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Abstract. Bayesian methods are given for finite-category sampling when some of 

the observations suffer missing category distinctions. Dickey's (1983) 

generalization of the Dirichlet family of prior distributions is found to be 

closed under such censored sampling. The posterior moments and predictive 

probabilities are proportional to ratios of B.C. Carlson's multiple 

hypergeometric functions. Closed-form expressions are developed for the case of 

nested reported sets, when Bayesian estimates can be computed easily from 

relative frequencies. Effective computational methods are also given in the 

general case. An example involving surveys of death-penalty attitudes is used, 

throughout, to illustrate the theory. 

A simple special case of categorical missing data is a two-way contingency 

table with cross-classified count data x1j (i = 1, ••• , r, j = 1, ••• , c), 

together with supplementary trials counted only in the margin distinguishing the 

rows, y
1 

(1 = 1, ••• , r). There could also be further supplementary trials 

reported only by counts distinguishing the columns, z. (j = 1, ••• , c). Under 
J 

assumptions that the censoring process, itself, is "noninformative" regarding 

the category probabilities e1j (for example the report for each possible outcome 

might be nonrandom and prespecified), the Bayesian inference regarding the e1j•s 

would be based on the likelihood function 

conjugate prior inference. We develop a Bayesian conjugate theory, however, by 

recognizing the complete integrals of such functions as Carlson functions and 



the posterior distributions resulting from Dirichlet prior distributions as 

known generalized Dirichlet distributions. The corresponding posterior density 

functions are similar in form to the likelihood, and these constitute a family 

of distributions closed under sampling and tractable in various senses, 

including the convenient computability of moments and modes. 

KEY WORDS: Bayesian inference; Generalized Dirichlet distributions; Missing 

data; ~ultinomial model; Multiple hypergeometric functions. 

1. Introduction. 

Bayesian conjugate-prior inference is tractable and elegant for categorical 

sampling, that is, independent identical sampling from a distribution with 

finite support (Laplace 1774, Good 1950, 1965). If the Dirichlet distributions 

are used as the conjugate family of prior and posterior distributions, the 

densities, moments, and predictive probabilities take closed forms. Also, the 

class of mixtures of Dirichlet distributions with a small number of mixands is 

similarly tractable and large enough in many situations to offer realistic 

descriptions or prectata subjective uncertainty. (For completeness results, see 

Diaconis and Ylvisaker 1985, and Dalal and Hall 1983.) However, in cases of 

inference from censored data, that is, when some of the observations suffer 

missing distinctions between categories, so mere sets of categories are 

sometimes reported, tractability appears to fade. The likelihood contains 

further factors that are powers of sums of probabilities over sets of categories 

not distinguished. 
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Bayesian treatments of categorical sampling with such missing data have been 

given by Karson and Wrobleski (1970), Antelman (1972), Kaufman and King (1973), 

Albert and Gupta (1983), Gunel (1984), Smith and Gunel (1984), Smith et al 

(1985) Albert (1985), and Kadane (1985). All these deal with 2x2 contingency 

tables with information missing regarding row or column variables. Basu and 

Pereira (1982) extend consideration to kx2 tables and summarize properties of 

the Dirichlet distribution under relevant changes of variable. In general 

cases, Shefrin (1981, 1983) develop expansions with respect to the possible 

values of the unreported data. (For treatments from the frequentist viewpoint, 

see for example, Hartley 1958, Chen and Fienberg 197~, 1976, and Dempster~ 

1977.) 

After first setting up requisite tools and notation (Section 2), we 

formulate the problem of Bayesian inference from a sequence of quite general 

reports, where the reports are based, respectively, on the individual trials of 

a categorical sample (Section 3). We give a representation of the relevant 

posterior complete integrals from a Dirichlet prior distibution in terms of B.C. 

Carlson's (1977) two-way multiple hypergeometric functions R. The posterior 

distributions are cases of the generalized Dirichlet distributions of Dickey 

(1983). This theory extends to a new family of prior distributions that is 

closed under sampling. The theory is then specialized to censored data, that 

is, reported sets of categories, and conditions are given under which the 

inferences are made independently regarding the censoring process and the 

sampling process. For the special case of nested reported sets, a parallel 

development based on changes of variable in the Dirichlet distribution yields an 
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elementary theory in which the Bayesian posterior estimates are computed easily 

from relative frequencies (Section 4). For the case of nonnested censoring, 

successful straightforward expansions and asymptotic methods of computation are 

available and are discussed briefly (Section 5). The theory will be illustrated 

throughout by an example of surveys of death-penalty attitudes. 

