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0. Introduction 

LOCAL PREDICTIVE INFLUENCE 

by 

Michael Lavine 

University of Minnesota 

This paper gives a specific application of a general paradigm that 

was described by Cook (1986), and McCulloch (1985). Let M represent the 

ingredients of a statistical problem, M = (model, data) where the model 

consists of a set of sampling distributions and, for Bayesians, a set of 

prior distributions on the sampling distributions. An analysis 

technique T maps each Minto an answer: T(M) = a where a might be a 

parameter estimate, a confidence interval, a probability or any other 

type of inference. 

Let M be a function of a vector~ where ~0 is a standard and other 

values of~ represent perturbations of the standard. For example, in a 

regression setting,~ may be an n-vector of case weights, an n-vector of 

perturbations in the observations, or an nxp matrix of perturbations in 

the covariates. For these examples, ~0 would be the vector of all l's, 

the O vector, and the O matrix. 

Let D be a discrepancy function between pairs of answers, where 

D(a1 ,a2) e R. The function D measures the influence that a perturbation 

scheme has on the outcome of the analysis. Cook (1986) suggests that we 

often want to examine the function 
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in a neighborhood around w0 . 

Many useful choices for D will satisfy D(a1 , a 2) ~ 0 and D(a, a) 

0. Assume, from now on, that these conditions are met and therefore 

that h has a local minimum at w = ~0 . The shape of hat w
0 

is an 

indicator of how drastically the inference changes as a function of w, 

at least locally. 

When his twice differentiable the shape of hat w
0 

can be studied 

through the curvature, which in turn can be studied through the 

curvature in one direction at a time. Any vector w can be written as w 

= r•d where r is a scalar and dis a unit vector. The curvature Cd in 

the direction dis defined to be 

2 
c =ah(~) I 
d ar2 r=0° 

If the maximum curvature, sup Cd' is large then small changes in w 
d 

can make large changes in the inference. On the other hand, a small 

maximum curvature is evidence that the analysis is robust to small 

changes in M. 

The remaining sections of this paper show to to compute cd and 

sup Cd for one particular type of analysis, perturbation scheme and 

discrepancy function. 
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1.2 Framework 

Let the data consist of independent random variables Y1 , ... , Yn and 

p-dimensional covariates x1 , ... , Xn. Assume that the normal linear 

model with different case weights applies, i.e., 

t 2 
Y. - N(X p, u.) 

L i 1 

Let X be the matrix (X1 , x2 , ... , Xn)t so the model can be written 

where pis the pxl vector of regression coefficients, u2 is a positive 

scalar, and Sis a positive-definite diagonal matrix. A standard 

assumption is that all the case weights are equal. Let~ - <~1 , ... , 

~ )t be a vector representing changes from identical case weights, so n 

that the diagonal of Sis (1/(1+"11), ... , 1/(l+t&>n)). The O vector is 

Let the prior be the usual improper, non-informative prior 

-2 2 proportional to u dPdu, and suppose that the goal of the analysis is 

to compute a predictive density for a future random variable Z at known 

covariate w that satisfies 

t 2 Z - N(w p, u ). 
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The Kullback-Leibler directed divergence betwen two densities f and g is 

defined to be I{f,g) - JLn{f{x)/g(x))f{x)dx. Let the discrepancy 

function D be the Kullback-Leibler divergence, so that h{~) - I{f, f) 
~ 

where f is the predictive density computed with equal weights and f is 
tu 

the predictive density computed with weights {1+"1.). 
1 

By the linear transformation x*-s112x and y*-s112y we get the new 

* *t 2 model Y -N(X p,u I) that has the same weight for every case. . . 
he distribution of Z given w, X and Y is the Student distribution 

tA 2 A *t._-* -1 *t..-* St(n-p,w P,{l+v)s) where pis the dimension of p, P-(X -x) X ~Y, 

t *t * -1 2 *t * * *t * -1 *t -v=w (X X) w, s =Y QY /{n-p), Q=I-X (X X) X is the orthogonal 

* projection operator parallel to the column space of X and the 

distribution St{a,b,c) has density proportional to 

dz[l+(z-b) 2/ac]-{b+l)/2 (Geisser (1965), Johnson and Geisser (1982)). 

