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SUMMARY 

A Bayesian approach to detecting outliers in a linear model is developed. 

An outlier is defined to be an observation generated by the linear model under 

consideration with a large random error. Outliers can be detected by 

examining the posterior distribution of the random errors. An augmented 

residual plot is also suggested as a graphical aid to finding outliers. 

Keywords: Leverage; Linear model; Posterior distribution; Residual plot. 



1. Introduction 

Methods for detecting outliers have been plagued by the lack of a 

satisfactory definition for an outlier. Ye propose a very precise definition 

for an outlier which simplifies the concepts behind outlier detection and -

allows a simple Bayesian analysis. In a linear model with normally 

2 distributed random errors, ei, with mean zero and variance a, we.declare the 

ith observation to be an outlier if le.I> ko. The choice of k can be left to 
1 

the data analyst and we will use values of k-2 and k-3 in our illustrative 

example. Realizations of normally distributed random variables of more than 

two or three standard deviations from the mean are certainly surprising. 

The method will use the posterior distribution of the random errors and 

it will be seen that the leverage of an observation is accounted for in a very 

natural way through the posterior variance. A residual plot augmented with 

"interval estimates of the errors is suggested. 

The problem of outliers is studied and thoroughly reviewed in Barnett and 

Lewis (1984), Hawkins (1980) and Beckman and Cook (1983). Bayesian methods 

are reviewed in Chapter 12 of Barnett and Lewis and further developments given 

in Pettit and Smith (1984). Our method differs from the usual approach in 

that we define the outliers as arising from the model under consideration 

rather than arising from a separate model. If the situation is such that 

there is clearly an appropriate model for contamination such as a shift in the 

mean or an inflated variance, then such a model should be used. Our approach 

therefore is a general approach where no obvious contamination model is 

available. Bayesian methods for contamination models are given in, for 
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example, Box and Tiao (1968), Guttman, Dutter and Freeman (1978), Abraham and 

Box (1978) and Freeman (1980). 

2. A Method for Outlier Detection 

We will assume that the model under consideration for the data 

yT- (y1 ,, .. yn) is the usual linear model with parameters OT - (8 1 ,, .. 0p) and 

normally distributed, N(0,o2), independent random errors eT - (e1 , ... en). The 

nxp design matrix is X and y - XS+ e. To compute the posterior probability 

that le.I is greater than ko we need the posterior distribution of e, p(ely). 
1 

We first derive this distribution using a normal gamma prior distribution and 

then take a limit to give the posterior distribution for an improper prior 

distribution. 

The prior distribution on 8 is taken to be such that conditional on the 

precision r, r - a·2 , 8 is normally distributed with mean s
0 

and variance 

-1 -1 r R . The prior distribution on r is a Gamma distribution with parameters a 

-1 and~. the prior mean is a~ . The posterior distribution is of the same form 

and, following DeGroot (1970) page 252, conditional on r the posterior 

distribution of e is a normal distribution with mean o
1
-(R+XTX)-l (RS0+XTy) 

and variance r· 1 (R+XTX)-1 . The posterior distribution of r is a Gamma 

distribution with parameters a1 and ~l where a1 - a+ n/2 and 

The posterior distribution of e is easily derived by writing e-y-XS. 

The distribution is singular in that mass is on a p-dimensional space only. 
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Denote H - X(R+XTX)-lX then conditional on r the posterior one is a singular 
A -1 multivariate normal distribution with mean e - y - xo 1 , and variance r H. 

Denote the elements of Has hij then each ei, i-1, .. n, has at-distribution 

with location ;i' precision (a1;p1)hi~• and 2a1 degrees of freedom (see 

DeGroot (1970) page 42). The variance covariance matrix of e is proportional 

to H. 

To compute the posterior distribution corresponding to the improper prior 

distribution p(B,r) -1 for p let R ~ 0, a~ p/2 and p ~ 0. - r r>O, 8 e IR , 
A 

;_ (XTX)-lXTy 2 A T 
Denote and s - (y - XS) (y - XB)/(n-p) then, as in DeGroot 

(1970) page 252, the posterior distribution of 8 is multivariate-t with 

location vector 8, precision matrix s· 2cxTX) and n-p degrees of freedom. The 

posterior distribution of e is therefore as it is for the informative prior 

A T -1--T 
distribution, but with e1 - 8, H - X(X X) -X , a 1 - (n-p)/2 and 

2 p1-(n-p)s /2. 
A 

The usual residual, e • I 
l. 

can therefore be viewed as the posterior mean of 

the actually occuring random error, ei. A (1-a) highest posterior density 

(hpd) interval fore. is given by 
l. 

A + 
e -i t(a/2, n-p) s/h11 

where t(a/2, n-p) is the upper a/2 p~rcentage point for at-distribution with 

n-p degrees of freedom. 

The probability P((e.f > kr·112 1y) is the probability that the ith 
l. 

observation is what we have defined to be an outlier. These probabilities 

can be easily computed using numerical integration. Denote ~(z) to be the 

3 



probability that a standard normal, N(0,1), random variable is less than z. 

