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Ff nd1 ng and Understand1 ng 
Inf1 uent1 a 1 Sets 1 n Regress1 on 

by 

Ro111n Brant 
Dept. of App 11 ed Stat1 st1 cs 

Un1vers1ty of Minnesota 
st. Paul, M1 nnesota 551 OB 

5UMMARV 
Th1s paper addresses the problem of 1nf1uent1a1 sets tn 11near 

regresston. Past 1nvest1gattons tnto thts area have tended to emphasize 
the computational difficulties associated with the identification of 
1nfluent1al sets. Important conceptual d1ff1cultfes, however, must be 
addressed tn advance of computation. In particular, 1dent1f1cat1on methods 
should faci11tate subsequent interpretations ·and not merely provide an 
untnformative catalog of such sets. L1ke1y 1nterpretat1ons of 1nnuent1a1 
sets and relevant strategtes based on clustertng concepts are discussed. 



1. lntroduct1 on. 

In f1tt1ng linear models to data 1t is not unusual for a relatively 

small group or cases to play a df sproportfonately large role 1n determ1n1ng 

the overa 11 r 1 t. Wh11 e such an occurrence 1 s not a 1 ways undest rab 1 e, the 

fdentiff cation of such .. 1nf1uentia1 sets .. w111 generally be of interest to an 

1nvestigator, who, depending on context, must then make some Judgment on 

the advfsab11fty or relyfng so heavny on Just a few observations. 

Unfortunately, neither the customary inspection of residuals, nor the use 

of robust regression techniques provide reliable means for identifying 

fnfluentf al sets. To thfs end, alternative d1agnost1c procedures have been 

deve 1 oped, with the major emphasis being on the 1 dentf f i cation of 

influential cases. Attempts to generalize these procedures to uncover 

1nfluenttal sets have met obstacles of a largely computational nature. In 

addition, fundamental difficulties associated with the interpretation of 

influential sets have not been adequately addressed. Here we shall seek 

methods that mitigate both kfnds of difficulty. 

We begin, in Sections 2 and 3, by providing a brief review of formal 

characterizations of influentfal sets and some of the avaflable strategies 

for identifying them. Section 4 considers the problem -of interpreting 

influential sets. In Section 5 we introduce identtfication methods based 

on clustering which fac111tate such interpretation, and fn Section 6 

consider measures whtch are addtttonally useful 1n this regard. 

The framework for 1nvestigation is as follows. Based on a sample 

of n elements from some population, observations on a response variable, 

Yt, and p explanatory variables, given as vectors x1 = (x11,x12, ... , x1p), are 

recorded in pairs (y1,x1), i= 1,2, ... ,n, which are ref erred to as cases. It is 

assumed that the vector of response observations y:(nx 1) is related to 



X:(nxp) the matrix of explanatory observations, X=(x,J), by y = X.J + E, 

where E - Np( o , 0'21 ) 1 s a vector of unobservab 1 e errors and J:(px 1) 1 s a 

vector of unknown coefficients. 
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Though $ is ostensi b 1 y the main target of i nvesti gati on, the entire 

specification is invariably tentative and itself subject to scrutiny. After 

initial examination of the data based on simple descriptive measures 

and/or graphs, evaluation of the model usually begins with fitting the 

least squares estimate for J, b:(px 1 ). This estimate in turn determines 

fitted values, y=Xb, residuals, e =y-y, and an estimate of 0'2, 

s2=ete/(n-p), which provide the customary basis for model calibration and 

crf t1 c1 sm. In add1 ti on, the ·Hae matr1 x, H = (hij )= X(xtxr 1 xt , so ca 11 ed 

since y=Hy, is an important component in diagnostic procedures. 

The basis for many influence diagnostics is case and/or set 

deletion. Fundamental to measurement of' the influence of a single case, i, 

are the case-deleted parameter est1mates, b(i) and s2(i), which are the 

estimates obtained when the i'th case is omitted. Relative to the 

consideration of a set of cases, say I=U,,12, ••• ,1m}, we analogously define 

b(I) and s2(1), estimates based on the data om1tt1ng the cases In I. In 

addition we shall let YI and Xi denote the observations corresponding to 

cases in I, and set H1= x1cxtx)- 1x1t, the associated submatrix of H. 

Summations shall be assumed to run from 1 to n unless otherwise noted. 

2. Characterizing Influence 

An excellent discussion of influence in general is provided by Cook 

and Weisberg ( 1962). The fallowing brief review focusses on approaches 

to defining influential sets. This concept admits many possible 

formalizations, depending on the particular aims of model fitting. 



Nonetheless, a relat1vely sma11 number of ·general purpose· diagnostic 

proposals have been made, most of wh1ch are simple extensions of single 

case diagnostics. 

