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1. Introduction 
. . 

An experiment compares a new procedure with a control on the basis of k 

variables. The results suggest that new is better than control for some 

variables but not for others. Statistical hypothesis tests find that new is 

"significantly better" (a a .05) for two of the variables. 

Classical analysis does not stop here. Suppose new and control are actually 

identical insofar as these k variables are concerned; this is the intersection 

of the k·individual null hypotheses. Then one expects new to be statistically 

significantly better for SJ of the variables. For example, if k Q 40 then 

observing two significant results is actually expected when.all 40 null 

hypotheses are true. 

~Suppose that the k variables x1, ••• , Xk are differences~ new minus 

control, standardized to have unit variance. Suppose further, that each Xi is 

normally· distributed with mean µi and that the x1•s are independent given the 

µ1•s. The 1th null hypothesis is µi • o. The intersection or all k null 

hypotheses is H0: µ1 • ••• a µk • O. The null probability of Xi> 1.645 is .05 

-1 since t (.95) = 1.645, the 95th percentile of the standard normal. But the 

k null probability that at least one x1 > 1.645 is 1-.95. This obviously 

increases rapidly; fork= 40 it is about .87. So the null probability of at 

least one rejection can be much larger than the "nominal level" .OS. Classical 

statistical wisdom dictates an adjustment. One way to make the "actual level" 

equal to .05 is to increase the rejection limits for each Xi from 1.645 

-1 1 /k 1 / 40 -, tot (.95 ). For example, .95 ~ .9987 and t (.9987) = 3.00. So to 

attain significance for the 1th variable at the .05 level requires 



xi> 3.00. 

This seems ludlcrous from a scientific point of view: How can the mere fact 

that bilirubin levels were measured (not what they were, just that they were 

measured!) affect inferences about blood pressure? An investigator who carried 

out only one test might find a significant difference whereas the same 

difference would not have been significant had the investigator tested enough 

other variables. (There is a strong temptation to cheat-~cr. Berger and Berry 

(1987)~ 
. . ... 

Especially since such cheating is impossible to uncover--it depends on 

the intentions of the investigator rather than on the~. which are 

unadulterated. And. it would be regarded as cheating at most by those few 

scientists who understand this statistical construction.) 

Such classical statistical adjustments also seem inconsistent with a 

Bayesian point of view; the mere fact that variables were measured is irrelevant 

to the current distribution of the µi's~ Of course, the actual observations (or 

partial information about these observations) can change the current 

distribution. The new distribution is a function of those observations and so 

is random--its average being the current distribution. 

Still, this issue is not clearcut. For example, when observing a large 

number of exchangeable random variables, some will be larger than others. 

Selecting those that are extreme can be misleading. In both this example and 

the previous setting, the infinitely careful Bayesian need not worry, but the 

Bayesian who assumes a prior distribution without careful reflection may obtain 

a posterior distribution that is far from what it should be. While this 

statement is true generally, the issue is more critical when making multiple 
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inferences than when making inferences in a univariate setting. 

Adjustments for simultaneously testing many null hypotheses are similar to 

those that arise in many guises in classical statistics. Historically the most 

important of these has been the problem of "multiple comparisons," in which many 

treatments (and their interactions) are compared on the basis of measuring some 

variable for each treatment (see Section 3). Another is applying several 

different statistical tests of the same hypothesis to the same data (t-tes~, 

signed~rank test, etc.). An area which has recently been the focus of much 

research is "interim analysis," in which tests of an hypothesis are carried out 

periodically as data accumulate. 

The Bayesian approach to interim analysis is straightforward (Berry 1985, 

1987) and uncomplicated by some of the considerations of multiple 

comparisons and testing many variables (see Section 4). The distinction is that 

in the problem of interim analysis (and also that of several different tests for 

the same hypothesis) the hypothesis being tested involves a one-dimensional 

parameter (e.g., µ1 °Oas opposed to µ1 = ••• = µk =O). This might seem like a 

trivial distinction--one simply applies Bayes's theorem in both cases. But, 

much greater care seems necessary in assessing prior information when the null 

hypothesis is more complicated. 

