .953 .926 

.5 .991 .973 .947 .916 

.6 .990 .969 .941 .907 

.7 .988 .966 .935 .899 

.8 .987 .962 .931 .891 

.9 .985 .959 .926 .884 
1.0 . 984 .958 .921 .877 

k1=.5 k2=1 

&- .1 .2 .3 ;4 
E-

.1 .991 .992 .985 .974 

.2 .990 .988 .977 .963 

.3 .995 .983 .970 .953 

.4 .994 .979 .964 .943 

.5 .993 .979 .959 .935 

.6 .992 .976 .954 .929 

.7 .991 .973 .950 .921 

.8 .990 .971 .946 .916 

.9 .989 .969 .943 .910 
1.0 .988 .967 .939 .905 

E controls N(9). 

See Example 4.1. 

.5 .6 .7 

. 949 .929 .907 

.927 .900 .870 

.909 .877 .842 

.893 .857 .818 

.880 .839 .797 

.867 .824 .779 

.856 .810 .763 

.846 .797 .747 

.836 .786 .733 

.827 ._775 .721 

.5 .6 .7 

.964 .949 .934 

.946 :927 .905 

.932 .908 .882 

.920 .892 .862 

.909 .878 .845 

.898 .865 .829 

.889 .854 .815 

.881 .843 .802 

.873 .833 · . 790 

.866 .824 .779 

34 

.8 .9 1.0 

.883 .858 .832 

.839 .805 .771 

.805 .767 .728 

.777 .736 .693 

.753 .709 .664 

.733 .685 .640 

.713 .665 .617 

.696 .646 .597 

.680 .629 .579 

.666 .613 .563 

.8 .9 1.0 

. 9-16 .897 .877 

.881 .855 ~828 

.853 .822 .791 

.830 .796 .761, 

.809 . 773 .735 
.. 791 .752 .712 
.774 .733 .691 
.759 . 716 .672 . 
.745 .700 .655 
.733 .686 .640 

.. 
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TABLE 4.1 continued 

k1-.s k2-2 

G- .1 .2 .3 _-4 .5 .6 .7 .8 .9 1.0 
E-

.1 .995 .995 .989 .982 .97,6 .968 .958 .947 .935 .922 

.2 .994 .991 .981 .974 .962 .951 .936 .921 .905 .886 

.3 .. 993 .988 .979 .966 .952 .937 .919 .900 .880 .858 

.4 .992 .984 .974 .958 .944 .925 .904 .882 .859 .833 

.5 .992 .982 .970 .954 .935 .914 .891 .866 .840 .812 

.6 .992 .979 .966 .949 .928 .905 .879 .852 .823 .793 

.7 .992 .977 .963 .944 .921 .896 .869 .839 .809 . 777 

.8 .991 .979 .961 .940 .916 .889 .859 .828 .795 .761 

.9 .991 .978 .960 .937 .919 .882 .851 .817 .783 .747 
1.0 .991 .977 .957 .933 . 9.06 .875 .843 .808 . 772 .735 

kl-1 k2=.5 

s- .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
E-

.1 .992 .978 .959 .934 .904 .872 .836 .800 .763 .726 

.2 .984 .968 .939 .903 .863 .819 .774 .727 .681 .635 

.3 .986 .958 .922 .879 .831 .780 .727 .674 .622 .574 

.4 .982 .951 .908 .858 .803 .746 .688 .631 .577 .527 

.5 .979 .943 .895 .840 .780 .717 .655 .595 .540 .487 

.6 .979 .936 .883 .823 .758 .691 .627 .564 .507 .454 

.7 .977 .930 .873 .808 .739 .669 .601 .537 .478 .425 

.8 .974 .925 .863 .793 .721 .648 .578 .513 .454 .401 

.9 .972 .920 .854 .781 .704 .629 .557 .490 .431 .380 
1.0 .970 .915 .845 .768 .689 .611 .536 .469 .410 .360 
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TABLE 4.1 continued 

k1ml k2=1 

6- .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
E-

.1 .994 .985 . 971 . .953 .931 .907 .880 .852 .822 .. 792 

.2 .992 .974 .954 .929 .899 .865 .829 .791 .752 .714 

.3 .990 .969 .942 .909 .872 .832 .789 .745 .700 .657 

.4 .988 .963 .930 .892 .850 .803 .756 .707 .658 .611 

.5 .986 .957 .920 .877 .829 .779 .727 .674 .622 .573 

.6 .983 .953 .912 .864 .812 .757 .701 .645 .591 .541 

.7 .981 .949 .904 .852 .795 .737 .678 .619 .564 .512 

.8 .982 .944 .896 .840 .780 .718 .656 .596 .540 .487 

.9 .981 .941 . 890 ... 830 .767 .701 .637 .575 .517 .465 
1.0 .979 .938 .88,3- .820 .754 .686 .619 .556 .497 .444 

~=1 k2=2 

6= .1 .2 .. 3 .4 .5 .6 .7 .8 .9 1.0 
E"""' 

.1 .990 .990 .979 .969 .954 .940 .922 .904 .883 .861 

.2 .995 .983 .969 .951 .930 .908 .883 .857 .829 .800 

.3 .993 .979 .959 .937 .911 .883 .852 .820 .786 .752 

.4 .992 .975 .952 .925 .894 .861 .826 .788 .750 .712 

.5 .990 .971 .945 .915 .880 .843 .803 .762 .720 .678 

.6 .988 .967 .940 .905 .867 .826 .783 .738 .693 .649 

.7 .987 .964 .934 .897 .856 .811 .765 .717 .670 .623 

.8 .986 .961 .929 .890 .846 .798 .749 .699 .649 .601 

.9 .985 .959 .925 .883 .836 .786 .734 .681 .630 .581 
1.0 .984 .958 .921 .877 .827 .775 .721 .666 .613 .563 

