»n

Finding and Understanding
Influential Sets in Regression

Rollin Brant

University of Minnesota
School of Statistics
Technical Report #466

February 1986

University of Minnesota
School of Statistics
Department of Applied Statistics
St. Paul, Minnesota 55108

Supported by University of Minnesota
Single-Quarter Leave
Fall 1985



https://core.ac.uk/display/211364811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Finding and Understanding
Influential Sets in Regression

by

Rollin Brant
Dept. of Applied Statistics
University of Minnesota
St. Paul, Minnesota 55108

: SUMMARY

This paper addresses the problem of influential sets in linear
regression. Past investigations into this area have tended to emphasize
the computational difficulties associated with the identification of
influential sets. Important conceptual difficulties, however, must be
addressed in advance of computation. In particular, identification methods
should facilitate subsequent interpretations and not merely provide an
uninformative catalog of such sets. Likely interpretations of influential
sets and relevant strategies based on clustering concepts are discussed.



1. Introduction.

In fitting linear models to data it is not unusual for a relatively
small group of cases to play a3 disproportionately large role in determining
the overall fit. Wwhile such an occurrence is not always undesirable, the
identification of such “influential sets” will generally be of interest to an
investigator, who, depending on context, must then make some judgment on
the advisability of relying so heavily on just a few observations.
Unfortunately, neither the customary inspection of residuals, nor the use
of robust regression techniques provide reliable means for identifying
influential sets. To this end, alternative diagnostic procedures have been
developed, with the major emphasis being on the identification of
influential cases. Attempts to generalize these procedures to uncover
influential sets have met obstacles of a largely computational nature. In
addition, fundamental difficulties associated with the interpretation of
influential sets have not been adequately addressed. Here we shall seek
methods thaﬁ: mitigate both kinds of difficulty.

We begin, in Sections 2 and 3, by providing a brief review of formal
characterizations of influential sets and some of the available strategies
for identifying them. Séction 4 considers the problem of interpreting
influential sets. In Section 5 we introduce identification methods based
on clustering which facilitate such interpretation, and in Section 6
consider measures which are additionally useful in this regard.

The framework for investigation is as follows. Based on a sample

of n elements from some population, observations on a response variable,
Yis and p explanatory variables, given as vectors xj = (X;1,Xi2, «s Xjp), are

recorded in pairs (Y, %), i=1,2,... ,i, which are referred to as cases. It is

assumed that the vector of response observations y:(nx1) is related to



X:(nxp) the matrix of explanatory observations, X=(x;;), by y = Xg +¢,
where €~ Np(0,0%1) {s a vector of unobservable errors and Bi(px1) is a

vector of unknown coefficients.

Though $ is ostensibly the main target of investigation, the entire
specification is invariably tentative and itself subject to scrutiny. After
initial examination of the data based on simple descriptive measures
and/or graphs, evaluation of the model usually begins with fitting the
least squares estimate for $, b:(px1). This estimate in turn determines
fitted values, y=Xb, residuals, e=y—y, and an estimate of o2,
s2=ele/(n—p), which provide the customary basis for model calibration and
criticism. In addition, the "Hat™ matrix, H=(hj;)= X(Xtx)-1xt, so called
since y=Hy, is an important component in diagnostic procedures.

The basis for many influence diagnostics is case and/or set
deletion. Fundamental to measurement of the influence of a single case, i,
are the case-deleted parameter estimates, b¢j) and s%(), which are the
estimates obtained when the i’th case is omitted. Relative to the
consideration of a set of cases, say I={iy,iz,...,ip}s We analogously define
b¢ry and s2(y, estimates based on the data omitting the cases in L. In
addition we shall let yy and Xj denote the observations corresponding to
cases in 1, and set Hy= Xj(XtX)~ X!, the associated submatrix of H.

Summations shall be assumed to run from 1 to n unless otherwise noted.

2. Characterizing Influence

An excellent discussion of influence in general is provided by Cook
and Weisberg (1982). The following brief review focusses on appreaches
to defining influential sets. This concept admits many possible

formalizations, depending on the particular aims of model fitting.



Nonetheless, a relatively small number of “general purpose” diagnostic
proposals have been made, most of which are simple extensions of single
case diagnostics.
The diagnostic use of components of H is naturally motivated.
Owing to the fdempotence of H,
hij = hii2+ Jgei b2, (2.1)
revealing that if hy; is near 1, yj is principally determined by y;, which
will thus tend to be influential in the overall fit (Huber, 1977). Thus h;;
has been termed the leverage for case i. Analagously, measures of set
leverage derive from applying matrix norms to Hj, the multi-case analogue
of hjj, which we consider in Section 6.
It is informative to note that h;; satisfies (assuming the inclusion
of a constant term)
nhij=1 + (%;-X)Sx~1(x;-X, (2.2)
where X=n"13jy nX; and Sx=n""Dj=q o(%;-FN(x;-X). Thus leverage is a
consequence of x;’s remoteness relative to X measured by the Mahalanobis
distance. Additionally one has zhﬁ=p, so that the average leverage is p/n.
A lower bound, hjj2n~! derives from (2.2), while hjj< 1 follows from (2.1).

