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ABSTRACT 

A new approach to the problem of assessing causality for adverse drug 

reactions is presented. The approach uses Bayes' Theorem to answer the 

causality assessment problem in a logically satisfying and nonarbitrary way. 

The posterior odds in favour of drug causation is obtained by multiplying the 

prior odds by likelihood ratio terms that describe the differential diagnostic 

content of five separate categories of information about the case: the 

history of the patient before the adverse event occurred; the timing of the 

adverse event; the characteristics of the adverse event; the effect of 

dechallenge; and the effect of rechallenge. Although much work remains to be 

done before the method can be easily implemented, the approach satisfies basic 

criteria for causality assessment methods, a claim that cannot be made for any 

other currently available technique. 
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INTRODUCTION 

The answers to important clinical, research and policy questions can 

depend in part on the extent to which one is justified in believing that 

particular adverse clinical events were caused by specific drugs. For 

example, should a clinician discontinue the use of an effective anti­

inflammatory drug in a patient to whom it may be causing angina! pain? How 

should a pharmaceutical manufacturer react to the fact that two patients in a 

clinical trial of a new antiulcer drug developed liver disease? Should a 

trial of a new heart failure drug be terminated because four of nine patients 

on the drug died suddenly within the first three months of treatment? How 

should an epidemiologist studying the incidence of in-hospital iatrogenic 

diseases decide whether a particular case of renal failure is drug-induced? 

All these questions involve the causality assessment problem: given all 

the available information, what is the probability that a given adverse 

clinical event was caused by some particular drug to which the patient had 

been exposed? In a previous paper [ 1), two of us developed criteria that 

methods for solving the causality assessment problem should satisfy, and we 

argued that no current method satisfied these criteria. In this paper, we 

describe a new approach to the causality assessment problem, and we show that 

this approach satisfies the criteria discussed in [l). Ideas related to the 

new approach can be found in [ 2] and [ 3). The new approach is based on 

Bayesian probability theory. In Section A, we explain the essential ideas of 

this theory and present reasons why it should be applied in the causality 

assessment context. The new approach is described in Section B, and in 

Section C, it is discussed in relation to the criteria of [l] • 
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A. BAYES' THEOREM AND CAUSALITY ASSESSMENT 

Two features of the causality assessment problem contribute substantially 

to its difficulty. The first of these is uncertainty. The assessor is 

usually uncertain about many of the key elements he must integrate into his 

assessment. His uncertainty may be about some of the facts of the case (Did 

the patient actually take the drug before the adverse event began? Has the 

patient ever experienced a similar event before?); about background 

information that affects how these facts are to be interpreted (How long 

should it take before toxic quantities of the relevant metabolite of the drug 

have accumulated at the target organ? What is the incidence of events like 

this in patients similar to the present one, but who have not taken the 

suspected drug?); or about the assumptions that it is appropriate to make when 

determining the evidentiary significance of the clinical data (If the event is 

an adverse reaction to the suspected drug, is the mechanism dose-dependent or 

immunologic? Could the adverse event be a clinical sequela of the disease for 

which the patient is taking the drug as treatment?). Somehow, the assessor 

must take into account this uncertain information and the extent of his 

uncertainty when he evaluates the probability that the suspected drug caused 

the adverse event. 

The second feature is the complexity of the information that affects 

causality assessment. Several different factors are relevant to any causality 

assessment and the evidence about each of them usually comes from several 

different sources. The factors include background incidence of similar events 

( in patients who had previously taken the drug, as well as in those who had 

not), aspects of the patient's history ( including previous experience with 
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characteristics of the event (including drug levels in tissues or body 

fluids), and the patient's response to dechallenge (withdrawal of the drug) or 

rechallenge ( readministration of the drug), when these occur. Information 

sources include the assessor's previous clinical experience and his clinical 

judgment, clinical observations and laboratory findings on the patient in 

question, data from epidemiologic studies, as well as facts and theories from 

pharmacology and other basic sciences. Frequently, information from one 

source or about one factor conflicts with information from another source or 

about another factor. Even when the information is not mutually contra-

dictory, some way must be found to weight the significance of each piece of 

information and combine these .. weights of evidence" in a reasonable way. 

The difficulties described are not unique to the assessment of adverse 

drug reactions. They apply to the general problem of differential diagnosis 

in medicine. In assessing a possible adverse drug reaction, drug causation is 

simply one of the main .. diagnoses" being considered. The added difficulty 

that this entails arises because the main way that physicians usually solve 

differential diagnostic problems the performance of tests that help to 

distinguish between the various possible diagnoses - is usually not helpful 

for identifying adverse drug reactions. There ·are no good tests for drug 

causation. In the remainder of this section however, we will suggest that a 

generalization of the main strategy used for the interpretation of diagnostic 

tests -- Bayes' Theorem - also provides a solution to the problem of 

causality assessment in adverse drug reactions. 
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1. Bayes' Theorem 

As used for interpreting diagnostic tests [4] Bayes' Theorem uses 

information about the characteristics of the test (sensitivity, specificity 

etc.) and the prevalence of the disease in the population from which the 

patient came to interpret a particular test result. Thus for a positive test 

result: 

P(D IF) = 

D = Disease Present 

nc = Disease Absent 

r+ = Positive test result 

~(" = Conditional probability: 

P(D) x P("rlD) 

the probability of the proposition on 

the left of the " I" given that you accept the proposition on the 

right of "IO as true. 

The same formula can be used to determine P(ocli+), the probability that 

the patient does not have the disease: 

= 

These two results can be combined to calculate the odds that the patient 

has the disease (the ratio of the probabilities that the patient does and does 

not have the disease): 
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Posterior odds prior odds x likelihood ratio. 

The odds form of Bayes' Theorem has a very attractive attribute: it 

describes the contribution of the diagnostic test result in a very simple way, 

the likelihood ratio. Examine the likelihood ratio formula. In words, it 

answers the question: How many times more likely would you be to see a 

positive test result if the disease was present compared with if it was 

absent? This can be rephrased in a more general way: how many times more 

likely would you be to see a particular finding if the disease was present 

compared with if it was absent? Also, we could change the phrase "if the 

disease was present ••• " to any other diagnostic proposition such as "if the 

drug was the cause of the adverse event compared with if something else caused 

it". Thus, in principle, the Bayesian formula can incorporate any data that 

helps discriminate between any diagnostic proposition and its alternative. 

The likelihood ratio formulation also makes it easy to see how the same method 

could incorporate information from many different sources. Each source of 

information would contribute a new likelihood ratio term that would transform 

a prior odds (prior to information about that factor) to a posterior odds 

( posterior to information about that factor). The posterior odds for the 

first factor would serve as a prior odds for the second factor and the process 

would continue until all of the relevant sources of information had been 

exhausted. 

Thus it is clear, in principle, how this approach could provide a 

solution to any complex differential diagnostic problem. In the adverse drug 
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reaction context each important finding of the case (history, timing, 

dechallenge, etc.) would contribute a likelihood ratio term that would express 

how much more (or less) likely that finding would be with drug versus other 

causation. The individual likelihood terms would then be combined with the 

prior odds of drug causation as described above to arrive at the probability 

(odds) that the drug caused the adverse event. 

However, application of the method appears to face an insurmountable 

problem: estimating the probabilities that make up the prior odds and like­

lihood ratio terms appears to require more data than we have or can ever hope 

to have. We ·believe that this view derives from a misunderstanding of what 

probability really means and why we measure it. 

2. Probability 

Consider why we measure probabilities in medicine. We measure probabi­

lities because they help us decide how to act when faced with uncertainty. We 

wish to know how likely the patient is to have a particular disease because 

that probability will determine whether or not we will treat him for it. The 

more likely it is that he has the disease the more likely we are to treat him 

as if he had it. Considered in this light probabilities measure our pro­

pensity to act as if the proposition that we are evaluating is true. 

The interpretation of probabilities as subjective measures of degree of 

belief that determine our propensity to act is not new. This is the central 

idea in the pioneering work of the Italian mathematician Bruno de Finetti 

[5,6]. De Finetti reduced the assessment of probability to an economic 

decision, where the act to be taken and the values of their consequences are 

clear. To understand how this works, evaluate the probability for you of a 

proposition A according to the following "thought experiment .. : decide upon a 

number p such that you are neutral between buying and selling for $pa ticket -
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that will be worth $1 if A is true and otherwise it will be worth nothing. 

For any number greater than p, the price is too high, and you would be un­

willing to buy the ticket, while you would not agree to sell the ticket for 

less than p. This number p is your probability that A is true (You must 

imagine that at some specified time in the future, you will find out for sure 

whether A is or is not true). Note that if you are sure that A is true, p 

must be 1, and if you are sure that A is false, p must be zero; otherwise, 

there is a unique number p between O and 1 satisfying the definition. It may 

be difficult to determine p exactly, just as it is difficult to decide exactly 

how much you would be willing to pay for a new house. In principle however, 

both quantities exist, and, at the least, bounds on both could be determined 

by how you act when you bet, or when you negotiate for the house. 

3. Coherence 

With the de Finetti definition of probability, it is possible to give a 

precise meaning to consistent (and inconsistent) reasoning in the face of 

uncertainty. Suppose, as in the assessment of a suspected drug reaction, you 

simultaneously assess the uncertainty you feel about many different pro­

positions that are related in various ways. Using de Finetti's definition as 

your measure of uncertainty, you have simultaneously set the price for many 

tickets. Is it possible, in principle, that someone could transact with you 

for some of these, at your prices, in such a way that you must pay out more 

than you receive from him, no matter which of the propositions are true and 

which are false? If so, in your assessments you have in effect made economic 

decisions with unacceptable economic consequence, certain financial loss. The 

possibility of such loss is a concretization of the inconsistent reasoning 

that underlies it. 
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As a very simple example, suppose A represents the proposition that a 

patient will have a recurrence of an adverse drug reaction within 24 hours. of 

re-exposure to a suspected drug and Ac that he will not. There is nothing 

inherently wrong with assessing P(A) = 0.25, nor with assessing P(AC) = 0.25. 

On the other hand, it is clearly inconsistent to assess both quantities as 

0.25: if you did so, and sold tickets at the assessed prices, someone could 

buy one of each ticket for a total outlay of soi - and give them back to you 

today demanding $1 in return, since one or the other proposition is bound to 

be true tomorrow, and hence one of the tickets must be worth $1, while the 

other will be worth nothing. The so4 sure loss you ( the assessor) face in 

this situation reveals the inconsistency in the simultaneous assessments of 

0.2~ for the two probabilities P(A) and P(AC). 

