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Ordinary least squares residuals are the most conun6n diagnostics for 

departures from the model assumptions of regression~ but may completely 

miss some departures from model, and provide equivocal diagnoses of 

others. Recursive residuals are much more effective tmder circumstances 

where the model holds at one of the ends of the data set, and are even 

more effective used in conjunction with the a recently-developed 

technology - that of 'self-starting' cusums. Diagnosis using recursive 

residuals and self-starting cusums, and that using OLS residuals and the 

more classical forms of the cusum are compared in four data sets 

involving departures from model, and it is shown how in each the new 

methods provide a clearer more reliable diagnosis of the departure. 
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Introduction - Ordinary and Recursive Residuals 

Consider the linear regression model 

y = X/3 + e., 

(X of order nxp) whose conventional distributional assumptions are that 

the true errors e.. are independently and identically distributed normal 
]. 

variates. 

The most common tests for the fit of the model are based on the fitted 

ordinary least squares (Ol.S) residuals 

e = y - X/3 

which, as is 

e = (I - H)e. 

where H is the 'hat' 

Under the model, e 

well lmown, can 

projector matrix X(XTX)-lXT. 

2 N [ 0 , a ( I-H) ] 

also be · written 

The OLS residuals have a m.miber of deficiencies as diagnostics of 

departure from model. Among the general deficiencies are that they are 

1 Not of equal variance, even where the true residuals are, 

2 Mutually correlated, 

3 Closer to normally distributed than the true residuals, as a result 

of the operation of the central limit theorem. 

Recursive residuals are defined by an iterative process. Start with the 

full sample, and compute the OLS residuals. The last of these, e, is n 

distributed under the model as N[O,o2(1-hnn)]. From it, define a scaled 

quantity 

r = e /~(1-h ) ~ N(O,a2). n n nn 

Having computed r ' n 
rell)ove the nth observation from the sample, and 
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repeat the entire process, duly computing another N(O,a2 ) quantity· rn-l 

say. Continue stripping the sample away observation by observation, at 

each stage computing a fresh scaled residual r. for the last of the 
1 . 

remaining observations in the data set. As only n-p of the observations 

can be deleted in this way without singularity setting in, only n-p such 

scaled residuals can be defined. They are called the recurs.i ve 

residuals. Let the recursive residuals be written as a column vector r 

say. 

Under the model, r N(O,a2I), and so the recursive residuals avoid 

the first two of the general defipiencies of OLS residuals; as we shall 

see, while they share the third deficiency they suffer. from it less. 

The recursive 

reproduce the 

however have 

residuals have the property !.r~ = !.e~ ie they 
1 1 1 1 

residual stun of squares of the regression. They do ·not 

any property analogous to that of OLS residuals that 

I.e.x .. = 0 for every predictor j. 
l. l. l.J 

Recursive residuals have a long history. Their properties as 

diagnostics for departures from model were set out by Brown, Durbin and 

Evans ( 1975) , as well as the discussants of that pa.per. D~spi te this 

and the attractions mentioned above (though perhaps partly because a 

casual reader of Brown et al could leave with the false impression that 

they are applicable only to time series data), recursive residuals do 

not seem to be widely used for diagnosis of departures from the model 

specification in multiple regression - for example, they are not among 

the standard diagnostics produced by most package programs. The purpose 

of this note is to give a few comparative examples of the perfonnance of 

di.agnostics based on recursive and on OLS residuals to illustrate the 

strengths and wealmesses of each. 

The computation of recursive residuals requires some care and attention 

3 



to the numerical analysis aspects. As the successive points are 

deleted, the conditioning of the desj gn matrix deteriorates steadily, 

and this fact makes the use of numerically stable methods essential. An 

attractive approach is that based on triangular factorization, for which 

numerically stable methods of updating and downdating are given, for 

example, in Gragg, Leveque and Trangenstein ( 1979) . The computation may 

be done by either downdating (starting with the full data set and 

removing cases sequentially) or updating (starting with the final set of 

size p and successively adding the rest of the sample case by case). Of 

the two, the updating approach is the more stable and so is 

computationally preferable. Code in BASIC for stable updating and 

downdating may be found in Maindonald ( 1984) where the . term 'Givens 

residual' is used for the recursive residual. 

