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ABSTRACT 

We investigate ordinary least squares and Bayesian methods 

for constructing interval estimates for historical lake pH's 

inferred from diatom sediments. The Bayesian method explicitly 

models several forms of variability, including the sampling and 

classification variability of the diatom records, estimation 

variability, and measurement error in observed pH's. The two 

methods produce similar interval estimates, but the Bayesian 

model allows design recommendations to be made. 
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Introduction 

Diatoms are small plants with siliceous cell walls that inhabit most 

waters. The variety of diatoms is large, and different diatom taxa have 

evolved to occupy different ecological niches. In particular, many diatom 

taxa are pH sensitive and prefer, or are most competitive, in a certain pH 

range. Since this aspect of the ecology of diatoms is fairly well known, it 

is possible to estimate from a given collection of diat~ms the pH of the water 

from which they were taken. This estimation is most useful for reconstruction 

of a lake's historical pH record. Because the cell walls of diatoms are sili

ceous, they are preserved in the sediments that accumulate on the bottom of 

the lake. If these sediments are undisturbed, then each layer of the sedi

ments will contain diatom remains from a specific time period, and these 

remains can be used to estimate the pH of the water at that time. 

Lake pH histories are of more than scientific interest due to the 
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national debate over acid deposition and it effects. Current surveys, for 

example the National Lake Survey sponsored by the U.S. Environmental Protec

tion Agency, can determine the number and distribution or lakes which are 

currently acidic, but they cannot determine whether those lakes have become 

acidic recently (say within the past 30 to 50 years) or been acidic for hun

dreds of years. Historical data on lake pH's are sparse and frequently of 

poor quality (NRC 1986). Thus the need for i~ferred pH histories ls great. 

The pH reconstruction process typically uses two diatom data sets. The 

first is a calibration set used to determine the pH prediction procedure, and 

the second is the historical set from a lake where we wish to estimate the pH 

history. A common protocol would be to sample the present diatom flora at 

lakes in the area of the target lake and to make simultaneous pH measurements 

on these lakes. Next, the diatoms are subsampled, each diatom in the subsam

ple is classified taxonomically, and each taxonomic group is classified into 

one of five pH preference categories (acidobiontic - optimum below pH 5.5, 

acidophilic - usually below pH 7.0, indifferent, alkallphilic - usually above 

pH 7.0, and alkaliblontlc - occurs only above pH 7.0). The pH category of 

each taxon can usually be found in the literature, but it may also be deter

mined from the taxon's distribution in the calibration set. Four to five hun

dred dl~toms comprise a typical subsample. The data have now been reduced to 

a pH and k, a five-vector of proportions for each lake. 

Three techniques are common for estimating pH from the diatom propor-

tions. The first two involve indices computed from the five-vector of propor- -

tions and the third is multiple regression. Nygaard (1956) proposed an index 

alpha defined by 

a a 
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where k1 is the proportion of diatoms that are acidobiontic and so on. Ren

berg and Hellberg (1982) defined a new index called B: 

k3 + 5 k2 + 40 k1 
B = -----------.:!'--k3 + 3.s k4 + 108 k5 

The pH prediction procedure assumes that pH is a linear function of log(a) or 

log(B). The coefficients of the linear relationship are determined by least 

squares. 

Charles (1985a) uses these three techniques on 37 Adirondack lakes with 

surface pH's ranging from 4.5 to 7.8. One drawback of the index based tech

niques is that they are undefined for acid lakes with no diatoms in the more 

alkaline categories. For these lakes, Charles sets the denominator of the 

index ratios to 0.01. The coefficients of determination for the three regres

sions are log(a) 0.89, log(B) 0.91, and multiple regression 0.94, and residual 

standard errors range from 0.28 to 0.38 pH units. Thus all three techniques 

are producing good estimates of pH. 

In this paper we compare two interval estimates of pH based on the multi

ple regression model. The first is the standard prediction interval for mul

tiple regression. The second is a Bayesian posterior prediction interval 

which explicitly models the sour.ces of variability in the pH prediction pro-

cess. Both procedures yield reasonable prediction intervals. However, the 

Bayesian procedure allows us to see how the length of the prediction intervals 

varies as a function of model parameters. This allows statisticians to advise 

diatomists as to which aspects of the pH reconstruction process are introduc

ing the most variability, so that extra effort can be put to bear in the most 

useful areas. 
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Prediction Models 

We will use the following notation. Let y be an observed pH measurement 

and let a be the standard error of this measurement. Suppose that there are M 

taxa of diatoms, that in a given sample the true proportions of the M taxa are 

pM)', that the subsampled counts are n = (n1, n2, ••• nM)', 

and that the total count is N. Let C be the 5 by M classification matrix of 

zeros and ones assigning each diatom taxon to one of the pH preference 

categories, and let k = Cn/N be the 5-vector of proportions in the pH prefer

ence categories. We observe neither n nor C, because there may have been tax

onomic classification errors or misassignments of taxa to pH categories. 