Still another area of some concern to classical statistics is variable 

selection in regression. Letting the data indicate which of many variables to 

use in regression can greatly exaggerate the appropriateness or such a data

indicated model from a classical statistical point of view. However, there 

would be no objection to the~ model if the variables had been selected in 
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advance, or separate from the data! Suppose a researcher uses a linear model 

involving a number of independent variables. If the researcher chose the 

variables in advance then the results are believable; otherwise, they are not. 

If you cannot tell which of the two from a report of the study, then (as I have 

heard classical statisticians advise) you have to write to the researcher to 

find out which! (What to do if the researcher has since died? Randomize?) It 

is hard for me to understand how classical statisticians can continue to adhere 

to a philosophy that takes them down so many roads that lead to nonsense. 

A more general question of great importance to statistics and all of science 

is whether and how it is possible to learn from data. Sounds silly! 

Statistics.!!_ learning from data. But classical statistics qualifies this 

statement. A fundamental tenet of classical statistics is that one cannot test 

a hypothesis using-the same data that generated the hypothesis. If one notices 

a tendency through "data dredging" then one must get another data set to verify 

that the tendency is real. The problem, classical statisticians say, is that 

there are so many tendencies that could be dredged up, noticing one tendency is 

not very surprising. 

A Bayesian can calculate the posterior probability that any given tendency 

is real, but requires a prior probability. It seems impossible to, in advance 

or an experiment, assess one's prior probability for each tendency that might 

arise. But is it possible to assess one's prior probability after seeing the 

data? I think it is possible, but it is very difficult. Obviously, it is wrong 

to incorporate the same data into a posterior probability twice. So one must be 

able to say with some confidence, "This is what I thought before." 
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Alternatively, one can simply assess one's current probability after having 

seen the data, eschewing the use of Bayes's theorem and relying instead on one's 

internal analogue. We do this all the time. Our internal Bayes's theorem may 

not process information as well as does the real thing, and some of us may 

process it incredibly badly, but we are not likely to-use the data twice. To 

check an assessor's ability in this regard, apply Bayes's theorem in reverse, 

dividing the posterior by the likelihood to yield the prior. This may not be 

possible and, if possible, when there are zeroes in the likelihood the result is 

not uniquely defined. If it is not possible then the assessor can be instructed 

on removing this inconsistency. In any case, it is appropriate to adjust the 

posterior if the assessor "never could have had that prior." 

Still a third possibility is to find people who haven't seen the data and 

have them serve as surrogate assessors. This procedure can serve to educate the 

assessor, and can be combined with the other two procedures. 

In the next section I discuss the possibility of, and 11fficulties 

associated with, making Bayesian inferences concerning hypotheses generated by 

the data. In Section 3 I define multiple comparisons and multiple tests. 

Section 4 draws a parallel with the so-called empirical Bayes problem and 

suggests this as a way to view some problems in multiple inference. 

My goal throughout is not to give results which are immediately useful to 

the practitioner, but only to elucidate the major issues. So the examples and 

settings I use are rather simple. 
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2. Data Dredging; Simultaneous Learning and Testing 

Consider this scenario. A large study was conducted by randomly selecting 

30-year-old men and following them for a long period of time. The investigators 

measured hundreds of variables at five-year intervals, with no particular plan 

for testing them all. Some conclusions are boringly predictable: men who were 

overweight tended to die at an earlier age and were generally less healthy; 

similarly for men who smoked cigarettes. But there's something new and quite 

unexpected: men who chewed gum regularly lived six years longer on average than 

men who never chewed gum! This difference is "highly statistically 

significant": nominal P-value < .01. Moreover, this difference persists upon 

adjusting for all available covariates. 