2. Preliminary Tools and Notation. Sampling Process Observed. 

To begin, we review and summarize known results and establish notation for 

the case of sample data reported in full and accurate detail. Consider a 

finite-category independent and identically distributed sampling sequence 

k1, k2, ••• having possible-outcome categories k = 1,2, ••• ,K (say), with sampling 

probabilities, ek = pr(kn = kl!!.> with probability vector!= (0 1, ••• ,eK), for 

n = 1,2, •••• For a sample sequence segment k1, ••• ,kN' define the category 

(We define the indicator ok(k) = 1 and ok(j) = 0 for j•k.) Thus x+ = N, where 

we denote summation over an index by a plus sign. 

Bayesian inference depends on the data only through the likelihood function. 

We assume that the sample size N is noninformative regarding! (Raiffa and 

Schlaffer 1961, sec. 2.3), so the likelihood function of! is proportional to a 

likelihood as if N were fixed before the sampling. The latter likelihood 

depends on the data k1, ••• ,kN only through the sufficient statistic!, 



(2 .1) 

Of course if N is prespecified, .! is multinomially distributed, and 

I (N) I (N) ( ) pr(!~)= ! pr(k1 , ••• ,kN ~), where ! = N!/IT xk! • 

A conjugate family for the likelihood (2.1) is the Dirichlet. The random 

vector! is said to have the Dirichlet distribution, .2, - D(J2), with parameter 

vector b = (b1, ••• ,bK), each bk> O, if! has the density f(i;,!2), as follows. 

Let 

Then define the probability density with respect to any K-1 of the coordinates 

of .Q_, 

b -1 
f(8_;b_) = B(b)-1rrK 9 k 

- 1 k 
(2.2) 

for all_! in the probability simplex{.!!_: each ak ~ O, e+ = 1}. The posterior 

distribution, consequent to the prior distribution! - D(J2) (2.2) and the 

likelihood function (2.1), is the Dirichlet with updated parameters, 
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The Bayesian predictive distributions express uncertainty concerning 

observables, taking account of the uncertainty concerning parameters! by 

averaging out! in the sampling probability, (2.1). For any prior distribution, 

the prior predictive probability mass is the same as a prior moment, 

where xis a value of the count variable, not a condition in the expectation. 

Denote the Dirichlet cth moment by 

(2.3) 
= B(~+g)/B(Q). 

Then the predictive probability is the _!th moment, pr(k
1

, ••• ,kN) = h(~:£). In 

particular, the predictive probability for a single observation pr(k
1 

= k) is 

the same as the prior mean, that is, the iCk)th moment: pr(k
1
=k) = E(ak) = 

h(i(k);£) = bk/b+, where each jth coordinate of iCk) is the indicator oj(k). 

The posterior Dirichlet cth moment is 

C 

Eefxcn ekk) = h(g;2+!} (2.4) 

= B(B+!+2) /B(Q+!) 

So the posterior predictive probability of further data k~, ••• ,k;* given 

k1, ••• ,kN' is just the posterior _!*th moment, 
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In particular, for a single further observation, 

the posterior Dirichlet mean. Note also that, by definition or by (2.4), 

pr(k~, ••• ,k;*I!> = pr(k1, ••• ,kN,k1,•••,kN*)/pr(k 1, ••• ,kN), that is, h(!*;,!l+!) = 

h(!*+!;J!)lh(!;J!). 

3. Reporting-Processes. 

3.1 General Reporting. Consider a single trial kn in a categorical sampling 

process, followed by a report rn of arbitrary form. This could be any statement 

made by a reporter or reporting process - not necessarily truthful, or even 

relevant. We shall model randomness in the value rn conditional on kn. (Dawid 

and Dickey (1977) took the alternative approach of assuming the truthful 

reporting of the value of a statistic, with the form of the statistic chosen at 

random, and the report to include the information of which statistic was 

chosen.) 

Denote the conditional probability of the report r • r given the outcome k n n 

= k by Arlk and the array of these parameters by _A, with l,jth entry Arlk for 

row 1 = k and coluDD'l j = r, k = 1, ••• ,K, and re:S, where Sis the set of 

possible values for r, assumed finite. Then our model-probability of receiving 
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the report r (k itself being unknown) is 
n n 

Both the parameters! and A could be considered unknown. 

( 3. 1 ) 

Denote a sequence of sampling-process outcomes by k1, k
2

, ••• , and their 

respective reports by r 1, r 2, •••• The reporting process applies separately to 

each trial k, that is, we assume the pairs (k ,r) are independent of each 
n n n 

other and are identically distributed, n=1,2, •••• Assume a sample of (known) 

size N, with N noninformative regarding! and A. Again, as far as inference 

concerning! or A is concerned, noninformative optional stopping is permitted 

and the analysis is equivalent to the case of fixed N. Define the frequency 

counts of the reports as I= (yr: r£.S), where each 

Yr =' N 6 (r ); ln=1 r n so Y+ = N. 