.. 
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• TABLE 4.1 continued 

k1-2 k2-.s 

6- .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
i-

.1 .985 .958 .922 .881 .836 .788 .740 .691 .642 .598 

.2 .976 .936 .886 .830 .769 .708 .648 .588 .531 .479 

.3 .969 .919 .857 .789 .718 .649 .581 .516 ~458 .404 

.4 .962 .904 .833 .757 .679 .602 .528 .462 .400 .348 

.5 .958 .890 .812 .728 .643 .561 .484 .414 .355 .305 

.6 .953 .879 .794 .704 .611 .523 .442 .374 .318 .271 

.7 .949 .869 . 777 .680 .580 .487 .406 .341 .286 .244 

.8 .946 .859 .762 .656 .549 .454 .375 .312 .. 261 .220 

.9 .942 .850 .747 .632 .520 .424 .347 .286 .239 .200 
1.0 .938 .842 .731 .607 .492 .397 .322· .264 .219 .184 

~=2· k2-1 ·. · 

6- .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
e-

.1 .983 .968 .942 .911 .876 .839 .799 .759 . 718 .677 

.2 .982 .950 .912 .868 .819 .769 .717 .666 .615 .567 

.3 .977 .937 .887 .833 . 776 .716 .656 .598 .543 .491 

.4 .973 .924 .868 .805 .739 .672 .607 .545 .486 .433 

.5 .968 .914 .850 .780 .707 .635 .565 .500 .440 .387 

.6 .964 .905 .834 .757 .679 .602 .528 .460 .401 .349 

.7 .960 .896 .819 . 737 .. 654 .·571 .494 .425 .367 .318 

.8 .959 .888 .806 .719 .629 .541 .462 .395 .339 .292 

.9 .956 .881 .793 .701 .605 .514 .435 .368 .314 .269 
1.0 .953 .874 .782 . 684 · . 582 .489 .410 .345 .293 .250 
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• TABLE continued 

kl-2 k2-2 

6- .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
E-

.1 .993 .978 .961 .939 .915 .889 .861 .832 .802 .770 

.2 .989 .967 .939 .906 .871 .833 .794 .754 .713 .672 

.3 .985 .956 .921 .880 . 8_36 .790 .742 .694 .647 .601 

.4 .981 _949· .906 .858 .807 .754 .700 .646 .595 .545 

.5 .980 .942 .893 .840 .782 .723 .664 .607 .551 .500 

.6 .978 .?35 .882 .823 .760 .696 .633 .572 .515 .462 

.7 .976 .930 .872 .807 .740 .672 .606 .542 .483 .431 

.8 .974 .924 .862 .794 .722 .650 .581 .515 .456 .404 

.9 .972 .920 .854 .780 .705 .630 .557 .491 .431 .380 
1.0 .970 .915 .845 .768 .689 ·. 611 .536 .469 .410 .360 

.. 

38 



. u 8 (x) 

f(xl P 9) • • 

.e, (x): 

0 

N(8) 

The set of all distributions 

X 

The neighborhood N(9) 

FIGURE 4. 1 

39 



t;, - 2 ti - 1 ki - .5 

• ' ' r 
N 

I 
N 

IO 

,)I. 

0 0 

' I ' 0 ' 

' ' 
r-1 

I 
IO 

N 
~ 

0 0 

0 ' • ' I ' 

• r • ' 
11"1 t . 

IO 
N 

,)I. 

I a 0 

·• ' I 
,. 

' 0 

Contour plots of paup - sup Pr[X2>k2 f~-k
1

] as a function of 6 and, 
where 6 indexes the class of priors for P

1 
and, indexes the size of 

N(I) See Example 4.1 

FIGURE 4.2 

40 

• 

. 



.2.:.. MORE PERIPARAMETRIC MODELS 

This section discusses some issues raised in the previous section. 

First is the question of Q
8

• _Is there a Q
8 

in each neighborhood that 

maximizes the function h? If so, what is it? If not, how does the 

algorithm work? Next we discuss alternatives for the three critical 

choices that determine M: defining N(B), defining the set of conditional 

distributions for P given.Pg and defining the set of marginal 

distributions for P6. Lastly we talk about Prohorov metric 

neighborhoods as another way to get classes of priors. 

Q
8 

is supposed to maximize h(P)-(,(P)-q)f(!IP) subject to the 

restriction that L8:SP~8• Apart from_ the restrict~on only two aspects 

of P matter, ,(P) and f(!IP). it is ·almost true that we can choose Q
6 

to optimize these two aspects of P independently of each other. For 

ease of exposition we assume every Pal has a density with respect to 

Lebesgue measure and that f(!IP)-f(XilP). 

If we try to optimize the two parts·separately then,-because f(!fP) 

is nonnegative, we should choose Q
8 

to maximize f(P). For most useful 

choices off this is possible. For example, when f(P)-P(S), the P 

probability of the set S, then maximizing f(P) means assigning as much 

probability as possible to the sets. 

Let-S be the complement of s. If u,cs)+Lo(S) ~ 1 we take 

Q8(S)~U8(S) a~d define Q
8 

on the set S so that Q8 is a probability 

measure.· Otherwise, if Ue(S)+Le(S) ~ 1, we take Qe(S)==Le(S) 
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and define Q
8 

on the set_ S so that Q
8 

is a probability measure. In 

either case Q
8 

maximizes P(S) subject to the restrictions. 

After Q8(S) has. been determined we can tell whether (Q8(S)-q) is 

positive or negative. Q
8 

should either maximize or minimize f(X1 IP) 

according to the sign of (Q8(S)-q). f(XilP) is just the density of P 

evaluated at the observed value x1 . To maximize or minimize f(X11P) Q
8 

s~ould have density either u8 or 18 at Xi· That is f(Xi1Q8)-u8(Xi) if 

Q,(S)>q and f(X1IQ,)-1,cxl) if Q,<q. 

Once Q8(S) and f(X1 1Q8) have been determined any other features of 

Q8 are irrelevant. We can extend the definition of Q
8 

in any way at all 

that makes Q
8 

a probability measure. 

To summarize, Q
8 

is determined by these three rules. 

1) If U8(S)+L8(S) ~ .1 then for every TCS Q8(T) - U8(T), 

else, for eveey TCS, Q8(T) - L8(T). 

2) If Q8(S) ~ q then f(JS_IQ8) - u8(X1), 

else f(X1 IQ8) - 28(X1). 