* Instead, we observe n = Tn, where Tis an unobserved MxM matrix of ones and 

* zeros classifying each observed taxon, C, the 5 x M pH classification matrix 

* * * reported by the investigator, and k = C n /N. We assume that Tis inverti-

ble. There are L lakes in the calibration set; K is the L x 5 matrix whose 

* rows are the k proportions from the L lakes, K is the observed version of K, 

and y is the vector of length L of observed lake pH's. Let z (5 by 1) be a 

* vector of coefficients, and let p = Tp be the permuted version of p. 

The regression approach 

The regression approach.is a standard least squares prediction interval. 

* We assume that a pH measurement in a lake with diatoms distributed ask has 

* expected value k 'z, with a normally distributed error independent of all 

other lakes. The least squares estimate of z is 

* * -1 * z = (K 'K) K 'y 

* To predict the pH associated with diatoms kL+
1 

we form an interval with center -

* 
kL+ 1 'z and width 

; 
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* * * -1 * 1 /2 t(1 - a/2;L-5)s(1 + k '(K 'K) k ) 
L+1 L+1 ' 

where t(1 - a/2,L-5) is the 1 - a/2 point of at distribution with L-5 degrees 

of freedom ands is the root mean square error of the regression. See Weis

berg (1985) p. 229~ 

It is worth noting that even though we are in an "errors in variables" 

situation (the carriers of our regression are measured with error), we do not 

need to adopt a structural or functional approach. This is because we are 

interested in predicting unobserved pH measurements rather than estimating 

model coefficients. See Madansky (1959). 

There is a great temptation to compute a confidence interval for the mean 

of a lake's pH measurements rather than a prediction interval for an unob

served measurement, because the confidence interval will be much shorter than 

the prediction interval. This temptation must be resisted, since it is based 

on the premise that all variability about the regression line is "measurement" 

error that would average out over many measurements. In fact, true pH meas

urement error has a variance of about 0.03, much less than the error mean 

square observed in the example below, and the remaining components of the 

error mean square need not average out with more measurements. 

safer to st~y with prediction rather than confidence intervals. 

The Bayesian approach 

Thus it is 

The Bayesian approach computes the posterior prediction interval for an 

* unobserved pH value given the observed pH and n values at the calibration 

* lakes and the observed pH classification matrix C. This interval is based on 

the posterior predictive distribution: 

* * 
f ( Y L+ 1 I Y 1 ' n, ' Y 2 ' n2 ' 

* * * 
• • • , nL, nL+ 1 , C ) • 
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(We will always use the symbol f to denote a density or probability function, 

and we will rely on context and the arguments to determine for which random 

variables f is a density, on which random variables they are conditioned and 

so on.) In the Bayesian model, z, p, C, T, and a are unobserved random vari-

* ables with prior distributions, and n and y (which we observe at each of the 

* lakes in the calibration set) and C have likelihoods conditional on the unob-

served parameters. We must specify the prior distributions and likelihoods to 

compute the posterior via Bayes Theorem. 

We make the following general assumptions. First, T, C, z, (J, and 

* i =1 , 2, ... , L+t are! priori independent. Second, Yi and n. are independent 
1 

* * * of each other and of yj and nj given T, C, z, tJ, pi' and pi. Third, C 

* independent of ni' yi' pi' T, z, and a. Under these assumptions, we may 

that the posterior predictive distribution is proportional to 

E * * * pi's, C, T n1 's, C 

CD 

f 
0 

co 

l 
-co 

L+1 
II 

1=1 

* is 

show 

dzda2, 

where -the outer expectation is with respect to the conditional distribution of 

* C, T, and the pi's. 

We assume that the distribution of a pH measurement y1 given C, z, pi, 

and a, is normal with mean z'Cpi and standard deviation a. Equivalently, the 

-1 * mean may be written z'CT pi. We will use the same classification matrices C 

and T and standard error a at all lakes. This assumption is reasonable if one 

investigator or team is responsible for all data collection, though it may be 

suspect if the data are merged from several sources. We will use a multivari

ate normal prior for z with mean p and variance L. This should be an infor-z z 

mative prior, since we know roughly what the coefficients in the regression 

should be. The normal shape is chosen mostly for convenience, because it 
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allows us to compute the inner integral in closed form. 