A set of bets that makes money no matter what happens is called a Dutch 

book in gambling circles. The rules of prdbability theory (Appendix I) 

guarantee that all your probability assessments fit together in such a way 

that a Dutch book cannot be made against you. In this sense, you either 

reason about uncertainty consistently with these rules - or you act like 

someone who is willing to give money away without any chance of getting it 

back. And, since your probabilities for the various propositions exist 

whether you determine them or not, this result remains true whether you 

explicitly and quantitatively assess your uncertainty or you just do it 

implicitly and qualitatively,· as in most current approaches to causality 

assessment. A set of probability assessments that is consistent with the 

rules is called coherent, and any reasoning about uncertai~ty that is not con­

sistent with them is called incoherent. 
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4. Bayes' Theorem and Causality Assessment 

The de Finetti definition frees probability from its dependence on 

frequency information. All our uncertainties about interpretation of a case, 

informed by whatever facts, theories, or intuitions that we can bring to bear, 

~ be legitimately treated as probabilities and combined by· the rules of 

probability theory (from which Bayes' theorem is derived, see Appendix II) to 

decide on the probability of drug causation. More than that, the de Finetti 

definition of probability implies that we must do so if we wish to ensure that 

our overall assessment is coherent. 

A necessary step in this process must be to assign a number to each of our 

component uncertainties about the case. Many people may be uncomfortable with 

this idea. When asked, for example, what is the chance that a patient with a 

certain clinical condition treated in a particular way will experience some 

particular untoward clinical event in some specified time period, they will 

respond that they ju~t do not know. To attach a number to their uncertainty 

would be to introduce a meaningless quantification to something essentially 

vague and even unknowable. We believe that this position is incorrect, for 

the following three reasons: 

l) Using de Finetti's measure the quantification of uncertainty is not 

meaningless. There is certainly some justice in applying the charge of 

meaningless quantification to some previous approaches to causality assessment 

that have used uncalibrated, analogue probability-like scales ranging from 0 

to 1 (or 100) [7 ,8], for which the resulting numbers have no clear inter­

pretation and hence no real meaning (as discussed in [8]). But this is not 

true for the ideas developed in this paper, since the de Finet ti approach 

gives a precise meaning to the measurement of uncertainty. Furthermore, 
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Bayesian probability theory shows how optimal decision-making in the face of 

uncertainty depends, in fact, on probabilities defined in this way ( 9]. In 

addition, any optimal decision must be consistent with .!2!!, coherent set of 

probability assessments for the relevant uncertain outcomes, whether these 

assessments are made explicitly or not. The chance that a set of assessments 

that are made implicitly are actually coherent must be exceedingly remote. 

2) If the purpose of the causality assessment is to guide particular 

decisions, it is not usually necessary to evaluate each component probability 

precisely. As we shall show in Section B, a Bayesian causality assessment 

requires the evaluation of the probabilities of several different proposi­

tions. Suppose an asses.sor determines that his probability for one of these 

propositions lies somewhere between two numbers, say 1/3 and 1/2, but he finds 

it very difficult to evaluate it with greater precision. It is always 

possible to go through the entire causality assessment, using 1/3 wherever the 

probability in question appears, and then repeat the analysis using 1/ 2 

instead. If the overall causality assessment is not very different, then 

there is no need to evaluate this particular probability more precisely. If 

it is, and some contemplated decision might hinge on the difference, then 

further work is unavoidable. The point is that such .. sensitivity analyses" 

can always be carried out, with respect to the probabilities that prove to be 

the most difficult to assess; if it turns out to make no real difference which 

number in a certain range is used, then there is no need to introduce what 

seems like an arbitrary precision. If it matters, some creative tinkering 

using Bayes' Theorem or some other device based on probability theory is 

necessary to solve the Jroblem. 
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3) What is the alternative to quantifying uncertainty? It is hard to see how 

the evidence about different factors and from different sources can be weighed 

and merged in a reasonable and nonarbitrary way without using quantitative 

methods that start with the explicit measurement of uncertainty. Certainly, 

as we argued in [1], no qualitative methotls yet developed have come close to 

achieving this goal. 

There is still one important issue to address: how can you know if a 

probability appraisal is "right"? If probability measures subjective degree 

of belief, then this question seems meaningless (unless it addresses the 

problem of how someone else could determine whether the assessor is honestly 

announcing his real opinions, a problem that we shall not address here). But 

this is not the end of the story. Probabilities of propositions about future 

observables can be converted into predictions about the values that these 

observables will assume, and the validity of the predictions can be subjected 

_to empirical checks. For example, suppose two different coherent assessment 

methods are used to produce probabilities for a set of propositions about 

future observables, and one method consistently assigns higher probabilities 

to the propositions that turn out to be true, and lower probabilities to the 

ones that turn out false, than the other method. Then it seems reasonable to 

conclude that even though both methods are coherent, one of the methods is 

more in tune with the world than the other, and in the future (everything else 

remaining reasonably the same), one would want to modify his own opinions to 

concur with probabilities generated by that method rather that by its less 

effective alternative. 

Now, the proposition that the suspected drug caused the adverse event is 

certainly not about any future observable. It is retrodictive rather than 

predictive in character, and typically whether the drug actually caused the 
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adverse event in that particular case or not will never be known with 

certainty. Thus, the validity of a causality assessment method is not subject 

to direct empirical check, in which the probabilities it produces are con­

verted into predictions and the accuracy of these predictions is determined. 

Nonetheless, using Bayes' Theorem, it is possible to convert the causality 

assessment problem into a series of probability assessments, the propositions 

in each of which are about the values of future observables. Thus, in 

principle, the Bayesian approach to causality assessment allows the logical 

incorporation of a series of methods for evaluating components of the overall 

uncertainty about drug causation, and each of the methods can be subjected to 

empirical tests of its soundness. 

B. AN OUTLINE OF THE BAYESIAN APPROACH 

1. Collecting the Facts 

The first step in the Bayesian approach is to collect the facts of the 

case. The assessor is required to identify the patient's clinical condition 

preceding the onset of the adverse event, the type of adverse event, the 

possible causes of the event, and the details of the evolution of the event: 

1) Identify the clinical condition Mand the type of the adverse event Et 

M is a "generic·· specification of the disease for which the patient is 

undergoing treatment, along with known co-morbidity (for example, M might 

denote pneumococcal pneumonia or severe congestive heart failure). Et is 



the "'generic ... type of the adverse event (for example, gastritis or aplastic 

anemia), not a detailed description of the particular case at hand, which is 

denoted by E. 

specificity. 

These identifications can be made with different degrees of 

However, the important point is that they should be made 

explicitly at the bE!ginning of the assessment, and thereafter whenever the 

assessment refers to "M" or '"Et", the meaning should remain the same. 

2) List the possible causes for the adverse event E 

The Bayesian approach requires that the alternative etiologies be listed 

in such a way that the elements of the list are mutually exclusive and 

exhaustive. The list should include possible drug causes (D1 to Dn), the 

clinical condition M, nondrug treatment modalities, environmental exposures, 

and, of course, the possibility of some '"unknown" cause. 

It is necessary to clarify what it means to say that a drug "causes E". 

The proposition 11 D--+ E" is true if E would not have happened as and when it 

did had D not been administered. This does not preclude the possibility that 

some attributes of the clinical condition M were also necessary for E to 

occur. Thus, if the listed possible causes are the drug D, the clinical 

condition M and ··unknown", then the proposition .. M--+E" means not only that E 

was a sequela to M, but also that E would have happened if D had not been 

administered. That is, D-causation includes the possibility of an "inter-

action" between D and M, while M-causation expressly rules out D involvement. 

Suspected drug interactions must be specifically incorporated into the 

list of possible causes. More precisely, when there is more than one drug as 

a causal candidate, if an interaction between drugs D1 and D2 is considered!. 
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priori as a possible cause, the list must include the hypotheses D1 alone, D2 

alone, and 01 and D2 jointly. 

The list of causes is important in the Bayesian approach, since the 

approach works by partitioning the total probability, 1, among the various 

causal hypotheses, given all the elicited evidence. Thus, if a new etio-

logical candidate is introduced to the list of causes, the causality assess­

ment can change. 

3) Record the relevant details about the case at hand 

It is most convenient to think about the case information that needs to be 

recorded in terms of the chronology or time-course of the event E, ~n example 

of which is illustrated in figure 1. The symbols Hi, Ti, Ch, De and Re, which 

refer to different chronological classes of case information, are defined as 

follows: 

Hi (patient's history) contains information about the patient that 

antedates E. Typically, Hi might include data about previous experiences with 

the suspect (and related) drugs and special demographic, behavioral, clinical 

or genetic risk classes for events of type Et to which the patient belongs. 

Ti describes the time of onset of E in relation to the administration of 

the drugs the patient has received, including (when available) the time-course 

of prodromal events like subclinical findings and early clinical signs and 

symptoms. 

16 
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Ch ('characteristics of E) refers to the period between the time of onset 

and dechallenge ( or until E clears, if no dechallenge occurs). Ch might 

include data about drug levels in tissues or body fluids, as well as other 

details in clinical presentation, laboratory results, pathological findings, 

·or time-course that allow E to be more precisely described or classified. 

De and Re refer to events in time periods initiated by dechallenge and 

rechallenge with the suspect drugs, when these occur. With respect to with­

drawal of a particular drug D, De typically includes whether the symptoms 

associated with E abated when D was withdrawn (or its dosage reduced), and, if 

so, the time-course and clinical characteristics of this response. Similarly, 

Re typically records whether an event of type E reappeared following re­

challenge ( reintroduction of the drug or increase in dosage after previous 

dosage reduction), as well as the time it took for this to happen and any 

characteristics of the new event that provide differential etiological 

information. If a second dechallenge occurred following a positive response 

to rechallenge, a new class of information, De2, must be introduced; 

similarly, Re2, De3, and so on may be necessary. In each case, all in­

formation about events in the relevant time period that can help distinguish 

between the various etiological candidates should be included in the appro­

priate chronological class. 