3) Extend rules 1 and 2 so that Q
8 

is a probability measure and 

There is a problem with defining Q
8 

by these rules. Since densities 

are defined only up to sets of measure O rule 2 looks like it might be 

nonsense, or at least meaningless. In other words f(X1 IP) is not well 

defined. There· are two ways to resolve this. We can require that all 

the f(xlP) be continuous functions of x, or we can define f(xlP) to be 

the derivative of the c.d.f. and only consider those·P for which the 

derivative exists. 
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Both of these solutions give meaning to rule 2 in a way that 

. preserves the intuition about densities being infinitesimal probability 

masses. However, they can lead to another problem, namely that rule 2 

can conflict with rule 1. For example, rule 1 might specify that Q
8 

has 

density u8 on S, but if ¾ES, Q8(S)<q and we use continuous densities 

then rule 2 might require f(xJQ8)~l9(¾) in a neighborhood of~, 

contradicting rule 1. 

In that case-consider a sequence {Qa ) in which Qa obeys rule 2 u,n 11,n 

in a-~eighborhood about Xi of size 1/n and othe_rwise obeys rule 1. 

Posterior and predictive probabilities of sets computed along this 

sequence will approach the posterior and predictive probabilities 

computed using the Q
9 

with a density discontinuous at Xi, 
•f(X1 1Q8)-l8(~). Therefore we get the same psup regardless of whether 

. 
the f(xlP) are required to be continuous. From now on we will use 

discontinuous densities and not worry about their uniqueness. We do 

require that the densities are bounded between l 8 and u9 for all x, not 

just for almost all x. 
It might seem that the Q

8
1 s we use are, in some instances, 

unreasonable, should not be in the support of any reasonable prior, and 

therefore r is too blg. It is not trivial to say exactly which 

distributions are reasonable. As we have mentioned, simply requiring 

continuity of f(xJP) does not change the value of psup. It may be that 

we want to bound the modulus of continuity, or make f(xlP) smoother in 

some other way. Such restrictions, while they may capture our sense of 

reasonableness better, can be harder to specify and work with. For the 

present we will continue to allow P's with discontinuous densities. 
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Levy metric, Lr norm on either densities or cdf's and total 

variation norm are a few extensively studied metrics on O that could be 

used to define N(B). Another possibility is to elicit quantiles from 

·the expert and define N(B) to be ·the set of probability measures with 

the specified quantiles. Why not use one of these methods to define 

neighborhoods? 

One answer is that we can use these other definitions of N(B). If 

we really think of closeness in O ac~ording to one of those definitions 

then computing the corresponding psup and pinf will tell us something 

useful. However, I contend, it is usually more natural, or at least 

useful, to think of closeness in O being determined by density bounds. 

An example will show some problems that arise when computing psup. For 

specificity, we take neighborhoods determined by Levy metric (Loeve 

(1977, p228)). The Levy distance between two cdf's is the size of the 

largest square that fits between them. This distance has the property 

that a sequence (F) of cdf's converges to Fin Levy metric if and only n 

if (F) converges weakly to F. 
n . 

Example 4.1· continued: 

Consider again Example 4.1 in which the X's have approximately an 

exponential distribution. Fix e>O and define N(B) to be the 

e-neighborhood of PB 1n the Levy metric. Use the same class of 

marginal distributions for PB and conditional distributions for P 

given PB as before. Let S-(1,~). Compute 

psup=sup~er{Pr~[x2es1x1-x1 ]). 
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• 
The solution to the example problem is psup-1 for every value of x

1
. 

We will show that for every ke(O,1) there exists a prior fl'EI' such that 

Prff[X2esix1-x1] ~ k. Within each N(B) there exists a Q
0 

such that 

f(x1 1Qs)-O. Figure 5.1 shows PS and QS. Take the conditional 

distribution of P given PS to be P-P8 if P0(S)>k and P-QS if P6(S)~k. 

Because f (X1 I P)>O only if P(S)>k the pos-terior assigns probability 1 to 

distributions that put at least mass k on the set S. Th~refore, the 

predictive probability of Sis greater thank. 

What has.gone wrong here? One answer is that nothing is wrong. If 

we really think of closeness as being similar ~o weak convergence, or 

Levy metric, then we really don't know much about the predictive 

distribution of future observables. But this is an unsatisfactory 

answer-; there is a problem with the definition of N(O). P
O 

and Q
0 

have 

vastly different densities at some points, x1 -included. QS can have 

density Oona set of positive P0 measure. We get psup-1, and pinf-O,

because f(x1 1P0)/f(x1 1Q8) can be very different from 1. 

One way of thinking about whether two densities are close is to ask 

whether you could tell them apart by observing data that was coming from 

one of them. In the case of P 
0
. and Q

6 
it is easy to te_ll them apart 

when x1 is observed. However, when N(O) is defined by properly chosen 

density bounds the likelihood ratio cannot get t~o large or too small 

and it is much harder to distinguish between densities in N(O). That is 

why we must at least consider neighborhoods determined by bounds on 

densities. We may want to have more restrictions as well, say by 

bounding the densities and the Levy metric. But density bounds must be 

considered. 
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Distribution of E given~ 

After defining the neighborhoods (N(8):8e8} the second critical 

point in describing r was to give a set of conditional distributions for 

P given P8 • Section 4 allowed any conditional distribution satisfying 

Pr[PEN(B)IP8]-1. We now consider other possibilities. 

One reason to consider other distributions is that we may not be 

completely sure that the true sampling distrib~tion is close to the 

parametric family. There may be a small probability, say a, that the 

sampling distribution lies far from the family. We can model this 

uncertainty by using a class of prio~s satisfying w(u,eeN(B))~l-a. We 

give a brief description of how to· find ff for two sets of conditional 
q 

distributions for P given P8 that satisfy the previous inequality. 

One model for the distribution of Pis .that after selecting P8 we 

choose PEN(0) with probability at least 1-a. This means 

Pr[PEN(B)IPg]~l-a for all 8e8. For this setup we find Q8 as in section 

4, and also find QEO maximizing h. That is, h(Q)-supPEO(h(P)). Then 

the conditional distribution Pr[P-Q8 fP8]-l-a and Pr[P-QIP8 ]-a puts as 

much·weight as possible where his large. If ff has this conditional 
q 

distribution for P giv~n P8 then a revised version of Theorem 4.2 holds 

and the algorithm works. 