In ad.di tion to this issue of ntmteric precision, it is a mathematical 

requirment for computation of the recursive residuals that the 

intennediate design matrices all be of full rank. Quite often, in the 

deletion process one comes to a point where a particular case is 

required to preserve rank. When this occurs, that case is kept in the 

current basis, and the next case deleted in its stead. Provided there 

is at least one nonsingular square submatrix of X, the usual result is a 

set of n-p recursive residuals (usually but not necessarily 

corresponding to the last_or 'rightmost' n-p cases) and a set of p cases 

which are retained in all regressions (usually but not necessarily the 

first or 'leftmost' p cases). 

Apart from the computational issue of whether they are computed by 

updating or downdatin,g, there is also the issue that recursive residuals 

can be computed either 'backward' or 'forward' - that is either by 

deleting observations successively from right to left as described above 

('backward'), or from left to right ('forward'). While either direction 

i.;ill produce the same stnn of squares for the recursive residuals, the 

actual values of the 'backward' and the 'forward' recursive residual at 
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any point for which both are defined are from regressions based on 

non-intersecting subsets of the data and may be completely different, so 

that the correct diagnosis of the deficiency may require the computation 

and analysis of both sets of recursive residuals. 

Effect of departures from model 

Because of the way the true residuals· are smeared across the fitted 

residuals by the projector I-H (which can have substantial off-diagonal 

elements), the ordinary residuals suffer from further deficiencies not 

shared by recursive residuals when used to diagnose certai~ types of 

departure from model specification. Examples of this type are 

situations i.n which the usual regression asslDllptions apply in a portion 

of the data set, but not in the whole data set. Under these 

circL011stances, all of the ordinary residuals are contaminated by the 

lack of fit of a portion of the true residuals, and so may fail to 

present a ·clear picture of the model departure. The recursive residuals 

however avoid this difficulty provided. the departure from model does not 

continue to the 'left end' of the data set, since once the contaminated. 

portion of the data has been deleted, the remaining recursive residuals 

are 'clean' • Comparison of the recursive residuals comput~ later in 

the computation with those computed. ear lier then shows the problem up 

clearly. 

Amplifying this point of the general behaviour of the two types of 

residual under departures from model, let us look briefly at the effect 

of some common departures from model on OLS and recursive residuals. 

Notable are:-

1 Outliers. There is a vast literature on outliers in regression 

wnich we will not cover again here. The projection going from~ to 

e has the well-known effect of (i) attentuating the real departure 
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of an outlier from the regression; and also (i.i) inducing apparent 

deviation in inliers. In the extreme case, one can find the OLS 

residuals providing completely wrong diagnoses of which points are 

inlying and which outlying as is illustrated below. This defect is 

clearly avoided by the recursive residuals provided at some stage 

there comes a point at which all outliers have been excluded and the 

remaining cases ronform to the model. 

Interestingly though, a correct diagnosis may result even if some 

outliers are ~ entirely excluded in the computation of the 

recursive residuals. This can happen because the retained outliers 

bias the regression f,mction,. which may give the· fitted recursive 

residuals a nonzero overall mean. Thus a check of the mean of the 

recursive residuals (unlike that of the OLS residuals which is 

necessarily zero) can be very infonnative. 

2 Nonlinearity. Suppose for illustrative purposes that the true 

regression of Y on one of the x is a convex quadratic rather than 

linear, and suppose also that the data set happens to be ordered on 

that x. The plot of the OLS residuals on x will then tend to be U 

shaped, something that is not always easy to see in a residual plot. 

The recursive residuals behave quite differently. As each point is 

deleted, the resulting fitted line slopes decreases, with the result 

that all the recursive residuals tend to have positive expectations. 

Both visually on an index plot· and more formally from the mean of 

the recursive residuals, this tendency is much easier to detect. 

We have now mentioned two departures from model that can give an 

overall nonzero mean recursive residual, but this second departure 

is distinguished from the first by the fact that both the 'backward' 

and the 'forward' recursive residuals have a non-zero mean of the 

same sign, wheFeas in the case of never-deleted outliers one will 

tend to see a clear outlier syndrome for one direction of 
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computation, and the non-zero mean recursive residual for the other. 