2. Evaluating the Evidence 

After the facts have been collected, their evidentiary significance must 

be assessed. In this section, we describe the goal of this assessment and the 

Bayesian strategy for achieving this goal. 
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The Goal 

According to the Bayesian approach, the goal of causality assessment can 

be defined in the following way: for a drug D suspected as a cause of the 

adverse event E, calculate the posterior odds in favor of D-causation, 

(1) P(o--..EIB,c) 

P(D~_E IB,C) 

Here D-f+E represents the proposition that the drug D did not cause the event 

E; that is, that E would have occurred as and when it did even if D had not 

been administered. C is the case information (that is, Hi, Ti, Ch, De, and 

Re) described ·in the previous section. The additio~al conditioning term (B) 

that is not shown in the formula for Bayes·theorem i~ section 1 is background 

information. B contains the fact that an event of type Et has occurred in a 

patient with clinical condition Mat some time after the drugs on the list of 

possible causes have been administered in a specified way. Unlike the 

case-specific information in C, the information in B makes no further 

reference to the particular patient whose case is currently undergoing 

assessment. In addition, B contains all the background information that the 

assessor might bring to bear to analyze any such case, including information 

about the drugs, their pharmacology and kinetics, indications, and risk 

factors that alter the chance of adverse effects. 

The Strategy 

Using de Finetti's measure, one could evaluate directly the probabilities 

in the numerator and denominator of the posterior odds displayed in equation 

18 
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(1), but, given the complexity of most causality assessment problems, such an 

act of .. global introspection'" could almost never be carried out consistently 

with all the opinions one holds about the meaning and relevance of the 

information in B and c. Thus, an alternative approach to the evaluation of 

the posterior odds is required. The strategy we adopt ( figure 2) is to 

decompose the posterior odds into a series of component factors, each of which 

requires probability evaluations for propositions much more specific and 

accessible to the experience and knowledge of the evaluator than the 

proposition '"D-+E'". 

We do not mean to imply that the component probability evaluations are 

.. automatic.. • They may require careful thought, and the assessor may be far 

from confident in his answers. Nonetheless, we believe that these evaluations 

are addressable problems, and future work should lead to better techniques for 

their solution. 

FIGURE 2 GOES HERE 

Strategy Step 1: Reduce to Single Suspect Drug 

In many cases, the list of possible causes will include more than one drug 

or drug interaction. The first step in the Bayesian approach is to restrict 

to the case in which there is only one suspect drug, which we shall denote by 

D. This restriction involves no loss of generality, as we show in Appendix 

III ( the reason is that Bayes' Theorem can be used to merge coherently the 

solutions of the causality assessment problems that arise when each suspect 

drug is treated in turn as though it were the only possible drug cause, into a 

solution to the overall assessment problem). 
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Strategy Step 2: Use Bayes' Theorem to Decompose the Posterior Odds 

We now turn to the Bayesian decomposition of the posterior odds. The 

first part of this step is to apply Bayes' Theorem in odds form, as presented 

in section 1: 

P(D--+EIB,C) P(D--+E 1B) P( C lo--+E, B) 

(2) ----------- = X 

P(D,f+E IB,C) P(D,f.E IB) P(clo~E,B) 

posterior odds prior odds likelihood ratio 

The first term on the right-hand side of equation (2), the prior odds, 

gives the odds in favor of drug causation taking into account just background 

information and disregarding any details about this particular patient and his 

adverse event. The second term on the right-hand side, the likelihood ratio, 

compares how likely are the details observed in this particular case under two 

competing etiologic hypotheses: that the drug did and did not cause the 

adverse event E. 

The advantage gained by the decomposition in equation (2) derives from the 

following consideration. As we have seen, the probabilities in the posterior 

odds refer to inherently unverifiable propositions: that the particular event 

E was or was not caused by D. On the other hand, the propositions whose 

probabilities appear in the prior odds and in the likelihood ratio are closely 

linked to predictive probabilities that can in principle be validated. We now 

turn to the connection between the prior odds and predictive probabilities. 

20 
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Strategy Step 3: Reformulate Prior Odds in Terms of Predictive Probabilities 

First, note that there is an important difference between the posterior 

and prior odds terms. Since both are evaluated conditionally on B (background 

information), they both refer to a patient with clinical condition M who has 

been administered drug D and experienced an event of type Et• However, the 

identity of the patient to whom the statement refers is different in the two 

terms. In the posterior odds, it is the pa~ticular patient for whom the 

causality assessment is being carried out, while in the prior odds it is a 

"generic" patient (for example, the "next" patient with M who suffers an event 

of this type after receiving D, for example) with the three defining 

properties - clinical condition M, exposure to D and adverse event of type 

Et• To reinforce this distinction, we shall substitute the expression 

"D_. Et" for "D-_. E" when the proposition refers to the .. generic" patient who 

developed the "generic" event (Et) rather than the particular patient and the 

particular adverse event. 

To see the connection between prior odds and predictive probabilities most 

clearly, it is easiest to focus on a special case. Imagine that records are 

available for a large group of patients with clinical condition M, and that 

the subgroup consisting of those patients who have received D is similar to 

the subgroup who have not, with respect to the distribution of any variables 

that are prognostic for the occurrence of events of type Et (except, of 

course, for exposure to D). 

The incidence of events of type Et among those patients who take Dis the 

sum of two components: the incidence of the events caused by D and the 

incidence of events not caused by D. Since the patients taking and not taking 

Dare otherwise prognostically equivalent, the incidence of events not caused 

by Din the patients taking D.is the same as the incidence of all the events 
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of type Et in the patients not taking D. Since the prior probability that an 

event is caused by Dis just the ratio of the incidence of events caused by D 

to the overall incidence of events among patients who receive D, we can 

summarize this discussion by the following equation: 

And, similarly: 

where P(Et(D) is the probability that a patient who received D will experience 

an event of type Et, and P(Et\DC) is the probability that a patient who did 

not receive D will experience an event of this type. Both these probabilities 

clearly generate predictions of the incidence of events of type Et, among 

future patients with M who do and do not receive D. 

Applying the results of the above equations to the numerator and 

denominator of the prior odds we get: 

(5) P(D--+Et I B) = P(EtlD) - P(EtlDC) • P(EtlDC) 

P(D,4EtlB) 
• 

P(EtlD) P(Et(D) 

= P(EtlD) - P(EtlDC) 

P(Et foe) 
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Strategy Step 4: Decompose the Likelihood Ratio 

Trying to evaluate the probability of all the case details simultaneously 

is too hard, since there 1s far too much to think about at once. Therefore, 

we shall decompose the likelihood ratio into a series of factors each 

involving probabilities for propositions about only one of the five 

chronological classes Hi, Ti, Ch, De, and Re: 

(6) ~~clo--+E,B) 

P(cln~E,B) 

Where 

(7) LR(Hi) = 

LR(Ti) = 

LR(Ch) = 

LR(De) = 

LR(Re) = 

= LR(Hi) X LR(Ti) X LR(Ch) X LR(De) X LR(Re) 

P(Hi ID--+ F;,1~2 

P(Ri In.;... E, B) 

~(Tiln--.E 2~i!E:l 
P(Ti I n-1+ E ,B,Ri) 

P(ChlD-_.E,B,Hi,Ti) 

P(ChfD-f+E,B,Hi,Ti) 

~(oelo--.E,~i!!!i!!i~h2 and 
P(De(D.,t+E,B,Hi,Ti,Ch) 

P(Re)D__.E,B,Hi,Ti,Ch,De) 

P(RefD-,t.E,B,Hi,Ti,Ch,De) 

In words, LR(Hi) might be called the likelihood ratio factor evaluating 

historical information, LR(De) the likelihood ratio factor evaluat~ng 

dechallenge information, and so forth. The order in which these factors 
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appear in equation (6) (and which factors appear as conditioning sets) is 

determined by chronology. Note that the probabilities that comprise the 

numerator and denominator of each likelihood ratio are conditioned on B 

(background information) and on the information in the likelihood terms that 

have already entered into the equation. 

Strategy Step 5: Recombine the Prior Odds and the Likelihood Ratio Terms 
to Obtain the Posterior Odds 

Recombining the prior odds and the likelihood ratio terms gives the 

Bayesian decomposition of the posterior odds for causality assessment of a 

suspected adverse drug reaction: 

Posterior Odds = Prior Odds X LR(Hi) X LR(Ti) X LR(Ch) X LR(De) X LR(Re) 

C. CAUSALITY ASSESSMENT CRITERIA AND THE BAYESIAN APPROACH 

In a second paper we address the main tactical questions for the Bayesian 

approach: how can an assessor evaluate the prior odds and the likelihood 

ratio factors? In this section we examine whether the Bayesian strategy 

satisfies the six criteria for causality assessment introduced in [ 1]. We 

state each criterion (for justifications ~d discussion, see [ 1]) and then 

discuss how it relates to the Bayesian approach. 

Criterion 1: Repeatability. When the same "state of information" is used 

more than once as input,~ causality assessment method should produce the same 

"degree of belief" as output. 
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In its present form, the details of the Bayesian approach are insuf­

ficiently specified to achieve repeatability. The difficulty is not so much 

that there are too many probability assessments to make, each of which may 

vary from one evaluation to the next even when the .. state of information"' does 

not change. Rather, the main problem is to determine in a standardized way 

what probabilities need to be evaluated for each of the components of the 

posterior odds. We believe that it will be possible to develop algorithmic 

methods based upon the Bayesian approach, in the context of specific 

drug-induced diseases (like cholestatic jaundice or Stevens-Johnson syndrome) 

or specific drugs (like digoxin). In such specific problem areas, '"canonical" 

questions for eliciting the relevant information, as well as standardized 

methods for operating with this information to determine the appropriate 

probabilities, can be constructed. The more algorithmic the methods become, 

the more they will be able to satisfy this criterion. 

Criterion 2: Explicitness. A causality assessment method should require that 

its user make explicit his "state of information", including the uncertainty 

he feels about each of its elements. 

The essence of the Bayesian approach is the explicit evaluation of 

uncertainty, so this requirement of the criterion is certainly satisfied. 

Since probabilities are most easily evaluated the more exhaustively the 

problems are decomposed, the approach encourages the user to make explicit all 

his relevant information and the relations between its elements. 

Criterion 3: Transparency. A causality assessment method must make it clear 

to the user how it produced the output 11degree of belief .. from the information 

it elicited. 
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The Bayesian approach reaches its conclusions from the component 

probability evaluations of the user by following the rules of prescriptive 

probability theory. The effect of the information in each factor on the 

output posterior odds is clear, since the posterior odds is just the product 

of the prior odds and the five likelihood ratio factors. In particular, it is 

easy to see at a glance which factors are the important ones in any assess-

ment. 

Criterion 4: Completeness. Any fact, theory, or opinion that can affect an 

evaluator's belief that a drug D caused an adverse event E must be 

incorporable by a causality assessment method into the "state of information" 

on which the assessment is based. 