A second set of conditional distributions that give priors with . . 

ff(U
8
e

8
N(8))~1-a is that in which for some 8 Pis in N(0) with 

probability 1 but for other 8 Pis arbitrary. More formally, 

Pr[Pr[PEN(8)1Pgl=l]~l-a. In this expression Pr[PEN(S)IP8] is random, it 

depends on ·P
9

• It is equal to 1 with probability at least 1-a. 
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For this set of conditional distributions we should take 

Pr[P-Q9 1P9]-l if h(Q9)>z and Pr[P-QIP9]-1 if h(Q9)<z. This choice puts 

as much weight as possible where his large. Again, a revised version 

of Theorem 4.2 obtains. 

Another reason to consider different sets of conditional 

distributions is to control how mass is spread around the neighborhood 

of each P8 • Instead of associating with each 8 a single neighborhood 

N(8) that gets conditional probability 1 we can construct an increasing 

seque~ce of neighborhoods {N1(9)} where the i-th neighborhood get~. 

probability pi. Then we would use the set of conditional probabilities 

satisfying Pr[PeNJ..(B)IPnl-Pi· To find ff we would find Qn .EN.(8) such 
u q u 'l.· l. . 

that h(Q6,i)-sup{h(P):PEN1(B)} and let ffq have conditional distribution 

m 
Pr[P-Q6 , i IP 8_ ]-pi-pi-l. Then we define h (P 8)-~(p1-pi_1)h(Q8 , 1) and take 

ffq to have marginal distribution for Pg that puts as much weight as 

m possible where h is large. This generalizes section 4 where p1-l and 

m 
h (P

9
)-h(Q6). 

Distribution of lg 

The third and final critical point in defining r was giving the set 

of marginal distributions for P8 . Section 4 used density-bounded 

classes. One variation is to use the classes of distributions discussed 

in section 3. There 8 was multidimensional, 8t-(B1 , ... ,9k) say, and a 

class of priors was given by lower and upper bounds on all the 

conditional distributions ffc(e 1 1e1 , ... ,9i-l). In this notation the Oj's 

can be vector valued and have different dimensions. Section 3 explained 

how to choose ff to optimize the posterior expectation of~-q 
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Another possibility is the DeRobertis-Hartigan (1981) class of 

priors, r111-(ff:~fl'SU) where ff is any measure, not necessarily proper. If 

L has infinite mass then so will ff. DeRobertis and Hartigan discuss.an 

example in which both Land U are proportional to Lebesgue measure on 

the real line. They also solve the problem of maximizing and minimizing 

the posterior expectation of g(9) over the class. If we define 

m g(9)~(Q8) th~n we can user as the class of P8-distributions and find 

psup by the usual algorithm. 

Several authors including Huber (1973), Sivaganesan_(_l986) and 

Sivaganesan and Berger (1987) give results on maximizing and minimizing 

the posterior expectation of ,cP) over E-contamination classes. The 

results are for particular choices of the function, and the class of 

allowable contaminations. The general rule is that whenever we can 

m figure out what "putting as much prior mass as possible where h is 

large" means then we can apply the algorithm. 

Example 5.1: 

Consider the E-contamination class rm-Cw - (1-E)ff0 + E7: 7eG) where 

EE(0,1) is fixed, ffO is a fixed prior and G is the class of all 

possible distributions on 9. If there exists 8'e9 such that 

hm(9')-sup
8
e9h(9) define 7' to be the distributi~n degenerate at 9'. 

Clearly (1-E)w0 + E7' puts as much prior mass as possible where hm 

is large. We can use the algorithm by proving a version of Theorem 

4.2. 

Example .2...2.: 
Berger (1987) mentions the quantile class of distributions 

(T : cisJI(i)T(d8)Sdi, i-1, ... ,m) where I(i) is the i-th element of 

a partition of 9, and ci,die[O,l] are fixed bounds on the prior 

probability of I(i). We can find w as follows. Choose 9ieli to 
q 
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maximize hm(S). Within I(i) assign mass c. to 8 •• Then find j such 
1 1 

m m that h (Dj)-max(h ~Di)) and give Dj all the remaining _mass, but not 

more than dj-cj. Continue until all the mass is assigned. The 

resulting marginal prior.for P
8 

puts as much mass as possible where 
m h is large, so we can prove the appropriate theorem and apply the 

algorithm. 

Prohorov neighborhoods 

We have described classes of priors on Oby _classes of P8-marginals 

and P-conditionals. A different class of priors is the set 

(ff: d(ff,ff0)~E) where dis the Prohorov metric (Billingsley (1968)), w0 

is some fixed prior and Eis a fixed scalar in (0,1). d(~,ff0) is 

defined to be the infimum of a's ·satisfying ff0(B) ~ •(Ba)+a fo~ all 

measurable Bc1l where Ba is the union of all open balls of radius a 

centered at ·a point in B. This definition requir~s a distance defined. 
. a 

between members of O so that B is defined. 

The Prohorov metric is appealing both for its interpretation of 

closeness of priors and because convergence in the Prohorov metric is 

equivalent to weak convergence (Billingsley (1968)). The interpretation 

for us is that d(w,ff0)~E means that if •o puts mass con the set B then 

ff must put approximately the same amount of mass, at least c-E, on a 

E nearby set, B. There is a close relationship between Prohorov 

neighborhoods and the r's we have been studying. 

One aspect of the relationship is that N(S) and Pa are both supposed 

to represent the set of points near a given point. We are required to 

use a metric to define Pa. We may, if we choose, use the same metric to 

define N(S). We discus~ed pr~viously what.happens to psup when N(8) is 

defined by a standard metric and when the conditional distribution for P 

49 



given Pe satisfies either Pr[PEN(e)IP8]~1-E or Pr[Pr[PeN(B)IP8]-l]~l-E. 

Those conditions both satisfy E[Pr[PEN(B)IP8]]~1-E so those results are 

relevant here. 

Another aspect of the relationship is that the r's we use have 

interpretations similar to Prohorov neighborhoods. 
. E 

Suppose that N(e)-P 

is defined by some metric and.that the conditional distribution of P 

giv~n Pe satisfies E[Pr[PEN(e)IP8]]~1-E. Then, for BcO and wer 

1-E ~ JPr[PEN(e)IPel 

- JIBPr[PeN(e)IP9] + JC1-IB)Pr[PeN(8)1P8] 

~ JIBPr[PeN(B)IP9] + 1 - wm(B) 

:) JIBPr[PEN(e)IP9J ~ ,r-m(B)-E. 

