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ABSTRACT 

For a variety of experimental designs with 2n observations, inter alia 2n 

factorial designs, simple data sets with 2n observations and two-sample 
n-1 problems where both sample sizes are respectively 2 , we present a method to 

apply well known nonparametric tests such as those of Mann-Wilcoxon, Wald­

Wolfowitz and Fisher-Yates to residuals for the detection of outliers. 

* Partial support from University of Minnesota & by sabbatical leave grant 
from FR.D, CSIR, South Africa. 
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1. INTRODUCTION 

We consider the linear model (LM)(Y,Xp,u2V) or equivalently 

y """'xp + e; 
2 cov(e) .... u V (1.1) 

where Vis an arbitrary known non-negative definite and symmetric matrix. It 

is well known (see e.g. Rao, 1976) that the best linear unbiased estimator 

(BLUE) xp for xp is given by xp - P I y, where PI denotes the projection 
X VZ X VZ 

operator onto the column space C(X) along the space C(VZ), Z being a matrix of 

maximum rank such that Z'X = 0. As Rao (1976) points out, PI need not be 
X VZ 

" unique, but XfJ or PI y is unique since ye C([X:V]) - C([X:VZ]), with 
X VZ 

probability 1 (w.p.l), if the model (1.1) is consistent with the data. One 

possible choice for PI is PI - X(X'V*X)-X'V*, where V* is a g-inverse of 
X VZ X VZ 

Vin the manner of Rao (1971), i.e. V* - (V + XUX')-, for U such that 

C( [X:V]) C(V + XUX') and C(V) n C(XUX') - (0). One possible choice for the 

projection operator P f is then P f - (I - X(X'V*X)-X'V*). The main 
VZ X VZ X 

computational task involved in the analysis of the LM(l.1) is the computation 

of PI , whether we wish .to estimate xp or to test linear hypotheses in the 
X VZ 

model. 

If the model (1.1) is augmented by the new variables A (say), we obtain 

the model 

y - [X:A] [fj + e; 
2 cov(e) .... o V 

" " 

(1. 2) 

Seemingly, in order to compute the BLUE xp + AA for XfJ + AA under model (1.2) 

we have to compute a new a projection operator P•I ~, where X - [X:A] and Z is 
X VZ 

• • a matrix of maximum rank such that Z'X - (0). But for the case V - I it is 

well known (see e.g. Searle, 1971; similar developments are given in Rao, 1973 
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nonparametric tests on the transformed data. Thus the method is easily 

implemented and derives its efficiency from that nonparametric test which is 

selected. i 

1. APPLICABLE DESIGNS 

Consider the design matrix T of a 2n factorial design. If all main 

effects and interactions are fitted (the "full model"), Tis of the order 

(2nx2n) and it can be written as 

••• ® D .... (® D)n, where D = [1 -17 
1 +11 

T = D ® D 

and ® denotes the Kronecker product of matrice·s. 

The columns of Tare mutually orthogonal and 2-n/2T is an orthogonal 

matrix. 

Now let 

S .... S(n) - (matrix X of order (2nxp)lthe p columns of X span the same 

space as some q ~ p columns of T 

be a class of design matrices. 

The method for the nonparametric testing for outliers outlined in the next 

section applies to all designs where the design matrix Xis from S, or 

2 equivalently to all linear models (Y, xp, u I) where Xe S. 

This class includes a wide variety of experimental designs as illustrated 

by the following: 

Example 1.1 A simple sample with 2n observations can be modelled as a 

2 n · LM(Y, Xµ, u I) where X - [1, ... 1]' of dimension 2 . Clearly [1, ... ,l]' is the 

first column of T and thus Xe S. 

Example 1. 2 
n-1 A two-sample problem with sample sizes 2 each can be modelled 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

"(2) "(3) 
y - y 

xp<l) - xp<3) 

p ~(2) - p A;(3) - p A;(4) - p I~ 
vzlx vzlx vzlx vz x 

For the second equality we require ye C([PvzlxA:V]), that is to say, 

model (4) is consistent with the data. 

can be replaced by ;<1> = y - xp<1). 
xp<2> - xp<1> - P A~. 

xlvz 

Otherwise, and in any case, y 

This equation holds if xp is estimable under model (2), 

[equivalently, C(X) n C(A) = (0)]. Otherwise (d) yields the BLUE 1'~ 

for any estimable linear function l'fl of P under (2). 