Thus a comparison of the forward and backward recursive residuals 

will show w-hether there is a problem of non-linearity or one of 

outliers at the end of the sequence. 

3 Heteroscedasticity. It is clear that the OLS residuals are a poor 

indicator of heteroscedasticity when the larger variance occurs at 

points of higher leverage - this i.s because of the (1-h .. ) factor in 
11 

the variance of e .• 
1 

One by..;.product of the standardisation_ involved 

in defining the recursive residuals is the removal nf this effect, 

so that the recursive residuals are not blind to higher variance on 

high leverage points. 

4 Omitted predictor. In general, an omitted prediqtor is undetectable 

by any diagnostics unless it happens to relate to something in the 

data set. Consider the values of the omitted predictor adjusted for 

the predictors in the regression. If these adjusted values vary 

reasonably smoothly with the order of the cases, then the omission 

may be seen in the form of a slowly varying non-zero mean in the 

residuals (both OLS and recursive), and this may be detected with 

suitable checks on the residual's current mean such as the cusums 

discussed below. Another possibility is that the adjusted values 

may be more variable in some portions of the ordered sequence than 

in others; in this case the omission will show up in the form of 

non-constant smoothly changing variance. This may be detected by 

diagnostics for general changes in the variance from case to case. 

The implication of this is that a slowly drifting mean or variance 

of the OLS or recursive residuals could be an indicator of an 

omitted predictor. 

5 Change of regime. If any regression coefficient changes from one 

portion of the. data to another, then the recursive residuals will 

show a clear 'two-ph~e' behaviour. Those from the end will consist 
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of recursi Ye residuals from a single phase, and so will be ~ ( 0, a 2 ) 

while those from the earlier stages of deletion will show nonzero 

mean, increased variance or both. Again diagnostics for location 

and scale of the recursive residuals will show up the deficiency. 

6 Non-normal errors. As a] ready mentioned, the OLS residuals suffer 

from a 'central limit' effect in that the fitted residuals are 

closer to normal than the true residuals. This effect is also 

present i.n the recursive residuals, but is somewhat attenuated by 

the fact that as one computes the successive recursive residua] s, 

each involves fewer of the original e. .• 
1 

Ordinary and self-starting custuns 

As these conunents illustrate, the diagnosis of many of the common 

departures from modP.] may be made by detecting systematic but otherwise 

quite general departures froni zero mean and constant variance in the 

ordinary and/or the recursive residuals. Powerful diagnostics for each 

may be made using cunrulative slDll techniques (custD11S). Consider a series 

of data say Z .... N(,u,a2 ), whereµ and a are known. Conventional custD11S 
1 

for normal data (either explicitly or implicitly) standardise these 

values to U. = (Z. -µ) /a and then apply the lmown distribution theory of 
1 1 

partial sums of standard normal quantities to set up monitoring schemes 

of known average run length. 

The standard cusums are for location, and for scale. A location cusum 

nonna.lly consists of the nmning total ( or something mathematically 

equivalent) of the U .. 
1 

There have been several proposals for cusums to check for constancy of 

variance. The older and better lmown are those based on the cusum of 

squares of the putatively N(O, 1) quantities U., an approach which has 
]. 
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the disadvantages of requiring development of its own inferential 

theory, of high sensitivity to outliers, and of not being very easily 

related to the cusurn of the U .• 
1 

An alternative proposal ( the 'square root scale cusum') is that of 

Hawkins (1981), and involves computing the quantity 

vi = <~1ui1-o.s22)/0.345 

whose distribution is very close to N ( 0, 1) if the U. are N ( 0, 1 ) , but 
1 

whose mean changes upward or downward if the variance of the U. 
1 

increases or decreases. A cusurn of the V. therefore provides a 
1 

mechanism by which scale changes in the original data. can be monitored 

using an ordinary location cusurn of N( 0, 1) quantities. This· procedure 

provides (at a cost of some loss of power) a method of controlling for 

scale that is more robust than that of running sums of squares, and that 

uses the well-lmown procedures for location cusurns of normal quantities. 

-~ an extra benefit of presentation, one may plot the cusums of U and V 

together on the same graph (since they have identical distributions and 

therefore the same action limits). 

