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Abstract 
Factorization models are a generalization of hierarchical log linear models 

which apply equally to discrete and continuous distributions. In regular 
(strictly positive) cases the conjunction of two factorization models is another 
factorization model whose representation is obtained by a simple algorithm. 
Failure of this result in an irregular case is related to a theorem of Basu on 
ancillary statistics. It is shown how factorization models are related to ZPA 
(zero partial association), graphical, decomposable and recursive models. 
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1. Introduction 

The purpose of this paper is review methods of representing 

independence in multivariate distributions and to relate them to 

factorization models, a generalization of hierarchical log linear 

models. Many of the key ideas of factorization models are 

implicit, for example, in Wermuth (1976a), (1980), Dawid (1979a), 

(1980b), Darroch et al (1980), and Kiiveri et al (1984), 

Lauritzen et al (1984). 

In Section 2 we define factorization models, and establish 

that the intersection of two factorization models is again a 

factorization model. This furnishes the basis of a 

"factorization calculus" for routine manipulations. The failure 

of the calculus for irregular cases is shown to be related to a 

problem with a theorem of Basu on ancillary statistics. 

In Section 3 factorization conditions are compared with other 

representations of· independence, including "Dawid conditions," 

ZPA (zero partial association), graphical, decomposable and 

recursive models. Although factorization and.Dawid conditions 

partition distributions differently, the partitions become 

identical for saturated graphical factorizations and saturated 

Dawid conditions ("saturated" means involving all variables). It 

is further argued that not all recursive models are factorization 

models, but every decomposable factorization model is a recursive 
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model. 

The way in which factorization models generalize hierarchical 

log linear models can be seen by an example. A p.m.f. f(x,y,z) 

is expressible in the factored form a(x,y) b(x,z) if£ the 

hierarchical log linear model lacks terms_u23 and ~ 23 (in the 

notation of Bishop et al {1975)). Equivalent notations are: The 

"fitted marginals" are {AB), {AC) (Goodman (1970)), the 

"generating class" is ((1,2), (1,3}) (Haberman (1974), Darroch et 

al (1980)), the "sufficient configuration" is c12 , c13 (Bishop et 

al (1975)). Fienberg (1977) ~bbreviated further to [12][13] and 

Wermuth (1976 a,b) to 12/13. 

2. Factorization Models 

In what follows the distributions can be either discrete or 

continuous. Our treatment is non-measure theoretic and assumes 

conditional densities to be defined as the quotient of joint and 

marginal densities. 

For a trivariate p.m.f. or p.d.f. f(x,y,z) Dawid (1979a) 

pointed out that 

(2.1) xJL YIZ iff f(x,y,z) - a(x,z)b{y,z). 
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- a14 - a23 -a24 - 0, then (X1 , X2) ..IL (X3 ,X4) I (X5 ,X6). This 

result can be obtained by_noting that the conditional covariance 

matrix is the inverse of a block diagonal four-by-four submatrix 

of (aij}' but a vector generalization of (2.1) establishes the 

result by factorization, avoiding matrices. (For general results 

on multivariate normal independence structures, see Warmuth 

(1976a) and Speed and Kiiveri (1986).) 

2.1 Definitions 

Def. 2.1. The order of a model, N, is the number of joint 

random variables. 

Def. 2, 2. A factor is a number 1, ... ,N. The s.et 

(1, ... ,N} will be denoted by N. 

This terminology agrees with Darroch et al (1980). 

Def. 2. 3. Any subset of N , say a ~ N , will be called a ~-

Def. 2 .4. A product A is a set of terms (not necessarily 

distinct). 

We will variously write for example 

(2.2) A - (a,b,c} - ([l],(12),(23]) - 1/12/23, 
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which is a mix of Haberman, Fienberg and Werm.uth notation. After 

reduction as defined below our product corresponds to Haberman's 

"generating class." The separate term "product" is retained so 

as to include the nonminimal case, and to suggest the 

factorization off into a product. 

Def. 2.5. Reduction of a product means deletion of all terms 

which are proper subsets of other terms and deletion of all but 

one of any duplicated terms. For example, reduction of 

( [l], (12), (23], (12]) yields ( [12], (23]). 

Def, 2-, 6. A product -is minimal if it has no reduction. - -~ - - -

Def. 2, 7. Two products are equivalent, A = B if they reduce to 

· the same minimal product. 