Then vis a sufficient summary of the r's and our likelihood function of 9 and 
"- n ' 

A is 

pr(r1, ••• ~rNl~,A) 

= pr(Il~,A) / (N) 
I 

a nre:S{lk~1 Arlk 8k)Yr 

(3 .2) 

In practice, although we do not treat such data here, an arbitrary function of 

the vector (r1, ••• ,rN) could be received. 
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Our interest is in inference concerning!• We begin by describing inference 

from (3.2) conditional on h. We need a lemma, first, concerning the moments of 

linear forms in a Dirichlet vector. 

Lemma 3.1 Let S!, = (d1, ••• ,dJ) and Z = (z1j), with each z1j~' 

ja1, ••• ,J. Then a generalized moment of e - D(~) is given by 

1=1,, ••• ,K, 

(3.3) 

= R(g,z,-g) 0 

The right-hand side of (3.3) indicates B.C. Carlson's (1971, 1974) multiple-

hypergeometric function Ra(_2,z,-2) in the special case a~d+. The functions R 
a 

are a matrix-argument generalization of the classical vector-argument 

hypergeometric functions of Appell and Lauricella. If a= d+ and each 

coordinate bk>O, the function Ra=R has the multiple-integral representation 

(3.3). Interesting properties of R include an identity changing the 

dimensionality of the integral from K-1 to J (Dickey 1968a) and special 

dimension-reductions for special argument matrices Z. The identity {3.3) ties 

our problems of Bayesian statistical inference for missing data to a mainstream 

theory of special functions. (In his 1977 monograph B.C. Carlson based a 

unified introduction to special functions on a vector-argument form of R.) 

Dickey (1983) gives an introduction to Carlson's functions for statisticians. 
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Theorem 3.2 Assume the data take the form of reports, generated with 

probabilities A, conditional on a categorical sampling process, having 

probabilities!· The likelihood function (3.2) for report counts 1,., and a 

Dirichlet c= ... 1ditional prior distribution !I A - D~,2) give the following Bayesian 

inferences. The predictive probability mass EefApr(r
1

, ••• ,rNI.Q.,A) is 

(3.4) 

and the posterior distribution is 

(3 .5) 

where the notation e - D(,2,Z,2), for a matrix Z of nonnegative entries, means 

that! has the density on the probability simplex, in terms of the Dirichlet 

D(,2) density f(!;J!) (2.2), 

g(~;g,Z,g) = (3 .6) 

/R(Q,Z,-g) o 

Dickey (1983) introduced the class of distributions D(,2,Z,_g) (3.6). The 

Dirichlet D(J?) is the special case _g = .Q Note the difference in sign here 

between the last parameter vector of the general class D and the corresponding 

Carlson's R (a departure from the notation in Dickey 1983). 
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By the form of its density, the distribution (3.6) has for its general 

(~*,&*)th moment, 

K b* K d* 
E I C n a k> nJ* Cl z*kJ. ak) j 

8 b, Z , d kcs 1 k j = 1 k= 1 

·= h(.,2* ;~) R(~+~*, (Z ,Z*), -(,2,,2*)) 

I R(~,Z ,-&) 

(3.7) 

This will serve as a source of moment formulae. It has the form of the 

Dirichlet (monomial) moment multiplied by a ratio of Carlson functions. Note 

that in the special case of a common coefficients matrix, Z*=Z, the numerator of 

the ratio becomes R(.,2+~*,Z,-(,2•,2*)). 

Corollary 3.3 In the inference setting of Theorem 3.2, the posterior 

(monomial) _2th moment is a simple multiple of the corresponding prior moment, 

(2.3), 

K ck 
EC n ak II;A) = 

k=1 

K ck 
EC n ek IA>·R<2•2, A,-I)IR(Q,A,-y) 

k=1 

(3 .8) 

• D 

3.2 Censored Data. Consider now the case of sampling from a finitely 

supported distribution where reports of the outcomes are censored, so that 
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distinctions between the categories are sometimes missing and mere sets of 

categories are reported. For a trial k , let the corresponding report be a n 

nonempty subset rn = s, s c{1, ••• ,K}. Let the class S contain all subsets s 

having positive predictive probability of appearing in a report: if s¢S then 

Aslk=O, for all k, with prior probability one, and ys=O. (It is assumed that 

the count ys=O when, with prior certainty, Asfk = O for all k.) We make the 

following assumptions concerning the censoring process Asjk• 

(1) Reporting is truthful: 

(3.9) 

(ii) Every report r=s is differentially noninformative among the categories 

within s: 

(3.10) 

This means we have a "report-based" reporting process, in the terminology of 

Dawid and Dickey (1977). This is related to Rubin's (1976) concept of "missing 

at random", in which the sampled distribution has a multivariate structure and 

variables are missed in some of the draws. 