Based on these considerations, cutoffs of the form hj;>cxp/n, have been

proposed for distinguishing leverage points (Hoaglin and welsch, 1978;
Velleman and Welsch, 1981).
A direct description of the impact on the overall fit of omitting an
observation is provided by Cook’s distance,
Dj= (ps?)~1(b¢j)-bIXtX (biy-b)
(Cook, 1977). For sets, this gives rise to the generalized distance, Dy,

which, letting ﬁ(l) =Xb¢r) and e¢ry=yY1—X1b(1), can be expressed variously

as



(PSZ) Dy = (b(l)'b)t XX (h(])‘b)

(Y- W ga)-9)

e(l)* Hy e(n).

The latter representation reveals that D; is of an omnibus nature,

combining e(gy, which describes directly the discrepancy between the

observations from set I and the fit derived from the remainder of the
data, and Hj, which reflects the joint leverage of the cases in I. This
dichotomy has important implications with regard to formal outlier tests.
For simplicity’s sake, consider the case that I={i}, a singleton, whence
Dy=(ps?)™"yye(y)2.
In particular, consider the mean shift outlier model for the case i, which
specifies as an alternative hypothesis, Hg: E(yj) = x;$+8, i.e. that E(y;)
deviates from the nominal specification by some quantity 8. The
customary test for this alternative is based on
t;2 = {(s¢i)2)~Teiy? (1-yi)} ~ F(1,n-p-1).
Significantly, the power of this test is smallest when h;; is 1arge. Thus
Dj, and more generally, Dj, places emphasis on points that will be revealed

as outliers in formal tests and on high potential sets whose validity is
impossible to verify by conventional procedures. Such sets must therefore
be evaluated in the light of other criteria, which will usually depend on
the problem’s specific context.

A measure of primarily geometric motivation, proposed by
Andrews and Pregibon (1978), takes the form

R = [(X*m)tx*ay x| (x|~

where X* = (X | y) and X*(l) denotes the corresponding form, deleting set 1.

R is closely related to Wilk’s test for outliers in sampling from

Multivariate normal populations, in that it measures the outlyingness of



{(x;, ui), 1€I} in p+1 space. One apparent disadvantage is that it is
invariant with respect to the designation of response among the p+1
variables, and thus does not reflect the response-explanatory dichotomy.
The authors do however consider the determination of significance levels
appropriate to the usual regression situation, where no distributional

assumptions are made regarding X.
In Draper and John (1981) Ry is decomposed as

Ri=[1-{(n-p)Qy/s?}] |I-H],
where Qr=e(n)!(I-Hp)e¢pyand 1 is the mxm identity matrix. The application
of Ry, Dp, and the separate use of Q and |l-H;| are compared. Draper and
John recommend the routine use of of Dy Qr and |I-H;|.

Measures similar in form to Dy, have also been proposed,
independently, by Belsley, Kuh, and Welsch (1980). In particular Welsch
(1982) has recommended using

(n-m)e¢nytxp(X¢nyt% ()X eqry/(ms¢ny)2.
Additionally an approach motivated by reference to the predictive use of
the linear model, recommended by Johnson and Geisser (1983), can be

straightforvardly generalized to multiple cases.

3. Identifying Influential Sets
3.1 Motivations

As noted previously, the motivation for considering influence
measures is the insensitivity of the more familiar diagnostics to
influential cases. In past investigations into the more general problem of
influential sets, the chief concern has been the masking eff ect, which
occurs when the real influence of particular cases is not discernible in



single case statistics due to the intervention of "masking” observations.
The phenomenon is illustrated in Figure 1 by two basic configurations, A
and B. For configurations such as these, the effect of deletion of any of
the points separately in terms of the single cases measures is not
indicative of the joint influence that the points exert. These effects are
only discernible on deletion of the entire subset, indicating that subset
deletion diagnostics are required to reliably detect all cases that are
likely to be of interest.

The above phenomenon is illustrated in a data set arising from an
investigation into the factors determining the selling price of houses,
(Narula and Wellington, 1977, see also Weisberg, 1985). The variables

considered were:

Y = sale price in dollars

Xy= current taxes in dollars
X2= number of bathrooms

X3= lot size in square feet
X4= 1living space in square feet
Xs= number of garage spaces
Xg= number of rooms

X7= number of bedrooms

Xg= age of house in years

Xg¢= number of fireplaces

An initial fit yields the results given in Table 1. An index plot of
the externally studentized residuals, ti=ej/{s¢j)(1-h;;)!/2}, given in Figure

2 reveals no significant outliers. Plots of the single case statisics hjj



and D; in Figures 3, however, draw special attention to case 27, whose

deletion results in the fit given in Table 2. Not apparent in any of the
single case measures is the joint impact of deleting points 9 and 10. The
tabulation of Dj for all pairs (see Table 3) reveals this as the most
influential pair. The fit with the pair deleted is given in Table 4. Closer
investigation reveals that these cases describe the largest and most
expensive houses in the sample, and conceivably represent an untenable
extrapolation of the model’s assumption of approximate linearity. This
can be formally verified by the fit of a single additional indicator variable
corresponding to the pair, which yields an observed level of significance
(two-sided) of p=.00001, confirming that the two taken together are not
well described by the model considered.