This combination of cusums of the U. to check for mean and V. to check 
1 1 

for variance provides a very effective simultaneous check on the 

constancy of the data. 

Problems with this traditional approach to cusums arise when the 

parameters µ and/or a are not known. Standard practice has been to 

substitute for these parameters sample estimates, but this creates 

difficult_ies. Not only is the distribution of the resulting 

standardised quantities U. Student's t rather than normal, but a 
1 

correlation is also induced between them. These two departures from the 

asymptotic assumptions obviously affect the run length distribution of 

the cusum, but little work seems to have been done quantifying the 

effect. 
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A different approach addressing these problems is the 'self-starting' 

cusums developed in Hawkins ( 1987) • These cusums are designed for the 

situation in whichµ and a are not known, and learn about the unknown 

parameters as they go, simultaneously providing cusl..Ull control on the 

constancy of the process. The procedure set out in Hawkins (1987) was 

for the case neither µ nor a known, while under the regression model, 

the recursive residuals r. are independent N(O,a
2

) with a2 the only 
1 

unlmown parameter, the mean being zero t.mder the model. To deal with 

this additional infonnation, we modify the approach slightly - define: 

1'he running standard deviation 
i 2 . 

s.=H ! r./1] 
1 j=l J 

i = 1, 2 .... 

T. = r./s. 1 ... t. 1' i = 2., 3 ••• 
l l 1- 1-

u. = Si-7 log [1 + T~ 1 sr=s --1 

i.-1 
The successive T. are t distributed with i-1 degrees of freedom and 

1 

mutually independent. Each tests the corresponding recursive resi(i.ual 

r. for zero mean, stud.entising using the running standard deviation of 
l 

all previous recursive residuals. The transformation of T. 'to U. 
l. 1 

provides a qua.nti ty that is ( Peizer and Pratt 1968) very close to 

N(0,1). 

By cusumming the U. and the derived scale check quantities V., one can 
l . 1 

then check the successive recursive residua.ls r. for departure from zero 
l. 

mean and constant ( but unlmown) variance. We term these cusums 

'self-starting' since, t.mlike the conventional ones, they do not require 

any starting infonnation in the fonn of known parameter values. Unlike 

the procedure obtained by plugging sample estimates into the 

conventional cusum for known parameters, the approach using 

self-starting cusums is distributionally correct apart from the quite 

minor approximation involved in the normalising transformation from the 

t distribution to N(0,1). 

Another approach using $Orne of these distributional properties is that 
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of Hester and Quesenberry ( 1984). These authors also make use of the 

independence and t distribution of the T. , but rather than nonnalising 
1 

pref er to transfonn them to uni form by the conditional probabiU ty 

integral transform of O'Reilly and Quesenberry ( 1973) and from there to 

scores distributed as~~- These they then use to form an omnibus test 

for monotonic heteroscedastici ty. Their approach is designed for the 

specific situation of a monotonically changing variance though, and 

seems less likely to perfonn well against departures from different 

aspects of the model and or where the departure is not monotonic across 

cases. 

It ma~r be noted that T. is the . optimal single-outliP.r regression test 
1 . 

Rtat i.st i r for tP.sting case i in the set ( 1 , 2, ... , iJ . The· individual 

values of the T. are thus of part.i.cular i.nterest. as being good 
1 

single-outlifrr di.agnostics, particularly if any outliers happen to be 

located in the portion of the sequencP. deleted relatively early, 

Diagnostics used for checking the recursive residuals 

In principle, any of the diagnostic checks that are carried out usi.ng 

Ol.S residuals could be applied also using recursive residuals. Two that 

are particularly appropriate are (i) a normal probability plot, and (ii) 

location and sC'.ale cusums. The fonner provides a good ind:i.cation of a 

number of departures from model - not only of the nonnality pa.rt of the 

asstnnption, but also changes of regime, outliers, omitted variables and 

heteroscedasticity. 

