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Abstract 

Subjectivity plays a role in the design and analysis of every clinical 

trial. I discuss its present role (for example, in the context of analyzing at 

haphazard times as data accumulate), and suggest ways that subjectivity could be 

incorporated in an explicit way and in a variety of settings. One such setting 

is a trial sponsored by a pharmaceutical company in which accumulating data can 

be used to update previously available (subjective) information. Another is in 

planning and analyzing trials which use adaptive (or sequential) treatment 

assignment schemes. Another is in planning and analyzing an ethical clinical 

trial, one in which each patient receives the treatment best suited to him or 

her. 



Introduction 

Most biostatisticians involved in clinical trials strive to ensure that a 

trial's design, conduct, and analysis are objective. This goal is 

unattainable: objectivity is impossible in science generally. I don't want to 

get too deeply into philosophical issues so I won't expand on this. Instead, 

I'll tell you a few of the ways that subjectivity creeps surreptitiously into 

current clinical trials, and then I'll focus on the advantages of recognizing 

the presence of subjectivity and show how it can be exploited to best accomplish 

the purpose of the trial. 

The design of a clinical trial should depend on its purpose. Generally 

speaking, there is only one legitimate reason to conduct a clinical trial: to 

deliver effective medical treatment. The question is, to whom? There are 

essentially two answers: 

• Patients in the trial, and 

• Patients who are treated outside the context of the trial based on 

information learned during the trial.· 

Randomized clinical trials (RCTs) are consistent with the second to an 

extent, but they address the first only in that investigators will stop a trial 

should it become sufficiently clear that patients in the trial are being treated 

badly. But the trial continues when there are suggestions in that direction 

-without being "sufficiently clear" that some patients are being treated badly. 

On the other hand, the trial may end when the evidence does not begin to suggest 

which treatment is best. 

Sample sizes for RCTs are calculated on the basis of power considerations (a 

process which, incidentally, is far from being objective). RCTs have inflexible 

designs, most with treatment allocation balanced among the constituent 
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treatments. Neither of these aspects has much to do with delivering good 

medicine--whether to patients in or out of the trial. 

RCTs are saddled with the straightjacket of classical statistics. The 

classical design of clinical trials is tied to the eventual analysis. This 

results in a very inflexible view of design. The design must be specified 

completely in advance, including what analyses will be done and when they will 

be done; changes are formally impossible and in practice require excuses and 

approximate analyses, with little ability to assess the accuracy of the 

approximations. 

Inflexibility of the Classical Approach 

One of the most objectionable aspects of the classical approach is that it 

gives essentially the same prescription for every malady. Consider two 

extremes. The first is coronary bypass surgery compared in a clinical trial 

with a treatment combination consisting of a regimented diet, exercise and 

drugs. The second is an experimental drug compared with placebo in the 

treatment of a rare form of cancer (say there are only 100 new patients in the 

U.S. per year). In the first setting there are millions of people who could 

benefit from the results of the trial; while in the second setting, all the 

patients in the U.S. who contract the disease in the next several years 

(depending on n) will be in the trial. (The patient is told that the only 

possibility of receiving the "new treatment" is to participate in the trial.) 

Assume in both cases that we're interested in the same end point, say five-year 

survival. Then the same power calculations apply for both. Suppose we find the 

required sample size to be n - 400. In the first setting, 200 patients are 

randomly assigned to surgery and the other 200 to the diet/exercise program; in 
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the second, 200 are randomly assigned to drug and the remaining 200 to placebo. 

There are at least two reasons that these settings should not be dealt with 

the same. First, the information gained from the trials will have very 

different impacts. What is learned in the first setting will apply to millions, 

and so there is much to be gained (in terms of good medical treatment for these 

millions) from knowing which is the better therapy. But what is learned in the 

second will apply to very few patients. Actually, it may apply to n2 patients: 

the trial will last about four years, and new, obviously superio~ treatments may 

well be discovered during that time. In the interim, as many as 200 patients 

may be treated with an inferior treatment for no worthwhile purpose. 