The above illustrates that the identification of related influential
cases facilitates the subsequent diagnosis of particular weaknesses in the
model. In particular, the power of tests for localized inadequacy,
typically low when based on single cases, increases when applied to
relevant subsets of a larger size. As well, when cases are identified in
groups it is much easier to perceive those sorts of patterns which suggest
particular model improvements. Consequently, we see that the
consideration of influential sets has two key motivations. The first is in
overcoming the masking problem. The second aim is to provide some
grouping of influential (singly or otherwise) points into groups as an aid

to the criticism and augmentation of the model.

3.2 Methodology
The most direct approach te identification is to screen all possible
sets according to a chosen measure and cut-off value. This is generally |



infeasible dué to relatively high expense of the individual computations
relative to each set coupled with the large number of sets. To decrease
the expense more selective screening can be done, say by restricting to
sets of size mempge. In most cases, however, the evaluation a large
number of sets may still be necessary. Thus one desires efficient, or at
least, computationally feasible, algorithms for searching out the subsets
with large values of particular measure of interest. Approaches to the
computational problem have been considered by Andrews and Pregibon
(1978), Belsley, Kuh, and Welsch (1980), Cook and Weisberg (1980), Weisch
(1982), and Gray and Ling (1984).

Andrews and Pregibon propose to mitigate the formidable screening

problem by first applying the influence measures Ry to single cases only.

They then consider only sets of high scoring cases, restricting further to
sets of size m<mygy, Yhere myey is some reasonable bound chosen by the
investigator. This approach alleviates, but does not avoid entirely,
difficulties arising out of masking.

Screening all subsets of size mempgy can be facilitated by tree-
search algorithms akin to those given by Furnival and Wilson (1974) in the
context of variable subset selection. Such an approach to the calculation
of set diagnostics is outlined in Belsley, Kuh and Welsch (1980).
Unfortunately, the bounds on residual sums of squares employed by
Furnival and wilson to provide fdrther shortcuts in variable selection, do
not generalize to influence measures. Thus affordable “leaps and bounds”
algorithms for identification do not seem achievable.

Cook and Weisberg (1980) consider the problem of determining all
subsets of a fixed size m, whose D] exceeds a given cutoff. They achieve

an initial reduction in the number of sets to be considered by arguing that



finding an influential set which includes a proper subset provides little
additional information. Thus, for instance, individually influential cases

can be excluded from the candidate list for informative influential sets.
In addition they give a number of bounds which substantially reduce the

number of subsets for which Dj must be explicitly calculated. However as

their sample computation attests, when the data are numerous, even these
clever tricks serves to facilitate only consideration of subsets of size
m=2 or 3.

A heuristic approach to the computationally feasible identification
of influential subsets is given in Gray and Ling (1964), who base their
approach on the augmented hat matrix,

CHE = XHXKF XY,
where X*=(X|y). The nxn matrix H" is used as a similarity matrix in a
clustering algorithm (specifically, k-clustering, see Ling, 1972) as a
means of identifying subsets of potentially high influence. Additionally,
the authors consider similar methods based on —H* and M=( | hij |), which
used in connection with the H*-based method seem, according to
experience with examples, to provide a fairly reliable method of screening
subsets for potential influence according to a number of methods. Though
empirically useful, the proposed methods lack a clear theoretical
foundation, as pointed out in the discussion (Weisberg, 1984).
The main aim in the work described above has been to overcome the
masking phenomenon. Due to inherent computational difficulties, we see
that no truly practical methodology has emerged. More importantly,
however, the methods considered above do little to serve our second, and
perhaps fundamental, goal, which is the identification of substantively
meaningful grobps of observations. To seek methods which will better



serve this goal, we must consider more carefully what it is we can hope
to learn from the identification of an influential set.

4. Interpreting Influential Subsets.
4.1 Influential Cases

However one chooses to define influence, some ambiguity arises
with regard to the practical consequences of influential cases. The
identification of a potentially anomolous case does not in and of itself
indicate specific remedial action. Rather, it indicates the need for

additional diagnostic measures aimed at investigating the following:

Case reliability. Have the associated observations been perturbed by
(potentially correctable) gross errors, e.g. mistakes in recording the data?
Is the case peculiar in some identifiable, if hitherto unsuspected, manner

which warrants setting it aside for special treatment?

Model adequacy. Is the model defective in a systematic way, e.g. in
missing terms in X or in the specification of the distributions of the €?
Does the case fall in a region of the predictor space where the assumption
of approximate linearity is tenuous? |

It is helpful if the above issues can be confronted in some orderly
manner. A natural first step to take in regards to an anomolous case is to
consider the possibility of purely haphazard errors, such as mistakes in
data entry. If such can be ruled out, i.e. if the measurements appear valid
to the best of the investigator’s knowledge, more detailed examination is

warranted. Coming to terms with the relevant issues above can pe

10
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'facmtated by use of a corespondingly multi-faceted measure. As
previously noted, writing Cook’s distance as

Di=(ps?)~ 'egi)hii,
reflects the fact that, by this measure, influential cases will either be
outliers, as indicated by |e¢j)|, leverage cases, or some combination
both. Of course no simple recipe for actien can be based this taxonomy,
but the investigation of an influential case will be aided by the separate
consideration of the components e¢jyand hj.