There have been a m.nnber of previous papers on the use of cusums for 

dP.tection of departures from model. Apart from the 1 andrnark paper by 

Brown et al proposing the use of cusums of the recursive residuals and 

their squares, there is the critical evaluation by Garbade (1977) of the 

cusum of squares of recursive residuals. McCabe and Harrison suggest 
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the use of the cusum of squares of the OLS residuals, while Galpin and 

Hawkins (1984) discuss the use of the location and 'square root scale' 

cust.uns of the recursive residuals. In all of these papers however, the 

problem of unknown parameters is dealt with by 'plugging in' an estimate 

of a. Not only does this involve the difficulties of violating the 

asstonptions of exact N(O, 1) distribution (as mentioned above) it also 

creates difficulties of interpretation in the event of a departure from 

model that, since the residual standard deviation is itself contaminated 

by the depa.rt~re from model , . the resulting cusl.llll diagnost i.cs may be 

misleading about the true nature of the departure. 

Self-starting cusums provide a much more attractive analysis for 

recursive residuals. If the recursive residuals were constructed by 

deleting points from right to left, the cusums are cqnstructed by 

acctonUlating from left to right. This has the implication that if there 

is a departure from model affecting only a portion of the data, then the 

self-starting cusl.lllls automatically learn about a from the uncontaminated 

portion of the data, and· thereby perfo1:111 effectively i.n diagnosing the 

departure from model in the later part of the series correctly. 

The direction of computation of a self-starting cusum matters, and must 

match the direction of computation of the recursive residuals 

'backward' recursive residuals must be cusummed forward, and 'forward' 

recursive rP.siduals must be cusummed backward. If one takes a series of 

data and runs it through a conventional cusum backwards, the plot 

obtained is a mirror image of that obtained by computing it forwards. 

But because of their use of a running standard deviation for 

studentisation, this is not true of self-starting cusums, where the 

backward run of a set of data may produce quite different plots from the 

forward nm. 

The location cusum checks whether the mean of the recursive residuals 

moves systematically from zero at any point in the sequence. It is 
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particularly effective in diagnosing changes of regime, omitted 

predictors, outliers, and some forms of nonlinearity. 

The scale cusum checks whether the variance of the recursive residuals 

in the latter part of the data is different from that in the earlier 

pa.rt. This custun can be a good indicator of not only 

heteroscedasticity, but also changes of regime, omitted predictors and 

nonlinearity. 

The test data sets 

The use of these diagnostics will now be illustrated with reference to 

four data sets with various departures from model. All the sets use the 

same design matrix X with 100 points and 4 predictors. Of the 100 

cases, the first 14 and the last 20 are of high leverage (though with 

the first group on different canonical axes from the second) and the 

center 66 are of low leverage. The data sets differ in their Y, which 

contain different departures from model. The individual sets and their 

departures are as follows:-

1 A set with 10 masked outliers on cases 1 to 10, 4 swamped inliers on 

cases 11 to 14, and data confonning to model on cases 15 to 100. 

This is a derivative of the data set used in Hawkins Bradu and Kass 

(1984) to illustrate the problems of multiple high leverage outliers 

in regression. Despite the displacement of the outliers by a very 

large 10 standard deviations, most methods have trouble in detecting 

them. 

2 A set with outliers on the last 20 cases, each point being displaced. 

3 standard deviations from the generating regression line. While 

not as difficult to analyse as the first data set using standard 

methods is not completely transparent. 
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3 A set wj th heteroscedastici.ty, the truP. residua ls on the fina.1 20 

points having a standard deviation .double that of the first 80 

points. 

4 A set with a change of regime. The intercept changes by 1 standard 

deviation after case 80. 

With the exception of the first (which was constructed as a counter 

example to illustrate some deficiencies of current methods) , all data 

sets show departures from model of a type and magnitude that one would 

hope to be able to detect reliably with standard diagnostics. 

The analyses carried out 

For each of the data sets we fitted the regression, and computed· the 

ordinary residuals, ~he recursive residuals computed backwards, and the 

recursive residuals computed forwards. As a baseline of standard 

technology using OLS residuals, we analysed the OLS residuals using a 

normal probability plot and conventional cusums for location and scale 

(the latter using the square root scale custml) plugging in the residual 

standard deviation. 