Def, 2,8. The class CA is the set of functions f which 

factor in accordance with A. 

It is sometimes helpful to think of~ E CA .as equivalent to 

log f belonging to linear subspace. In notation close to that of 

Darroch, Lauritzen and Speed (1980) p. 524, and Darroch and Speed 

(1983) p. 725, f E CA iff 

(2.3) log f - ~ A e (x ) 
aE a a 



where xa is the set of xi for i ea. In this case Darroch and 

Speed (1983) write log f e MA· 

Example 2.2. If A - ([12),(234),(345]}, then f e CA iff 

there exist a,b,c such that 
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Proposition 2.1. For the class of strictly positive p.m.f.s 

or p.d.f.s., the sets CA for all minimal A correspond one-to-one 

with hierarchical log linear models whose generating classes (in 

the sense of Haberman (1974)) are A. Consequently the number of 

distinct factorizations equals the number of hierarchical models. 

Set operations on terms pose no special difficulties but 

special conventions are useful for products. 

Def. 2.9. Set operations on products. 

A~ B means every term in A is in 8. 

A :s B means every a e A is a subset of some b e B. 

A AB means the set of mn terms c .. ""'a. n b. , i - 1, ... m, 
l.J l. J 

j .... 1, ... , n, where A - ( a1 . • . an), B ... (b1 ... bn} 



The notation A A Bagrees with Lauritzen et al (1984), p.16. 

It is trivial to show: 

Proposition 2. 2. A ~ B implies A :s B, and A :s B implies 

2.2. Factorization Calculus. 

A more general version of (2.1) is: 

Proposition 2.3. (The Dawid-factorization connection.) If 

a,b,c are a partition of N- (1, ... ,N) and X,Y,Z are 

corresponding vector variates then 

(2.4) xll YIZ iff f E CA, A- (au c, bu c). 

The case c - null set can be accomodated by agreeing that 

X JL YI Z then becomes x.Jl Y. 
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Example 2.3. Let f(0,0.0) - f(l,1,1) .... 1/3, f(l,0,0) =----····· ---­

·f(0,1,1) - 1/6, f=-0 otherwise. Then X Jl YIZ and xJL ZIY but X .iL 
(Y,Z) is false. 

When do xJL YIZ and xJi ZIY imply xJL (Y,Z)? For A= 

{ (13), [23)} write CA ""' c
13123

, etc. Then in factorization 

notation the question translates to: Does c
13123 

n c
12123 

= 



c
1123

? Dawid (1980b), Sec. 6 and 7, gives a measure theoretic 

treatment. 

Proposition 2.4. For N - 3 if f is strictly positive, then 

x.lL YIZ and xJl ZIY iff x . .LL (Y,Z). 

In the discrete case a proof can be given by determining 

which terms are zero in the log linear expansion of log f. 

Alternatively we can write 

(2.5) 
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exhibiting two marginal-conditional factorizations. Under the 

regularity assumptions, f 23 ~ 0 and so f 13;£3 - £12Jf2. The LHS 

is free of y and the RHS is free of z. Thus both sides depend on 

x only and the result follows easily. In the Appendix we show 

how this approach extends to certain irregular cases and how it 

relates to Basu's (1982) Theorem 2. 

The hierarchical log linear approach can be extended to 

continuous models via difference operators. Let us define 

(2.6) 

61f(x,y,z) - f(x' ,y,z) - f(x,y,z), 

612f(x,y,z) - f(x',y' ,z) - f(x,y,z), 

6
1
~

2
f(x,y,z) - f(x' ,y' ,z)-f(x' ,y,z)-f(x,y' ,z) + f(x,y,z), 



etc. It is known that for N - 3 there are 19 hierarchical log 

linear models. By including permutations, these are oQtainable 

from the list of generating classes A below. It is 

straightforward to verify that f E CA iff the corresponding 

difference operator operating on f gives zero. For the discrete 

case the averaging operators of Darroch and Speed (1983) p. 729, 

provide an alternative characterization. 