The d1agnost1c use of components of H 1s naturally motivated. 

ow1ng to the 1dempotence or H, 

hjj = hji2 + lJ1ti hjj2, (2.1) 

revealing that if hu is near 1, Yt is principally determined by Yi, which 

will thus tend to be influential in the overall fit (Huber, 1977). Thus hj1 

has been termed the 1 average for case 1. Ana 1 agous 1 y, measures of set 

leverage derive from applying matrix norms to Hi, the multi-case analogue 

of hu, which we consider in Section 6. 

It is informative to note that h11 satisfies (assuming the inclusion 

of a constant term) 

nhii = 1 + (x1-x)sx-1(x1-i)t, (2.2) 

where x=n-1li=-=1 ,nxi and Sx=n- 1li=1,n<x1-iJt(x1-i). Thus leverage is a 

consequence of xj's remoteness relative to x measured by the Mahalanobis 

distance. Additionally one has lhu=p, so that the average leverage is pin. 

A lower bound, hj11 n-1 derives from (2.2), while hj11 1 follows from (2.1). 

Based on these considerations, cutoffs of the form hu>cxp/n, have been 

proposed for d1st1nguishing leverage points (Hoaglin and Welsch, 1978; 

Veneman and Welsch, 1981). 

A d1rect descr1pt1on of the 1mpact on the overall f1t of om1tt1ng an 

observatfon 1s provided by Cook's distance, 

Dt= (ps2)-1(b(o-b)txtx (b(o-b) 

r.. (Cook, 1977). For sets, this gives rise to the genera1ized distrmce, Di, 

which, letting Y<D = Xb(I) and eu,= u1-X1bcu, can be expressed variously 

as 



(ps2> Di = (burb)t xtx (borb) 
= <lio)-y)t(uorii> 
= 8(1) t H1 8(1). 

The 1 atter representation revea 1 s that Di 1 s of an omni bus nature, 

combining 8(1), which describes directly the discrepancy between the 

observations from set I and the fit derived from the remainder of the 
data, and Hi, which reflects the joint leverage of the cases in I. This 

dichotomy has important implications with regard to formal outlier tests. 

For simplicity's sake, consider the case that I={i}, a singleton, whence 
Dt=(ps2)-1h118(1)2· 

In particular, consider the mean shift outlier model for the case i, which 
specifies as an alternative hypothesis, Ha= E(y1) = x1,J+6, i.e. that E(Y1) 

deviates from the nominal specification by some quantity 6. The 

customary test for this alternative is based on 
t12 = {(scn 2>- 1e<n2 (1-hu)}- F(l,n-p-1). 

Significantly, the power of this test is smallest when hj1 is large. Thus 

Oj, and more generally, Di, places emphasis on points that will be revealed 

as outliers in formal tests and on high potential sets whose validity is 

impossible to verify by conventional procedures. Such sets must therefore 

be evaluated in the light of other criteria, which will usually depend on 

the problem's specific context. 

A measure of primarily geometric motivation, proposed by 

Andrews and Pregi bon ( 1978), takes the form 
R1 = I {X* co}t x* o> Ix I cx*)tx* 1-1 , 

where X* = (XI y) and X* (I} denotes the corresponding form, deleting set I. 

R1 is closely related to Wilk's test for outliers in sampling from 

Multivar1ate normal populations, in that it measures the outlyingness of 
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{(x;, Yi>, 1 EU 1n p+ 1 space. one apparent d1sadvantage 1s that 1t 1s 

i nvar1 ant with respect to the designation of response among the p+ 1 

variables, and thus does not reflect the response-explanatory dichotomy. 

The authors do however consider the determination of significance levels 

appropriate to the usual regression situation, where no distributional 

assumptions are made regarding x. 

In Draper and John ( 1961) R1 f s decomposed as 

R1 = [ 1-{(n-p)Q1/s2}] I I-Hi I, 
where Q1=ecotCI-H1)eo>and I 1s the mxm 1dent1ty matnx. The app11cat1on 

of Ri, D1, and the separate use of Q1 and I I-H1 I are compared. Draper and 

John recommend the rout1 ne use of of Di, Qi and I I-H1 I -
Measures s1m11ar 1n form to Di, have also been proposed, 

independently, by Belsley, Kuh, and Welsch ( 1980). In particular Welsch 

( 1982) has recommended using 

Cn-m) 8(1) tx1CX(o txo> >x1 8(1) /(mscl) )2• 

Additionally an approach motivated by reference to the predictive use of 

the linear model, recommended by Johnson and Geisser ( 1983), can be 

straightforwardly generalized to multiple cases. 

3. Identifying Inf1uentia1 Sets 

3.1 Motivations 

As noted previously, the motivation for considering influence 

measures is the insensitivity of the more familiar diagnostics to 

influential cases. In past investigations into the more general problem of 

influential sets, the chief concern has been the masking effect, which 

occurs when the real influence of particular cases is not discernible in 
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single case statistics due to the intervention of .. masking" observations. 