Hence ,r-(BE) ~ Pr[PeeB,PeN(B)] - JIBPr[PeN(B)IP9] ~ ffm(B)-E. So 

~(w,,r-m)~E and-rc(,r-: d(w,,r-m)~E}. This leads.naturally to the question 

"Is r-(,r-: d(,r-,,r- )~E}?" I don't know the complete answer but Appendix A 
m 

·proves a related.result for the case where ,r-0 is discrete. 
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6. REGRESSION 

This section generali~es the previous discussion, which has been 

primarily about conditionally i.i.d. random variables, to the regression 

setting. In a typical regression setting the observation for the i-th 

case consists of the random variable Yi and the covariate Xi which may 

be multidimensional. We assume that Y1 has a distribution in 

some parametric family indexed by 8, say Yi Pg 
i 

and that 0i is· a function of Xi and an unknown, possibly 

multidimensional, parameter p. The regression function is known, say 

The Y1s are assumed to be independent given p and the x1s. We also 

require that someone, usually the "expert," provides a prior opinion 

about p expressed by a probability measure. Of course the 8 

notation is superfluous. Instead of P8i we could write Pr(Xi,P)" 

We use whichever notation is more convenient. 

Example 6.1 Probit Regression: 

Racine et al (1986) consider a probit regression in an acute 

toxicity test. They say "Typically such a test proceeds by 

administering various dose levels of the substance to batches of 

animals and subsequently observing their responses. The latter are 

most often characterized in terms of a simple dichotomy: for 

example, alive or dead." The Racine data are in the following 

table. 
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Dose (mg/ml) Number 

422 

744 

948 

2069 

of Animals 

5 

5 

5 

5 

Number of Deaths 

0 

1 

3 

5 

In this example Xi is the i-th dose and Yi is the number of deaths 

iri the i-th group of· animals. Yi is taken to be binomially 

distributed with parameter (Si,5)t where s1 - ~(p0+p1ln(Xi)) and~ 

is the standard normal cdf. Some experts had a prior opinion about 

the chemical substance that some statisticians summarized as a 
. t 

bivariate normal prior distribution for P-(p0 ,p1) with mean 

µ-(-17.31, 2.57)t and covariance matrix 

~ - r 1053.12 -156.451 

l -156.45- 23.24 J. 

Example 6;2 Linear Regression: 

The·usual linear regression setting assumes (Yi) - N(X~P, a2). 
. 2 t 2 1 

The regression function is r(Xi,p,a) - (X1p, a). Weighted 

regression, non-linear regression, non-normal regression and 

generalized linear models all fit into the framework we have 

described. 

A choice of parametric family- (P6:SE8}, regression function rand 

distribution for pis equivalent to a prior distribution on oxox ... xn 

where Yi has distribution Pi, an element of the i-th factor of 0. The 

Y1s are assumed to be in~ependent given the P1s. The number of factors 

can be large enough to accomodate future cases for which prediction is 

desired. Of course we usually can't specify a unique satisfactory prior 

distribution on OXOx, ... ,XO so we want to consider a class of plausible 

priors and see how much our inference varies over the cl.ass. We will 

define a class of priors using neighborhoods N(8.)CO and lower and upper 
1. 
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bounds on both the regression function and the distribution of p. The 

new features are the regression function and the corresponding set of 

lower and upper bounds. 

We are taking the x1s to be fixed and known. If desired, errors in 
. . 

measurement could be modeled by the following scheme. Let xi be the set 

of possible "true values" for the covariate in the i-th case and define 

N(x1) - U(N(r(Xi ,p)) :Xiexi l. N(x1) -contains all the points in O clos~ 

to the parametric distributions corresponding to any possible "true 

value" of.the covariate. To model the situation in.which the x1s are 

fixed but are measured with a small amount of error use N(x.) instead of 
1 

N(8 1) ·1n the definition of the class of priors. 

We can decompose the prior distribution on OXOX .•• XO into two parts, 

the marginal distribution of £
8 

..; (Pg , PO , .• • ·,PO ) and the conditional 
· 1 2 n 

distribution of P - (P1 ,P2 , ... ,Pn) given (P0 ,P0 , ... ,P0 ~. 
1 . 2 n 

We define r, a class __ of priors, by a class of marginal distributions 

for !o and a class of conditional distributions for P given !o· For the 

class of conditional distributions we take the set of 

all distributions satisfying Pr [PieN(S1)1Pg_1 - 1 for all ie(l, ... ,n). 
1 

A marginal distribution for P
8 

, .•. ,P0 is determined by a regression 
1 n 

function and a distribution on p. For the class of marginal 

distributions we take the set of all distributions determined by any 

regression function between a set of lower and upper bounds and any 

distribution for p between another set of lower and upper bounds. That 

is, if r is real valued, ~O can have any distribution determined by r 
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• 

and ff where lr(Xi,P) ~ r(Xi,P) ~ ur(Xi,P) and lp ~ w ~ up· If r is 

vector valued the description of the bounds is different. When ff is a 

prior let ffm denote the distribution of the P's and ffc denote the 

distribution of! given !s· 

Before proceeding further we must resolve one more issue. Should 

x1-xj imply P1-Pj? Ye usually want x1-xj to imply Oi-Bj and hence 

N(Bi)-N(Bj). But 'this does not mean Pi-Pj or even that Pi and Pj have 

the same conditional distribution given !s· Many possibilities would 

have their uses. In some circumstances we might require Pi-Pj. In 

others we might require Pi and Pj to-be independent but have the same 

conditional distribution given !s· In still others we might not require 

the conditional distributions to be the same. Each possibility says 

something different about our prior opinion. Ye will discuss how to 

find psup when we allow different conditio~l distributions. The 

modification for identical distributions is easy. 

Now the question is how to compute psup for this type of r. In 

general we can find psup for any function'(!). As a specific example 

suppose we are interested in the predictive distribution of a future 

observable and take '(!)-Pn(S). 