Generating class Difference operator 

; Al23 

1 A23 

1/2 A3,AlA2 

1/2/3 Al2A13A23 

12 A3 

1/23 AlA23 

12/13 A2A3 

12/13/23 A1A2A3 

123 ; 

In general we obtain difference operators from a generating 

class A- (a1 ... a.) as follows·. Put a - u a c N\a b k j j' a t j = 

a\a.. Then 
J 
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(2.6) if f /1 f - 0 and A.. • • • A.. f .... 0 . 
c 7>1 Dk 

For routine manipulations the following generalization of 

Proposition 2 .4 is useful. 

Proposition 2.5. (Factorization calculus.) For any class of 

strictly positive functions f, CA n CB .... CAAB 

Proof. By definition, A AB ~ A and A AB ~B. By 
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Proposition 2.2, CAAB~ CA and CAAB~ CB, and so CAAB ~ CA n c8 . 

The converse is less obvious, and does require some regularity in 

view of Example 2.3. Needed are lemmas like: if a1 (x,y)a2(z,w) -

a3(x,z) a4 (y,w) then both products equal b1(x)b2(y)b3(z)b4 (w). 

This is hardly surprising, and a proof can be given by applying 

the difference operators mentioned above to log f. The 

conditions f i i,·. and f E CB give two sets of difference 

equations equal to zero. Standard algebraic techniques give the 

required combined set difference equations. 

2.3 Examples. 

Example 2.4 By Proposition 2.3, xhf Z and x.ll zfy translate 

to A..., 13/23 and B- 12/23, giving AA B - 1/3/2/23 = 1/23, which 

translates to xJi(Y,Z), showing Proposition 2.4 to be a special 

case of 2.5. 



Example 2.5: (Markov chain.) Assuming x11t. (X3 ,X4)1X2 and 

(X1 ,X2) 11 x4 1x3 gives A= 12/234, B - 123/34, A AB = 12/23/34. 

One explicit factorization is the marginal-conditional: 

(2.7) 

Example 2.6. (Exponential family.) Let f(x,y,a,p) -

ax+/Jy C(a,/J)h(x,y)e . This represents an exponential family with 
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a,p fixed parameters. For our purposes imagine a joint prior 

density of (a,/J) incorporated in the term C(a,/J). With numbering 

1,2,3,4 for a,p,x,y the factorization 12/34/13/24 is evident. By 

Proposition 2.5 this is equivalent to c1241134 n c1231234 , which 

translates by Proposition 2.3 to xJl P((Y,a) and Y Jl. a((X,/J). In 

the terminology of Dawid (1975), Basu (1977) and Barndorff­

Nielsen (1978), Xis specific sufficient for a, Y is specific 

sufficient for p, xis specific ancillary for p, and y is 

specific ancillary for a. One explicit factorization of an 

arbitrary f i c
12134113124 

is incidentally 

(2.8) 
f f f f f 1234 12. . 1. 3. . 2. 4 .. 34 
-f- - -f- -f- -f- -f-

l... . .3. .2.. . .. 4 



11 

to Example 2.5 it is impossible here to factor into marginal and 

conditional p.m.f.s. (Andersen (1974), Wermuth (1976a) p. 102, 

Wermuth (1980) p. 967, Darroch et al. (1980), p. 528; Proposition 

3. 3 below). 

Example 2.7 (ZPA conditions). Take Nm 5. Wermuth (1976a) 

writes ZPA (1,2) if 11121 (3,4,5) for which the factorization 

representation is 1345/2345. The ZPA manipulations of Wermuth 

(1976a) p 254-5, are a special case of the present factorization 

calculus. To see this, apply Proposition 2.5 to Wermuth's 

example of finding the conjunction of ZPA(l,2), ZPA(l,3) and ZPA 

(2,3). We find: (1345/2345) A (1245/2345) - 145/2345, and 

(145/2345) A (1345/1245) - 145/245/345. 

2.4. The Factorization Partition 

Given a family F of distributions a set of m conditions 

(equivalenty m models--for example, if A is model then f E CA 

is a condition), the conditions potentially partition Finto 2m 

sets, but some may be empty. In the case of factorization 

conditions there is a drastic reduction due to the hierarchical 

structure. 

Proposition 2.6. For any family F of strictly positive 
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distributions in N dimensions, factorization conditions partition 

Finto at most H(N) nonempty sets, where H(N) is the number of 

hierarchical log linear models of order N. 

Proof. Given f E F, define P(f) - {Alf EC), and A. = -- min 

A. (f) - A A (with obvious reference to the notation 
min AEP 

A AB). 

A E P(f). 