Further denote 

1/2 A) h•l/2 
and z2 - (-k - r ei ii 

then we have 

P(le.l > k r -1/2 I y) 
i 

- J P(le.l > k r -l/2 1y, r) p(rly) dr 
i 

As these diagnostic measures are probabilities they are easy to interpret. 
A 

Points with high probabilities of being an outlier will have a large le.I 
i 

A 

a large hii' or both. lJhen leil is large this suggests that (eil is large. 

When hii is large there is uncertainty about ei as reflected in the posterior 

variance. The quantity hii is often referred to as leverage, as points with 

large hii are potentially highly influential (see Cook and Weisberg (1982) 

page 15). 

Using prior information can clearly help in detecting outliers. In order 

to compare this method to others which do not use prior information, however, 

we use the posterior distribution from the improper prior distribution in our 

example. 

The posterior distribution of the e1 's is in marked contrast to the 
A 

sampling distribution of the e1 's upon which outlier tests are sometimes 
A A 

based. The variance of e is proportional to (I-H) and the distribution of e 
A 

is over (n-p) dimensions. Specifically the sampling distribution of ei is 
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-1 normal with mean O and variance T (1-hii). Traditionally residuals are 
A 

A •l/2 
standardized by dividing ei by s(l - hii) . In the extreme if ei - 0 then 

no amount of standardization will yield anything but a value of 0. If the 
A 

posterior variance of ei is large however even if ei - 0 there may be some 
A 

probability that feif is large. If we are interested in the ei's as estimates 
A 

of the e1 's putting error bars on e1 is sensible. 

The calculations in ·the example were ·done by implementing the procedure 

as an S function (see Becker and Chambers (1985)). The pnorm function from S 

was used for ~(z). The double precision numerical integration routine dqagi 

and the gamma function gamln from the core math library from the National 

Bureau of Standards (cmlib) were used. The calculations are easily 

incorporated into an interactive computing environment. 

3. Illustration 

The Gessel adaptive score data from Mickey, Dunn and Clark (1967) has 

been used extensively to illustrate outlier detection. The values of x are 

the age of a child in months at first word and y is the G~ssel adaptive score. 

The data are given in Table 1 together with the posterior probabilities 

P(fe1 f> kT·l/2 1y) _for k-2 and k-3. For comparison, the prior probabilities of 
A 

these events are .0455 and .0027 respectively. Figure 1 is a plot of e1 

against the case number, i, with 951 hpd regions drawn in. The plot provides a 

simple summary of the information in the data about the ei's. 

The value of e19 is almost certainly large. The p9sterior probability 

that e19 is more than two standard deviations away from zero is approximately 

.93. The posterior probability of it being more than three standard 

deviations from the mean is .28 which is certainly surprising compared to the 
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prior probability of much less than .01. Observation 18 is associated with 

the largest leverage h18 and therefore there is uncertainty about e18 . 

Observations 2,3,11,13 and 14 might be worth a cursory inspection but the 

posterior probability of being an outlier at k-2 is less than the prior 

probability. We see that the ordering of the probabilities changes ask 

changes, observation 18 is not particularly apparent at k-2 but is noticed at 

k-3. Observations 18 and 19 are clearly noticeable on the plot. 

Without further information on this data set it is impossible to give a 

definitive analysis. Observation 19 should be examined for a possible 

typographical error. Alternatively, the child associated with that score may 

be different from the other 20 children and another explanatory variable might 

be suggested. Observation 19 might be considered to be an outlier that does 
A 

not greatly influence the estimates 6 but it is suggestive of an inappropriate 

model. Similarly the child of observation 18 was relatively old at the age of 

first word and again that child may suggest an additional explantory variable. 

Whether the data refer to score on a test or reading of an instrument any 

large values of leil should be noted. What to do with a large value once it 

is detected depends on what is being measured and modelled. 

4. Conclusion 

This method of computing posterior probabilities of an observation being 

an outlier is very simple and our definition of an outlier is very simple. 

The probability that observation i is an outlier is computed under the model 

of interest and some of the computational difficulties of multiple outliers 

are avoided. The conceptual difficulties of outliers are also avoided by 

using a precise definition. 
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A residual plot is routinely drawn in analysing data from a linear model. 

We believe that thinking of the residuals as estimates of the random errors 

and including interval estimates on the plot will help in their 

interpretation. 
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i hii 

P(le1I> kr-l/2ly) 

Yi X. k-2 k-3 
l. 

1 95 15 .OS 
2 71 26 .15 .0031 
3 83 10 .06 .0391 
4 91 9 .07 
5 102 15 .05 
6 87 20 .07 
7 93 18 .06 
8 100 11 .06 
9 104 8 .08 

10 94 20 .07 
11 113 7 .09 .0016 
12 96 9 .07 
13 83 10 .06 .0391 
14 84 11 .06 .0057 
15 102 11 .06 
16 100 10 .06 
17 105 12 .05 
18 57 42 .65 .0329 .0010 
19 121 17 .05 .9261 .2778 ~ 

20 86 11 .06 .0005 
21 100 10 .06 

TABLE 1: Gessel adaptive score data with posterior 
probabilities of being an outlier. 

(Probabilities less than 10-4 are omitted) 

• 
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Figure 1: Residual plot of residuals against case number 
with 95% hpd regions. 
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