As I have indicated, classical statisticians would consider the number of 

tests that had been carried out and suitably adjust the P-value upwards, for 

example, using Bonferroni's inequality. In particular, if the number of tests 

is sufficiently large, the result will no longer be significant. And if this 

number is not available then a good classical statistician would say that 

correct inferences regarding this issue require another study. 

What about the Bayesia~ point of view? Figure 1 shows the likelihood 

function forµ, the mean increm~nt in length of life (in years) as a result of 

chewing gum. 2 This is reasonably approximated by N(6, 2 ). In particular, the 

likelihood ratio ofµ= 6 (obviously the extreme case) compared withµ= O is 

about 89. 

My prior distribution on u (which I can assess unencumbered by knowing the 

data because I also know that the data are fake!) is approximately 
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Figure 1~ Likelihood ofµ. 

. 2 
.60

0 
+ .4N(-.1, 1.2 )--the probability ofµ= 0 is .6 and the rest of my 

probability is dispersed rather near o. So I'm not convinced that chewing gum 

has no effect but I doubt that it has much. {The negative mean, E(µ) D -.04 

years, reflects my pessimism regarding the healthfulness of a regular intake of 

sugar. This pessimism is partially balanced by the possibility that the 

miniscule amount of exercise one gets while chewing gum might be beneficial!) 

To be somewhat more general, suppose that the prior distribution of~ is 

( 1) 

Then the posterior distribution when the likelihood is N(6, 22) is 
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where 

2 2 2 a
1 

= 4a0 /(4 + a
0 

), 

and p' is defined by the posterior odds ratio: 

p' p 
--=--

1-p' , .. p a
1 

exp 

The mean of this distribution is E(µldata) = (1-p')µ 1• 

Substituting a
0 

= 1.2, µ0 = -.1, and p = .6 gives 

2 (µ!data) - .310
0 

+ .63N(1.51, 1.03 ), 

(2) 

which has mean E(µjdata) = .95 years. So the data has little effect on my 

rather strongly held opinion that chewing gum cannot increase one's life 

expectancy by anything like six years. 

I will consider two alternative prior distributions. The first Bayesian is 

rather cavalier, and the second's prior has been affected by the data. These 

types of behavior are never good, but I want to show how bad they can be in the 
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current setting. Though both priors are rather extreme to best make my point~ I 

have kept the prior probability ofµ• 0 at pa ~6 to facilitate comparison~ 

The Bayesian who goes overboard in being open-minded might choose 

p = .6, µ0 a O, and a
0

2 
a 102 in (1 ). Substituting these into (2) gives 

2 (µJdata) - .09o O + .91N(5.77, 1.96 ), 

which has mean E(µfdata) • 5.2 years. Obviously, the data haye substantially 

changed this prior. (Incidentally~ the Bayesian who assumes a
0

2 ~min (1) is 

actually being dogmatic rather than open~minded. For, p' ~ 1 for any µ0 and 

p > O; and so the distribution or (µfdata) ~ oO! Also, or course, the 
2 . 

distribution or (µ(data)~ oO_as aO --,. O, though the functional relation 

above gives p' ~ p. (Neither of these results depends on the data.) Between 

these two extremes, p' has a minimum value which for these data and µ0 = O 

occurs at aO
2 ~ 5.72; the minimum value of p' when p = .6 is .076, which is 

2 2 rather close top' a .09 corresponding to a
0 

= 10 .) 

It is not an easy matter to put Figure 1 out of one's mind having seen it, 

or to ever be convinced of having put it out of mind! The Bayesian who forms an 

opinion after looking at the data and then updates via Bayes's theorem using~ 

~~is obviously acting unreasona~ly. As an extreme case, suppose p = .6 

and the prior mean and variance of (µ(µ¢0) are the maximum likehood estimates: 

2 2 
µ0 n 6 and a

0 
= 2. Substituting these into (2) gives 

(ufdata) - .0200 +.98N(6, 2), 
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which has mean E(µldata) • 5.9 years. The prior weight of p • ~6 onµ• O has 

been essentially annihilated; such a Bayesian is pretty convinced thatµ is near 

6 years. The data have virtually the entire say when allowing one aspect of the 

prior to depend on the data. 