By Proposition 2.5, f E CA, and A . ~ A for all min 

Let A < B denote A ~ B and A P5 B , and put DA .... CA - U 
f'\ B<A 

CB. We will show that {DA) is a partition of F. (i) Since 

f E DAmin we have UDA - F. (ii) Assume f e DA n DB, for some 

A P5 B. It follows that f E CA n CB - CC where C - A AB . Since 

A~ B we have either A<C or B < C . It follows that either f / DA 

or f / 08 , which contradicts f E DAn DB . 

The number of partition sets DA equals H(N), the number of 

hierarchical log linear models. 

Darroch et al. (1980) page 537 state that H(l) - 2, H(2) = 5, 

H(3) - 19, H(4) - 167, H(S) - 7580. 

Proposition 2.6 is false without the strictly positive 

assumption. The f given in Example 2.2 belongs to c
12123 

and 

c13123 but not to c1123 , and it belongs to both 0
12123 

and 

013123 . Accordingly (DA) is not always a partition when F 

includes arbitrary f's. The partition induced by taking all 

unions and intersections of {CA} in these unrestricted cases will 
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generally have more than H(N) nonempty partition sets. 

2.5 Saturated Factorization Models 

As is well known, hierarchical models involve uniformity as 

well as independence conditions. For example, with N = 2, A= 

{[1]), f £ CA means Xll.Y and Y has a unifom distribution. 

Hierarchical or factorization models are brought closer to the 

models of Section 3 below by restricting to "satur~ted" models: 

Def.2.10. A generating class A- {a1 , ••• ~) is saturated if 

u a. - N • 
J 

The family of saturated factorization models has the same 

closure property (Proposition 2.5) as the unrestricted family. 

Similarly Proposition 2.6 continues to hold: The number of 

partition sets equals the number of models (for example, 9 for N 

- 3). 
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3. Relationships to Other Models 

Factorization models provide one method of classification. 

In this section we take a brief look at the relationship to other 

classification schemes: 

3.1 Dawid Conditions 

In view of the efforts of Dawid (1979 a, b, 1980 a, b) to 

popularize his notation XJ!Yfz we will refer to it as Dawid 

notation even though it was anticipated by Goodman (1970) and no 

doubt others as well. 

The definition of what constitutes a Dawid condition requires 

an arbitrary choice. We choose to allow X .llx.. IX where a, b, c a -l) C 

are disjoint subsets of N - (1, ... N) ("terms"). If either a or b 

is null, the condition is empty; if c is null we understand (as 

previously stated) the condition to be xaJJ. Xa. 

Definition 3.1. If au b u c -N the condition xal ¾ I· ·Xe· 

is called saturated. Otherwise it is unsaturated. 

By Proposition 2.3, every saturated Dawid condition is a 

factorization condition. For N=3 the unsaturated xJiy is not a 

factorization condition, and the factorization 12/13/23 is known 
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not to be representable by a combination of Dawid conditions. 

Thus for N > 2 the factorization and Dawid conditions yield 

partitions not ordered by inclus~on. The relationship is studied 

further in Proposition 3.2 and the remarks which follow. 

The find the Dawid partition for N - 3, first list all 

conditions as xJi Y, X.iLYI Z and X lL (Y, Z) and their cyclic 

permutations. Since xll Y and xll ZIY iff xll (Y,Z), the latter 

and its permutations are not needed. A minimal set of six 

generators is X ll Y and x . .ll YI Z and permutations-. These 

potentially yield 26 - 64 partition sets. That not all are 

occupied is implied by additional relationships such as 

Proposition 2.4. 

Proposition 3.1. The Dawid partition has cardinality 18 for 

the family of full support I by J by K contingency tables. 

Proof. The partition sets can be identified by a binary code in 

which O - not satisfied, 1 - satisfied, and the six conditions 

are ordered xJL Y, Y.H. Z, ..• Z Ji X(Y. Then 000100 for example 

denotes x.ll YIZ satisfied and the other five conditions fail. 

The 18 nonull partition sets are ("3" in parentheses denotes 
r 

permutation multiplicity): 000000, 100000(3), 000100(3), 

110000(3), 100100(3), 110110(3), 111000, 111111. A more detailed 

proof is given by Lee (1986) and Lee and Buehler (1986). 