Statistical power is obtained at the expense of effective treatment of some of 

the patients in the trial; in some cases it may be worth the expense, and in 

others not. 

The second reason for dealing with the two settings differently is· that the 

available information is so different. Much is known concerning the 

effectiveness of coronary bypass surgery and of diet/exercise. In particular, 

if one is better than the other (in a population of patients who are candidates 

for coronary bypasses), it is not markedly better. But little is known 

concerning the effectiveness of a new drug in the treatment of a rare disease. 

It is conceivably very effective, but it might be distinctly worse than no 

treatment. So perhaps n - 1000 may be required in the first case while n - 10 

or 20 is sufficient in the rare disease setting; or better, in both cases the 

data might be examined continuously with no particular trial size in mind! 

(I'll return to this latter possibility later.) 

Small trials have small power: they are able to reject the null hypothesis 

of no difference with high probability only if one treatment is much better than 
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the other. Classical statisticians complain about trials too small to have a 

reasonable "chance of detecting differences of therapeutic value" (Mosteller, 

Gilbert and McPeek, 1983). They contend that many actual trials are too small 

to be worthwhile. Some even believe that it is unethical to conduct a small 

trial since some of the patients will be exposed to inferior treatment with 

little hope of rejecting a false null hypothesis. This is true, but it's not 

the point. Such a piecemeal approach allows clinicians to digest the 

information currently available and perhaps decide that further investigation is 

inappropriate--the experimental treatment may be clearly bad or clearly good. 

Classical statisticians cannot advocate such an approach because the inverted 

nature of classical inference makes it woefully inept at combining results from 

different trials--called meta-analysis by some. Indeed, for a formally correct 

classical analysis of multiple trials, all the trials have to be designed in 

advance of the first trial, complete with rules for stopping, initiating other 

trials, etc. This is obviously impossible, and so, strictiy speaking, classical 

meta-analysis is impossible. 

In my opinion, small trials are the rule in medicine today because the 

associated flexibility is so important to clinicians; they bypass statistics as 

they know it, with its obscure p-values, in favor of the important inferences: 

Does this drug work?, Is drug A better than drug B for Mr. Smith?, etc. They 

make these inferences in an informal, subjective way. (An unfortunate 

consequence is that they come to view statistics as data analysis and of little 

help in making medical decisions.) 

Classical Interim Analysis 

From the point of view of classical statistics, a piecemeal approach is 
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possible in a single trial by splitting the trial into subgroups of patients, 

provided the options and intentions of the investigator are completely specified 

in advance. Using a "group sequential" approach, the available data are 

analyzed at various times during the course of the trial. In Berry (1985, 

1987a), I argue against such an approach in very strong terms. The approach 

harbors a dangerous kind of subjectivity. For example, consider two 

investigators: A plans interim analyses and B plans none (or says he planned 

none!). They get identical data. It turns out that B can claim statistical 

significance, but, because she looked at the data with the possibility of early 

stopping, A cannot. To avoid A's dilemma, classical statisticians warn 

investigators not to look at accumulating data because doing so endangers the 

ability to draw conclusions--sounds crazy! 

What about the investigator who does not plan interim analyses but makes 

them nonetheless, looking at the accumulating data periodically with the 

possibility of stopping? Strictly speaking, no classical inferences are 

possible. For example, consider p-values. A p-value is the probability of a 

result more extreme than that observed. But the investigator has no hope of 

being able to say accurately what results would have been more extreme at 

earlier looks and also at subsequent looks that never took place, as well as 

when they were to take place.· In reality, few investigators have even the 

vaguest notion that merely looking at the data can affect inferences drawn. 

Most feel that looking is necessary in case the interim results indicate that 

the trial should be halted or modified, and that not looking is unethical. 

(Using logic that completely escapes me, some doctors and statisticians argue 

that investigators should not look at interim data because they will face an 

ethical dilemma should one of the treatments appear to be better than the other. 
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If there are possible data for which continuing the trial would be unethical, 

then not looking seems unethical: Would it not be unethical for a doctor to 

refuse to read a medical report that might contain vital information for the 

treatment of a patient?) 