Since leverage points correspond essentially to outliers in the
predictors, the occurrence of such cases provokes reflection on the 1ikely
tenability of the model in extreme regions of the predictor space. Also,
such cases may often be deviant in other respects not accounted for by the
model. The assessment of these possibilities is hampered, however, since
as previously noted, testing procedures will usually lack power. In
general, formal methods will be of limited utility, and context-dependent
considerations will be key.

An apparent outlier also leads to considering if the offending case
fs unusual in some identifiable respect. If examination of the case
uncovers peculiar characteristics not described by the predictors, a
format outlier test is relevant and special treatment, e.g. case deletion, a
plausible remedy. On the other hand, 1acking substantial justification, the
mere statistical signicance of an outlier based on the conventional
assumption of normality casts as much doubt on that assumption as on the
validity of the case. In such an case, accommodation, rather than separate
treatment, is arguably the proper course.

Robust methods have been suggested as one form of accommodation,
A not unrelated alternative course is to abandon the usual
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parameterization in terms of conditional expectations, and 5dopt a8 more
stable parameterization, for instance, in terms of conditional medians or
trimmed means. This is especially appropriate if the assumption of
symmetry is questionable. Many robust estimators can be interpreted in
this light. For instance the one sample M-estimate, T, defined by the
estimating equation
ENP(yi-T)=0
can be sensibly viewed as estimating the parameter pt defined by
J9(y-u)drF=0
where F is the underlying distribution of y, avoiding the somewhat
artificial assumption of symmetry.

4.2 Influential sets

Regarding interpretation of influential sets in general, one first
notes that the inherent ambiguity that accompanies the identification of
influential cases is likely to be exacerbated in the case of subsets. A
related difficulty is the "swamping™ phenonemon, which arises when the
apparent high influence of a set is in fact attributable solely to a proper
subset, e.g. one particularly influential observation. The problem is
illustrated in Table 4 by the fact that the vast majority of apparently
influential pairs contain case 27. Similar calculations for m=3 produce
20 sets with Dy exceeding 4 and 241 such sets for m=4.

Due to swamping, an inherent difficulty associated with the
screening approach to identification of influential sets is that any
tabulation of sets complete enough to include all potentially interesting
sets will inevitably include many non-interesting subsets. Cook and
Weisberg’s approach to mitigating the problem is to omit sets which
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themselves contain influential subsets. This provides an overly stringent
solution, as pointed out by Weisch (1982), since substantively meaningful
sets which happen to include singly influential cases will be overiooked.
Thus, even if the computational problem of screening can be solved, there
still remains the need for efficient means of examining the 1arge number
of subsets that screening tends to produce. This aspect of the problem
seems to have been inadequately considered, perhaps because the screening -
problem needs itself to be solved before the swamping issue arises. |
However, filtering out the “relevant™ influential sets poses a substantial
obstacle to the profitable application of methodologies aimed at

uncovering infiuential sets.

One strategy which mitigates both of the above problems consists
of simply re-arranging the order of attack. Rather than screening all
subsets and then looking for the meaningful ones, one may start with an
initial reduction to potentially relevant sets, to which influence measures
may then be applied. By relevant sets, we will generally mean sets having
some more or less simple structure lending itself to interpretation with
regard to influence related issues. The nature of such structure is
considered below.

Recall that one of the two aims in finding influential sets is to
relate influential observation in meaningful groups, i.e groups which have
some common explanatory characteristic. Such characteristics may arise
out of the predictors already in the model, or may stem from “lurking"
variables. While the latter possibility can never be discounted, it is not
an eventuality that is easy to anticipate in any formal methodology. Our
efforts are likely to be more profitable if expended in the directions in
which we have prior suspicions. One class of relevant sets to consider
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first are those which are similar in some respect in the predictor
variables, i.e. clusters in the predictor space. This intuitively plausible
move can be given further heuristic support by the following argument.

Suppose that a subset, I, of observations are subject to a similar bias
relative to the model, §, i.e. E{yp)=X;8+61, where 1 is a column vector of

m “1™s. Then E(e())=61 and e()tHie(y, the key factor in Dy will
approximately equal 821tH[1. If X=m~11tX|, the average predictor vector,
by letting Zj=Xj- 1% one has that

11 = m2R{mR R + 2112+ Xy 1%y
is maximized when the entries of Zj are 0, i.e. when the cases in | are

replicates. This suggests that large Dy values will tend to occur in

clusters of exact or near replicates.

The second major aim, uncovering masked influential sets deserves
reconsideration, as well. One notes that masking can either arise out of
the more or less coincidental juxtaposition of anomolous obser#ations, or
can reflect systematic deficiencies in the model. The first possibility
will by its own nature be somewhat of a rare occurence, albeit
unfortunate, but thereby, one with which we cannot be overly concerned.
The presence of systematic defects is an issue which must be paid greater
attention. The typical masking configurations given in Figure 1 can be re-
appraised in this light. The presence of an influential cluster, as in
Configuration A suggests localized inadequacy in the model formulation,
perhaps a departure from linearity in the extremes of the predictor space.