The conditional distribution of n given pis multinomial with mean Np. 

* * Thus, the conditional distribution of n given p is multinomial with mean 

* Np. Our prior for p will be Dirichlet, with a constant shape parameter Y. 

Ordinarily, Y will be small reflecting limited prior knowledge of the diatom 

* proportions. The pi and pj are! posteriori independent given T and the nk's, 

so their joint posterior distribution is a product of Dirichlets with parame-

-1 * * ters of the form T n
1 

+ Y. Thus, pi has a Dirichlet posterior distribution 

* * with parameter n1 + Y, and is independent of the other pj's. 

Th~ matrices C and Tare more difficult to model, but there is some sim

plification since they only enter through the product CT-1 • This simplifica

tion arises because we only need to know the taxonomic classification (T) up 

to pH·category. 

Common or physically large diatoms are more likely to be correctly clas

sified at the first step (T) than are small or rare diatoms. We shall model 

only the frequency dependence and not the size dependence, and assume that 

each diatom is classified independently of the others. Suppose that j identi

cal diatoms (from L+l lakes) out of a total sample of size I (from the same 

L+1 lakes) must be classified. We assume that the diatom is classified into a 

taxon of the correct pH preference group with probability 

P
1 

+ (ph - p1}*min(j/I/€, 1.0); if misclassified, the diatom goes into some 

taxon chosen so that the pH preference category is uniform over the four 

incorrect categories. We assume a uniform prior for the pH categories, so 

that the probability that the diatom is truly from a taxon in pH category 1 

given that the investigator classified the diatom in a taxon from pH category 

j is equal to the probability that the diatom will be classified into a taxon 
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from pH category j given that it is from a taxon in pH category 1. This 

* specifies the posterior distribution of T given the ni's. 

At the second stage, the taxonomic groups must be assigned to pH 

categories. Here we will assume that a taxonomic group is correctly categor-

!zed with probability S, and miscategorized into one of the two adjacent 

categories with probability 1-B, independently of the other taxonomic groups. 

(For extreme pH categories, the probability of correct classification will be 

taken to be 1-(1-8)/2.) 

The variance of lake surface water pH's measurements is about 0.03, but 

in some lakes there can be additional variability due to a nonuniform sedimen

tation rate across the lake bottom (Charles 1985b). Our model does not expli

citly include this source of variation, but we can allow for it by putting 

prior probability on larger a's. With this in mind, we take a uniform prior 

from 0.03 to 0.07 for a2 • 

Computation of the posterior predictive distribution is done with a com

bination of analytic, numerical, and Monte Carlo methods. The integral over z 

may be done in closed form to obtain that the posterior predictive is propor

tional to 

E * 
P1 ' 

* 
••• ' PL+1 , C, T 

* * * n1 , •• ,. , ~+1 , C 

-L-1 
a K' K ,-1 

- + l 
02 z 

-1/2 

2 
da • 

X 

2 Next numerically integrate with respect to a, and finally do a Monte Carlo 

* computation of the expectation with respect to C, T, and the p's. (To do the 

'Cl 
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numerical integration over a2 , we use 24 point Gauss quadrature.) 

Example 

We illustrate the use of the methods described here on the data used in 

Charles (1985a). This data consists of a calibration set of 37 lakes, each 

* with pH measurements (y values) and observed diatom counts n from surface 

* sediments; Big Moose Lake, for which there are diatom counts (n ) going down 

* through about 30cm of sediment; and a pH category matrix C (Don Charles, per-

sonal communication). We have taxonomic data on many layers of sediment from 

Big Moose Lake, but we will only show the results for the surface sediment 

(depth 0.0-0.5 cm) representing 1979 conditions. There are 270 different dia

tom taxa present in these lake sediments. 

One problem in this data is that there is no pH tolerance information for 

some of the taxa. We have chosen to impute a pH tolerance category for these 

taxa, rather than delete the taxa all together. To impute the tolerance, we 

take the mean tolerance category of all taxa of the same genus for which.we 

have pH tolerance information. Some genera, e.g. Cyclotella, Eunotia, Frus

tulia, and Tabellaria, are strongly clustered in one tolerance category, most 

have some species in each of two or three tolerance categories, and only a 

few, e.g. Cymbella, Fragilaria, and Navicula have species in four tolerance 

categories. To account for the fact that these categories are imputed, we use 

a a value of one third for the imputed tolerance categories rather than the 

larger B value used for cases where the value is not imputed. 