The Flexibility of the Bayesian Approach 

Clinicians usually have information that can help design a clinical trial. 

This information can be used in a completely explicit way to design a trial that 

effectively treats patients in or outside the trial, or both. What is required 

is that the clinicians quantify their information into probability distributions 

of the various unknown parameters. (There are numerous published methods which 

aid in doing this.) These parameters include the degrees of effectiveness of 

the various drugs and the size of the patient population that will benefit from 

knowledge gained during the trial. (I want to stress that the clinicians do not . 
have to know or to think they know these parameters, they need only be able to 

convey the information they have, even if it's limited.) 

Assessing probability distributions of the various parameters means that 

these can be updated at any time using Bayes's theorem. There are two appealing 

aspects of this approach that are in stark contrast with the classical approach. 

First, probability statements are direct. For example, while a p-value is the 

probability of-results as or more extreme than those observed assuming the null 

hypothesis, a Bayesian approach allows one to give the probability that the null 

hypothesis is true given the data. Secondly, these direct probability 

statements do not depend on.the trial's design. As such they can be calculated 

at any time and for any purpose, even to determine the future course of the 

trial! I turn to an extreme example of this. 
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Effective Treatment for Patients in the Trial 

Consider a trial involving two treatments for a rare disease. All patients 

who contract this disease in the next several years are to be entered into the 

study. Say they nwnber n. I shall assume for convenience that n is known, but 

it need not be. Since all patients with the disease are in the trial, the 

objective is to treat these n as effectively as possible. Assume that responses 

are success-failure and that each patient responds before the next patient is to 

be treated. (Eick (1985) considers the more realistic setting in which a 

patient's response is a survival time and so at any time only partial 

information may be available from previously treated patients.) 

The treatment assigned to patient i is allowed to depend on the information 

available at the time of treatment; this information includes the responses of 

patients 1, 2, ... , i-1. (Obviously, this information is available only if the 

earlier patients have responded.) A treatment assignment strategy is a sequence 

th of n A's and B's such that the i symbol (indicating the treatment used f~r 

patient i) can depend on the first i-1 treatment assignments and responses. 

Each treatment assignment strategy has an associated expected number of 

successes among then patients. A strategy which maximizes that expected number 

of successes can be found via backward induction (Berry and Fristedt 1985). 

Quite generally, an RCT is an unsatisfactory solution of this problem. 

Effective Treatment for Patients Outside the Trial 

Now let's leave the rare-disease setting and suppose that there are patients 

with the condition in question outside the trial. Suppose that N is the number 

of patients with the disease who are in the trial or who will be given the 

treatment found to be best among those in the trial. This number is obviously 
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unknown, and assessing its distribution is no mean task, but in practice only a 

rough estimate is required. Suppose n of the N patients are in the trial. 

After then patients in the trial respond, the remaining N-n will be assigned 

the treatment which has the greater probability of success at the end of the 

trial. Again the problem is a bandit and can be solved using backward 

induction. With these assumptions, Berry and Eick (1987) find the optimal 

strategy for various n and N and compare it with other assignment strategies, 

including RCTs, on the basis of expected number of successes lost as a function 

of the (unknown) probabilities of success. Summarizing the results, an RCT is 

quite unsatisfactory when N is small, but if N is at least moderately large, an 

RCT, while not optimal, is a very reasonable solution. 

Ethical Clinical Trials 

Is there such a thing? Not in the context of a classical approach to 

statistics. But they are quite possible in the Bayesian approach. I'll 

describe one way that an ethical trial can be conducted (see ~erry (1987b) for a 

critical discussion, and technical details). You'll have many reservations; 

those related to difficulties in making classical inferences such asp-values do 

not concern me. 