First we express the conditional distribution of Y given n 

x1 , ... ,Xn,Y1 , ... ,Yn-l and some particular regression function r. 

n-1 
JP (S) Il f(Y.fP.) ff(d!) n . 1 i i 

i-

n-1 
J Il f(Y.tP1) ff(d!) 

i-1 i 
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Using the same idea as before we see that this probability is greater 

than or equal to q if and only if 

n-1 
f(P (S)-q) n f(YilPi) ff(d!) ~ 0. 

n i-1 

Ye look for choices for ff and ·r that make the inequality true when 

qe(pinf, psup). As in Section 4 we first try to maximize P (S) and then n 

either maximize or minimize the product of the f(YilPi) according to the 

sign of (Pn(S)-q). The Xis are fixed and we are constrained by 

PieN(Si)-N(r(Xi,/J)). The development here is similar to that in 

previoJs sections. 

C Ye start by tr~ating rand /J as fixed.and finding ffq(•lr,/J). For 

* . 
each /J we find P REN(r(X ,/J)) that maximizes P(S) over all n,r ,,., n 

* PEN(r(Xn,/J)). Then for e~ch ie{l, .•• ,n-1) we find Pi,r,/JeN(r(Xi,/J)) 

. * that maximizes or minimizes f(Yi·IP), according to whether (P /J(S)-q) n,r, 

is positive or negative. C Ye take ff (•lr,/J) to be degenerate at q 

* * t (Pl R, ... ,P R). ,r,,., n,r,,., 

That gives the conditional distributions of the Pis for a fixed pair 

(r,/J). Now we treat only /J as fixed and find the best regression 

function for that /J. 

Since w~ know what the Pi' Rs are for each rand we are treating /J 
'r ,,., 

as fixed we can think of the integrand (Pn(S)-q)Ilf(Y1 IP1) as a function 

of r. Ye want to chooser* to maximize the integral. 

Now r is itself a function and the only aspect of r that matters is 

the set of values r(X1 ,{J), ... ,r(Xn,/J). * h . Ye start defining r by c oosing 

* * the valuer (X ,/J). We taker (X ,{J)·to be that value in 
n n 

(1 (X ,/J), u (X ,/J)] that maximizes 
r n r n 
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values. * We take, for example, r (Xit,/J) to be the value in 

[lr(~,/J), ur(Xic,/J)] that either maximizes or minimizes 

. * * n(. ·X -x..} f(Yi·I P. 11) according to whether (P 11(S)-q) 
1.. i --ic 1.., r ,,., n, r ,,., 

is positive or negative. 

Now we know what rand the P1s should be for any fixed value of /J. 

m The only thing left to do is choose ff to maximize the integral. But we 
q 

have done this sort· of thing before. We treat the integrand as a 

m 
funciton of /J, say h(/J). We take the density of ffq to be u/J whenever 

h(/J)>z and to be l/J whenever h(/J)<z. We choose z to make ff: be a 

probability measure. We know from previous results that 

e> psup i2!: q. 

Example 6.1 continued 

Example 6.1 discusses a probit regression with a bivariate normal 

marginal prior ff~ for/Janda regression function r 0(X 1 /J) -

~(/J0+p11n(X)). Consider the following bounds on the regression 

function and the prior for /J. 

r 0 (X//2,/J) :S r(X,/J) :S r 0 (/2X;/J) and 
m J m J m ffo(/J)/ 2 :S ff (/J) :S 2ff0(/J) 

Compute psup and pinf, the largest and smallest probabilities of 

success (death) for a dose x as rand ff range over their permissible 

values. 

Predictions were made for the following six dosages in the context 

of Example 6 .1. 

x- 245 403 665 

ln(X)- 5.5 6.0 6.5 

1097 

7.0 
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7.5 

2981 
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3 pin£ and psup were computed under eight conditions that form a 2 

design. The three factors and their levels are 

1) use the original r 0 
m 2) use the original •o 

3~ make predictions before 
looking at the data 
(prior) 

let r vary as described above 

m let ff vary as described above 

make predictions after looking 
at the data (posterior) 

Computed values of pin£ and psup are in Table 6.1. 

When we use a range for the regression function then pinf and psup 

are closer together before performing the experiment than afterward. It 

is as though collecting data has increased our uncertainty or decreased 

our understanding of the drug's hazards. One possible explanation is 

that there are more variables we can use in the posterior case either to 

inc~ease psup or to decrease pinf. Suppose we are trying to predict the 

probability of a success at dosage X-x. In the prior case, before 

observing data, the only part of the regression function that matters is 

r(x,p). In the posterior· case, after observing data, r(422,P), 

r(744,P), r(948,P) and r(2069,P) are also important. We can manipulate 

those parts of the regression function to lower pinf and raise psup. 

The posterior probability of success is Jr(x,P) posterior(dp). When 

we have data at ¾•···,x4 to work with we can choose r(Xi,P) to give 

more posterior weight to P' where r(x,P) is large and hence increase s 

psup. However, we expect this effect to disappear as we collect even 

more data because any values for r(Xi,P) that are far from the mle -

(# of successes)/(# of trials) will be severely downweighted by the 

likelihood. 
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TABLE 6.1 

., 

(pinf, psup) for Example 6.1, the regression example 

ln(dose} fixed ff' · bounded ff' fixed fl' bounded ff' 

fixed r fixed r bounded r bounded r 

Prior predictions 

5.5 (.042, .042) (.029, .060) (.032, .060) (.023, .085) 

6.0 (.072, .072) (.051, .103) (.048, .13~) (.034, .190) . 

6.5 (.215, ~215) (.161, .279) (.092, • 667) (.065, .731) 

7.0 (.804, .804) (.743, .856) (.376, .912) (.311, .938) 

7.5 (.929, .929) (.901, .951) (.870, .953) (.821, .967) 

8.0 (·. 958, .958) (.941, .971) (.942, .969) (.918, .978) 

Posterior predictions 
• 5.5 (.001, .001) (.000, .003) .C .ooo, .243) (.000, .282) 

. 6.0 (.007, .007) (.004, .013) (.000, .512) (.000, .543) 
Q 

6.5 (.112, .112) (.086, .141) (.000, .980) (.000, .986) 

7.0 (.854, .854) (.788, .866) ( .025, 1.000) ( .019, 1.000) 

7.5 (.985, .985) (.975, .991) (. 396, 1. 000) (. 364, 1.000) 

8.0 (.997, .997) (.995, .999) (.670,1.000) (.723,1.000) 

" 
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.z. CLOSING REMARKS 

Statisticians often perform analyses that begin by assuming a 

parametric distribution for the random variables. We hope that the 

assumption, made for computational convenience, doesn't lead us too far 

astray. The basis for the hope is usually a belief that the parametric 

model is approximately right or that the analysis is robust in some 

appropriate sense. 