In principle, any such fact, theory, or opinion can become the subject of 

a probability evaluation or the basis upon which such an evaluation is carried 

out. In particular, the Bayesian approach can deal with the three kinds of 

information singled out in [1] as essential, but not incorporable into other 

current assessment methods: uncertain information, quantitative information, 

and background information, especially epidemiological data about incidences 

and mechanistic theories from the basic sciences. Thus, the Bayesian approach 

already satisfies this criterion in principle; as better models are con­

structed to facilitate the incorporation of particular kinds of information, 

it will increasingly be able to satisfy it in practice. 

Criterion 5: Etiological balancing. Methods cannot evaluate case data just 

in terms of their concordance or discordance with the hypothesis that the drug 

D caused the event E; rather, they must compare how much more (or less) 

compatible the findings are with drug versus other causation. 
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This criterion is embedded in the architecture of the Bayesian approach. 

Criterion 6: No a priori constraints on the effects of factors. A causality 

assessment method should not limit a priori the effect that information about 

any particular factor can have on the final result. 

Each of the five likelihood ratio factors and the prior odds can range 

anywhere between zero and infinity, so the Bayesian approach places no a 

priori limits on their possible effects. Rather, these effects are only 

limited by the amount of information available and the state of the user's 

uncertainty about that information. 

DISCUSSION 

The Bayesian approach to causality assessment of adverse drug reactions 

provides an internally consistent and logical framework for assessing the 

probability that an adverse event was caused by drug therapy. The approach 

also satisfies, in principle, five of six criteria that we previously proposed 

for the evaluation of causality assessment schemes. The qualification •• in 

principle" is necessary, because as presented, the approach is difficult to 

implement and does not yet qualify as a standardized assessment method. None­

theless, the Bayesian approach does substantially better with respect to these 

criteria, compared with other currently available causality assessment methods 

[ l]. The approach does not, however, ensure the quality of the user's 

component assessments and does not solve the problem of how best to convert 

the assessments into probabilities. Clearly, an optimal result will require 

expert evaluation of the individual components. There is also much work to be 

done on how to elicit the relevant probabilities, although many useful ideas 
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and techniques already exist. The second paper in this series describes and 

illustrates some of these techniques for turning opinions about a clinical 

case into the probabilities that comprise the Bayesian assessment. 
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APPENDICES 

Appendix I: The Fundamental Rules of Probability Theory 

A collection of conditional probability assessments is coherent if and 

only if the following three conditions are satisfied: 

1) The Normalization Condition: For every pair of proposition A,B, P (AIB) 

must be between O and 1, inclusive. 

2) The Additivity Condition: If A and C are mutually contradictory pro­

positions, and Bis any proposition. 

P (A or clB) = P (A(B) + P (CIB) 

3) The Multiplicative Condition: For any propositions A,B and C, 

P (A and cfB) = P (AIB) x P (CIA and B) 

= P (CIB) x P (AIB and C) 

Appendix II: Derivation of Bayes' Theorem 

Bayes' Theorem is derived from the multiplicative condition (Appendix I), 

which establishes the following equality: 

ii 
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(1) P(AIB) x P(CIA and B) = P(CIB) x P(A\c and B). 

Dividing both sides of (1) by P(CIB) and transposing sides gives 

(2) P(Alc and B) = [P(CIA and B) x P(AIB] / P(CIB) 

which is Bayes' Theorem. To derive the odds form of Bayes' Theorem, apply the 

theorem with Ac in place of A to obtain 

Finally, divide equation (2) by equation (3), yielding 

(4) P(Alc and B) = P(clA and B) X P(AI B) 

P(Aclc and B) P(CfAc and B) P(AcfB) 

= P(AlB) X P(clA and B) 

P(AC(B) P( C lAc and B) 

Posterior Odds = Prior Odds X Likelihood Ratio 
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Appendix III: The One-Drug-at-a-Time Strategy 

Let D1, ••• Dn represent all the (mutually contradictory) drug hypotheses on 

the list of causes, and group all the other hypotheses ( for example: M, 

"other", etc.) as N (for nondrug). 

Write PO(Di) for the posterior odds in favor of cause D1• Now let A1 

represent the hypothesis "Di or N" (that is, the cause of Eis either Di, or a 

nondrug cause), and write PO(DilA1) for the posterior odds in favor of cause 

D1, given Ai: 

Notice that PO(Di IA1) solves the causality assessment problem for a case in 

which there is only one drug causal candidate, Di• 

Claim: The following formula gives the posterior odds in favor of cause D1: 

That is, if the assessor calculates the conditional posterior odds in favor of 

cause Dj, PO(Dj{Aj), for each possible drug cause Dj, (other than Di) then he 

can merge these condition odds to obtain the unconditional posterior odds in 

favor of cause Di• 

Proof of Claim: For succinctness, we omit B and C from the right of "'I" in ~ 

all the probabilities that appear in this proof. By the multiplicative 

condition (Appendix 1): 



Since 

And 

(3) Then 

Similarly, since 

(4) Then 

Thus, 

(5) 

P(Di and Ai)= P(Ai) x P(DilAi) 

Dividing by P(At) and transposing sides 

P(DilA1) = P(D1 and A1) / P(Ai) 
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Applying equation (5) for each drug cause Di, the right-hand side of equation 

(2) is equal to 

(6) [P(D1)/P(N)] / [l +I: .. P(Dj)/P(N)] = P(Di) / [P(N) +L . . P(Dj)) 
J/1 J1'1 

Since [P(N) + L j -; i P(Dj) J includes all possible causative hypotheses other 

than D1 this term= 1-P(Di)• 



Therefore, the right hand side of the equation becomes 

P(D1) / [l-P(D1)] 

= PO(D1) 

which completes the proof of claim. 
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FIGURE 1 

Categories of Case Information Defined by Chronologic Sequence 

TIME---------------~ 

i .1 .A .A .A .A 

M D E De challenge E Re challenge 
Diagnosed Therapy Detected Clears 

I 
CH DE I ~ 

j-n-

M = Disease for which patient is undergoing treatment 

D = Suspected Drug 

E = Adverse Event 

Hi = Patient's History 

Ti = Timing of onset of adverse event 

Ch = Characteristics of Adverse Event 

De = De challenge 

Re = Rechallenge 



FIGURE 2 

Strategy for Arriving at the Posterior Odds of Drug Causation 

Step 1: Reduce to single suspect drug 

Step 2: Use Bayes' theorem to decompose posterior odds 

Step 3: Reformulate prior odds in terms of 
predictive probabilities 

Step 4: Decompose the likelihood ratio 

Step 5: Recombine the prior odds and the likelihood 
ratio terms to obtain the posterior odds 
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ABSTRACT 

Techniques are presented for implementing a Bayesian approach to ; 

causality assessment for adverse drug reactions. Four general techniques for 

probability evaluation are described: conditioning; analogy; the use of 

frequencies; and models. The use of these techniques in evaluating the prior 

odds and the likelihood ratio terms of the Bayesian approach is discussed and 

their application illustrated by a case in which amoxicillin is suspected of 

causing diarrhea. The Bayesian method provides a feasible, efficient, and 

logically satisfying answer to the causality assessment problem. It also 

gives new insights and increased understanding into the problem of assessing 

adverse drug reactions. 

Key words: adverse drug rections, causality assessment, Bayes Theorem, pro­

bability 
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INTRODUCTION 

In the first paper of this series [l] we presented a Bayesian approach to 

the problem of assessing causality in suspected adverse drug reactions. Using 

the odds ratio form of Bayes Theorem we showed how the posterior odds in 

favour of drug causation can be obtained by multiplying the prior odds by 

likelihood ratio terms for each of five separate elements of the case 

information: History (Hi); Timing (Ti); Characteristics (Ch); Dechallenge 

(De); and Rechallenge (Re). 

(1) P(D--+EIB,C) __,;; __________ = 

P(D,f+E IB,C) 

P(D--+Er IB) 

P(Df+Et I B) 
X LR(Hi) X LR(Ti) X LR(Ch) X LR(De) X LR(Re) 

Posterior Odds = Prior Odds x Likelihood Ratio terms 

Dis the suspected drug. 

Eis the adverse event. 

Et is the generic type of the adverse event. 

D --+E indicates that the drug caused the adverse event. 

D -/+,E indicates that the drug did not cause the adverse event. 

Bis background information. 

C is the case information. 

We argued that in principle, this approach provides a coherent framework 

for dealing with the multiple uncertainties and complexities of the adverse 

reaction causality problem. In this paper we describe techniques for applying 

this approach in practice. In Section A we discuss general techniques for 
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probability evaluation. In Section B we describe how to implement the 

Bayesian approach and demonstrate the approach using a case of diarrhea after 

amoxicillin use. 

A. GENERAL TECHNIQUES FOR PROBABILITY EVALUATION 

In this section we describe four general techniques for evaluating 

probabilities that can be used to advantage in the causality assessment con­

text. They are: conditioning; analogy; the use of frequencies; and the use 

of models. 

Conditioning: Sometimes, evaluating the probability of a proposit~on can 

seem difficult because the assessor's thoughts about the proposition depend on 

which of several other propositions are true. For example, if an assessor 

wants to det~rmine the probability that an event of type Et will occur as an 

adverse rection to a drug D within a day of receiving a specified dosage of D, 

he might find that his assessment of this probability depends on the mechanism 

of the reaction (whether the reaction is immunologic or dose-dependent, for 

example). Or again, in assessing the probability that an event of type Et, 

which is not caused by D, will occur in a specified time period, the evaluator 

might want to consider separately each possible alternative cause for the 

event. 

In such cases, the Law of Total Probability (see Appendix I) can 

frequently be applied. First, the various possibilities on which the 

evaluation depends must be listed in such a way that one and o:lly of one of 

them can be true (for example, the mechanism for the reactioc may be immuno­

logic, dose-dependent, or "other"; or the alternative, nondrug causes for the 

event might be a viral infection for which the patient is bei=g treated, some • 
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other, nondiagnosed infection, or another "unknown" cause). Then, the 

assessor must evaluate the probability of the proposition in question, 

conditional on each listed possibility. Next he must evaluate the probability 

for each of the possibilities he has conditioned upon; this evaluation 

involves inherently unobservable propositions, but in our experience assessors 

often have little trouble partitioning their belief among a set of mutually 

contradictory mechanistic theories (the trickiest part is to decide how much 

probability to assign the catch-all ,. other" or "unknown"). Finally, the 

assessor puts together these two sets of evaluations according to the Law of 

Total Probabilty. An example of this procedure will be presented in Section B 

below. 

Analogy: .As explained in the first paper of this series, probability is 

just a measure of the assessor's uncertainty. Thus, it is sometimes possible 

for an assessor to evaluate a probability for a proposition by thinking about 

some other proposition about which his uncertainty is comparable and whose 

probability is easier to appraise. 