The occurrence of separated sets of mutually masking cases, as in
Configuration B, has the aspect of coincidence. Of course such
configurations may correspond to underlying relationships, which may be
deduced by a sufficiently perceptive and/or persistent investigator. In
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either case, however chance seems to play a significant role in connection
with this sort of configuration, in that one must either be unlucky for
them to occur, and/or rather lucky to be able to make any sense from
them. On the other hand, the occurrence of high influence clusters is
more likely to be substantially significant and informative.

By the arguments above, both major motivations in considering
influential subsets will be well served by first considering sets which are .
clusters, with possible emphasis on the predictors. Such an initial |
reduction is a reasonable, if not, foolproof tactic, particularly, in light of
the problems which arise if no such initial reduction is made. Of course,
other sorts of meaningfut structure, generally arising out of a problems
peculiar context, can also be addressed. Clustering, however, has been
found to be a serviceable general purpose tool in elaborating structure in
high-dimensional problems. In the next section we consider relevant

clustering strategies.

9. Clustering for influence
5.1 Clustering

Clustering as a diagnoistic aid has been considered previously in the
context of diagnostics for regression models (see Daniel & Wood, 1980),
and extended to generalized linear models (Landwehr, Pregibon, &
Shoemaker, 1984). In those places, hierarchical clustering algorithms
were used to partition observations into near-replicates, for the purpose
of computing lack-of-fit statistics.

The use of clustering in the present connection has already been
considered by Gray and Ling (1984), whose methods seem toe work in
practice, without having a strong theoretical justification. The relevance



of their use of H*, however, can be elucidated when one notes that its
elements can be written (assuming the inclusion of a constant term) as,
nh*ij =1+ (x*i-ﬂ)t Sygs! (x*j-?‘)

where x*%=(x;,ui)t, X* =n"12 %%, and Sgx=n"1Y (x*%-x)(x%-x%).
The h*;;'s relate the cases in terms of inner products with respect to
their estimated covariance structure in the (p+1) observation space. As
well, they can be related directly to the Mahalanobis distance,

dm(x*i,x*j)=(x*,--x*j)'sx*"(x*i-x*j),
by noting that dm(2;,2j)=h%;;+h*;;-2h%;;, which together with the above,
implies that

nh¥j = . 5% {dm(x*;, X% + dm(x*5,%%) - dp(x*;, %%} + 1.
The measure of similiarity afforded by the use of H* thus takes into
account the remoteness of cases considered separately, in addition to
their proximity. Consequently, clustering on the matrix H* tends to give
rise to (potentially influential) outlying clusters relative to the
Mahalanobis distance.

Though the above sheds some light on the apparent utility of the

Gray and Ling method, the heuristic nature of the method offers little
assistance in the subsequent interpretation of identified subsets. In
particular their approach fails to take into account the response-
explanatory distinction. The question then is what type of clustering is

likely to best serve our ultimate aims.

9.2 Case distances.
Clustering methods in general have the following outline. Since the

aim of clustering is to define sets of "similar® cases, the fundamental
construct is the distance matrix, A=(&;;), which describes dissimilarities
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between pairs of cases (i,j). Taking the simple view that cases
correspond to (p+1)-variate observations (x;,y;), one can refer to the
clustering literature to find any number of distance measures. According
to our previous arguments, measures that reflect the response-explanatory
dichotomy are required. One possibility is to base distances solely on the
explanatory variables. An inherent benefit of this is that the sampling
behaviour of subsequently derived measures, such as lack-of-fit
statistics, will be easier to calibrate. This is the approach adopted in
Landwehr, Pregibon and Shoemaker (1984), who use simple Euclidean

- distance based on the X’s.

A number of pitfalls limit the utility of this strategy. Firstly, the
lack of invariance under scale changes requires that the choice of scales
be carefully thought out. Secondly, and perhaps more importantly, the
relevance of the distance measure is all too easily corrupted by the
inclusion of irrelevant or redundant variables. For this reason, Atkinson
and McCullagh (1984) suggest that the distance be based on fitted values.
The danger in this approach, of course, is that it is heavily reliant on the
aptness of the fitted values, which depends strongly on the very model
whose validity is in doubt.

A compromise strategy which mitigates, though cannot eliminate,

the above difficulties, 1s given by Daniel and ¥ood in their motivating
paper, which uses the distance, Apy, with entries

8ij 2= Yk=1..p rlxik-%j)k .
This measure shares to some extent the defects and virtues of the above
alternatives. The associated geometry is invariant under scale changes in
the explanatory variables, though not under arbitary affine
transformations of x. Irrelevant vartables are downwelghted in the



distance, with some attendant dependence on the reliablity of b. This is
not altogether undesirable, for if a particular coefficient is spuriously

large due to the influence of a cluster of cases, such clusters are likely to
emerge using §;; as the distance measure. If however, a variables effect

has been masked, due to such a cluster, the methods based on Apy may

tend to overlook this sort of structure. This can be mitigated by the

incorporation of a robust, bounded influence form of b in &;;, which will be |

sensitive to this sort of structure, (but then by the same token, be
insensitive to that mentioned just previously).