For the recursive residuals we used a normal probability plot and 

self-starting cusums for location and scale. The computation of the OLS 

and recursive residuals, and the probability plots of each, were 

perfonned using the REGPAC regression program package (Galpin 1981), one 

of the few general packages available that currently provides recursive 

residual diagnostics. The self-starting custnnS were produced by a 

FOR'I'8AN subroutine based on that of Hawkins (1987). 

As a matter of presentation, all the cus\.DllS were drawn in decision 
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interval form wi.th an allowance per observation of 0.25 standard 

deviations. With this choice of the allowance, appropriate action 

limits are horizontal lines at +6 standard deviations. 

The adequacy of the nonna.l distribution can be tested by the correlation 

coefficient obtained from the probability plot. The tables of Filliben 

(1975) show that a correlation coefficient below 0.987 indicates a poor 

fit at the 5% level of significance for series of length approximately 

100. 

The plots are given in the appendix. 

data set are as follows:-

The major features data set by 

Set 1. The OLS residuals show that there is a proble~ in this data set. 

The probability plot rejects normality but while it rightly casts some 

suspicion on cases l-10, but. wrongly indicates large outliers on cas~s 

11-14 where the largest residuals occur. The conventional cusum· for 

location, but much more so that for scale, show how the overall mean 

residual and spread drop after case 14 and that the mean rises at the 

end of the sequence. Most of this diagnosis is incorrect however in 

that cases 11-100 are good, and only cases 1-10 are outlying. 

The backward recursive residuals are also (and not surprisingly) not 

particularly enlightening as the outliers are never deleted. They show 

very large values at observations 15 - 17 (the right tail on the 

probability plot), while the cusums really show little more than that 

once the high leverage case at the right end of the data set are removed 

the standard deviations of the recursive residuals get steadily smaller. 

The forward custDDS provide the correct diagnosis. The probability plot 

shows how far observations 1-10 deviate (and to a lesser extent also 

observation 14). The custDDS, having nm under control up to observation 

11, give a very sharp location and scale signal, showing clearly that 
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obsen·ations 1-10 are outliers. 

All three probability plots show highly significant non-normality. 

Set 2.· The OLS residuals show no structure in their probability plot 

and the correlation coefficient of O. 995 does not correspond to a 

significant lack of fit. The reason for this is that the outliers are 

at points of high leverage, an area in which OLS residuals can be 

e~-pected to perform poorly. 'The conventional cusl..DilS of the OLS 

residuals do a much better job of detection that there is some problem. 

The location cusum 'sawtooths' after case 80, giving two upward and two 

downward. signals (a result of the outliers) and the scale cusums move up 

strongly after case 80, where the outliers start. The diagn~sis of the 

problem however is likely to be completely mis-leading, as these 

essentially correct diagnostics are visually overshadowed by the strong 

downward. movement of the scale cusum over most of the sequence which 

would imply a larger variance on the first few cases than is seen in the 

rest of the data. This apparent heteroscedasticity is partly real, but 

primarily an artefact due to the smearing by OLS of the effect of the 

departure in the right end of the data, the misfit being magnified. in 

the left end of the data by the high leverage of these cases. 

The probabili :t,Y plot of the backward recursive residua~~ indicates 

significant non-normality as one would hope,of a data set with twenty 3a 

outliers, though the plot does not clearly show the problem as outliers. 

The corresponding location and scale cusums however provide significant 

moves starting at observation 80, for an. essentially correct diagnosis. 

We note that there is also a signal of decreased variance starting about 

case 10. This reflects the fact that among the first 10 recursive 

residuals, by chance three exceed 2a and the running standard deviation 

at 10 observations is 1. 53a. Thus the signal correctly reflects a 

changing variance, though the reason for the change is the random 

numbers obtained. ih the simulation rather than a model defect. 
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As the departure from model is at the right end of the data set, one 

should not expect to see the correct diagnosis in the forward recursive 

residuals, but in fact these do provide a correct diagnosis. There is a 

significant location signal with the cusum peaking at observation 20, 

but the outliers' real footprint is the steady reduction in the variance 

past observation 21. 

The probability plot shows significant non-normality and is perhaps 

somewhat clearer than its backward cotmterpa.rt in showing two clearly 

separated. outliers. 