I hope this example convinces you first that it ll possible to test 

hypotheses using the data that generated them; and second that doing so is not 

without peril. 

3. Multiple Comparisons and Multiple Tests 

To set up some terminology and conventions for the next section, consider k 

populations with means µ
1

, ••• , µk. Observations x
1

, ••• , Xk are available on 

these populations such that EXi • µi. Given µ1 , ••• , µk the x1•s are 

independent. Let X(l) S ••• S X(k) be the ordered observations and u(i) = EX(i) 

(so µCi) is the mean of the population with the 1th smallest observation--the 

µ(i)'s may not be ordered). 

The following two problems involve multiple inferences: 

Multiole Comparisons: Based on x
1

, ••• , Xk, make inferences concerning the 

relationships among the various µi's. 

Multiple Tests: Based on x
1

, ••• , Xk, make inferences concerning the various 

µ.'s individually. 
1 

An example of the first is testing the hypothesis that µ(l) = u( 2 ). An 

example of the second is testing the hypothesis that µCt)• o. 
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There are at least two types of multiple testing problems: 

(1) The populations are k different treatments and the x
1

•s refer to the 

same measurement (blood pressure, e.g.), and 

(11) There is one treatment or experimental setting and the populations 

refer to k different measurements (blood pressure, heart rate, bilirubin levels, 

etc.). 

Obviously, in a multiple comparisons problem, only type (i) is appropriate: 

one would hardly be interested in the difference between mean blood pressure and 

mean heart rate. Some of the discussion so far in this article deals with (11) 

in the context of multiple tests. The next section focuses mainly on (1) in the 

context of multiple comparisons and multiple tests. 

4. An Empirical Bayes Connection 

Though the setup in this section is rather simple, the conclusions 

correspond rather closely with the way Bayesians should think about· comparisons 

and tests when there are multiple treatments. For example, to make inferences 

about µ(
1

) one may need to know all the data, not just x, 1 ). Also µ(l) is 

typically positively correlated with X(i)' 1 = 1, ••• , k. 

Suppose that the treatment responses are 

Xi - N(µ 1, 1), 1 = 1, ••• , k. 

The µ.'s are unknown and so are themselves random variables, their joint 
l 
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distribution reflecting information about, and relationships among, the various 

treatment responses. 

While most of this section treats problems of type (1) defined in the 

previous section, I want to consider type (ii) problems briefly. Suppose the 

x1's are measurements on k different variables in the same experimental setting. 

It seems reasonable a priori to consider the possibility that theµ. are 
l 

independent. But one might also allow for the possibility that they are 

related. For example, a drug that decreases blood pressure is likely to affect 
. . 

(positively or negatively) heart rate, left ventricular ejection fraction, 

vascular resistance, etc. Such possibilities should be considered in multiple 

testing problems. It may be wrong to suppose independence but it would also be 

wrong to suppose that the µ1•s are positively correlated, say. 

If the µi's are independent a priori then t~ey will also be independent 

given x1, ••• , Xk. So in this case the posterior distribution of µi given 

x
1

, ••• , Xk is simply the posterior distribution of µ 1 given x1, and making 

inferences about µ1 is a one~dimensional problem. In particular, there is no 

multiple inference issue: the distribution of µ(i) depends on x
1

, ••• , Xk only 

through X(i). 