The above measures by no means comprise an exhaustive catalog. In
particular applications, substantial considerations may indicate more
appropriate distance measures. In formulating a diagnestic approach,
however, realistic limits must be placed on our ambitions. As a good all

purpose distance measure, Apw, represents a plausible compromise

between our various, and possibly cpnflicting, aims.

5.3 Clustering approaches

Settling, at least provisionally, on the use of Apy as the distance
measure, it remains to choose among the various proposed clustering
strategies (see e.g. Everitt, 1980). Hierarchical methods have received
most attention in the statistical literature, and are implemented in the
commonly available packages, thus seeming a natural choice. One
difficulty, however, is the more or less arbitrary choice that needs to be
made between the competing approaches, which include complete-linkage,
single-linkage, average distance, and k-clustering (Ling, 1972) methods.
That so many clustering strategies have emerged is a consequence of that

fact that no single hierarchial method captures the diverse scope of



cluster structures. The narrow focus such clustering algorithms resuilts
largely from the restriction to a partition-like structure inherent in the
hierarchical approach.

An approach which is not so rigid, but still tractable can be based

on the use of nhear neighborhoods, described as follows. For a case i
Choose j,j2see ojps SUCh that §jj < 81j,¢ ... 8jjn, Giving rise to the nested

sets, {i}, {i,jo}seee s {iyjsee sjp}e These near neighborhoods provide a
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complete characterization of the topology induced by 8. More importantly, |

they are natural candidates for consideration as high influence subsets,
and provide a flexible basis for investigation of such sets which avoids
the difficulties of partitioning strategies. Since smaller neighborhoods
are of most interest, a judicious choice to restrict to sets of size m or
smaller will generally be made, and influence measures computed for such
sets. The basic algorithm is simple, and the calculation of influence
measures can be streamlined by taking advantage of the nested structure
of sets.

The results of calculation are naturally displayed using
generalizations of the index plots used in dealing with single cases. To
mitigate the swamping effect, it is most informative to plot successive

differences in measures for consecutive nested neighborhaods, rather than
the raw measures themselves. For instance, with reference to D;

differences of the form djy=Dg-Dy, where I={i,...,jx-1} and K={i,....,ji} can be
plotted and the results displayed in superimposed index plots. As an
example, in Figure 4 such a plot describes D for Apw based neighborhoods
up to m=5 from the house price data. Referring to Table S, which
describes the reievant neighborhoods, the joint influence of cases 9 and

10 becomes apparent.



The real potential of the above method is in application to a larger
data sets, where competing methods tend to be extremely cumbersome or
lose sensitivity. Consider for example the gasoline vapor data referred to
in Cook and Weisberg (1980) and described more fully in Weisberg (1985).
The data consists of 125 cases describing the results of an experiment
aimed at relating the quantity of vapors released on the filling of a
gasoline tank (y), to initial tank temperature (%), gasoline temperature
(x,), initial vapour pressure (x3), and vapour pressure of the gascline (x4).
dingle case measures give some indication of potential problems in
Figures 5 and 6. Investigation of larger size subsets was considered by
Cook and Weisberg, from a purely computational viewpoint, who illustrated
the high computational cost of considering even small subsets based on an
all possible subsets approach.

Figure 7 describes Dy for Apw neighborhoods up to size 6. The plot
indicates high influence neighborhoods in the vicinity of cases 76-77 and
near cases 61-66. Closer examination of the neighborhoods tabulated in
Table 6 reveals two apparently influential sets, one involving cases 61-65
and the other involving cases 58 and 73-77. The anomolous nature of
these sets can be assessed further by inclusion of indicator variables for
the two sets in question. The relevant t-tests (2-side) yield observed
levels of significance smaller than .001, indicating apparent lack of fit.
On closer examination the cases were found to be among a group of 17
which had unusually high values of X,. Fitting a separate model to this
distinct group yielded a result significantly different from the fit of the
remaining observations, indicating a breakdown of the model in this
isolated region of the predictor space.
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6. Leverage and Outlier sets .
6.1 Leverage sets

The above proposed strategy is effective in identifying potentially
interesting influential sets. Further understanding of the precise
implications of individual sets can be augmented by consideration of the
leverage-outlier dichotomy. We begin by considering the measurement of

leverage for a set.

21

From an algebraic point of view, at least, HI is the natural analogue |

of h;; when dealing with subsets. Since its matrix form is somewhat
inconvenient, we are lead to consider its reduction to a scalar quantity.
From the viewpoint of comparing subsets within a model, D; is determined
by the quadratic form, e)tHy e¢r), and whereas e¢py~N(0,0%(I-Hp)~1), a
natural measure of leverage is
1= sup {e € R™ | (etH; e)/(el{I-Hpe)}.

It is easily seen that ¥] = hy/(1-hy) {(see Cook and Weisberg, 1962, p.l4:l)
where hy is the largest eigenvalue of Hj, so that hy represents a convenient
extension of the single case leverage, h;j, to subsets.