Assumptions (1) and (ii) for the model have the following simple consequence 

on each trial. The conditional probability of the report rn=s is 

pr(r =slk,A) = l for all kEs (and O otherwise), and the probability of the n s 
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occurrence of sis the sum pr(knEsl!) = EkESek. Thus, by (3.1), the 

unconditional probability of the report is just the product, pr(r =sja,A) = n -

EkEs~sok n ~s(rkEsek) = pr(rn=sj(knEs),A)•pr(knEsje). This decomposes the 

likelihood (3.2) into separate factors pertaining to the censoring process and 

the sampling process, 

= pr(r1, ••• ,rNls1, ••• ,sN,A) 

• pr(s 1, ••• ,sNI!> 

where each r as, nal, ••• ,N. 
n n 

0 (As usual, 0 al.) 

(3.11) 

Our final assumption concerns the uncertainty about the modeled processes. 

(111) Assume prior independence between the two parameter arrays~ and A. 

(Known A is a special case.) 

This, together with the factorization (3.11), implies posterior independence 

between Sand A. So, the assumptions (i)-(iii) imply that the censoring 

process, per se, is noninformative regarding!, in the sense that inference 

about! can be carried out marginally without conditioning on h. Under these 

assumptions, one can just use the likelihood of! based directly on the reported 
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outcome events, 

Ys 
~ n s<1k ek> SE ES 

(3.12) 

It is as if each report r =s were an observation on an ordinary two-category 
n n 

Bernou111 random variable, as if no other set could have been reported than s 

or its complement. (These would be independent, but not identically 

distributed, Bernoullis.) The following theorem gives the inferential 

distribution theory. 

Theorem 3.4 Given categorical sampling with noninformative censoring 

(assumptions (1)-(111) and hence likelihood (3.12)), the Dirichlet prior 

distribution! - D(,2) gives the extended Dirichlet posterior distribution 

(3.13) 

where the columns of zs indicate the sets of the (ordered) class S, the k,sth 

entry of Zs being 

if kES 

z = ks otherwise, (3.14) 

for k=l, ••• ,K, SES. o 

n 

This is related to our earlier general-report Theorem 3.2, but in the case 

of noninformative censoring the conditional reporting probabilities A need not 
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be known. Again, as in (3.8), the posterior monomial moment is a simple 

multiple of the corresponding prior moment, the posterior mean being given by 

E(ek!.I) a (Eek) R(,2+i(k),Zg,-I) 

/R(,2,Zg,-I) 

(3 .15) 

As is evident by (3.13), the original Dirichlet family is not closed under 

censored sampling. However, the extended family (3.6) does have this property 

when the columns of Z are defined to include those of Zs· 

Theorem 3.5 Consider the extended Dirichlet family as prior distributions 
roJ 

for noninformative censoring,! - D(_2,Z,£), where Z=(Zg,Z). Such a distribution 

yields the posterior distribution in the same family, 

(3.16) 

where ! = (_l,.Q.). o 

In cases when the sampling probability of a set of categories sis better 

known prior to the current data analysis than are its component category 

probabilities, the extended family of distributions can more accurately express 

one's prior uncertainty than can the Dirichlet. One can include in the prior 
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density a factor 

' ct, ' a )d2 
(lkES ek) (,-lkES k 

with large ct1+ct2 when IkEsak is believed near in value to d1/(d1+ct2). Like the 

Dirichlet, the new family is not expressive for situations of local smoothness, 

when close categories are believed to have close probabilities (as in Dickey 

1968, 1969). 

3.3 Restrictions. No assumption has been made that the class of reported 

sets Sis a partition, nor has S been restricted in any other way. It is clear, 

however, that (1) and (ii) themselves place restrictions on S, beca~se of the 

following property. Define for each category k=1, ••• ,K, Sk = {s: kES,sES}. 

Then for each k, 

(3.17) 

So fo~ any sample outcome k, the conditional reporting probabilities of all the 

sets containing k must sum to unity, and these probabilities depend only on the 

sets. This property rules out some configurations of partially overlapping 

sets. For example, it rules out the following simple case. Suppose there are 

three categories, k = 1,2,3, and two sets, S={s,t} with s={1,2} and t={2,3}. 

Then (3.17) would require As=l, A
8
+At=1, and At=l. 

Clearly, if Sis a partition, such difficulties cannot arise. More 

generally, a collection S combining successively nested partitions, in which any 
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two sets are either disjoint or one a subset of the other, will also be 

consistent with (3.17). These form the subject of our next section. 