" "(3) "(1) 
P I AA is uncorrelated with XP - xp . 

VZ X 

The additional sum of squares due to fitting A in model (2) is 

" SSA= (P I AA)'V-(P I AA) 
VZ X VZ X 

(g) The total sum of squares in (2) (and (3)) can be decomposed into 

uncorrelated sums of squares as 

SS - SSR( 2) + SSE(2) 

- SSR(l) +SSA+ SSE(2) 

- SSR(l) +SSA+ (SSE(l) - SSA), 

where SSR and SSE denote respectively the sum of squares for 

regression and the sum of squares for error in the model in question. 

(h) The F-statistics associated with the hypothesis H0 : AA - 0 in (2) 

(and (3)) is given by 

F- SSA 
SSE( 2 ) 

s-a SSA -- -
a SSE(l)_ SSA 

s-a --a 

which under normality follows an F -distribution, where a ands a,s 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 1.4: List of suitable designs. 

n (2 observations are required in each case) 

Simple sample 

n-1 Two-sample problems with sample sizes 2 each 

k n 2 -sample problems (k e N) with sample sizes 2 1, i=l, ... k 

2n factorial designs 

2n factorial designs in 2r replicates 

2n factorial designs in 2b blocks 

Fractional 2n factional designs 

t n-t Two-way layouts with 2 treatments in 2 blocks 

b t Complete block designs with 2 blocks and 2 treatments 

Latin squares, Graeco-Latin squares 

We see that the method can be applied in almost any ANOVA-type situation 

whenever the number of observations is 2n. This condition can be taken into 

consideration even at the design stage of an experiment. But if this 

condition is not met and we have a simple sample (say) of 2n < N < 2n+l 

observations, we can choose some 2n observations (including the possible 

outliers) at random from the sample and carry out the test for outliers in the 

reduced sample at the cost of some loss of power. 

2. NONPARAMETRIC TESTING FOR A SINGLE OUTLIER 

2 Let be (Y, xp, u I) a linear model (LM) where Xe S. Without loss of 

generality we wish to test whether the last observation is an outlier. We 

write m for 2n. 

The adjusted model for an outlier, following John and Draper (1978) is 
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(e) cov (Pvzlx A.\, x,8( 3)) - cov (Pvzlx~' x,8(l)), from (b) 

- cov (Pvzfx A>.., ~fvz y) 

= 0. 

(f) SSR(2)~ ;<2)'v* ;c2) 

cxp< 2>+ ~) 1 

V* {xp<2>+ ~) 
cx,8(1)+ pvzlx ~) V* cx,8(1)+ pvzlx ~). from (b) 

{XP{l))' V* x,8< 1>+ {P I ~) 1

V* {P I Ai), from {e) 
VZ X VZ X 

SSR{l)+ SSA. 

Then {g) and {h) are direct consequences of {f). 

The lemma allows a complete treatment of the augmented model (2), without 

explicitly fitting this model. The projection operators P I and P I 
X VZ VZ X 

are known from and computed during the analysis of the original model {1). 

The BLUE P I AA for P I AA can be computed using the reduced model {4) in an 
VZ X VZ X 

economical manner. Thereafter, adjusted parameter estimates and the extra sum 

of squares due to fitting A can be obtained using the results {d) and {f) of 

the lemma. Results {g) and {h) give the corresponding ANOVA and allow us to 

test the hypothesis H0 : A~ - 0. 

For the formulation of the lemma we required that the additional variables 

A satisfy the condition C{A) c C{[X:V]). If this is not the case, quantities 

like P I A and P I A are not invariant over the special choice of the 
X VZ VZ X 

projection operator in question, and the models {3) and {4) are not well-
A 

defined. However, since the estimated residual vector e in a linear model is 

from the space C{V) w.p.l (Zyskind and Martin, 1969), we can write, with 

respect to model (2), 
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Yq+l'"" .Ym in (5) and (6) are uncorrelated and identically distributed. 

But more important is the following property: while ranking Yq+l'" .. ,Ym 

any perturbation of the data is equiprobable under H: ~-0 if any perturbation 
0 

of the error terms e2 , ... ,em of the original data Y2 , ... Ym is equiprobable 

(even if the terms are not independently distributed). 