Just as hj; can be considered on its own as an influence measure,

one might consider wholesale screening for high leverage sets. The
wholesale calculation of hy for all subsets is computationally impractical,

and as the following reveals, unnecessary. Suppose I is the disjeint union
of sets J and K, of sizes my and my, respectively, with m=m +mg. Then
hy2minthy,hg) and, more irhportantlg, hy ¢ hythg, implying that

hi/m s max(hy/mg,hg/mg). By the latter we see that the union of two low
leverage subsets cannot give rise to a high leverage subset, and thus that

masking is not a serious issue in looking for high leverage sets. Indeed by
the simple extension of the above upper bound on hj, we have h]ﬁ_ziahﬁ
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(Cook and Weisberg 1982, p. 146) and consequently, hy/m<max(hij, i€l), so

that any high leverage set must contain leverage points. This lower bound
shows that a high leverage case will tend to give rise to a large number
of apparently influential subsets, due to "swamping”. Thus, screening all
subsets for apparently high leverage sets does not appear necessary, nor
even desirable.

Some guidelines are required for assessing magnitudes of hy.

Firstly, some allowance for subset size is necessary. One notes that if |
consists of m exact replicates then hy=mb;;, where h;; is the common case

‘leverage. Thus, subsets of differing sizes can reasonably be compared in
terms of hy/m, where m is subset size. Additionally, since for any
partition of the data, M={l,, I,, ...., I¢}, the bound ZIeIT hy < p holds, informal
cutoffs of the form h;/fn > cxp/n, generalizing the single case guidelines,

seem reasonable. Additionally one notes that the Euclidean length norm,

( Y172
L J

provides a useful and computationally convenient bound, hjstg, if one

wishes to avoid eigenvalue calculations.
It is convenient to apply hy to nearest neighbor clusters and plot

successive differences for nested neighborhoods in superimposed index
plots. In Figure 8, set leverages, hy, are described for the nearest
neighbor systems of the house price data and the gas vapour data. In the
house price plot, no unusally leveraged sets emerge, while in the vapour
plot, the high leverage of the already noted influential sets is revealed.
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6.2 Outlier subsets.
The remaining component of Dp, e¢), carries the information
regarding the response, and hence is more directly informative of

discrepant behaviour with respect to the model. Assessment of the
apparent magnitude of this discrepancy is based on Qp=e(y{(I-Hpe(py,

owing to the fact that, under the model, Var{e(y)) = 62(I-Hp)~'. Our
investigation in the previous section gives us that
Dy <({ps?)~ 1y Qp/(1-hy).

The use of Qp in screening outlier subsets has been considered by
Gentleman and Wilk (1975) and by Draper and John (1981). As previously
indicated, Qq can be used as the basis for formal tests for mean shift
alternatives, E(y¢y))=X$ +6. One has under the preliminary model that

F1= Qp{ms?(py} =t~ F(m,n-p-m).
Large values of Fy provide evidence that I contains anomalous cases,
specifically that one or more of the cases is not adequately described by
the model.

The above statistic is best used as a means of flagging observations
for subsequent consideration on more substantial grounds, rather than in
any "automatic” outlier rejecting procedure. As noted previously, the
statistical significance any test of Hy: §=0 calibrated under the Gaussian
assumption, is subject to a number of interpretations: to the skeptical, a
significant result offers as much evidence against the Gaussian
ass’umption as it does against Hy.

Following the general strategy adopted here, Qj, can be calculated
for relevant cisters, and plotted in the superimposed index plots. Figure 9
gives plots for the examples considered previously. In the house price
example, cases 9 and 10 stand out as an outlier pair, whereas in_the



gasoline vapour data, no such characterization seems to apply to the
detected influential sets. In the latter case, the high laverage of the
identified set is apparently the key factor.

7. Conclusion.

The main contention here is that the problem of dealing with
influential subsets is substantially more than the computational problem
of identifying them, in that useful methods must facilitate the eventual
interpretation of such sets. The suggested approach is founded on first
considering what types of influential subsets are amenable to
interpretation. While no single and canonical approach presents itself in
this connection, a number of plausible and computationally tractable
methods can be considered. In particular, the use of a simple measures of
distance between cases, in combination with either of hierarchical
clustering or nearest neighborhoods methods, has been shown to be useful
in identifying subsets which are worthy of further consideration.

As increased computing power becomes available, the computational
problems which prevent wholesale screening may be mitigated. However,
the identification of meaningful structure in a catalog of apparently high
influence subsets itself requires a large scale effort. The development
of expert systems may hold some promise in this regard, but before this
can be accomplished, formalization of the notion of meaningful sets in
some relevant and context dependent fashion will clearly be required.

Many approaches beyond those considered here are of interest.
Further advances may follow from projection pursuit type approaches,
assuming that suitable figures of merit for influentfal cases can be

defined, and incorporated in screening algorithms along with the more
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fundamental measures. It is clear that a great variety of intriguing and
challenging puzzles remain to be posed, let alone solved, along the way
towards defining a truly reliable methodology for regression.
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Table 1. House price example - Initial fit.