For example, suppose you believe that the pharmacological mechanisms by 

which two related drugs can cause a particular kind of adverse reaction are 

very similar. Then it may be reasonable to suppose that the timing distri­

butions for events of this type as adverse reactions to the two drugs are 

similar (in particular, say, the probability that E occurs within one day 

after receiving D1, given that D1 caused E, would be nearly the same as the 

same probability with respect to D2)• But the assessor may have much more 

experience with one of the drugs than with the other, in which case he might 

be quite confident about his assessment of the timing distribution cor­

responding t_o the familiar drug, which he can then transfer ( perhaps with 

minor modifications) to the less familiar one. 
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As another example, suppose an assessor needs to evaluate his probability 

that the next infant receiving a course of therapy with a new "cillin"-type 

antibiotic drug will develop diarrhea. He can base this evaluation on the 

knowledge that reported incidences of diarrhea following therapy with other 

drugs in this group range from about S to 25%, with a mode of about 10% [2,3]·; 

and so, if he is unaware of any feature of the new drug that would distinguish 

it from others in its class with respect to its propensity to cause diarrhea, 

he should assess the required probability, by analogy, at about 1/10. 

Frequencies: Sometimes, an assessor may have access to observed frequen­

cies that are clearly relevant to a probability evaluation problem he is 

trying to solve. For example, he might want to evaluate his probability that 

the next infant receiving a specified course of amoxicillin therapy will 

develop diarrhea, and he notes that a study monitoring outpatients in a large 

pediatric teaching hospital reported 130 cases of diarrhea out of 1320 

patients within two days of beg~nning amoxicillin therapy [ 2]. 

necessarily evaluate his probability as 13/132? 

Should he 

In general, the answer to this question is no. There are two primary 

reasons for this. The first has to do with the similarity between the 

patients for whom the probability evaluation is relevant and the patients upon 

whom the observed frequencies are based. The class of patients to which the 

probability evaluation refers is precisely specified by the conditions that 

appear to the right of the "I .. in the statement of the probability. For 

example, if the probability in question, P(Et ln,M) (the probability that a 

patient with clinical condition M who receives D in a specified way will 

experience an event of ty_pe Et) the class consists of all patients who have 

the clinical condition defined by Mand receive the course of therapy denoted 

by D. Differences i~ such factors as age, sex, severity of M, comorbidity, or 
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the dosage of D, however, may limit the applicability of frequencies reported 

in the literature to the specific class of patients for which probabilities 

are being assessed. 

The second reason that probabilities may differ from observed frequencies 

has to do with chance variation. Even if the patients for whom frequency 

information is available are characterized precisely, the probability and the 

observed frequency need not coincide, since the observed frequency reflects to 

some extent the vagaries of chance, especially if the sample size is small. 

Now, if the frequency information is based on patients in the class 

defined by the probability evaluation problem, and these patients have no 

other special defining characteristics and their number is large, then any 

coherent evaluation of the probability must be very close to the observed 

frequency. Otherwise, adjustments have to be made. Correcting for sample 

size is easy; dealing with the difference between the classes to which 

probability evaluation problems and observed frequencies refer is not. 

Informally, we suggest the following solution to the problem. Use 

observed frequencies, when available, to provide an °anchor" or initial 

solution to a probability evaluation problem. Then think about the ways in 

which the class to which the frequency information refers may differ from the 

class relevant to the probability evaluation, and decide what direction these 

differences suggest for changing the initial solution. (For example, if the 

observed frequencies for diarrhea following amoxicillin therapy were based 

only on inf ants in day-care centers, among whom one expects to fir.d an ele­

vated incidence of gastroenteritis, the frequencies should be adjusted down­

ward to apply to the general inf ant population.) Finally, adjust the 

probability evaluation in the appropriate direction. 
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Sometimes, it is possible to use the connection between probability and 

frequencies to help evaluate probabilities, even when relevant observed 

frequencies are not available, by the following psychological ploy: the 

device of imaginary results. Suppose that an assessor has a great deal of 

clinical experience with a particular kind of adverse event, and, for example, 

he must evaluate the probability that an event of this type will occur within 

one day of beginning D-therapy, given that it occurs sometime in the month 

after the therapy begins. Such an assessor might find it useful to draw upon 

his experience by imagining a great number of patients in the relevant class 

who have an event within a month after beginning D-therapy, and asking himself 

what proportion of those patients he thinks will experience the event in the 

first day. If he can answer this question, he should use this proportion as 

his answer to the required probability evaluation problem. 

Models: A model is a formal and general approach to probability evalua­

tion. Models can be viewed as systematic applications of the ideas of condi­

tioning and analogy. Because they can be constructed in accordance with the 

rules of probability theory, they give a framework for the coherent merger of 

different kinds of relevant information. As an example of the kind of model 

that would be helpful in the causality assessment context, think of the time 

of onset of a dose-dependent adverse reaction to drug D. This time cannot be 

predicted with certainty, but it depends in part on certain pharmacological 

properties of the drug, physiological aspects of the reaction, and specific 

attributes of the patient. A model for time to onset would specify how the 

mean reaction time depends on a particular set of drug-event-patient para­

meters, and it would also specify the pattern of the residual variability 

(which is~ determined by the specified parameters). If such a model were 

constructed, the causality assessor would only need to specify the values of 

the input parameters for the particular case at hand, and he could then use • 
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the model to compute the probability that an event of type Et caused by drug D 

would occur just when the event E undergoing assessment occurred (which is the 

numerator of the likelihood ratio for timing). 

Such models would be of great benefit in implementing the Bayesian 

strategy, because they would reduce the number of probability evaluations that 

an assessor would have to perform in carrying out any particular causality 

assessment, they would substantially reduce the subjectivity in each of the 

remaining evaluations, and they would permit general predictive tests that 

would substantiate the models' and hence the whole Bayesian procedure's vali­

dity. We do not yet have such models, but one of the great advantages of the 

Bayesian approach is that it makes clear what models need to be developed, and 

it allows their incorporation into the causality assessment procedure as they 

are developed. 

B. HOW TO IMPLEMENT THE BAYESIAN APPROACH: EXAMPLE OF AN APPLICATION TO A 

CLINICAL CASE 

In this Section, we apply the Bayesia..~ approach to a case of suspected 

amoxicillin-induced diarrhea. The analysis is not based on an exhaustive 

review of the literature; rather, it represents the clinical consensus of the 

authors of the paper, only one of whom (M.S.K.) has special expertise in this 

area. Nonetheless, we believe that the analysis provides a good introduction 

to the Bayesian approach and that the conclusion we draw is both essentially 

correct and consistent with all our opinions relating to the problem. 
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THE CASE 

B.L. is a 17-month-old male day-care center attendee who on December 10 

developed signs and symptoms of an upper respiratory tract infection with 

rhinorrhea and cough, but without fever or gastrointestinal symptoms. On the 

third day of his illness, his temperature rose to 39.4°c, he became irritable, 

and he began to pull at his ears. He was seen by his pediatrician on that day 

and was diagnosed as having bilateral otitis media. Treatment was initiated 

with amoxicillin suspension in a dose of 125 mg t.i.d. Over the next · 24 

hours, B. L. had three watery bowel movements. By the fifth day, he was 

afebrile; the diarrhea continued, but without exacerbation. His mother tele­

phoned the pediatrician, who suggested continuing the medication and 

encouraging fluid intake. B. L. remained afebrile and became less irritable 

and more playful, but the diarrhea persisted. The amoxicillin was discon-

tinued after a 10-day course, and the diarrhea resolved within two days 

following dechallenge and did not recur. 

ANALYSIS 

The analysis is performed in six steps that are shown in table 1. The 

six subsections that follow each deal with one step in the analysis. Each 

subsection begins with a general discussion of the issues involved. This is 

followed by direct application to the case outlined above. 

TABLE 1 GOES HERE 
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1) The Case "Parameters" 

a) The Clinical Condition (M) and the Adverse Event Type (Et): The 

Bayesian strategy requires that the patient's clinical condition M and the 

type of adverse event Et be unambiguously defined and that the definitions 

then be consistently applied in every subsequent probability evaluation. The 

level of specificity of these definitions can make a difference in how easy it 

is to carry out probability evaluations in which they play a role. 

b) The Time Horizon: It is usually a good idea to attach a definite time 

horizon to the definition of the event type ( that is, the definition of the 

event type is modified to include the requirement that the event occur 

sometime within a fixed amount of time - the time horizon -- after the 

administration of D). Specifying the time horizon is particularly useful in 

assessing the prior odds and the distribution for ·time to onset of the event 

as a function of the cause of the event. As a rule of thumb, we usually take 

as the horizon for a relatively common event a period at least as long as a 

"reasonable" time period for the event to occur as an adverse reaction to the 

suspect drug D, while for an uncommon event, the horizon might be much 

longer. For example, if 

appropriate time horizon 

the event is diarrhea (as in the example), an 

might be one or two weeks; if the event is 

Stevens-Johnson syndrome the horizon might be one year. The time horizon 

chosen can facilitate the assessment, but it does not affect the evaluation of 

the posterior odds in favor of drug causation. More accurately, we should say 

it should not affect the evaluation, and would not, if the assessor were 

coherent. Changing the time horizon will change the values of the different 

components of the posterior odds, but the changes compensate (see Appendix 

III). For example, shortening the time horizon typically increases the prior 

odds in favor of drug causation, but- proportionately lowers the likelihood 

ratio for timing. 
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c) The Possible Causes of E: The assessor must make a list of the 

possible causes for E that he wishes to consider in his evaluation. Since 

the Bayesian method works by partitioning the total probability, 1, between 

the listed causes it is important that the items on the list be mutually 

exclusive and exhaustive. Note that the first item in the list, 

drug-causation, has a very specific meaning in this context. The proposition 

D--+E means that E would not have happened as and when it did had D not been 

administered; this does not rule out the possibility that some aspects of the 

patient's clinical condition were also necessary for E to occur. Thus, if 

there is an interaction between the effects of the drug and other non-drug 

causes for E, the interaction is credited to drug causation. 

~-----------------~ 

The Case "Parameters": Application 

The Clinical Condition M: Mis the upper respiratory tract infection 

(presumably viral), which by the third day is accompanied by fever and 

bilateral otitis media. 

The Adverse Event Type Er: A bout of frequent, loose stools, which we 

shall hereafter refer to as diarrhea. 

The Time Horizon: One week from initiation of D-therapy. 

Possible Causes of E: (1) Amoxicillin (denoted D hereafter); (2) 

Late-occurring GI symptoms secondary to the original i~fection (that is, 

M); (3) Coincidental gastroenteritis. 