Usually it is assumed that e
1

, ... em are independent and identically 

distributed, and thus we can apply such nonparametric tests as Mann-Wilcoxon, 

Fisher-Yates and Wald-Wolfowitz to the two-sample problem (6) in a routine 

way. (For an overview on nonparametric test procedures see e.g. Kendall and 

Stuart, 1973). 

3. MORE THAN ONE POSSIBLE OUTLIER 

In the case of 2 possible outliers (without loss of generality being the 

last 2 observations) the adjusted model similar to (3) can be written as 

y""" x<-> 0 0 fJ + e 

X m-1 0 1 ~ 

X 1 0 6 m 

After transformation by 2-n/2T and removal of a q terms we arrive at 

(7) 

similar to (6), where g = [d1 , ... ,dm]' is the second last column of T. 

Similarly, this can be generalized for l > 2 possible outliers, if 21 is not 

too large compared with 2n. Save for the constant 2-n/2 , the vectors 

£, g, ... contain only components +1 and -1 and simultaneous nonparametric test 

procedures such as the Kruskal-Wallis k-sample test can be applied, with k = 
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in the case of A as in (3.1), and 

-1 -1 -1 
Y1 - v12v22 Y2 = (Xl - v12v22X2)P + (el - v12v22e2), 

(3.4) 

in the case of A as in (3.2), where v22 is taken to be nonsingular (see Schall 

and Dunne, 1985). 

Here y = [::] and X = [::] 
are partitioned comformably with the 

partitioning of Vin (3.2). The respective reductions of the LM(l.1) to the 

models (3.3) and (3.4) can be seen as two different methods to downdate a 

linear model. Model (3.3) is obtained by removing the mean x2p of Yz from the 

model (1.1), whereas (3.4) is obtained by removing the error term e2 from the 

model (1.1). The latter case is illustrated by writing e1 as 

-1 -1 
el - el - v12v22e2 + v12v22e2 

- -1 
=el+ v12v22e2. (3.5) 

Clearly, e1 is uncorrelated with e2 , and thus e1 is the error for e1 adjusted 

for the covariate e2 . Note that during the reduction of model (1.1) to the 

model (3.3) this adjustment is not made, and hence the error term e
2 

is still 

in the model (3.3), through correlation, as can be seen from (3.5). It is in 

fact only the mean x2p of y2 which is removed from (1.1) to obtain (3.3). Of 

course, the two methods are identical in the case V - I, or more generally 

when Vis a diagonal matrix, and in this case x
2
p and e

2
, and thus the whole 

observation y
2

, are removed from the model (1.1) simultaneously, by fitting 

the dummy variables (3.1) or (3.2) (see John and Draper, 1978). 

Let N and M respectively denote the matrices 
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for a given a. But with the method of the foregoing sections the suggested 

test can be applied if the total sample size is m=2n. 

If the first sample consists only of one observation we may treat this 

observation as an outlier and test for significance as outlined in Section 2. 

In the case of sample size 2 for the first sample we have the model 

yl 1 0 

~~ 
+ e 

y 1 0 m-2 

y 
m-1 1 1 

y 1 1 m 

After transformation by 2-n/2T and possibly some rearrangement of the 
transformed data we arrive at 

~l 
-n/2 2 + e 2 µ2 

1 
2 
0 
1 
0 

-2 

y -2 
m 

We can now apply a 3-sample rank test (preferably based on the H-

statistic). 

5. ON THE EFFICIENCY OF THE OUTLIER-TESTS 

The non-null distribution of the test-statistics based on the ranks of the 

transformed observations Y 
1

, ... Y is certainly intractable in the general 
q+ m 

case, but the efficiency of the tests can be judged by a comparison with the 

normal alternative. If the observations Yin the original model (3) follow a 
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We require that v22.\, and hence.\, is estimable in (3.3) and (3.4), and that 

C(A) c C( [X:V]). If A=V2 , the latter condition is trivially satisfied. When 

.\ is not estimable in (3.3) or (3 .4), then the -1 -1 true inverses M22 and N22 of 

M22 and N22 must be replaced by g-inverses M;2 and N;2 respectively, and the 

formulae (ii) and (iii) yield the BLUE's for any estimable linear function of 

the quantities in question. Downdating formulae are especially useful while 

treating the problem of outliers and influential observations in a linear 

2 regression model (Y, xp, u I) (see Cook and Weisberg, 1982). Consequently, 

the above formulae will apply in treating the same problem in the general 

linear model (Y, xp, u2v) (see Schall and Dunne, 1985 and 1986). 
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