Intercept
TAKES

BATHROOMS
LOT SI2E

LIVING SPACE
GRRAGE SPRCES

ROOMNS
BEDROONS
AGE
FIREPLACES

N =27

Coef
6.075697
1.235185
7.314949
0.1902708

13.47302
1.178733
-0.7981690
-0.6265635
-0.0657891
2.183505

Std Err
7.239311
0.7899085
5.875446
0.5620011
4.611445
1.887768
2.419271
3.631443
0.0853271
2.415502

Residual Standard Error = 4,16123

Nultiple R-Square = 0.944691
32.263 on 9, 17 df

F VUalue =

t Ualue
0.8392645
1.563706
1.245003
0.3385596
2.921649
0.6244059
-0.3299211
-0.1725384
-0.7710222

0.9039548
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Table 2. House price example - Fit after deleting case 27.

Coef Std Err t Value
Intercept 12.47016 6.894323 1.608758
TAXES 3.339125 1.141679 2.924749
BATHROONS 5.321845 5.197185 1.023985
LOT SIZE -0.1949443 0.5177904 -0.3764926

LIVING SPACE 8.029766 4.661284 1.722651
GARAGE SPACES 1.019622 1.648135 0.6186522

ROONS -3.833121  2.485514  -1.542184

BEDROOMNS 2.67493¢  3.4746863 0.7697910
AGE -0.02568243 0.07641286 -0.3379576
FIREPLACES 3.628789 2.197873 1.651045

N =26

Residual Standard Error = 3.629835
Hultiple R-Square = 0.957864
F VUalue = 42.93965 on 9, 17 df



Table 3. House price example - pairs of cases with Dy exceeding 1.

Pair # Cases ]
1. 1 27 1.378443
2. 2 27 1.460718
3. 3 27 1.499184
4. 4 27 1.455401
S. S 27 1.43407
6. 6 27 1.982067
7. T 27 1.487367
8. 8 9 1.09925¢
9. 6 17 1,15359%4
10. 9 10 4.369832
1. 9 27 1.542622
12. 10 27 1.139819
13. 11 27 1.470820
14. 12 27 1.363460
15. 13 27 1.703831
16. 14 27 1.535012
17. 15 27 1,618515
18. 16 27 1.684534
19, 1?7 27 3.083667
20. 18 27 1.671008
21, 19 27 1.106483
22. 20 27 1.237749
23. 21 27 2.131597
24, 22 27 1,550358
25. 23 27 1.531716
26. 2¢ 27 1.4628686
27, 25 27 1.285607
28. 26 27 1.499126



Table 4. House price example - Fit after deleting cases 9 & 10.

Coef Std Err t Ualue
Intercept 12.30116 5.327496 2.308995
TAXES 0.7901007 0.5622194 1.405324
BATHROONS 8.141895 4.073024 1.998980
LOT SIZE 0.3692263 0.4154420 0.9368968

LIVING SPACE 4.394036  3.953067 1.111551
GRRAGE SPACES 2.228946 1.307801 1.704346

ROOMS 1.459548 1.826292 0.7991868
BEDROOMS -3.564105  2.856087  -1.247898
AGE -0.05316637 0.06284146 -0.8460398
F IREPLACES 0.5415165 1,708715 0.3169144
N=25

Residual Standard Error = 2.834428
Multiple R-Square = 0.842691
F VUalue = 10.11864 on 9, 17 df



Table 5. House price example - neighborhhood systems up to m=5 based
on Apw.

Case no. Neighbors (in ascending order)

t. 6 3 3 14
2. 12 8 4 11
3. 9 4 11 14
4. 3 9 11 7
3. 3 14 4 1
6. 1 S 3 13
1. 20 4 11 9
8. 12 2 4 25
9. 10 26 22 24
10. 9 26 22 24
11, 14 9 3 20
12, 8 2 23 &
13. 14 1 9 15
14, 1 S 3 13
13, 9 6 13 1
16. 24 26 21 22
17, 18 23 21 16
18. 1721 25 19
19, 25 18 8 12
20. [ 1" 14 |
21, 23 16 26 17

22. 24 26 16 21
23, 21 16 17 12
24. 22 16 26 21
25, 19 12 18 8
26. 22 24 16 21
27. 18 19 1?25



Table 6. Gasoline vapor example - neighborhood systems for cases
60-80, based on Apwy.

Case no.  Neighbors (in ascending order)

60. 59 5t 65 6l 66
61. 62 63 64 65 66
62. 63 64 61 65 66
63. 62 64 61 65 66
64. 62 63 6l 65 66
65. 66 61 62 63 64
66. 65 61 62 63 64
67. 92 80 94 99 63
68. 90 9¢ 10¢ 0 108
69. 88 101 8¢ 89 86
10. 66 97 96 90 85
. 12 S5 48 13 49
2. 71 49 48 3 13
3. 74 58 S5t ¢ 18
. 3 % 58 7t 5S¢
. % 1 3 1 S8
6. [ & SRR & Y & G-
17, M 7 13 4 57
8. 9 W3 5t
9. w vt 3 S5t 4
80. 9 99 82 83 98
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