For I by J by 2 tables it is known (Birch, 1963) that xJL Y 



and xJi YI Z imply either xJl Z or Y Ji Z, which means 100100 is 

impossible, reducing the count to 17 (010010 and 001001 remain 

possible because of the preferred Z direction). 

16 

For N - 4 it can be shown that permutations of the following 

are generators: xll Y, X J1. YIZ, x.lL YI (Z,W). We do not know the 

cardinality. 
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3.2 Graphical Models. 

As mentioned above, factorization models are one-to-one with 

hierarchical models. A subclass of hierarchical models are the 

decomposable ("Markov") models oI" Goodman (1970, 1971) and 

Haberman (1974). Intermediate between hierarchical and 

decomposable models are the graphical models of Darroch et al 

(1980). 

Let us associate with each factor a vertex. Given any 

generating class A, construct a graph as follows: two vertices 

are joined with an (undirected) line (an "edge") iff the 

corresponding factors occur together in any term. Such a pair of 

vertices are called adjacent or neighbors. A set of vertices is 

a complete subset if all pairs of the set are neighbors. A 

clique is a maximal complete subset. 

Certain conventions are needed for unsaturated models. For N 

4, A - {[1], (23]}, vertices 2 and 3 are joined by an edge, 

vertex 1 stands alone, and vertex 4 is absent from the graph. 

By the above construction any generating class determines a 

graph, and that graph determines (and is determined by) its set 

of cliques. Can the cliques be used to recover the generating 

class? Sometimes, but not always. 

Def. 3.2. A generating class is graphical if the cliques it 

defines are the same as its terms. 



Example 3.1. Consider generating classes A - 123, B = 

12/13/23, C =- 123/234/345. Both A and B have the graph 

and a single clique [123], corresponding to the single term in 
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A , but different from 8 . Thus A is graphical but B is not. The 

graph of C is 
2 4 

3 

from which it is seen that the cliques are [123], [234], [345], 

the same as the terms so that C is graphical. 

Among models of order 5, C defines one of 1450 graphical 

models and one of 7580 hierarchical models (Darroch et al. 

(1980), Table 3). Darroch et al display the graphs which, with 

their permutations, describe all graphical models of order 5. 

As is known, graphical models give a convenient means of 

reading out independence conditions. Let a,b,c be disjoint terms 
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such that au bu c - N. Suppose that no vertex in a is linked 

by an edge to a vertex in b. Then deletion of the c vertices 

separates the a set from the b set. This happens if f E CA, A = 

(au c, bu c) which by Proposition 2.3 is equivalent to X Ji 
a 

¾ I Xe. The argument works both ways. 

Since a saturated graphical model has N vertices it has(~) 

N(N-1)/2 possible edges. Since each edge is either present or 

absent, there are 2N(N-l)/2 saturated graphical models of order 

N. As indicated by Darroch et al (1980) the count of saturated 

plus unsaturated graphical models is 

Saturated graphical models are generated by "zero partial 

association" or ZPA conditions (Wermuth (1976 a,b), Wermuth and 

Lauritzen (1983)). Following Wermuth and Lauritzen we will write 

(as in Example 2.7 above) 

(3.1) ZPA (r, s) means r .1L s I N\ r\s 

For a model of order N there are(~) - N(N-1)/2 ZPA conditions. 

Each condition can be either satisfied or not satisfied, giving a 
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partition of the space of functions f into 2N(N-l)/2 sets. How 

are these related to the 2N(N-l)/2 saturated graphical models of 

the previous paragraph? Extending slightly results of Wermuth 

(1976a) we have: 

Proposition 3.2. Let (CA) be the set of saturated graphical 

factorization models (Defs. 2.11 and 3.2) and let (DA) be the 

corresponding partition sets as defined in the proof of 

Proposition 2.6, but restricted to the saturated graphical case. 

Then the DA partition is identical with the ZPA partition, 

Proof. Taken in conjunction with any graphical factorization 

model, the condition ZPA(r,s) deletes the (r,s) edge from the 

graph. Any ZPA model is characterized by a set I of pairs (r,s) 

in the triangular array 1 ~ r < s ~·N. Define 

(f(ZPA(r,s) true for (r,s) EI) 

(f(ZPA(r,s) false for (r,s) / I) 
+ . -

Z(I) - Z(I) n Z (I). 