I -------~ -------------------
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2) Collecting The Relevant Case Information 

The Bayesian approach requires the assessor to list the relevant case 

information in each of five classes, in response to the prompts given in Table 

2 ( the questions in Table 2 are posed with respect to a particular suspect 

drug D; if more than one drug is a possible cause of D, repeat the questions 

with respect to each of them). Note that the relevant information is not the 

whole case report but only those aspects of it that are useful for 

distinguishing drug from non-drug causation. Also, the quantity of 

information in each of the five classes can vary widely from case to case. In 

particular, for most cases, Hi and Ti contain important and sometimes abundant 

data. On the other hand, many events are irreversible, and so dechallenge and 

rechallenge cannot occur. Even if E is reversible, it may be sufficiently 

serious that rechallenge is not ethically feasible and so does not take place. 

,---------------------, 

The Relevent Case Information: Application 

fHi: There is no information about the patient's previous experience with DJ 

for events of type Et but two aspects of the case places the patient at I 
jspecial risk for diarrhea from a non-drug cause (cause 2 or 3 above) he is I 
la day care-attendee, and the diarrhea occurred in December. J 

ITi: E began within one day after D-therapy was iniated. 

jCh: The only relevant information in this category is the duration of E; 

fthe diarrhea persisted for ten days before dechallenge took place. 

I 
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De: The diarrhea resolved within two days after dechallenge. 

Re: No rechallenge occurred. 

L__ _________________ ___J 

3) Evaluating The Prior Odds 

(2) Prior 

Odds 
= P(D__.E,B) 

P(D-,l+EIB) 
= P(ErlD) - P(ErlDC) 

P(EtlDC) 

As previously demonstrated in [ 1], the prior odds can be regarded as a 

function of two incidence probabilities, P(Et ID) and P(Et I DC), the first 

giving the incidence of events of type Et among patients with M who receive 

the specified course of D-therapy, and the second giving the same incidence 

for an otherwi$e similar group of patients who do not receive D. Usually, 

such incidences are not known precisely. However, the assessor can always use 

the following tactic, whose precise formulation and probabilistic justi­

fication are presented in Appendix II: first, he expresses his uncertainty 

about the "true" incidences in the form of a probability distribution for 

these two quantities; then, he uses the appropriate midpoints of these 

distributions as his probabilities P(Et Lo) and P(Et I oc); finally he computes 

the prior odds as a function of these probabilities according to the formula 

shown above. 

It is frequently possible to employ this tactic in a more informal way, 

particularly when the assessor has access to reasonably extensive and relevant 

frequency information (as is often the case for the i:lcidence of events of 

so 
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type Et when D is not administered, because estimates for the incidence of 

such events in the general population can frequently be obtained from the 

medical literature). When such frequency estimates exist, they can be used to 

evaluate the relevant probabilities directly, without constructing 

distributions for the .. true.. incidences, as in the discussion above on the 

general relation between probabilities and frequencies. But the cautions 

issued there hold: the assessor may need to make adjustments to the observed 

frequencies, since he is interested in the incidence among patients with 

clinical condition M, not the general population. If patients with Mare at 

greater or less than average risk for events of type Ee, the assessor needs to 

modify the general incidences accordingly. Also, if the use of the drug Dis 

high in the general population, the population incide~ce of events of type Ee 

represents mixtures of the incidences with and without D, and some adjustment 

is necessary before the observed frequencies can be used to give estimates of 

P(Etloc) alone. 

Another informal method that sometimes works when information about the 

"true"' incidence is limited involves applying the analogy technique for evalu-

ating probabilities. For example, the assessor may believe that the 

connection between the drug D and the event E of interest is the same range as 

some other drug-event associations, whose incidence figures are reasonably 

well-estimated in the literature, and he can adjust these incidences figures 

to give his P(EtlD). 

But suppose neither of the informal substitution methods discussed in the 

previous two paragraphs works, and the assessor feels quite vague about what 

the "true" incidence for events of type Et really is. As suggested in the 

first paragraph of this section, he should then try to assess a distribution 

that describes his uncertainty about the relevant "true.. incidence. For 

example, he may believe that the .. true"' incidence for events of type Et 
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following administration of Dis somewhere between, say, 1/1000 and 1/10,000, 

but he cannot discriminate any more finely than this. Assuming that his 

uncertainty is approximately uniform over the "order of magnitude" scale, the 

argument given in Appendix II suggests that he should assess P(EtlD) as 1/2558 

(this is the mean of a distribution that is uniform in the log, or order of 

magnitude, scale, between 1/ 1000 and 1/ 10,000). The point is that the fact 

that the assessor's information is quite diffuse does not preclude evaluating 

a prior odds that accurately reflects his uncertainty. 

Of course, when information is very diffuse and the assessor's opinion is 

correspondingly vague, his prior odds can change substantially if he gets 

access to new data that allows the .. true .. incidence to be estimated much more 

sharply. This in no way implies that the kind of calculation described above 

is "wrong"; only that the value of new information can be high when little is 

known. 

,-----------------
The Prior Odds: Application 

To calculate the prior odds, we estimate the numerator and denominator 

!of the ratio on the right hand side of equation (2), using observed 

I frequencies obtained from a study monitoring antibiotic-associated 

!gastrointestinal symptoms in pediatric outpatients in Montreal (B.L.'s home)f 

l(some results from this study, but not the raw data that we use, are 

lpresented in [2,3]). In addition, we use data from Maricopa County, 

IArizona, presented in [4,5]. 

The first quantity we need to estimate is P(EtlD) - P(EtlDC); this 

!difference estimates the "true" incidence of D-caused cases of events of 

ltype Et• In the Montreal ~tudy, about 10% of the more than 1,300 patients 

I 
I 
I 
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freceiving amoxicillin suffered from diarrhea within a week of beginning 

ltherapy. How many of these were drug-induced? To answer this question, we 

!would like to know what the incidence of diarrhea in the same period would 

lbe among patients with M if they were treated with a drug as effective as 

lamoxicillin that could not induce diarrhea as a side effect. Of course, no 

lsuch drug exists. However, the lowest incidence of diarrhea in the study 

1£ollowed trimethoprim/sulfamethoxazole therapy, and was of the order of 

12.5% in the first week of therapy. Thus, we estimate that the incidence (per 

lchild) of amoxicillin-caused diarrhea in the first week of therapy is at 

lleast 0.1 - 0.025 = 0.075. However, this is probably an underestimate, since 

Isome of the diarrhea following trimethoprim/sulfamethoxazole may represent 

!adverse reactions to this drug. Thus, we must adjust our estimate of the 

lincidence in nondrug-induced diarrhea downward somewhat, and as a result 

!increase our estimate of the incidence of amoxicillin-induced diarrhea. 

To decide how much of an adjustment to make, we argued along different 

I lines. A lower bound for the incidence of nondrug-induced diarrhea can be 

!obtained by thinking about the spontaneous occurrence of diarrhea in which no 

!drug involvement is possible because the affected child was taking no drugs 

lprior to the outbreak of the diarrhea. We assume that one to two-year old 

!children experience approximately orie such episode per year on average (this 

!estimate is based primarily on the data in [4]), which is equivalent to an 

lincidence (per child) of about 0.019 per week. This figure must be increased 

lsomewhat, since it does not condition on the children having a viral 

linfection (M), which increases the probability of developing diarrhea. We 

lhave thus estimated the incidence (per child) of nondrug-induced diarrhea 

!among children with M, in the week following initiation of amoxicillin 

!therapy, to be greater than 0.019 and less than 0.025, and we adopt the value 

)of 0.02. Thus, our estimate of the incidence (per child) of drug-caused 
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fdiarrhea among such children in this time period is 0.1-0.02 = Q.08: this 

fis our assessment of P(EtlD) - P(EtlDc). 

Thus, applying equation (2), we evaluate the prior odds in favor of 

1causation as 

Prior Odds= [P(EtlD) - P(EtlDC)] / [P(Et(J>C)] = 0.08/0.02 = 4.0 

L_ _________________ _J 

4) Evaluating The Likelihood Ratio Factor for History 

To evaluate the likelihood ratio factors, it is necessary to assess the 

probability for all the differentially diagnostic information elicited in 

response to the questions summarized in Table 2, given the contradictory 

hypotheses that D did and did not cause the adverse event E. 

There is a conceptual difference between LR(Hi) and the other factors. 

Each of the other factors involves thinking in the forward direction, from a 

cause to its observable effects, while the information in Hi occurred before 

the event E, and so it is more difficult to think about how likely the events 

in Hi were to happen, conditional on the cause of an event that occurred after 

it did. 

The representation for LR(Hi) given in equation (3, below) requires the 

assessor to think in "reverse chronology" ( conditioning on the cause of E to 

evaluate the probability of an event occurring before E), which is difficult. 

(3) LR(Hi) 
= E£!!!l~--+ E , B) 

P(Hil D,4E,B) 
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Thus, it is easier to think about LR(Hi) in terms of the following alternative 

representation: 

(4) LR(Hi) 
= 

P(D--+E IHi,B) / P(D-,4,E IHi,B) ------ .~----------------t---
P(D--.Et Is> / P(D~Et )B) 

In words, LR(Hi) is just the ratio of the odds in favor of the drug causation 

taking into account the information in Hi (and no other case information) to the 

prior odds in favor of drug causation {ignoring the information in Hi). Seen in 

this way, the information in Hi serves as an adjustment to the prior odds, based 

on additional information about the patient that predates the occurrence of E. 

In effect, the relevant "reference set"' in which to place the patient shifts 

from the general set of patients with M who experience an event of type Et after 

the specified course of D-therapy, to those who share the same relevant history 

as the particular patient whose case is the subject of the assessment. 

The adjustments to the prior odds required to evaluate LR(Hi) are often 

quite subjective, because the information that must be taken into account is too 

specific to expect to find readily assimilable observed frequencies based on 

large numbers of cases in the literature. Thus, it is useful to realize that 

certain types of historical information, which seem to affect the incidence of 

events of type Et, can be disregarded. In particular, according to equation 

(3), a datum in Hi will make LR(Hi) differ from 1 only if it affects the 

incidence of events of type Et differentially between drug and nondrug causes. 

That is, if, say, the patient had some special attribute that doubled his risk 

for events of type Et no matter what the cause, and the possession of this 

attribute by the patient was the only information in Hi, LR(Hi) would be 1. 