While it may be reasonable for someone to regard the means of k variables 

(type (ii)) as being independent, this seems less reasonable fork treatments 

(type(!)). Independence across treatments assumes very firm information about 

the treatments and the experimental setting. The careful probability assessor 

may well recognize that there is an underlying unknown effect which influences 

all observations similarly, irrespective of treatment. For example, consider a 
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clinical trial involving several treatments for breast cancer. This disease 

continues to be diagnosed earlier and earlier in its cycle. Thus every 

treatment should be more effective now than it ever was before, though how much 

more effective would not be clear in advance. This is certainly true of no 

treatment bepause a patient "treated" earlier will obviously live longer after 

such "treatment." In addition, the entrance criteria and the way these criteria 

are administered by clinicians vary from one trial to the next; the differences 

can seem minor but still show up in the results very dramatically~ Because 

individual trials tend to involve rather homogeneous populations, the various 

treatments used in the current trial may seem more like each other than a single 

treatment seems like itself in previous trials. (A consequence of these 

considerations is that there is no such thing as a "known" treatment, one whose 

effectiveness in an experiment can be predicted up to statistical error. Even 

if an experimenter is meticulous about ensuring that all aspects of the current 

trial duplicate those of a previous trial, time and its many covariates will be 

different.) 

There are many ways that the µi can be dependent. One suggested by the 

previous paragraph is that (µ 1, ••• , µk) is a random sample from some 

distribution G, which is itself unknown. This is precisely the setup assumed in 

the "empirical Bayes" problem proposed by Robbins (1956). Converting one's 

available information about G into a probability distribution gives rise to what 

Deely and Lindley (1981) call a "Bayes empirical Bayes" problem; see also (Berry 

and Christensen 1979). When I say empirical Bayes I mean Bayes empirical 

Bayes. The empirical Bayes objective is usually to estimate G or the various 
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µ 1• The adaptation here is to hypothesis tests concerning the µ 1• 

To keep things reasonably simple~ suppose treatment 1 has either has no 

effect (µ 1 = 0) or a known positive effect (µi = 1). Distribution G has 

parameter p, which is the probability that any particular treatment has no 

effect: 

Conditional on p, the µ1 are independent, and so they are exchangeable. (This 

assumption 1s clearly inappropriate in type (ii) problems.) The proportion p of 

~reatments with no effect is unknown, with a priori density uniform on (0,1): 

n{p) = 1, which then implies the initial distribution for G and for the µ1• In 

particular, the marginal distribution of µ1 1s 

µ 
_,..r +,..t 

1 2 uo 2 u,. 

Consider x1 , the observed response to treatment 1. Its conditional 

distribution given pis 

( x1 j p) - pN ( 0, 1 ) + ( 1-p )N ( 1 , 1 ) ; 

unconditionally, 

1 1 x
1 

- 2 N (0, 1) + 2 N ( 1, 1). 
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The density of p on (0,1) given x
1 

is 

p + (1-p)exp[X1-112J 
= 2 ---------

+ exp[X1-112J 

If, for examp~e, x1 • 1/2, halfway between the two candidates for µ 1, then 

ff(plX
1

m1/2) • ff(p), corresponding with the obvious fact that x1 = 1/2 is 

noninformative as regards µ
1 

• 0 vs~,• 1. Also, ~(pfX1) ~ 2p or 2(1-p) 

according as x
1 
~ ~m or x

1 
~ +m, equivalent to actually observing µ

1 
= O and 

µ
1 

= 1, respectively. 

Now consider the distribution of µ 1 given x
1

• The new probability of 

µ
1 

= O is 

I J 1 2pdp 
P(µl=O x,) a O 1 + exp(X

1
-1/2) 

a decreasing function of x
1

• So we have 

<JJ, Ix,> - ------ oo + 
1 + exp(X1-112) 

Again, x1 = 1/2 leaves the prior unchanged. 
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1
-1/2) 
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1 + exp(X1-112) 
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Now consider responses x1 and x2 on treatments 1 and 2. We have 

and so 

It follows that 

As a consequence, 

cx
1
,x

2
fp) - (pN(o, 1) + c1-p)NC1, 1>] 2 

2 
1r(pfx

1
,x

2
> a: II (p + c1.;p)exp(x

1
-112>]~ 

1=1 

P(µ1µ2=0I x, ,X2) ~ 2 

P(µ
1

111 0,µ
2

=1 fx
1 

,X
2

) a: exp(X
2
-1/2) 

P(µ
1

12 1 ,µ
2
nolx

1 
,x

2
) a: ex.p(X

1
-1I2) 

P(µ1=µ2:al 1x1 ,X2) a: 2•exp(X1•X2-1). 