Let A be the generating class defined by the graph in which the 

(r,s) edge is present iff (r,s) / I, and let CA and DA be the 

corresponding factorization model and partition set. If f E 

Z(I), then f E z+(I), implying f E CA. But f E Z(I) also implies 

f E Z-(I), which implies f J c8 for any B strictly contained 

in A. From the definition of DA it follows that f E Z(I) 



implies f EDA. Since both Z(I) and DA_ define partitions, the 

result follows. 
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Example 3.2. Take N .... 3. ZPA (1,2) true iff 1JL2j3 iff f e 

c
13123

. ZPA (1,2) true, ZPA (1,3) false and ZPA (2,3) 0 false iff 

f E Dl3/23 - c13/23\ c1;23\C2113· 

Example 3.3. N -3, ZPA (1,2) and ZPA (1,3) true iff 1Jl2j 3 

and 1Ji3 I 2 iff 1JL 2,3 iff f E c
1123

. ZPA (1,2) and ZPA (1,3) 

true and ZPA (2,3) false iff f E D1123 - c
1123

\c
11213

. 

The point of Proposition 3.2 is this. For N > 2 the 

factorization and Dawid partitions differ for three reasons: (1) 

Nongraphical factorizations like 12/13/23 are nor representable 

by Dawid conditions. (2) Unsaturated factorizations like 1/2 

also are not Dawid representable. (3) Unsaturated Dawid 

conditions like xJL Y are not representable by factorization. 

But if we restrict to saturated graphical factorizations and to 

saturated Dawid conditions, then the resulting partitions are 

both the same as the ZPA partition. 
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3.3 Decomposable and Recursive Models. 

The definition of decomposable (or Markov) generating class 

given by Haberman (1974) page 166 (or see Darroch et al (1980 

page 524) is set theoretic and hence carries over to the present 

framework. Lauritzen et al (1984) have shown that every 

decomposable model is graphical, and that decomposability can be 

checked by inspecting the graph: the generating class is 

decomposable iff the graph contains no cycle of length~ 4 

without a chord (is "triangulated") .. (See also Darroch et al 

(1980)). The simplest cycle of length 4 appears above in Example 

2.6: 12/24/43/31. 

As is well known in the theory of contingency tables, 

decomposability is necessary and sufficient for existence of a 

closed form maximum likelihood estimate. To tie in with the 

recursive models let us adopt the notation of Kiiveri et al 

(1984) and write 

(3.2) (1234) - (12)(3.2)(4.13) 

as an abbreviation for 

(3.3) 

Either expression defines a recursive model which represents the 
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family of distributions so expressible. As Kiiveri et al point 

out, either expression translates to the pair of Dawid conditions 

3.JL 1(2 and 4JL 2J(l,3). Replad.ng (12) by the equivalent 

(1)(2.1), a general expression of this form would define a 

recursive model by 

(3.4) 

where d. is a (possible empty) subset of (1, ... , j). If e. -
J J 

(1, ... , j)\dj' then the model is uniquely specified by giving 

.either d1 , •.. , ~-l or e1 , ... , eN-l" For 3..ll. 1J2 the notation 

ZPD(3.1) is sometimes used (for example Yermuth and Lauritzen 

(1983)) d~noting "zero partial dependence." For r > s, ZPD(r,s) 

means r Jl. s I ( 1, ..• , r-1 }\{ s}. The information in (3 .4) can be 

replaced by a set of ZPD's within a triangular array of pairs: 

(2,1), (3,1), (3,2), (4,1), ... , (N,N-1). The number of ZPD 

conditions is(~) - N(N-1)/2 and the cardinality of the partition 

is 2N(N-l)/2_ 

Not all recursive models are factorization models, the simplest 

counterexample being (1)(2)(3.12). The model (3.2) is obviously 

contained in the factorization class c121231134 , but the converse 

is false (Goodman (1971), equations (4.6), (4.7)), so that (3.2) 

likewise is not a factorization model. 
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Wermuth and Lauritzen (1983) have defined reducible patterns 

of ZPD's and have shown that reducibility is necessary and 

sufficient for a recursive model to be graphical factorization 

model. 