Note, however, that in practice, data containing reports with partially 

overlapping sets are not uncommon. For example, in two-way contingency tables, 

supplemental marginal row counts and further supplemental marginal column counts 

involve partially overlapping sets. Many cases of data reporting partially 

overlapping sets can be treated naturally from the theory by considering 

distinct portions of the data to be reports by different censoring processes of 

different samples from the same distribution. Then the overall combined 

likelihood is a product of likelihoods corresponding to the different portions 

of the data, for each of which the assumptions (1), (ii) may be satisfied. The 

censoring process is then independent but not identical from trial to trial. 

The following example is of this type. 

3.4 Death Penalty Attitudes. Combining Data from Different Questionnaires. 

Kadane (1983) analyzed data from two sample surveys of potential juror's 

attitudes, in which respondents were instructed to assume the availability of a 

death penalty. The primary categories k are, with K0 4: 

1. Would not decide guilt versus innocence in a fair and impartial manner. 

2. Fair and impartial on guilt versus innocence; and when sentencing, would 

ALWAYS vote for the death penalty, regardless of circumstance. 

3. Fair and impartial on guilt; and when sentencing would NEVER vote for 

the death penalty. 

4. Fair and impartial on guilt; and when sentencing would SOMETIMES AND 
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SOMETIMES NOT vote for the death penalty. 

A survey by the Field Research Corporation produced the frequency data y{
1
}=68, 

y{
3

}=97, y{ 2 , 41 =674, (y+=839), and a survey by Harris yielded y{ 2}=15, 

Y{i,
3

, 41 =1484 (y+=1499). (Kadane reduced the effective sample size to account 

for a dependence or "clustering" in the way the data were gathered, a 

complication we do not consider here.) Since the censoring is nonstochastic and 

imposed by the forms of the questionnaires, the censoring process itself is 

noninformative. 

Assuming these are two censored multinomial samples with common underlying 

categories, one multiplies the two likelihoods to obtain a likelihood whose data 

is the counts obtained by pooling the two sets of counts. The combined 

likelihood is 

(3.18) 

in which !_=(68, 15, 97, 0), y{ 2, 41 =674, and y{ 1, 3, 41 =1484 (x++y+=2338). We have 

denoted the combined reported counts of singleton sets by xk=y{k}. 

A thorough Bayesian analysis would report the coherent effect of the data on 

a range of prior distributions expressing a range of expert opinions prior to 

knowledge of the data. To simulate aspects of such a process, we assessed a 

Dirichlet distribution by eliciting the opinion of a single social psychologist 

with interests in legal matters and a familiarity with previous studies, but not 

yet familiar with the two surveys under discussion. Elicitation of his prior 
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means bk/b and elicitation of b by a version of I.J. Good's (1950, p.35) + + 

"device of imaginary results" yielded the following Dirichlet parameter vector, 

in which b+=140. 

Table I. Expert Dirichlet Prior Parameters. 

0.02 0.08 0 .15 0.75 

2.8 11.2 21.0 105.0 

The corresponding expert posterior distribution (D(~+:!,Z,1) has the density 

b +x -1 y y{ } 
[ n4 a k k /B(b+x)J(e +e

4
) {2, 4}(8 +e +e ) 1 • 3 •4 /R(b+x Z -v) 

1 k - - 2 1 3 4. - _, ' • ' 
(3 .19) 

where _2+i = (70.8, 26.2, 118.0, 105.0), y = (674, 1484), and 

(3.20) 

The uniform distribution, e - D(l), where 1=(1, ••• ,1), is frequently 

proposed as a "noninformative" prior distribution. This leads to a posterior 

density proportional to the likelihood function (3.18), itself, namely 
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4. Partitions and Nested Censoring. 

Inference is considerably simplified in cases where the censoring is nested, 

that is, where Sis a union of nested partitions, so that for every pair of sets 

of confused categories, either one set is a subset of the other or they are 

disjoint. We begin with the case where a partition of the sampling domain is 

sometimes reported. Many of the results extend to more general nested 

censoring. 

4.1 Grouped Date: Observing a Partition. It is well known that the 

Dirichlet form of inference is preserved by data-grouping. A Dirichlet prior 

distribution for the detailed category probabilities induces a Dirichlet 

marginal prior distribution for the probabilities for a partition. Data grouped 

according to the partition will then give a Dirichlet posterior distribution for 

these partition probabilities; and this posterior distribution would be the same 

as the marginal distribution from a posterior distribution based on any 

ungrouped (but actually unavailable) version of the data. Below, we extend this 

property to the generalized Dirichlet family. 

Anderson (1957) finds in the normal case that if multivariate data has 

values of the variables missing in a nested pattern, the sampling model can be 

reparameterized according to successive conditional distributions of the levels 

of missing variables, so that the likelihood function factorizes into functions 

of the respective new parameters. Our problem could be treated through a 

general Anderson scheme by reformulating our sampling model of outcome k, n 
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n""1, ••• ,N, to have an equivalent K-variate indicator-type outcome 6(k ), 
- n 

n""1, ••• ,N, where vector function i(kn) has coordinates ok(kn)""1 if k
0

""k, and O 

if kn~k. Then the censored categorical data could be viewed as multivariate 

data with missing values of coordinate variables, and in the nested censoring 

case the likelihood would be seen to factorize usefully. We shall achieve 

essentially this same factorization. 