By interchanging integration and differentiation and after some 

tedious calculus we see that 

Cd is dt(Ml + M2 + M3 + M4)d 

where Ml, M2, M3, and M4 are each rank one matrices. They are defined 

. t t t -1 t in terms of z =(z1 , ... ,zn)=w (XX) X and the vector of residuals 

t QY=r=(r1 , ... ,rn) . The four matrices are 

2 t Ml= (n-p)/(2{n-p+3)(1+v)) • [z 0 z] [z 0 z] 

M2 = -{n-p)/((n-p+3){l+v)YtQY) • [z 0 z] [r 0 r]t 

t 2 t M3 ..,. (n-p)/(2(n-p+3)(Y QY) ) • [r 0 r] [r 0 r] 

M4 = (n-p)(n-p+l)/((n-p+3)(l+v)(YtQY)) • [r 0 z] [r 0 z]t 
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where O denotes elementwise multiplication. Section 3 sketches a proof 

of this result. 

The direction that maximizes the second derivative is the 

eigenvector corresponding to the largest eigenvalue of Ml+ M2 + M3 + 

M4. Since each summand has rank 1 the sum has at most rank 4. Thus 

there is only a four dimensional space of weight changes that effect the 

Kullback-Leibler divergence of the predictive density, at least locally. 

2. Example 

For a numerical example consider, as does Cook (1986), the Snow 

Geese data for observer 1 from Weisberg (1985). The data are X=flock 

size estimated by the observer and Y=flock size determined from a 

photograph. We believe Y to be the true flock size. We are interested 

in true flock size Z for flocks which have not been photographed but 

whose sizes have been estimated as w by the same observer. Figure 1 is 

a scatterplot of the data. 

This is a calibration problem. Aitchison and Dunsmore (1975) show 

that if 

2 1) the conditional distribution of X. given Y., Rand u is 
- i i ~ 

2 2) the conditional distribution of w given Z, p and u is 

2 
N(Po+P1Z,u ), 

3) the conditional distribution of Z given Y is 

St(n-3,Y,(l+l/n)~(Yi-Y) 2/(n-3)) and 

2 -2 2 4) the prior for /3 and u is proportional to u dpdu 

then the predictive distribution for Z given X, Y and w is St(n-2,a,b) 
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where 

a .,.. 

b .... 

y + (Z-X)·~(Xi-X)(Yi-Y) 

~<xcx)2 
and 

RSS•~(X. -X/ 2 
i ( l + ! + (Z-Y) ) --------=2 n - 2 

(n-2)•~(Yi-Y) ~(Xi-X) 
and 

RSS is the residual sum of squares from the regression of Yon X. 

Geisser (1985) points out that the Aitchison and Dunsmore result is 

identical to the predictive distribution for Z given X, Y and w if 

1') 

2,) 

the conditional distribution 

2 
N(/Jo+/JlXi,u ), 

the conditional distribution 

2 N({J0+p1w,u) and 

of Y. 
i 

of Z 

given X. , /J and u 
2 is 

l. 

given w, /3 and u 
2 is 

2 -2 2 4') (=4) the prior for /3 and u is proportional to u d{Jdu. 

Therefore we can solve the calibration problem as a straightforward 

linear regression prediction problem by reversing the roles of X and Y. 

Let's consider predicting true flock size for three values of 

estimated flock size, say we(30,100,300). For each value of w we can 

find d , the direction that maximizes Cd. Figure 8.2 is a plot of the max 

coordinates of d for each value of was a function of observer count. max 

Each coordinate of d corresponds to one data case. A large max 

coordinate indicates a case that would cause a large change in the 

predictive distribution if its weight were changed slightly. 

These plots are similar to a plot by Cook of the coordinates of dmax 
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as a function of observer count. Cook treated u2 as known and used a 

discrepancy function that depends only on point estimates of p. The 

main difference between his plot and our plots is in the value for the 

point where X-500. In Cook's analysis that point corresponded to the 

largest coordinate of d and would have been the most influential max 

under a set of small weight changes. In our analysis the influence of 

that point depends on the value of the covariate. 

Another interesting feature is that for w-30 the biggest change in 

the discrepancy function comes when the points at X-500 and X-250 get 

weight changes of the same sign. For wzz300 the biggest change comes 

when those points get weight changes of opposite signs. This effect may 

arise because for w=300 changing the weights with opposite signs will 

make a large change in the location of the predictive distribution. For 

w-30 changing the weights with the same signs will make a large change 

in the variance of the predictive distribution. 
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APPENDIX J! 