The expressions (3.2)-(3.4) may be called "factor at a time" 

recursive expressions. An alternative is vector ("term") at a 

time. Slightly adjusting the notation of Darroch et al (1980) p 

529, we have 

(3.5) 

(3.6) 

k 
f(x) - f(x ) n f(x. Ix ) 

al i-2 Di Ci 

k 
II i-1 f(xa) 

i 
k 

II i-2 f(xc) 
i 

(There is a typo in Darroch et al (1980).where b replaces c in 

the last expresion.) For this to make sense we need a
1

,b
2

, ... , 
bk a partition of N - ( 1, ... , N), a2 - b2 u c2 , o •• , ~ - bk u 

ck c a1 u . . . ua k- l . One 

point to note is that (3.5) can easily be put in the form (3.4) 

by breaking up individual terms, as in 

(456.12) - (4.12)(5.124)(6.1245). 



Moreover reversing this procedure poses no problems. 

The main point we wish to make is the relationship of (3.5) 

(3.6) to fac~orization models. Using bi~ ai' i = 2, ... , k, 

(3.6) gives trivially, f E CA, A- {a1 :··~>- Does f E CA 

conversely imply (3.6)? The argument of Darroch et al (1980), 

shows the role of the "decomposability" condition 
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(3.7) c. ca for some r
1
. E(l, ... , i-1), i - 2, ... , k. 

1 ri 

We have by inductively calculating terms in the product (3.5): 

Proposition 3.3. If f E CA where - (a1 ... ~) satisfies 

(3.7), then f has the recursive form (3.5). 

Here is is to be understood that A - (a1 ... ~} is given 

initially, reordered if need be, and bi, ci are defined as in 

Darroch, et al (1980): The "new part" of each ai is bi - ai n (a1 

u ... u a 1_1) and the "overlap" is ci - ai\bi. 

From the above discussion we conclude that not all recursive 

models are factorization models, but every decomposable 

factorization model is a recursive model. 



Appendix 

Irregular Cases 

26 

Example 2.2 shows how the factorization calculus fails when 

there are zeros in the domain off. In this appendix we will 

give necessary and sufficient conditions on the support of a 

discrete f for certain factorization results to hold. Similar 

results have been given by Basu (1958), Koehn and Thomas (1975), 

Bishop et al (1975) Chapter 5, and Dawid (1979b, 1980b). These 

papers are in part concerned with Basu's "Theorem 2" (see Basu 

(1982) for an overview of Theorems 1, 2, and 3 on sufficiency and 

ancillarity). Briefly the connection is as follows: Let T -

sufficient statistic, U - ancillary statistic, 8 - parameter, S -

sufficiency condition expressed as U JL 8 IT, I - independence 

condition expressed as Ull Tie, A - ancillary condition expressed 

as U lL 8. Basu' s Theorem 2 states: S and I imply A, which 

follows from Proposition 2.4. Fuller discussions can be found in 

the references cited above. 

Let f(x,y,z) be defined on a finite discrete set S = S x S 
X y 

x S. Let S be the marginal support of y and z. Two points z yz 

(y,z) and (y' ,z') in S are called y-linked if y ~ y' and~ yz 

linked if z - z'. Two points are chain linked if they can be 

joined by a chain of y and z linked points. 



Suppose there exist nontrivial partitions of S · into A u Ac 
y 
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and S into Bu Bc (where c denotes complement) such that S is 
z yz 

contained in (AB) u (AcBc). Then the set Ax B will be called an 

yz splitting set. (This terminology is adapted from Koehn and 

Thomas (1975). It is closely related to the concept of 

separability in Bishop et al. (1975) Section 5.4.2) 

Proposition A.l. Every pair of points in S is chained yz 

linked iff there does not exist a Y.Z splitting set. 

Starting with equation (2.5) we can show: 

Proposition A. 2. Assume X .ll. YI Z and X JL Z IY. Within any set 

of chain linked y,z points f 13 (x,z)/f3(z) and f 12 (x,y)/f2 (y) 

depend on x only. 

Proposition A.3. X JL YIZ and x.il. ZIY imply xlL (Y,Z) iff 

there does not exist a yz splitting set. 

Proof. If there does not exist a splitting set then 

Proposition A.1 shows that all points are chain linked and 

Proposition A.2 shows that f 13 (x,z)/f3(z) depends only on x, and 



can be called a(x). Thus f(x,y,z) - ~(x)£23 (y,z), showing xll 
(Y,Z). Example 2.3 shows xlL(Y,Z) can fail when there~is a 

splitting set. 
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