The research described in this paper was motivated.by a 

dissatisfaction with that approach. We have seen how to do Bayesian 

analyses on classes of distributions that are not limited to parametric 

families. But neither are they completely general. They are 

periparametric and therefore tied to the underlying parametric family. 

Periparametric families are useful when there is a parametric family we 

believe to be approximately right. 

Here is a list of key points in the technique for computing psup 

over periparametric classes of priors. 

1) Use a class of priors rather than a single prior. 

2) Priors are measures on 0, not 8. 

3) Define a prior by its marginal on 8 and its conditional on 0 

given 9. 

4) For every qe[O,l] we can test whether psup is greater than q. 

Section 4 uses those four points to define periparametric classes of 

priors and compute the corresponding set of posterior answers. 

5 and 6 discuss some issues raised in Section 4 and give some 

generalizations. 

60 

Sections 

0 

o 



a 

Density bounds arise naturally in defining the neighborhoods (N(9)) 

that are used in constructing periparametric priors. As a bonus we can 

use them as in Sections 2 and 3 to define classes of priors on 

parametric families. 

Box and Tiao (1962) discuss something-that might be called 

sensitivity to the likelihood. But what are called different 

likelihoods in the usual terminology are different subsets of O in our 

terminology. Sensitivity to the likelihood deals with the effects of 

different priors on O and is really ju~~ another aspect of sensitivity 

to the prior. 

This research was supported by the National Institute of General 

Medical Sciences GM 2527. 
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L APPENDIX 

Theorem: 

Letµ be a measure on a measurable space x. Supposeµ has finite 

support, say {x1 ,x2 , ... ,xn}' and that µ(x)<~. For each ie{l, ... ,,n} let 

there be an associated measurable set N1cx. Suppose vis another finite 

measure on x satisfying 

(*) V ( u Ni) 
ieI 

~ µ_ ( u xi) 
ieI 

for every Ic{l,2, ... ,n}~ Then v has a representation as 

v - v1 + v2 + ... + vn + a where 

a) each vi is a measure satisfying v1(Ni) - vi(x) = µ(xi) and 

b) a is a measure. 

The first equality in condition a) says that vi assigns mass only to the 

i-th set. The second equality says that the total mass of v. is the 
i 

same as µ(xi). It is as though the point mass fromµ were spread 

throughout the set Ni to become the measure vi. 

This theorem is related to Prohorov neighborhoods and the class r of 

Section 5. Let d be the Prohorov metric and BE be thee-neighborhood of 

B. 
E If d(v,µ)~E, then v(B )~µ(B)-E. Supposeµ is a discrete probability 

measure on 8, a parametric subset of 0. The theorem says that the 

collection of probability measures v satisfying the stronger condition 

v(BE)~µ(B) is the periparametric class r, of pri~rs with P8-marginal µ 

and P-conditional satisfying Pr[PeP;IP8]=1. Clearly every ver satisfies 

E v(B )~µ(B). But if v(BE)~µ(B) the theorem says v=~v. where 
i 
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E vi(P9)-vi(O). vis equal to the measure that hasµ as its marginal and 

E vi/vi(P9) as its conditional. So ver. 

Proof of Theorem: 

The proof is by induction on n, the number of points in the support of 

µ. The theorem is obviously true for n-1 and is not hard to show 

directly for n-2. 

Assume the theorem holds when the support ofµ is n-1 points. We 

want to show that it is·also true when the support is n points. Letµ. 

be a finite measure with support {x1 , ... ,xn} and v be a finite measure 

satisfying(*). When mis a·measure and S _is a measurable set let (mlS) 

denote the measure m restricted to the set S, i.e. (mlS)(B) - m(BS) for 

all measurable sets B. 

Because v satisfies(*) in relation to µ,v also satisfies(*) in 

relation to (µl{x1 , ... ,xn-l}), a measure with n-1 support points., 

Therefore v has a representation 

v - v1 + v2 + ... + vn-l + a where 

a) each vi is a measure satisfying vi(Ni) - vi(x) - µ(xi) and 

b) a is a measure. 

If a(N) ~ µ(x) we could define n n 

µ(xn) 
V ---.--n a(N) .n 

* a - a - v . n 

* . Then we would be done because. v1 ,._ .. ,vn,a would satisfy a) and b). So 

assume that a(N) < µ(x ). The idea behind the proof is to start with 
n n 
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* * * v1 , ... ,v 1 ,a and modify them to create v1 , ... ,v 1 ,a in such a way n- n- 1 

* * * * that v1 , ... ,vn_1 ,a still satisfy a) and b) and a (Nn)~µ(xn). If we can ~ 

show that such modifications exist we will be done. 

Partition the set (l, ... ,n-1) into two.subsets I and I such that ieI 

if and only if there exists a sequence of indices a1 , ... ,~-i such that 

1) v (N) > 0 and a1 n 

2) v (N N ) > 0 for j e ( 2 , •.• , k) • 
aj ~ aj-l 

Claim: I is not empty and a ( N u N 
1

) > 0. 
n iEI 

Proof of Claim: 

n-1 
If l: vi( N ) - 0 

1 n 

then a(N) - v(N) ~ µ(x) by(*). This is impossible bec~use we are 
n n n 

n-1 
if E v1( N ) > 0 

1 n 

then there exists some particular i' such that vi'(Nn) > 0. I is not 

empty because i'eI. 

By the definition of I if .ieI and jel then vj(Ni)~O. Let 

A - N u ( UN. ). Again using(*) 
n ieI 1 

µ(x ) + L µ(x.) :S v(A) 
n ieI 1 
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~ vi(A) + a(N) + a(N U N1) 
iel n n iel 

- ~ µ(x.) + a(N) + a(N U Ni) 
iel i n n iel 

· ~ JJ ( X ) - a (N ) n n ~ a(N u Ni). 
n ieI 

We are assuming that the left hand side is strictly positive, which 

proves the claim. 

Any sequence of distinct indices (a1 , ... ,aj:aieI) will be called a 

chain of length j. If the quantities 

are all positive the chain is said to be available~ Otherwise the chain 

is said to be broken. The claim implies that there is at least one 

available chain. 

We can use an available chain to define new v's and a new a. 