Consider the case of data 1. reporting the counts of a partition U or 

{1, ... ,K}. Without loss of tractability, we can also consider further fully 

detailed 1ata ! counting additional occurences of the categories, per se. Then 

S =U u{1, ... ,K} and a (noninformative) random censoring mechanism could allocate 

a trial to be counted either in 1. or in x. For each set sj of U"" (sj: 

j=1, ••• ,J) let uj(!) be the sampling probability of sj; so 

j=-1, ••• ,J. ( 4. 1 a) 

Let tkfj(!), for k=l, ••• ,K, be the conditional sampling probability of category 

k given sj; so 

j aklu/~>. if ke:sj 

l O, otherwise, 

k=1, ••• ,K; j=t, ••• ,J. In terms of the partition-indicator matrix 

(4.1b) 

Zu (KxJ) whose columns indicate (as in (3.14)) the sets sj listed in U, we can 

write the vector form of (4.1a), 
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~(_i) = e ZU , (4.2a) 

where~(!) and e denote the obvious row vectors. We also have the vector form 

of ( 4. 1 b), 

t* I . ca> = - J -
(4.2b) 

where the vector !cs.)= (ek if kesj, O otherwise: k=l, ••• ,K), for each 
J 

j=l, ••• ,J. (Categories knot in the sets. correspond to zero coordinates of 
J 

!*lj(!).) In the special case of multinomial data (fixed Y+, x+ and nonrandom 

censoring),~(!) and !*f*(!) would be the respective parameters of marginal and 

conditional multinomial distributions, 

(4.3) 

x ( ) I u . ( x) - Mu 1 tinomia 1 ( t* I . ( e) , u. ( x)) , 
- s. J - - J - J -

J 

(4.4) 

independently for j=1, ••• ,J, where each ~(s.)=(xk if kesj, O otherwise: 
J 

k=l, ••• ,K), and where~(,!)=.! Zu, the same function as (4.1a), (4.2a), but with 

! replaced by.!• 

Lemma 4.1 (Factorized Likelihood). Under noninformative stopping, 

noninformative censoring, and censoring by a partition, the likelihood 
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factorizes with respect to the two types of data and parameters, 

y. 
n u ca> J= 

j j -

D 

(4.5) 

This factorization holds without assuming multinomially distributed count 

statistics. It is central to the nested-censoring theory. For now, we merely 

note that it shows that the maximum likelihood estimate of a is the same as the 

value from the multinomial-model method of moments, and it can be obtained by 

·just setting the transformed parameters~(!) and !*I*(!) equal to their 

corresponding sample fractions, 

(4.6) 

j=l, •.• ,J, (4.7) 

where~(!) and !*I*(!) are given by (4.1ab), (4.2ab) with! replaced by!· 

We turn now to prior distributions and their use in the inference. First, 

what distribution of the new parameters is implied by a Dirichlet distribution 

for!? 
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Lemma 4.2. (Version of Wilks 1962, pp. 180-181.) If the random probability 

vector_! has the Dirichlet distribution! - D(~), then the partition-grouped 

probabilities and associated conditional probabilities have the independent 

Dirichlet distributions, y(~) - D(~(Q)) and ~*IJ(~) - D(Q(s.))' j=l, ••• ,J, 
J 

where 2csj)=(bk if kEsj, o otherwise: k=l, ••• ,K). a 

Theorem 4.3. For a partition indicator matrix ZU, the generalized-Dirichlet 

vector_! - 0(£,Zu,£) is expressible in terms cf independent Dirichlet vectors 

under the transformation (4.lab), {4.2ab), 

y(~) - D{y(Q)+g) ( 4 .8) 

t* I . c e > - o c b < > > - J - - s j 
{ 4. 9) 

j=1, ••• ,J. a 

A consequent simple form of R for partitions appears to be new in the 

special-functions literature. 