The phenomenon 1s 111ustrated 1n F1gure 1 by two bas1c conf1gurat1ons, A 

and B. For conf1gurat1ons such as these, the effect of delet1on of any of 

the points separately in terms of the single cases measures 1s not 

1nd1cat1ve of the joint influence that the points exert. These effects are 

only discernible on delet1on of the ent1re subset, 1nd1cat1ng that subset 

deletion diagnostics are required to reliably detect all cases that are 

likely to be of interest. 

The above phenomenon 1s 111ustrated 1n a data set ar1s1ng from an 

investigation into the factors determining the selling price of houses, 

(Narula and Wellington, 1977, see also Weisberg, 1965). The var1ables 

cons1 de red were: 

V = sale price 1n dollars 

X1 = current taxes in dollars 

X2 = number of bathrooms 

Xi= lot size 1n square feet 

X4 = 11vtng space tn square feet 

X5 = number of garage spaces 

X6 = number of rooms 

X7 = number of bedrooms 

X8 = age of house 1 n years 

X9 = number of fireplaces 

An initial fit yields the results given in Table 1. An index p1ot of 

the externally studentized residuals, t1=e1/{scn(1-hii) 112}, given in Figure 

2 reveals no significant outliers. Plots of the single case stati~ics hii 
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and Oj 1n Figures 3, however, draw spec1a1 attention to case 27, whose 

deletion results in the fit given in Table 2. Not apparent in any of the 

single case measures is the Joint impact of deleting points 9 and 1 0. The 
tabulation of D1 for all pa1rs (see Table 3) reveals th1s as the most 

influential pair. The fit with the pair deleted is given in Table 4. Closer 

investigation reveals that these cases describe the largest and most 

expensive houses in . the samp 1 e, and concei vab 1 y represent an untenab 1 e 

extrapolation of the model's assumption of approximate linearity. This 

can be formally verified by the fit of a single additional indicator variable 

corresponding to the pair, which yields an observed level of significance 

(two-sided) of p=.00001, confirming that the two taken together are not 

well described by the model considered. 

The above illustrates that the identification of related influential 

cases facilitates the subsequent diagnosis of particular weaknesses in the 

model. In particular, the power of tests for localized inadequacy, 

typically low when based on single cases, increases when applied to 

relevant subsets of a larger size. As well, when cases are identified in 

groups it is much easier to perceive those sorts of patterns which suggest 

particular model improvements. Consequently, we see that the 

consideration of influential sets has two key motivations. The first is in 

overcoming the masking problem. The second aim is to provide some 

grouping of influential (singly or otherwise) points into groups as an aid 

to the criticism and augmentation of the model. 

3.2 Me tho do 1 ogy 

The most direct approach to ide_ntification is to screen all possible 

sets according to a chosen measure and cut-off value. This is generally 
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infeasible due to relatively high expense of the individual computations 

relative to each set coupled with the large number of sets. To decrease 

the expense more selective screening can be done, say by restrict1ng to 

sets of size m1mmax· In most cases, however, the evaluation a large 

number of sets may still be necessary. Thus one desires efficient, or at 

least, computat1ona11y feasible, algor1thms for search1ng out the subsets 

with large values of particular measure of interest. Approaches to the 

computational problem have been considered by Andrews and Pregibon 
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( 1976), Belsley, Kuh, and Welsch ( 1960), Cook and We1sberg ( 1980), Welsch 

( 1962), and Gray and L 1 ng ( 1964 ). 

Andrews and Preg1 bon propose to mi t1 gate the f orm1 dab 1 e screen1 ng 

problem by first applying the influence measures R1 to single cases only. 

They then consider only sets of high scoring cases, restricting further to 

sets of size m1mmax, where mmex is some reason ab 1 e bound chosen by the 

investigator. This approach alleviates, but does not avoid entirely, 

difficulties arising out of masking. 

Screening all subsets of size m1mmax can be facilitated by tree-

search algorithms akin to those g1ven by Furnival and W11son ( 1974) in the 

context of variable subset selection. Such an approach to the calculation 

of set diagnostics is outlined in Belsley, Kuh and Welsch ( 1980). 

Unfortunately, the bounds on residual sums of squares employed by 

Furn1va1 and W11son to prov1de further shortcuts 1n var1able selection, do 

not generalize to influence measures. Thus affordable "leaps and bounds" 

algor1thms for 1dent1f1cat1on do not seem achievable. 