Thus, any such attributes can be disregarded in calculating LR(Hi). 
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r-----------------------i 
The Likelihood Ratio Factor for History: Application I 

I ~ 
We assume that day-care center attendees are 1.4 times as likely to I 

I suffer from non-drug-induced diarrhea (because of the greater exposure rate) I 
las the general pediatric population (this estimate is primarily based on data I 
lin [5)), while they are at no added risk for drug-induced diarrhea. But we I 
lmust also include in our analysis the fact that the diarrhea occurred in I 
fDecember. Based on evidence presented in [5] and general pediatric experince 

!the incidence of non-drug induced diarrhea is approximately twice as high in 

I the fall and winter as the yearly average. The season would be expected to 

lhave no effect on drug-caused diarrhea. Thus, because of the history of 

jday-care attendance and occurrence in the December the term P(D~Et Hi,B) in 

lequation (4) is larger than P(D~EtlB) by a factor of 1.4 x 2.0 = 2.8. On thej 

(other hand, since these elements of history have no effect on the rate of I· 
!drug-induced diarrhea, P(D---.EcfB,H) = P(D--+EcfB). Using these results in ·I 
lequation 4 we get: 

LR(Hi) = ---------------------

= 112.s = o.36 

L--------· ---------~ 
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S. Evaluating Other Likelihood Ratio Factors 

The likelihood ratio factors for timing, characteristics, dechallenge and 

rechallenge can best be evaluated by determining, separately, their numerators 

and denominators. In carrying out these evaluations, the techniques of 

conditioning and analogy will be frequently applied. In particular, the 

probabilities given drug causation will depend on the mechanism of the adverse 

reaction, and the probabilities given nondrug causation will typically depend on 

what the alternative etiologies are; in both cases, conditioning on the 

appropriate entities is required. 

The calculations involved in evaluating these factors are relatively 

straightforward, compared to the prior odds and LR(Hi), and further discussion 

will be deferred to the example. Here, we consider only one issue. Notice that 

the information in chronologically preceding categories is conditioned upon when 

the probability for information in succeeding categories is calculated, as 

required by the multiplicative condition for coherence (see Appendix I in (1]). 

For example, when calculating the probability that sulfonamide-induced 

Stevens-Johnson begins, say, three days after onset of therapy, it is necessary 

to condition on historical information, like the fact that the patient under 

consideration is atopic. This successive conditioning at first sight seems to 

introduce a great deal of complexity to the evaluations, but in fact this is not 

generally so. All the probability evaluations required for these likelihood 

ratio factors are conditional on the cause of the event E (D, or some other 

cause); and conditional on the cause, the sets of information in the various 

categories are often independent, as would surely be the case with the timing 

information and the fact that · the patient is atopic in the Stevens-Johnson 

example. When this conditional independence does not obtain, of course, the 
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relevant conditioning information must be taken into account for a valid ~ ~ 

probability evaluation. This point is amply illustrated in the case analysis 

below. 

,---------------·----. 
Other Likelihood Ratio Factors: Application 

ILR(Ti): Recall that we condition on (as part of B) the information that the 

levent E begins after D-therapy is initiated. Taking this into account, the 

!pediatrician in our group (M.S.K.) assessed the following distributions for 

I time to onset of an event of type Et starting from the beginning of D-

I therapy, in a patient with M, given (because of the time horizon) that an 

!event of this type occurs within one week of the beginning of D-therapy: 

Day of onset ( i) P( day i In--. E) P( day dM--. E) P(day ilE coincidental) 

1 • 33 .33 .14 
2 .33 .22 .14 
3 .20 • 15 • 14 
4 .07 .ll • 14 
5 .04 .09 .14 
6 .02 .06 .14 
7 .01 .04 .14 

!It should be noted that none of these timing distributions depend on the fact! 

!that B.L. attended a day-care center or that the diarrhea occurred in De­

Jcember; that is, the information in Ti and the information in Hi are indepen-1 

ldent, given the cause of E. The distribution for P(day ilM --+E) was inducedj 

!from the following distribution, which represents the probability of getting 

!diarrhea beginning the first day of M: .25 first day, .25 second day, .15 

!third day, .1 fourth day, .07 fifth day, .05 sixth day, .04 seventh day, .03 



feighth day, .02 ninth day, .04 tenth day or later. The distribution shown in( 

ithe table above is obtained from this one by conditioning on the diarrhea 

lbeginning between the third day (when D-therapy began) and the ninth day, a 

jweek later. 

Since E actually began within 24 hours of initiating D-therapy, the 

fnumerator of the likelihood ratio factor for timing is .33. To evaluate the 

ldenominator, we need to evaluate two additional quantities, the probabilitiesf 

ffor M--+E and "E coincidental", given that D did not cause E. By the addi­

!tion rule, these two numbers sum to 1. Knowing that (i.e., conditioning 

!upon) the patient had a viral U.R.I. (M), our pediatrician (M.S.K.) estimated! 

lthat among the two possible nondrug causes, M would be approximately three 

(times likely as coincidental gastroenteritis. Thus, the denominator of the 

jlikelihood ratio for timing, using the Law of Total Probability, is ob-

I tained as follows, where "day 1 ·· is short for "onset of E occurs within 24 

jhours" and every probability is conditional on background information B: 

IP(day 11 D-/+E) = [P(day 1lM--+E) x P(M--+Eln-,t.E)] + 

!Thus, 

[P(day 1'E "coincidental" x P(E "coincidental" ln-f,.E)] 

= (.33 X .75) + (.14 X .25) 

= .28 

ILR(Ti) = P(day 1 I D-+E) / P(day 1 I Df+E) 

= .33 I .28 

= 1.2 
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Note that in the calculation for LR(Ti), the only part of the three 

I timing distributions that was actually used was the probability they 
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I assigned to day 1, the day on which E actually occurred. Thus, if another • 

jassessor gives the same probabilities to day 1 but differs with us about 

!the probabilities assigned to other days, the answer that the assessor ob-

jtains for LR(Ti) for this case will agree with ours. The reason for 

!assessing the entire distribution is that it provides a context for the one 

!evaluation that counts, the probability assigned to what actually happened. 

jLR(Ch): To evaluate this factor, we need to calculate the probability that 

Ian event of type Et persisted unabated for the duration of D-therapy given 

lthe hypotheses of drug and nondrug causation. Again, given the cause of E, 

I the information whose probability we need to assess is independent of the 

I information in Ti and Hi. 

Assuming that D caused E, M.S.K., based on his clinical experience, 

jassessed the probability that an event of type Et would last at least 9 

ldays, given that the event was an adverse reaction to D, as .7. 

Assuming that D did not cause E, we believed that whether M caused E or El 

1was coincidental to M, the distribution for time to resolution was the same. I 
IThis distribution was assessed by the pediatrician M.S.K. as follows: the 

jprobability that the diarrhea would end before 7 days is .60; in 7 days, .10;1 

tin 8 days, .08; in 9 days, .06; in 10 days, .OS; in 11 days, .04; and longer I 
!than 11 days, .07. Therefore, the probability that an event of type Et wouldl 

llast at least t~n days, given a nondrug cause, is .06 + .05 +.04 + .07 = .22 

LR(Ch) = 0.1 I .22 = 3.2 I 

I. 

~· . 
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ILR(De): We need to calculate the probability that the diarrhea will resolve! 

!two days after dechallenge with D, given the hypotheses of drug and nondrug 

!causation and given that the diarrhea had persisted until the time of 

ldechallenge. These calculations are handled just as were the corresponding 

lones relative to the timing information. First, as explained in the 

(discussion of Ch, we decided that there would be no differences in our 

I distribution for the duration of the diarrhea whether it was caused by Mor 

(by a coincidental gastroenteritis. Using the distribution for duration of 

ldiarrhea above, conditioned to last at least~ days, the probabil~ty that 

ithe diarrhea would resolve within two days after dechallenge (ie., 10-11 

!days after onset) given nondrug causation, is (.OS+ .04) / .22 = .41. The 

ftime distribution for resolution given drug causation was judged by M.S.K. 

Jto be similar to the distribution for time of onset (see above). Con­

lsequently, the probability of resolution within 2 days of dechallenge was 

1estimated as .33 + .33 = .66. Thus: 

LR(De) = .66 / .41 = 1.6 

ILR(Re): Since no rechallenge occurred, this factor is equal to 1. 

L_ __________________ _J 

6. Calculating the Posterior Odds 

According to equation (1), to calculate the posterior odds 

in favor of D causation, we must multiply together the prior odds and - the 

likelihood ratio factors • 
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,------------------7 
Posterior Odds: Application 

IA summary of the case analysis and the resulting posterior odds is shown in 

!Table 3. As shown, the posterior odds (obtained by multiplying the prior 

lodds by each of the likelihood ratio terms) is 8.85 and the posterior pro­

lbability of drug causation is .90. 

TABLE 3 GOES HERE 

Note that one of the strongest pieces of evidence was simply how long 

lthe diarrhea lasted before dechallenge occurred; had the amoxicillin been 

I immediately discontinued, the case for drug causation would have been far 

!less convincing -- and had in addition the drug been trimethoprim/sulfa­

lmethoxazole instead of amoxicillin, so that the prior odds in favor of drug 

lcausation would be substantially lower, the posterior odds would have 

lfavored a nondrug cause for the diarrhea. 

L------------------~ 

DISCUSSION 

The techniques for implementing the Bayesian approach described in this 

paper, which are based on the rules of probability theory, provide consider­

able help in doing an assessment al though they do not, as yet, constitute a 

standardized system. Nonetheless, they should allow an interested reader to 

use the approach, and the main characteristics of the Bayesian method should be 

clear. We believe that it provides a coherent framework for dealing with the 

multiple uncertainties and complexities of the causality assessment problem. 

Because it deals with the problem in all its "real world" uncertainty and com­

plexity, the Bayesian approach requires more in-depth analyses than other· 

methods and in its current form is not suitable for rapid filing of large 
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numbers of case reports. The extra time spent to use the Bayesian approach is 

amply justified however, when the answer to the individual causality 

assessment problem at hand really 11 matters 11

• Moreover, we believe that with 

further work it will be possible to standardize the approach and make it easy 

to use without sacrificing what we see as its essential correctness. 