We begin using the least squares prediction technique. There were no 

diatoms found in the most alkaline pH category, so the regression is done with 

the first 4 categories only. Figure 1 shows a plot of observed pH versus 
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predicted pH. A 95% prediction interval for a 1979 pH measurement in Big 

Moose Lake is 4.70 ± 0.75, based on the surface sediments. Standard regres-

sion diagnostics do not indicate any problems with assumptions: a normal pro

bability plot of the residuals is acceptably linear and the largest Cook's 

distance is less than 0.3. 

To use the Bayes technique, we must completely specify the priors. Our 

prior for z is multivariate normal wi~h mean (4, 5, 6, 7, 8)' and variance 

3.33 times the identity matrix. This is a broad prior centered at a reason

able guess for the regression parameters. The prior for pis Dirichlet with 

common parameter Y. We will take Y to be 0.01. 

We also need to specify the P1 , Ph, E, and a parameters in the distribu

tion of the classification matrix. In our example, we set p1 equal to 0.6, Ph 

equal to 0.97, E equal to 0.006, and a equal to 0.9. The p
1

, ph, and a values ~ 

were chosen to be somewhat larger than lower bounds estimated by a diatom 

expert (Charles, personal communication). The£ value corresponds to approxi-

mately 96 individuals present for maximal probability of correct taxonomic 

classification. The average number of taxonomically misclassified diatoms is 

1317 (out of approximately 17000 diatoms counted). 

The calculation of the posterior distribution of pH involves an integra

tion which we do by Monte Carlo. In our example, we use 4000 samples, but 

even 4000 is probably too few for truly stable estimation. This is because 

the likelihood varies greatly from sample to sample, and the final average 

tends to be dominated by just a few of 4000 samples. Some form of importance 

sampling would improve the efficiency here, but I have not implemented it. 

Using the prior parameters given above, the posterior predictive distri-
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bution for pH is approximately normal with a mean of 4.83 and a variance of 

0.126. A central 95% posterior interval is 4.16 to 5.55, showing a slight 

asymmetry. This interval is slightly narrower and about 0.1 higher than the 

least squares prediction interval. Figure 2 compares the predictive distribu

tions for Big Moose Lake pH computed via least squares and Bayesian tech

niques. 

Design considerations 

The Bayesian model is conceptually difficult and expensive to implement, 

but it does have the advantage of having explicit, meaningful parameters that 

describe various aspects of the pH reconstruction system. We may investigate 

changes in the properties of system observables as functions of the parameters 

by simulating the system with different parameters. Thus, to the extent that 

our model approximates the way the diatom identification is performed, we can 

indicate to diatomists which changes in parameters will most improve system 

performance. The prototypical question is whether to count more diatoms under 

the current system, or to count the same or fewer number of diatoms but put 

more effort into correctly classifying them. 

One measure of system performance is the residual mean square in the 

least squares regression of pH on the abundance of diatoms in the five toler

ance categories. This mean square is the controlling factor in how wide our 

interval estimates of pH will be, so it is sensible to see how this varies as 

parameters change. 

We simulate the system in the following way. Use the 37 calibration 

lakes in Charles' Adirondack study, and choose n for each lake to be multino

mial p, where p ls chosen from the posterior distribution for p used in our 
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Bayesian method above. Use Charles (1985a) linear regression coefficients 

from the Adirondack study to compute the true lake pH from p. Next, assign 

the taxa to pH categories based on the parameters and the assumption that the 

true pH categories of the taxa are the observed categories. Finally, compute 

the observed proportions of diatoms in the different tolerance categories for 

each lake, and compute the residual mean square for the regression. Here, we 

will repeat this process 100 times to get an estimate of the expected residual 

mean square for given parameter values. Note that this residual mean square 

does not include a component for a2• 

We study the effects of P1 , Ph' £, a, and N by looking at a quarter frac

tion of a 25 factorial design. Design points and observed geometric mean 

MSE's are given in Tabie 1. (The distributions of the MSE's are approximately 

log normal. The geometric means have a relative standard error of about eight 

percent.) The observed mean square error from Charles' data was 0.107. This 

2 includes a component from a which we expect to be about 0.05, so the quantity 

corresponding to the simulations should be about 0.06. This value of 0.06 is 

well within the distributions of all eight parameter settings. 