Set 3. The probability plot of the OLS residuals is tmremarkable. It 

has apparent gaps at the left and right, but these· are not so large as 

to give a significant departure from model. While the cusums of the 01.S 

residuals provide a number of significant signals in both location· and 

scale, the correct diagnosis of an increased variance after case 80 is 

not seen. 

The probability plot of the backward recursive residuals· shows no 

departure from model, but the cusum apart from a weak and nonpersistent 

signal of decreased variance in the middle of the sequer:,.ce, clearly 

shows a variance increase starting at observation 79 - essentially the 

correct conclusion. 

The probability plot of the forward recursive residuals shows 

just-significant non-normality, with an excess of large negative 

residuals apparent. The custun amplifies this diagnosis by discovering 

that the spread of the residuals decreases significantly once the 

earlier points are added to the later ones. The variance change point 

is diagnosed as being between cases 78 and 79, as with the backward 

custnns and again providing the correct diagnosis. 
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Set 4. The probability plot of the OLS residuals shows no significant 

non-normality, and looks acceptable apart from an apparent outlier on 

the left (which is in fact a good observation). The cusum shows some 

departure from model, but the plethora of signals gives no clear 

indication of what it may be - at various points in the sequence, both 

upward and downward signals are seen in both the location and the scale 

cusums. 

The probability plot of the backward recursive residuals is. also close 

to linear. The location cusum localises the problem correctly however, 

giving a significant upward shift at case 87. There is a false alarm in 

the fonn of a significant downward scale signal for porti.ons of the 

middle of the set, but these signals are much weaker than that of the 

location shift. 

The forward recursive residuals show the same apparent outlier seeh in 

the OLS residuals. They give an acceptably linear probability plot, but 

one displaced from the origin - a feature on whose importance we 

commented above and which is indicative of problems in the cases that 

are never deleted. The location cusum shows a significant downward 

shift between cases 88 and 89 - a correct diagnosis of the departure, 

though not at quite the correct position in the sequence. 

Summary: and conclusions 

All four of the data sets had one feature in common:- a departure from 

model that affected a portion of the data but left one end of the 

sequence fit ting the model . It is under these circumstances that the 

approach of usi.ng r~ursiYP. residuals, along with the self-starting 

cuslllllS which capitalise on their particular properties, can be expected 

to be most effective. In all four cases, it was shown how t.hese methods 
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provided a much clearer di.agnosis of the model defect than was 

obtainable from the more traditional analyses using OLS residuals and 

conventional cusums. 

We pointed out in the discussion of the effect of model departures the 

importance of their being an ordering such that at least one of the two 

ends of the data set consisted only of data for which the model is 

appropriate. This situation will not always apply, and the deficiency 

may only show up with some other ordering of the data. 

By implication, we have been talking about the data as processed. in 

lexicographic order. If however we were interested to check the 

linearity of the regression on a.particular one of the predictors, then 

it would be necessary to reorder the data on that predictor and compute 

the forward and backward cusum diagnostics on that ordering. There are 

many such potential orderings that may legitimately be used - in 

particular one could envisage routine use each of the predictors and/or 

the predicted Y as the basis for ordering and the computation of the 

recursive residuals. Another interesting possibility (suggested to the 

author by Alan Dorfman) is ordering by increasing values of the 
leverage, with del.P.t.ion from t.hP. P.nd of hi.gh levP.rage. Thi.s lattP.r 

possibility should be particularly P.ffectivP. i.n rletP.rt.i.ng smooth 

nonlinearities, as it would consist essentially of testi.ng the points 

with remote x values against those with central values and so giving 

improved chances of locating 'the outliers that matter'. 

This large number of potential plots does not involve as much 
r.omputat.ion as one might suppose - any reorderjng i.s an O(nlogn) 

Op?.rat.ion, and the eomput.at.ion of a set of recursive residua.ls an 

) 2 3 t' • 
< I np +p > opP.ra .1.on. ThP. major obstacle to making all p+3 orderings is 

not the computational load, but the visual one of scanning al 1 the 

resultant outputs. Here the reconunendation is of reporting by 

exception; of programming so that on 1 y those cusums giving significant 
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signals arP. di splayed for closer interpretation. There are clear 

'cognostic indices' of which plots to inspect in the form of the 

correlation coefficient of the probability plot, a t statistic for 

overall non-zero mean on the recursive residuals, and the maxima and 

minima of the location and scale cusums. These indices may be used to 

rank the possible orderings from most to least interesting, and since 

they correspond to fonnal significance tests, may also be used to filter 

out plots in which the model gives no significant misfit. 