To be specific consider a trial involving breast cancer. There are at least 

five types of therapy available, though they have many variants and certain 

combinations are possible: mastectomy, lumpectomy, chemotherapy, radiation, and 

no treatment. A patient is admitted to the trial. The clinician evaluates her 

condition and considers other relevant information (for example, the patient's 

age and general state of health). The clinician assesses the patient's 

prognosis for each available therapy and combination thereof. These assessments 
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are based on all the information available to the clinician: data concerning the 

various therapies published in the literature and in the clinician's experience, 

including the current trial!, the patient's condition, etc. These assessments 

are subjective and are modified continually (or as often as possible) using 

Bayes's theorem. 

The clinician informs the patient of these assessments for each possible 

combination of therapy. The patient is given complete information: probability 

of remission (for various lengths of time), probabilities of various side 

effects and adverse experiences, cosmetic consequences, the patient's 

responsibilities, inconveniences, costs, etc. In addition, the patient can be 

told the various components of the clinician's probabilities; for example, the 

proportions of the clinician's own patients similar to the current patient who 

are still in remission. The only thing she is not given is the clinician's 

recommendation of treatment. Armed with all this information the patient 

chooses her therapy. 

The patients are followed as in current trials. Unlike many current trials 

the patient can change her mind based on the course of.her disease, new data 

that have come to light, etc., and opt for a modification of her therapy. The 

data base for the trial is kept current to enable informed later treatment. 

The results can be published at any time, even periodically. Classical 

statistical inferences are impossible. But Bayesian posterior probability 

distributions can be published (along with the sufficient statistics to separate 

out the "subjective" part of these distributions); there is never a penalty for 

interim analysis in the Bayesian approach--the data are taken at face value. In 

addition, the clinician can calculate and publish such quantities as the 

posterior probability ("current" is a better modifier because these 
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probabilities are constantly subject to change) that mastectomy+ chemotherapy+ 

radiation, for example, is better than no treatment for a typical patient. 

Perhaps your biggest objection at this point is that treatment allocation is 

bound to be unbalanced since similar patients will tend to select the same 

treatment. So the ability to make certain inferences can be severely limited. 

There's no arguing with this. It is not possible to have a trial that is both 

ethical and guaranteed to be balanced. Still, there can be a substantial amount 

of evidence available even with great imbalance. For example, suppose there are 

106 patients in a trial. These patients were regarded as exchangeable before 

treatment--they all had the same values of any covariates, for example. During 

the course of the trial the data seem to suggest that treatment A is better than 

Band so it is chosen by most of the patients: 98 to 8. It turns out that there 

are 93 successes of the 98 on A and 3 successes of the 8 on B. Then the 

probability that Bis better than A (assuming independent uniform priors on the 

two probabilities of success) is only 0.00002. 

There are complications that will arise in any real trial. I address many 

of these in Berry (1987b). My point here is that ethical trials are possible by 

considering subjectivity in a completely explicit way. 

A Pharmaceutical Company Decision Problem 

Until now, I've been discussing clinical trial design from the point of view 

of treating patients effectively; in particular, I've ignored monetary 

considerations. I now turn to a setting in which monetary considerations are 

primary, namely, planning a drug development program for a pharmaceutical 

company. I want to make it clear, however, that maximizing profit for 

pharmaceutical companies is not inconsistent with delivering good medicine. 
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Only a very short-sighted company would market a drug it knows to be ineffective 

or unsafe. A company that markets an ineffective drug risks losing marketing 

and other developmental costs; in this age of litigation, marketing an unsafe 

drug risks being forced into bankruptcy. 

Consider a phamaceutical company that is developing an experimental drug. 

It has spent a great deal of money on the drug and has to decide whether to 

spend still more. If the company continues development and the evidence shows 

that the drug is safe and effective, then it will eventually try to obtain 

regulatory approval for marketing the drug. Even if it succeeds in marketing 

the drug, it may actually lose money, depending on the drug's effectiveness (and 

side effects). If the company stops development then, of course, it will lose 

whatever profit~ were possible. The question is, As a function of current 

information, should the company continue or stop development? 