Corollary 4.4. For a partition indicator 2cJ, 

(4.10) 

0 
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Corollary 4.5. (Moments.) Given partition indicator Zu, the generalized­

Dirichlet distribution e - D(£,Zu,~) has a closed-form general (.£,!)th moment in 

product form, 

(4.11) 

a 

Theorem 4.6 (Inference.) The frequency data 15.,z, with I censored by the 

partition U, and the generalized-Dirichlet prior distribution .2. - D{J?,Zu,.s!>, in 

which Zu indicates the same partition U, yield the posterior distribution in 

the same family, 

(4.12) 

This is equivalent to the independent posterior Dirichlet distributions, 

(4.13) 
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(4.14) 

j=l, .•. ,J. 0 

Theorem 4.7 (Three Estimates.) In cases of censoring by a partition, (I) 

the posterior mean of e and (II) the posterior mode of e are given by 

A "'\ 
u . c e ) • tk I . c e ) , 

J - J -
ke::s., 

J 
(4.15) 

k=1, ••• ,K, with factors satisfying equations (4.6), (4.7), under the respective 

replacements in both equations, 

(I) (4.16) 

or 

(II) (4.17) 

lK = (1 , ••• ,1 ). (III) A third estimate£ is constructed by (4.15) from the mode 

of the joint posterior distribution of ,!!(Q), l*l*(Q). This mode is given by 

equation ( 4 .6) with the re.placement. 

(III) (4.18) 
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and equation (4.7) with the replacement, 

(III) (4.7) X + x+b-1 --~ 0 (4.19) 

The estimates (I), (II), (III) will be approximately the same for large sample 

4.2 General Nested Censoring. The censoring in data from a multiple-choice 

questionnaire is nested if there is a subset of the questions that each 

respondent can choose to answer or to ignore as a whole set. Or, suppose the 

questions are presented in the same order to each respondent, who chooses some 

arbitrary place to stop answering, such as how far he/she gets before time runs 

out. As long as each respondent answers all questions in order until stopping, 

the censoring will be nested. However, unconstrained decisions on whether to 

answer different questions would lead to data having non-nested censoring. 

In practice, the condition of differential noninformativeness of the 

censoring seems likely to be seriously violated for examination questionnaires, 

even if the censoring is nested. Condition (3.10) would claim that how well a 

student ansers questions is unrelated to how many questions the stw;~nt answers. 

This seems overly restrictive in the context of grading student exams. 

Nested censoring includes contingency tables having supplementary purely 

marginal counts for one of the variables. It would rule out data having 

supplementary marginal counts for more than one variable. It would also rule 
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out situations where a trial is simultaneously counted for reporting in 

supplemental marginal counts of more than one variable. 

It is easily seen that data showing nested censoring can be organized 

according to a tree of successively nested partitions and successively 

conditional data. That is, the likelihood function can be rewritten as in 

(4.5), as proportional to a likelihood for a multinomial process and conditional 

multinomial processes, whose data first give the total counts for a crudely 

grouped partition of outcome categories, then the breakdown of some of these 

counts according to refinements of groups, then further a breakdown of some of 

these refined counts, and so on. Theorem 4.3 and its consequences, as stated 

for a single partition, are generalized easily to a tree of successively nested 

partitions. 

4.3 Example (Cont.) Although the censoring is not nested in our example 

involving the combined data from two questionnaires, each survey can be analyzed 

separately as a case of observing a partition (Section 4.1). When our Dirichlet 

prior distribution is combined with either survey's likelihood function, a 

posterior distribution is obtained in the form of Theorems 4.3 and 4.6, !l!,X -

D(J?+!,Z,x) where~ is the Dirichlet prior parameter,!• X are the data reported 

in the particular single survey, and Z is the partition indicator corresponding 

to 1· For the Field Research Corp. survey alone, J?+! = (b
1
+68, b

2
, b3+97, b4 ), 

z (t ~) (4.24) 
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and J_ = (0, 674). The posterior distribution then has the representation, 

(e 1+e
3

,e 2+a 4) - Beta(b1+b
3
+165, b2+b4+674), e1/(9 1+o

3
) - Beta(b1+68, b

3
+97), 

and e2/(e2+e 4) - Beta(b2 ,b4), all independent. This yields the posterior 

estimates in Table II. Our posterior mode of.!!, follows from Theorem 4.7 (II), 

using the total exponents in the joint posterior density, for example, 

t 2=[(b2+b4+674-2)/(b++839-4)]. [(b2-1)/(b2+b4-2)]. The posterior mean 

calculation by Theorem 4.7 (I) uses the posterior exponents similarly, while 

merely omitting the negative integer terms. 

Table II. Posterior estimates from survey by Field Research Corp. (by Theorem 

4. 7) 

Cate or k 1 2 3 4 

Expert Prior 

Mode (II) 0.072 0.072 0.120 0.736 

Mean (I) 0.072 0.078 0 .121 o. 729 

(Standard (0.008) (0.022) (0.010) (0.025) 
Deviation) 

Uniform Prior 

Mean (I) 0.082 o.401 0.116 0.401 

Note that the uniform prior distribution gives a posterior distribution 

exhibiting through its mean an unreasonable judgement of exchangeability between 

e2 and e4• Also, this prior distribution does not produce a mode in its 
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posterior distribution, sinoe for merely one survey the likelihood is 

underidentified and there is no unique maximum likelihood estimate. Even the 

expert prior distribution leads to the appreciable posterior correlation for the 

Field survey alone, Corr(e
2

,e 4) ~ -o.86. 