A departure from model which does not affect one end of the data is not 

the universal norm, and we do not claim that the probability plot / 

self-starting cusum diagnostic is a panacea for all model diagnoses; 

nevertheless we consider that t~e situation modelled in the test data 

sets and the extension to other orderings is conunon -~nough to argue for 

the availability of these procedures in all regression packages. 
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Legend to figures 

The cusums are of the decision interval fonn with an allowance of O. 25 

standard deviations per observation. The action limits are at ±6. 

Three cusums are given for each data set - a conventional cusum for the 

OLS residuals, and a self-starting cusum for the backward, and for the 

forward recursive residuals. 

The location custunS are shown as solid lines and the scale cusurns as 

dotted. The positive half shows increases, and the negative half 

decreases in location and scale respectively. 

Note that in the custnns of the OLS and the backwards. recursive 

residuals, the points are plotted in the same order_as they occur in the 

data set, but for the forward recursive residuals they are reversed -

the point with index 1 is the last point in the data set and not the 

first. 
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Set 1. Probability plot of OLS residuals 
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Set 1. Probability plot of backward recursive residuals 
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Set 1. Probability plot of forward recursive residuals 
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Set 2. Probability plot of OLS residuals 

-2.800 -1.400 .ooo 1.400 2.800 
-3.500 -2.100 -.700 .• 700 2.100 
•• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + .... + ••• 

2. 500 t 1 • + 
1 
1 
1 
1 • 

2.000 + 1 + 
1 • 
1 • 
1 • 
1 • 

1.500 t l • + 
1 • 
1 • 
1 • 
1 • • 

1.000 t 1 • + 
1 • * * 
l • 
1 .. 
1 •• 

• 500 + 1 ** + 
1 •• 
1 ••• 

l ** 
1 •• 

• 000 +--------------------------------------·--------1-••---------------------------------------~+ 

-.500 t 

-1.000 + 

-1.500 + 

-2.000 + 

-2.500 + 

1• 
•1 

•• l 
••• 1 

• • 1 
•• 1 
• 1 

• • 1 
•• 1 
• 1 

•• 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

•• + ••••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + .......... + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •• -
-2.800 -1.400 .ooo 1.400 2.800 

-3.500 -2.100 .700 2.100 
NORMAi, l>ROBI\Btl.I1'Y PLOT CORRF.1,1\TION COF:T-'FJCH:N'I' IS 

-.700 
.994860 

+ 

+ 

+ 

+ 

+ 

2.500 

2.000 

1.500 

1.000 

.500 

.000 

-.500 

-1.000 

-1.500 

-2.000 

-2.500 



"C en 
.5 
~ 
::::) 
(/'J 
::::) 
(.) 

1ij 
> ... 
Q) -.5 
C: 
0 ·en ·o 
Q) 
Q 

0 
(\J 

0 
~ 

Lt) 

0 

Lt') 
I 

0 
~ 

I 

Lt') 
~ 

I 

0 
(\J 

I 

Lt') 
(\J 

I 

0 
M 

I 

.. \."\ 
\ 

~ .:\ 
\ ..... -...... ·· . 

0 20 

Set 2 OLS 

···· ... 
~ ( 

'\_1\ :··:r 

40 

~···~ 
~ ,•, 
~ ........ \:··. 

"'\ .. _ .. /\\, :·······/·· \ ... /········. 
.. \ .. 

60 

Run number 

\ . N 
.\ .. : · .. : 

80 100 



Set 2. Probability plot of backward recursive residuals 
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Set 2. Probability plot of forward recursive residuals 
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Set 3. Probability plot of OLS residuals 
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Set 3 backwards 
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Set 3. Probability plot of forward recursive residuals 
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Set 3 forwards 
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Set 4. Probability plot of OLS residuals 
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Set 4. Probability plot of backward recursive residuals 
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Set 4. Probability plot of forward recursive residuals 
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Set 4 forwards 
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