In the first paper of this series [ 1] , we argued that the method meets 

criteria· that allow the consumer of an assessment to understand and believe 

the results in a way not possible with other methods. Similar features make 

the method attractive from the assessor's point of view. First, the method 

provides a way to incorporate all his ideas relevant to a particular causality 

assessment problem. Thus, in the example presented, ideas as different as the 

rate of diarrhea in an epidemiologic study, the increased risk of diarrhea in 

the winter months and in day-care attendees, the possibility that the diarrhea 

was caused by the patient's viral disease or was ··coincidental", and the 

probable duration of diarrhea from di£ ferent causes can all be incorporated 

and combined in a satisfying way. Second, by providing a logical framework 

for using the different sources of diagnostically useful information, the 

method allows the assessor to focus his attention on the elements of the 

evaluation, rather than on how they should be combined. This frequently 

allows important insights into the real significance of elements that might be 

ignored with other methods. The diagnostic importance of the duration of the 

diarrhea before dechallenge is an excellent example of this phenomenon in the 

case presented. Although it turns out to be important information dif-

ferentiating drug from non-drug cause, we completely-missed the significance 

of the duration of the diarrhea when we performed our first informal evalu­

ations of the case. 

Third, the method for combining the results allows easy identification of 

which elements drove the assessment. This allows the assessor to evaluate his 
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"confidence" in the final result very quickly. His overall confidence is 

primarily determined by his confidence in the few elements that drove the ~ 

assessment. This also makes further research to increase confidence much more 

efficient by allowing these activities to focus only on the "important" 

elements of the case. 

Finally, and most importantly, because the method follows logical rules 

for combining probabilities, it makes sense of this complex problem. Thus, 

rather than just accepting how the component assessments produce the final 

result, the assessor can understand why. This should allow him to learn much 

more effectively from such assessments than if he employed the "black box" of 

global introspection or the arbitrary scoring rules of the published stan­

dardized method (see [6] or [7], for instance). 

This unique '"explanatory" feature of the Bayesian approach can also be 

used to help understand a causality assessment result arrived at by any 

method. This can be achieved by reversing the direction of the Bayesian 

assessment: instead of estimating the prior odds and likelihood ratio terms 

and determining the posterior odds from them one can start with a posterior 

odds and determine what prior odds and likelihood ratio terms such a result 

would imply. More precisely, since all the component elements (including the 

posterior odds) are tied together mathematically any single term in the 

assessment can be inferred from a knowledge of the others. We believe that 

application of the Bayesian approach, either in the forward direction to 

assess causality, or in the reverse direction to learn what any given causa­

lity assessment result implies, should have widespread appiicability, not only 

in assessing adverse drug reactions, but in medical differential diagnosis in 

general. 
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TABLE 1 

Application of the Bayesian Approach: 

The Steps in the Analysis 

1. Identify the case "parameters" 

2. Collect the relevant case information 

3. Evaluate the prior odds 

4. Evaluate the likelihood ratio for History 

S. Evaluate the other likelihood ratio factors 

6. Calculate the posterior odds 
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TABLE 2 

Eliciting Case Information 

The assessor should answer each of the following questions. If he is 

unsure of the correct answer, he should state the grounds and extent of his 

uncertainty ( in probabilistic terms). While the answers to these questions 

will provide all 

additional case 

of the relevant case information for many cases, any 

information that can help differentiate between drug and 

nondrug etiological candidates in a particular case under review should also 

be noted in the appropriate chronological period. 

1. Hi: 

2. 

a. Has the patient taken Dor similar drugs before? How frequently? On 

how many of these occasions did he experience an event of type Et or 

another possible adverse reaction? Describe, if different from Et• 

b. How frequently has the patient previously experienced events of type 

Et without exposure to Dor related drugs? 

c. Are there are attributes of the patient that place him at special risk 

to events of type Et from any cause? If so, what are they, and from 

which causes is he at special risk? 

Ti: When in relation to the course of D-therapy did the patient 
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experience the event E? If available, give the time-course of all pro-~ 

dromal events. 
.. 
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6 3. 
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Ch: 

a. Are there any data about levels of Din tissues or body fluids during 

the time the patient experienced E? If so, what are they? 

b. Are there any distinctive details in clinical presentation, laboratory 

results, pathological findings, or duration that can help differentially 

diagnose the cause of E? If so, what are they? 

c. Did the symptoms of E abate before dechallenge occurred? If so, how 

long after the time of onset of E? 

4. De: 

a. Was D discontinued or its dosage reduced after the onset of E? If so, 

describe how and when. 

b. If dechallenge occurred, did the manifestations of E abate? If so, to 

what extent and when? 

c. Were the manifestations · of E treated directly? 

anatagonist to D administered? What was the result? 

Was a specific 



s. Re: 

a. If dechallenge occurred, was the patient subsequently rechallenged 

with D? If so, when and in what dosage? 

b. If rechallenge occurred, did the manifestations of E recur? If so, to 

what extent and when? 
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7 

Term Assessed 

Prior 

History (Hi) 

Timing (Ti) 

Characteristics (Ch) 

Dechallenge (De) 

Rechallenge (Re) 

TABLE 3 

Summary of Results 

Odds 

4.0 

.36 

1.2 

3.2 

1.6 

1.0 

Cumulative 
Odds 

4.0 

1.44 

1.73 

5.53 

8.85 

POSTERIOR ODDS IN FAVOUR OF DRUG CAUSATION = 8.85 

POSTERIOR PROBABILITY IN FAVOUR OF DRUG CAUSATION= .90 

Cumulative 
Probability 

.so 

.59 

.63 

.85 

.90 
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APPENDICES 

Appendix I: The Law of Total Probability 

Suppose Ai, A2, •••• An are mutually contradictory propositions such that 

one of them must be true. Then for any proposition C, the Law of Total 

Probability states that: 

P(C IB) = [P(C fB ·and Ai) ·x P(A1 IB)] + ••••• + [P(CiB and An) x P)(An IB)] 

The Law of Total Probability is derived as follows. First, since the 

propositions A1,••••,An are mutually contradictory and one of them is true, 

C = (C and Ai) or (C and A2) or ••• (C and An). 
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By the additivity condition, which obviously extends to n mutually contra- '"' 

dictory propositions, 

P(CIB) = P(C and Ai IB) + ••• + P(C and AnlB) 

Now apply the multiplicative condition (see Appendix I in [l]) to each term on 

the right: 

; 

; 

. ... 

; 



• 

·. 

Appendix II: Predictive Probability and the .. True"' Incidence 

A probability distribution for the "'true" incidence gives values for the 

assessor's probabilities P(a ~ ·true· incidence -' b), for all a and b 

between O and 1. A distribution is usually specified by means of a density 

function, a nonnegative function f defined on the interval (0,1), such that 

P( a , • true· incidence , b) is obtained as the area under the graph of f 

between a and b (The total area under the graph off is 1). 

The tactic discussed in Section B under "Evaluating the Prior Odds" 

derives from the following theorem, due to de Finetti: 

Suppose x1 , x2 ••• is a sequence of (0,1)-valued random variables, whose 

distribution is invariant under any reordering of the variables. Then 

(1) P(X1 = 1) = J [0,1] y dG{y), 

where G is the distribution function for the random variable Y and 

(It is a conclusion of the theorem that this limit exists.) 
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The expression on the right of equation (1) is called the mean of the distri­

bution G. If G has a density function g, then 

To interpret the theorem in the context of this paper, Xi, x2 , ••• 

represents a sequence of future patients with clinical condition M who, say, 

are to receive a specified course of D-therapy and of whom nothing additional 

is known (that is, "generic" patients with the two stated properties). 

Because of their "genericness", the assessor's probability distribution for 

which of these patients will experience an event of type Et does not depend on 

their labelling, so the theorem applies. Y represents the "true" incidence. 
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.. 

Thus, the theorem implies that if the assessor evaluates his distribution G .-. 

for the •• true"' incidence, his pre4ictive probability that the next patient 

will experience an event of type Et (that is, that X1=l), or P(Et D), is just 

the mean of the distribution G. 

.. -

;; 

. 
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Appendix III: To a coherent evaluator, the posterior odds does not depend on 
the time horizon 

The time horizon adds an additional conditioning proposition to all the 

probabilities calculated in a casuality assessment: that the event E occurs 

in a specified time interval - say T - initiated by administration of the 

drug D. Refer to this proposition as ·• E in T... Now as long as the actual 

time that E occurred, say t, is in the interval T, then any probability 

already calculated conditionally on case information C which includes the 

proposition "'E at t" - is unaffected by also conditioning on "E in T", which 

adds no new information. In particular, the probabilities that appear as the 

numerator and denominator of the posterior odds are conditional on C and hence 

on "'E at t", and so are unaffected by the time horizon, so lon~ as t is in the 

time horizon interval T • 

It is of interest to see how the other terms that are evaluated in a 

causality assessment depend on the time horizon. For convenience, suppose 

there is no information in Hi (that is, all Hi information is already included 

in B, as specification of M). Then, the only terms affected by the time 

horizon are the prior odds and the likelihood ratio for timing, since all 

subsequent likelihood ratio terms are calculated conditionally on Ti, that is, 

on "Eat t"'. 

Using Bayes' Theorem, the following relation can be shown to be true: 

1) P(D--+EIB, E in T) 

P(D-,t+EIB, E in T) 

P(D-_.EI B) 

P(D;4EI B) 
X 

P(E in TIB, D----E) 

P(E in ti B, o.,4E) 

75 



That is, the prior odds calculated with the time horizon Tis the product of 

the prior odds without the time horizon, multiplied by another factor that 

derives from the timing distribution for the event, with and without drug 

causation. 

Similarly, the likelihood ratio for timing can be written: 

(2) LR(Ti) 
= 

P(E at tlB,D--+-E, E in T) 

P(E at t)B,D~E, E in T) 

Using the multiplication law the numerator of this expression can be 

rewritten as: P(E at tlB,D-+E) x P(E in T(E at t, B,D--+E) / P(E in T1B, D--+-
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E). So long as we choose the time horizon (E in T) to be longer than the 

actual time interval of occurrence (Eat t) then the expression P(E in TIE at 

t,B,D-+E) = 1. Thus the numerator of (2) becomes: P(E at t)B,~E) / P(E • ~~ 

in T IB,D--+E) 

Applying the same logic to the numerator and denominator of the likelihood 

ratio for timing we get: 

(3) LR(Ti) P(E at tlB,D-+E) / P(E in TIB,D--+E) 
= 

P(E at tlB,Jn4E) / P(E in TIB,~E) 

P(E at tlB,D--.E) P(E in TIB,D~E) 
= X 

P(E at tlB,D~E) P(E in Tl B,D-+E) 

• 



• 

0 

' 

That is, the likelihood ratio for timing with the time horizon T is the 

product of the likelihood ratio for timing without the time horizon, 

multiplied by a factor that is the reciprocal of the factor appearing on the 

right hand side of equation (1). Multiplying the left and right-hand sides, 

respectively, of equations (1) and (2) shows that the product of the prior 

odds and LR(Ti) remains the same, with and without any time horizon T that 

contains the actual occurrence time t. 
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