This tends to 1 or O according ~s x1 ~-=or+=. And it tends to 

(4) 

2/[2 + exp(X1-1/2)] or 1/[1 + 2•exp(X1-1/2)] according as x2 ~-~or+=. 

These latter conclusions are the same as the conditional distribution of u1 
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given x1, having already conditioned on µ 2 (the conditional distribution of µ 1 

given µ2 being 

Compare (3) with (4). Obviously, they are equal if x2 • 1/2--there is no 

information about pin x2 a 1/2. When x2 is greater than 1/2 then (4) > (3): if 

treatment 2 gives a large response then it is more difficult to decide that 

treatment l's effect is small. For example, if x2 • 2 then .43 has to be 

subtracted from x
1 

to keep_ the same probability of µ
1 

= o. On the other hand, 

if x
2 

• -2 then to k~ep the probability of µ1 - 0 the same requires that ~58 be 

added to x1• 

Consider the impact that this has on the question of multiple tests. A 

researcher reports that x,
1

) = -1. If k • 1 then the probability of µ(l) a o 
from (3) is 1/(1 + exp(-3/2)) • .82. But if k • 2 then the probability of 

µ(l) • 0 from (4) is 

2 + exp(X( 2 )-1/2) 
PCJJc, ,aofxc, >=-1 ,x<2>> - ---------------------

2 + exp(X(2 )-1/2) + exp(-3/2) + 2•exp(X( 2 )-2) 

This is shown in Table 1 with, for comparison, the Joint probabilities of µ(l) 

and µ( 2 ). So if X(l) is much less than x( 2 ) then the evidence in favor of 

µ(l) a O is not as strong as if X(l) and x( 2) were both small. 
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TABLE 1 

Joint distribution of (µ(1) ,µ(2)) given X(l) ::, -1 as a function of lc2) 

xc2> -1 0 .5 1 2 3 co 

p ( µ ( 1 ) = 0 I X ( 1 ) =--1 • X ( 2 ) ) .87 .84 .82 .79 • 74 .71 .69 

p ( µ ( 2 ) ::IO I X ( 1 ) =--:-1 • X ( 2 ) ) .87 • 72 .61 .48 .26 • 11 0 ________ ..__ - -- -- -- -------
P(µ(1)-µ(2)=0IX(1)•-1,X(2}) .79 .65 .55 .43 .23 .10 0 

P(µ(1}•0,µ(2}•fX(1)•~1,X(2)} .09 .20 .27 .36 .51 ~61 ~69 

P ( µ ( l ) a 1 , µ ( 2 ) a Q ( X ( l ) a-1 ~ X ( 2 ) ) .09 .01 .06 .05 .03 .01 0 

p ( µ ( 1 ) = µ ( 2 ) = 1 I X ( 1 ) --1 • X ( 2 ) ) .04 .09 .12 .16 .23 .27 .31 

-- ------- - -- --------------
E(µ<2>-µ<1>fxc1>·-1,x<2>> 0 .12 .21 .31 .49 .60 ,69 

ECµc2>lxc2>>-ECµc1>lxc,>=-1> 0 .20 .32 .44 .64 • 74 .82 

The joint probabilities of µ(l) and µ( 2 ) are especially relevant for the 

question of multiple comparisons. For example, the penultimate row of Table 

shows how much less µ(l) is expected to be than µ( 2 ) as a function of x( 2 ) when 