A parallel analysis of the Harris survey yields the values given in Table 

III. A combined analysis appears later below. 

Table III. Posterior estimat~s from survey by Harris. 

Cate or k 2 3 

Exeert Prior 

Mode (II) 0.014 0.015 0 .157 o.a,i.1 

Mean (I) 0.021 0.016 0 .160 o.Ba2 

(Standard (0.013) (0.003) (0.032) (0.034) 
Deviation) 

Uniform Prior 

Mean (I) 0.330 0.011 0.330 0.330 

5. Calculation ~ethods. 

In general, the density (3.6) of our posterior distribution for censored 

data, !lx,y - D(~+!,Zs,1>, takes the form of a likelihood function for the 

"combined sample" !+~-1, 1· Hence any maximum likelihood algorithm for 

categorical missing data can also be used to produce a posterior mode. As is 

well known and easily shown (for example, see the treatment of a similar model 

in Vardi ~ 1986 Sec. 2.1), multinomial missing data tend to have a well 
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behaved likelihood, log-concave with a unique point of maximum at a single 

stationary point. Thus, many algorithms work well. We mention, in particular, 

the convenient E-M algorithm of Hartley (1958) and Dempster~ (1977). 

In nonnested situations, an approximate maximu~ point can be obtained by 

factorizing the posterior density into a product of functions resembling 

likelihoods, as if there were independent subsamples in each of which the 

censoring pattern is nested. Each such subsample yields a linear system in i of 

the form (4.6), (4.7), and together these can be treated as a combined linear 

system that one solves by least squares, or by weighted least squares with 

weights proportional to the subsample sizes. Since.a sample can be broken up 

into subsamples with apparent nested censoring in a variety of ways, this linear 

approach does not give a unique estimate. However, it does provide crudely 

informative summary statistics and a starting value for iterative maximizing 

routines. 

The posterior mean and other moments require computation of ratios of 

Carlson multiple integrals. Numerical quadrature and Monte Carlo methods are 

inconvenient when the dimension is even moderate. But two other methods are 

highly effective: multinomial expansions of the integrand and Laplace's 

integral method. The former is exact for any nonnegative integer values of the 

exponents, but the number of terms grows as a product of powers of those 

exponents. One version of the expansion method can be found in Jiang (1984), 

and another in Kadane (1985). Laplace's method (see Tierney and Kadane 1986) is 

approximate, uses the point of maximum, and becomes more accurate as the sizes 

of the exponents increase. Our experience with these methods suggests the 
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existence of a broad middle range of exponent values in which both the expansion 

method is not too burdensome computationally and the Laplace method is quite 

accurate. 

Example (Cont.) In our sur.vey example, combining the likelihoods from the 

two surveys, the posterior density (3.19) has modes as given in Table IV. The 

posterior mode from the uniform prior is the same as the maximum likelihood 

estimate. (This is also the same as the linear-system "approximate" mode from 

the uniform prior, because the combined linear system happens to have an exact 

solution.) 

Table IV also gives the posterior moments from the combined survey. To the 

accuracy reported here, the multinomial expansion method and the Laplace method 

delivered the same numerical values for posterior moments. The two prior 

distributions, however, differed noticeably in the posterior estimates they 

produced. Notice that in the case of the first category probability a1, the 

posterior means from the two prior distributions are located in opposite 

directions from the maximum likelihood estimate, the simple frequency ratio 

A e1 = 0.081. This seems to be an unreasonable aspect of the uniform prior, in 

th is example. 
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Table IV. Posterior estimates from combined data, surveys by Field Research and 

Harris Survey. 

Cate or k 2 3 4 

Exeert Prior 

Approx. 0.011 0.014 0 .117 0.792 
Mode (II) 

Mode 0.012 0.015 0 .121 0.791 

Mean 0.073 0.016 0 .122 0.789 

(Standard (0. 008) (0.003) ( 0. 010) (0.013) 
Deviation) 

Uniform Pri.or 

Mode 0.081 0.010 0 .116 0.793 

Mean 0.082 0 .o 11 0 .116 0.791 

(Standard (0 .009) (0.003) (0.011) (0.014) 
Deviation) 

6. Summary 

This paper shows that a Bayesian analysis of noninformatively censored 

categorical data reduces to elementary computations from Dirichlet posterior 

distributions, in nested-censoring cases, and to generalized Dirichlet 

distributions-and the computation of specially restricted Carlson functions and 

their ratios, in more general cases. Since these computations are quite 

tractable, such analyses are now feasible. 
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