Analysis of the results of this experiment leads to the conclusion that 

residual mean square error depends primarily on B, £, and ph' and only 

slightly on p1 and N. Two lines of thought explain why this should be so. 

First, most of the error is the result of misclassification, not multinomial 

sampling, so N should have little effect on MSE. Second, variability in the 

proportions lying in each tolerance category is driven mostly by errors in 

abundant taxa, and these errors are controlled by Band Ph, and to a lesser 

extent €. Quantitatively, doubling the sample size from 450 to 900 reduces 

mean square error an amount approximately equal to that obtained when changing 
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a from 0.9 to 0.915, E from 0.002 to 0~0036, or Ph from 0.95 to .965~ 

The following design principle seems to be established. To the extent 

that it is possible, more effort should be spent to correctly classify the 

abundant taxa, both taxonomic and pH tolerance classification. Small 

increases in classification accuracy can offset the effect of a decreased sam

ple size, so increased classification accuracy is usually desirable even if 

fewer diatoms must be counted to maintain a constant level of effort. 

Recent developments 

One criticism of the Bayesian model used here is that it treats all dia

toms uniformly. Certainly some taxa are more distinctive and easier to iden

tify than others, but this fact is ignored. If there were data indicating 

which taxa were consistently identified correctly, and listing sets of taxa 

that tend to be confused, the model for T given above could be extended to 

include this information and presumably give better posterior distributions 

for pH. Fortunately, such data ·are forthcoming. 

The PIRLA project (Paleoecological Investigation of Recent Lake Acidifi

cation, Charles and Whitehead 1985) is a multidisciplinary study of lake aci

dification. Part of this project includes diatom reconstructions of histori

cal lake pH's conducted by several research groups. To improve the quality of 

the data obtained, the diatomists have instituted a "truth-in-counting" system 

describing the way each diatomist classifies diatoms. In this system, each 

diatomist gives each taxon a code. The codes are of the form (1) the name 

used for the taxon, (2) a four point rating giving the degree of confidence in 

the classification, and (3) a list of taxa which might be confused with the 

current taxon. The four point rating scale for confidence is subjective and 
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ranges from "I believe I use this taxon consistently ••• and that other PIRLA 

investigators would agree with me" to "there are almost certainly inconsisten

cies in the identification of this taxon in my data set". 

Data such as this will allow the Bayesian model to include the probabil

ity of each individual taxon being misclassified, and if misclassified, know 

into which taxa it is most likely to go. This could provide a great improve

ment over the ad hoc model of misclassification currently in use. 

Summary 

Historical lake pH measurements are rare, and when available are often of 

poor quality. This means that inference about trends in lake acidity must 

usually be made with indirect methods such as diatom pH reconstructions. As 

in all scientific work, an interval estimate is preferred over a point esti

mate. 

Ordinary least squares regression provides a sensible prediction interval 

for the unobserved pH measurements, but care must be taken when deriving con

fidence intervals for mean lake pH to prevent an overstatement of accuracy. 

Bayesian posterior prediction intervals can agree closely with the least 

squares intervals, but their computational cost makes them less attractive. 

The major advantage of the Bayesian approach is the explicit modeling of 

the pH reconstruction process. To the extent that our modeling is accurate, 

it allows us to simulate the pH reconstruction process and make recommenda

tions about ways to most effectively improve the precision of the technique. 

The current model implies that accurate classification of the most abundant 

diatoms is paramount, even if this implies that fewer diatoms will be counted. 
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Finally, better and more extensive data are on the horizon, so that the 

modeling done in the Bayesian technique will be a more accurate reflection of 

reality. 
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Table 1 

Geometric mean MSE for simulated regressions 

e: f3 N geometric mean 

0.5 0.95 0~006 0.90 450 0.064 

0.5 0.95 0.002 0.90 900 0.041 

0.5 0.98 0.006 0.95 450 0.033 

0.5 0.98 0.002 0.95 900 0.026 

0.1 0.95 0.006 0.95 900 0.037 

0.1 0.95 0.002 0.95 450 0.031 

0.7 0.98 0.006 0.90 900 0.041 

0.1 0.98 0.002 0.90 450 0.037 



- 18 -

Figure 1. Top: observed versus least squares predicted pH for 37 Adirondack 

lakes. Bottom: residuals versus least squares predicted pH for 37 Adirondack 

lakes. 

Figure 2. Predictive densities for least squares (dotted) and Bayes (solid) 

methods. 
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