X(l) = -1. The last row of the table shows the corresponding difference 

ignoring the relationship between µ 1 and u2• These two rows are analogous 

respectively, to the classical statistician considering and not considering the 

multiple comparisons question. Obviously, ignoring the relationship exaggerates 

the difference between µ(l) and µ( 2 ). 
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The more general case of making inferences about the µ1's given 

x1, •••• Xk involves more complicated calculations, but no new ideas. For 

larger k any inference about µ 1 (or u(l)) depends less on x1 (or X(l )) and more 

on responses to the other treatments. For example, 

and 

P(µ,=OfX1• X2a._ •• •Xk~ -=) • _k __ k__,_(X--1/_2_)_ + exp 1-_ 

So it is easier to conclude that µ 1 is small when the responses to the other 

treatments are small but it is difficult (though not impossible!) to conclude 

,that u1 is small when the other responses are large. In particular, given x1 

and x
2 

= ••• • Xk ~ + m, for the probability of µ
1 

=Oto be greater than 1/2 

requires x1 < 1/2 ~ log k. 

An empirical Bayes approach which is quite promising for the multiple 

comparisons problem uses mixtures of Dirichlet processes (Antoniak 1974, Berry 

and Christensen 1979). In this approach, estimating G and the various ui 

requires finding the posterior probabilities of all possible combinations of 

equality and inequality among the u1 ~ For example, when k = 3 there are five 

possibilities: u1 - µ2 • µ3 - µ1, µ1 = u2 - u3, u1 = u3 • µ 2 , u1 • u2 = u3, and 

µ 1 = u
2 

= u
3

• One then calculates P(µ
1 

= u
2

1x
1
,x

2
,x3), say, by adding the 

second and fifth of these. A less than attractive aspect of using mixtures of 

Dirichlet processes is that the number of terms in the mixture increases very 
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fast as a function of k (Berry and Christensen 1979). 

The empirical Bayes approach in settings of multiple comparisions and 

multiple tests gives results which incline toward the classical statistical 

view. For example, x( 1} and x(2 ) can be further apart than would be expected by 

the naive analyst and still be consistent with the null hypothesis 

µ( 1) = µ( 2). And a researcher cannot simply report X(l) as an estimate of µ(l) 

or as a statistic for tests concerning µ(l); the rest of the data 

(X( 2)' ••• , X(k)) also contain~ relevant information~ But while classical 

"adjustments" depend only on k, empirical Bayes adjustments depend on the actual 

data. In analogy with classical adjustments, there would also be a Bayesian 

adjustment to inferences concerning µ( 1) if for some reason the Bayesian does 

not know all the data but only knows X(l) and k. I have not addressed this 

problem here. 

5. Conclusions 

From a Bayesian point of view it is possible to dredge data to generate 

hypotheses and then to test these hypotheses using the same data. However, the 

path to such inferences is perilous. 

Correcting for comparisons and tests involving multiple treatments, so 

widely espoused by classical statisticians, has an analogue in Bayesian 

statistics. Namely, one assumes that the treatments are themselves sampled from 

an unknown distribution, as in the empirical Bayes problem. When the k 

treatments have means µi that are exchangeable a priori, the following rough 
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interpretation is consistent with the empirical Bayes approach, and it seems 

reasonable in the problem at hand. The posterior distribution of µ1 is pulled 

toward treatment i response X., but also in the directions of the responses to 
l 

the other treatments. For any pair of treatments (i,j), the estimated 

distance between µi and µj given x1 , ••• , Xk is less than that between Xi and 

Xj, but the signs of the two differences are the same. In particular, if 

x1 a Xj then µi and µj are exchangeable a posteriori as well as a priori. 

The empirical Bayes approach is more relevant for simultaneous inferences 

concerning many treatments, problem (1) of Section 3, than concerning many 

variables (same "treatment"), problem (ii) of Section 3. Regarding the latter, 

I do not see that an adjustment along the lines of Section 4 would ever be 

appropriate because the µ 1•s cannot be exchangeable a priori. An appropriate 

analysis must take into account one's prior information concerning the 

relationships among the variables. 
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