3. Computation of Curvature 

This appendix gives a rough outline and a few intermediate 

calculations for proving the result in Section 1. Let r be a scalar and 

d-(d1 , ... ,dn)t be a unit vector. Define 

• 
s = 

t 2 -1 -2 2 Under the linear model Y-N(X p,a (S )) with prior a dpda the 

predictive distribution for a future observable Z with known covariate w 

t"' 2 is St{n-p, w p, (l+v)s) where 

X is nxp 

x* = s112x 

y* = 51;2Y 

p = <x*tx*>-1x*~* 

t *t * -1 v = w {X X) w 

2 *t * s = Y QY /(n-p) 

and Q - I - x*<x*1ic*)-lx*t 

Let f be the predictive distribution of Z given above. We want to 
w 

compute 

C = 
d r-=0 
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where I is defined in Section 1. 

Let A .... (l+v)s 2 
Ao .... Alr=O , 

B ... t"' 2 
(z-w /3) , BO ... Blr=o· 

The first step in computing Cd is to differentiate and evaluate at r=O 

inside the integral. The derivatives of terms involving only A0 and B0 

are O because A0 and B0 do not depend on r. Terms involving only A can 

come outside of the integral. Letting' denote differentiation with 

respect tor we get 

C .... 
d 

n-p AA'' - (A') 2 

2 

n-p+l 
+--

2 

Note that 

2 ((n-p)A+B) 

I ((n-p)A+B) ((n-p)A''+B) - ((n-p)A'+B) 2 

((n-p)A+B) 2 

(n-p+2)(n-p) g(z)dz 

2 t (n-p+3)(n-p+l)(l+vO) (Y QOY) 

t"' 
where g is the Student (n-p+4, w pO, (n-p)AO/(n-p+4)) density and a 

subscript O indicates evaluation at r=O. Multiplying out the numerator 

of the integrand gives 
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C ICS -

d 

2 n-p AA''-(A') 

2 r=0 

(n-p+2)(n-p) 
+ 2 t [ 

2(n-p+3)(1+v0) (Y Q0Y) 
(n-p) 2AA'' + (n-p)fB''g(z)dz 

+ (n-p)A''fBg(z)dz + fBB''g(z)dz 

2 2 f (n-p) (A') - 2(n-p)A' B'g(z)dz 

- J(B')2g(z)clz Jlr=O. 
Next evaluate Band its derivatives. 

fBg(z)dzfr-O = var(g) = (l+v0)YtQ0Y/(n-p+2). 

fB'g(z)dz ~ 0 because the integral is an odd central moment of a 

symmetric density. 

B'' does not involve z and comes outside of the integral. Using 

((XtSX)-l)' - -(XtSX)-l(XtSX)'(XtSX)-l ( Rogers (1980)) and 

(XtSX)' = XtDX where D = diag(d1 , ... ,dn) yields 

B''lr=O = 2(wt(XtX)-1xtDQOY)2. 

2 
f(B') g(z)dzlr=O = 

and hence 

2 3 2 t 2 
Cd - (A') fr-O • (n-p) /(2(n-p+3)(1+v0) (Y Q0Y) ) 

t t.._ -1 t 2 . t + (w (XX) X DQ0Y) • (n-p+l)(n-p)/((n-p+3)(1+v0)(Y Q0Y)). 

Evaluating A' at r=0 and substituting back into Cd yields Cd as the sum 
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of four terms. 

+ 

n-p 

2 2(n-p+3)(1+vo> 

n-p 

n-p 

t 2 2(n-p+3)(Y Q0Y) 

(n-p+l) (n-p) 
+ t • (wt(XtX)-1XtDQOY)2 

(n-p+3)(1+v0)(Y Q0Y) 

Let e .... Q0Y, the vector of residuals. 

t.._ -1 
Let m-= X(X X) w. 

Let O denote elementwise multiplication. Then 

Cd= dt (Ml+ M2 + M3 + M4) d where 

n-p 
Ml - 2 • ( m O m ) ( m O m ) 

2(n-p+3)(1+vo> 

-( n-p) 
M2 El • ( m O m ) ( e O e ) t (n-p+3)(1+v0)Y Q0Y 

t 

t 

n-p 
e o e )t M3 - t 2 • (e 0 e) ( 

2(n-p+3)(Y Q0Y) 

(n-p+l) (n-p) 
m )t M4 czz •(e 0 m)( e o 

t (n-p+3)(1+v0)(Y Q0Y) 
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