I'll address this question from three points of view: (1) the status quo, 

(2) using classical statistics, and (3) using subjectivity in a Bayesian 

approach. As to (1), such decisions are usually made as follows. A team headed 

by a company executive (usually an M.D.) uses _an approach roughly similar to 

(3), but in a very informal way, a way filled with perils. They examine the 

available information, assess the chances of regulatory agency approval, and 

evaluate the market. The executive makes the final decision with input from the 

team. There are statisticians on the team but they play a rather minor role in 

the decision process. The greatest peril in this process is what business 

analysts call entrapment: the executive has made previous decisions to continue 

development, so to stop development now is to admit that those previous 

decisions were wrong. The executive is "trapped" and, according to Staw (1981), 

is much less likely ~o change course than would someone who was not previously 
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involved. 

I can dispose of (2) even more quickly. Statisticians in the pharmaceutical 

industry in the U.S. are mainly non-Bayesians. The reason statisticians don't 

have much input under the status quo is that classical statistics simply cannot 

address questions such as, How likely is it that the drug is ineffective? A 

decision maker must be able to answer this and similar questions. Such 

questions require a subjective interpretation of probability. 

I'll devote the rest of my discussion of this problem to a Bayesian 

approach. Much of what I say is along the lines of the analysis in Berry and Ho 

(1987). Assume that the experimental drug is being compared with a control in a 

clinical trial. The trial has a parallel design with about the same number of 

patients receiving drug as receive control. The trial's costs are assumed to be 

proportional to the number of patients involved. The setup is similar to the 

classical problem of interim analysis. The data are to be examined pe£iodically 

during the course of the trial. (More generally, the "trial" can be viewed as a 

drug development program comprising various trials, possibly taking place 

concurrently. In this case the periodic examinations can occur during trials or 

between trials.) 

At these periodic analyses, the question the pharmaceutical company 

addresses is: Should it continue or stop the trial? If the interim results are 

very positive then the trial and drug development will continue. But if the 

interim results are sufficiently negative then the trial and further development 

will cease. 

The company carries on a collate·ral process of statistical analysis for 

convincing the regulatory authorities that the drug is safe and effective; at 

least in the United States, this analysis has to be classical. The maximal 
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trial size is selected to be convincing to the authorities. Premature stopping 

can occur for negative results but not for positive results. So the appropriate 

adjustment in one-sided P-values is negligible (Ho, 1986), and is downward in 

any case. 

The company's objective is to maximize profit. Use 6 to denote the average 

advantage of the drug over control. The expected profits from marketing the 

drug depend on 6. The company assesses this functional dependence, averaging 

over any unknown parameters. The initial (subjective) distribution of 6 is also 

assessed. 

Suppose the total number of analyses is k. (The only reasons for not 

analyzing after each patient responds are logistical and not statistical.) At 

the final analysis the decision will be made whether to pursue marketing, and at 

the k-1 interim analyses the decision will be made whether to continue. Each 

period includes 2n patients, non the experimental drug and non control. A 

particular model for the responses is assumed, such as normally distributed with 

known variance. 

This is a typical problem in dynamic programming. We calculate for what 

data the decision to market is optimal at the final analysis. We do this by 

comparing the profit from marketing averaged with respect to the posterior 

distribution of G, with the expected profit from stopping (we can ignore sunken 

costs). The maximal expected profit for each datum is then the greater of these 

two quantities. Then we back up to the penultimate analysis time, calculate the 

predictive distribution of the future data given the present, and evaluate the 

expect profit from continuing (including -2n in sample costs). If the expected 

profit from continuing is greater than that of stopping then it is optimal to 

continue if we ever find ourselves with these data, and we would stop otherwise. 
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Proceeding backward in this way we pass through each analysis time and end 

up at the first one. We then know the optimal decision (stop or continue) at 

each analysis time and for all possible data. In particular, we know whether it 

is optimal to start the trial. 

Conclusion 

I have shown several settings in which the flexibility gained by explicitly 

using subjectivity allows for better fulfilling the aims of clinical trials. 

But my greater message is to think hard about the purposes of the clinical trial 

during the design phase. Who is going to be harmed by your design and who is 

going to be helped--is the sacrifice warranted? The first constructive thing 

for you to do is to throw out your tables of power vs. sample size! 
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