Suppose the chain (a1 , ... ,aj) is available. Let r be the minimum of 

a(N N ), v (N N ), v (N N ), ... ,v (N N ), v (N) 
n aj aj n aj _ 1 aj _ 1 n aj _ 2 _ a2 n a1 a1 n 

We can define 

* a - a 

+ 

r 

a(N N ) 
n aj 

r 

V (N) 
a1 n 
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.. 

r 

r 
+ 

* 
r 

JI - JI (J1 IN N ) 
aj-1 aj-1 JI (N N ) aj-l n aj _2 a. 1 n a. 

2 J- J-

r 
+ (11 INN ) 

JI (N N ) aj n aj-l 
aj n.aj-l 

• 
• 

, . 
• 

* 
r -

JI - JI (11 INN ) Q 

a2 a2 JI (N N ) a2 n a1 
a2 n a

1 

r 
+ (J1 INN ) 

JI (N N ) a3 n a
2 a3 n a

2 

r 

(N) n 

r 
+ 

* For an index i not in { a1 , ... , aj) define II i - 11 i.. Every term that ; 

appears with a plus sign also appears with a minus sign so it is still .-. 
e 
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* true that v - v1 + * + v 1 + a. Every term that was added or n-

subtracted is a measure with total mass r. For every k the measure that 

* * was added to vk put· all its mass on Nk. So v1 , ..• ,vn_1 ,a satisfy 

* conditions .a) and b) above. Also a (N) - a(N) + r so we are closer to 
n n 

* the goal of a (N )~µ(x ). 
n n 

We want to proceed in this fashion, using available chains to 

redefine the measures until we reach the goal. We will always use a 

superscript* to indicate the next redefinition of the process and a 

lack of superscript to indi~ate the current state. We know from the 

·claim that as long as we have not reached the goal there are still 

available chains. The question is whether we can reach the goal in 

finitely many steps. 

When a chain is used to redefine the measures that chain becomes 

broken. Since there are only finitely many chains it may appear that we 

must reach the goal in finitely many steps. However, it is possible for 

a broken chain to be fixed by a ·subsequent redefinition. If, in 

addition, r, the amount of mass by which we are able to increase a(N ), . n 

is decreasing fast enough, we may never reach the goal. To conclude the 

proof of the theorem we show that if the chains are used in the proper 

order then no broken chain can be fixed and made available by any 

subsequent redefinition. 

The ordering is simple. Order the chains by length and use the 

shortest chains first. For chains of the same length the ordering does 

not matter. We'll look first at what happens to chains of length 1 and 

then consider longer chains. 

Suppose a chain of length 1 is available and we use it to redefine 

the measures. By renumbering we can let 1 be the only index in the· 
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chain. So, a(NnN1)>0 and v1(Nn)>O. After the redefinition either 

We see by the general fo+m for redefining the 

- *-measures that a increases on N and decreases on N so that a (N N
1

) can n n n 

* never become positive again once it has reached 0. Likewise, v1 can 

only decrease on N. Therefore a chain of length 1 can never become n 

available again once it has been broken. 

For longer chains the argument Js more complex. We will examine the 

conditions that must hold at the first time any chain is made available 

by a redefinition-that comes from a chain of equal or greater length. 

We will see that such a situation is impossible and conclude that there 

is no such first time. 

Say that Chain 1 has indices a1 , ... ,aj and is now broken. Chain 2 

with indices b1 , .•. ,bk is available and, if we redefine the measures 

using Chain 2, Chain 1 will become available. Assume ~j. Here are the 

quantities of 

Chain l 
a(N N ) 

n aj 

interest for the two chains. 

V (N N 
aj n aj-l 

) 

• 
• 
• 

V (N N ) 
ai+l n ai 

JI (N N ) 
a. n a. 1 I. I.-

• 
• 
• 

JI (N N ) a2 n a1 

V (N) a1 n 

Chain z 
a(N Nb) 

n k 

vb (N Nb ) 
k n k-1 

0 

• 
• 

vb (N Nb ) 
.e+l n .e 

Jib (N Nb ) 
.e n l-1 

• 
• 
• 

Jib (N Nb) 
2 n 1 

vb (N) 
1 n 
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We know from the discussion on chains of length 1 that neither 

a(N N ) nor v (N) n a1 a1 n 

will increase when we update the proc~ss. If the redefinition is to 

make Chain 1 available it must be by changing one of the other 

quantities. To be specific let's say that 

- * -v (N N ) - 0 but that v (N N ) will be positive. 
ai n ai-1 ai n ai-1 

Also we'll assume that the other. quantities from Chain 1 are positive 

and leave·the interested reader to deal with the case when more than one 

quantity becomes positive simultaneously. The redefinition will change 

v only if ai appears in Chain 2. 
ai 

From the general form for redefinition we see that v -vb will 
ai l. 

increase on the set N N only if vb (N N )>0 or a(N N )>0. 
n ai-1 l.+l n ai-1 n ai-1 

But if a(N N )>O then the chain a1 ,a2 , ... ,ai-l is available 
n ai-1 

and is shorter than Chain 2. Because we use short chains first 

(a1 , ••. ,ai_1) must have been broken at some earlier point and then 

repaired. But repairing Chain 1 is supposed to be the first instance of 

repair. Therefore a(N N . )-0 and hence vb (N N )>0. 
n ai-1 i.+l n ai-1 

Now consider two more chains. 

Chain 4 
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Because v (N N ) > 0 Chain 3 is available. 
b.e+l ·n ai-1 

Also, V (N Nb ) 
ai n .e-1 

vb (N Nb ) > 0, so that Chain.4 is available. 
.e n .e-1 

Because Chain 4 is available and we are contemplating using Chain'2, 

Chain 4 must be at least as long as Chain 2. Hence j-i ~ k-.e > k~(.e+l) 

and Chain 3 is shorter than Chain 1. Therefore Chain 3 was used and 

broken earlier but is now available again. That contradicts the 

assumption that Chain 1 will be the first chain to be repaired by a 

subsequent redefinition. 

Assuming that Chain 1 is the first chain to be repaired by a 

subsequent redefiniton leads to a contradiction. We conclude that there 

is no such first chain and hence that no chains are repaired by 

subsequent redefinitions. Therefore there can be only finitely many 

redefinitions. The proof is complete. 
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