Cook and Weisberg ( 1960) consider the problem of determining all 

subsets of a fixed size m, whose D1 exceeds a given cutoff. They achieve 

an initial reduction in the number of sets to be consi~ered by ar~u1ng that 
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finding an 1nfluentia1 set which 1nc1udes a proper subset provides 11ttle 

add1t1ona1 inf ormat1on. Thus, for instance, individually influential cases 

can be excluded from the candidate 11st for informative influential sets. 

In addition they give a number of bounds which substantially reduce the 

number of subsets for which DJ must be explicitly calculated. However as 

the1r sample computation attests, when the data are numerous, even these 

clever tr1cks serves to rac111tate only cons1derat1on of subsets of s12e 

m=2 or 3. 

A heur1st1c approach to the computat1ona11y feas1ble 1dent1ficat1on 

of i nfl uenti a 1 subsets is given 1 n Gray and Ling ( 1964 ), who base their 

approach on the augmented hat matr1 x, 

H* = x*{(X*)tx* }- 1cx*)t, 

where x* = (XI g ). The nxn matrix H* is used as a similarity matrix 1n a 

clustering algorithm (specifically, k-clustering, see Ling, 1972) as a 

means of ident1fy1ng subsets of potent1a11y high influence. Add1t1ona11y, 

the authors consider similar methods based on -H* and M=(f h1J I>, which 

used 1n connection w1th the H*-based method seem, according to 

experience with examples, to provide a fairly reliable method of screening 

subsets for potential influence according to a number of methods. Though 

empiricany useful, the proposed methods lack a clear theoretical 

foundation, as pointed out in the discussion (Weisberg, 1964). 

The ma1n aim tn the work described above has been to overcome the 

masking phenomenon. Due to inherent computational difficulties, we see 

that no truly practical methodology has emerged. More importantly, 

however, the methods considered above do little to serve our second, and 

perhaps fundamental, goal, which is the identif1catf on of substantively 

meaningful groups of observations. To seek methods which will.better 
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serve this goal, we must consider more carefully what it is we can hope 

to learn from the 1dent1f1cat1on of an 1nf1uent1al set. 

4. Interpreting Innuential Subsets. 

4.1 Influential Cases 

However one chooses to def 1 ne 1 nn uence, some ambt gutty ar1 ses 

w1th regard to the practical consequences of 1nf1uent1a1 cases. The 

1dent1f1cat1on of a potent1a11y anomalous case does not 1n and of 1tself 

1nd1cate spec1f1c remed1a1 action. Rather, 1t 1nd1cates the need for 

additional d1agnost1c measures aimed at investigating the following: 

case rel1abi11ty. Have the assoc1ated observations been perturbed by 

(potentia11y correctable) gross errors, e.g. mistakes in recording the data? 

Is the case pecu11ar in some 1dent1f1able, 1f hitherto unsuspected, manner 

which warrants setting it aside for spec1a1 treatment? 

Model adequacy. Is the model defect1ve 1n a systemat1c way, e.g. 1n 

missing terms 1n X.J or in the spec1f1cat1on or the d1str1but1ons or the E? 

Does the case ra11 in a region of the predictor space where the assumption 

of approximate linearity is tenuous? 

It is helpful 1f the above 1ssues can be confronted 1n some orderly 

manner. A natural f1rst step to take 1n regards to an anomolous case 1s to 

consider the possib111ty of purely haphazard errors, such as mistakes 1n 

data entry. If such can be ruled out, i.e. if the measurements appear valid 

to the best of the investigator's knowledge, more detailed examination is 

warranted. Coming to terms with the relevant issues above can be 
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fac111tated by use of a corespond1ngly multi-faceted me_asure. As 

previously noted, wr1t1ng Cook's d1stance as 

D1 =(ps2)-1 ecn 2hji, 

reflects the fact that, by th1s measure, 1nfluent1 al cases w111 e1ther be 

outliers, as indicated by I ecn I, leverage cases, or some combination 

both. Of course no simple recipe for action can be based th1s taxonomy, 

but the 1nvest1gat1on of an influent1a1 case w111 be a1ded by the separate 

consideration of the components ecnand hii· 

S1nce leverage po1nts correspond essent1a11y to out11ers 1n the 

predictors, the occurrence of such cases provokes reflection on the ·11kely 

tenab111ty of the model 1 n extreme regions of the predictor space. Also, 

such cases may often be deviant fn other respects not accounted for by the 

mode 1. The assessment of these possi bi 11 ti es 1 s hampered, however, sf nee 

as previously noted, testing procedures will usually lack power. In 

general, formal methods will be of 11m1ted ut111ty, and context-dependent 

consi derat1 ons w111 be key. 

An apparent out11er also leads to considering if the offend1ng case 

1s unusual in some 1dent1f1able respect. If examf natf on or the case 

uncovers pecu11ar characterist1cs not described by the pred1ctors, a 

format out11er test is relevant and spec1a1 treatment, e.g. case delet1on, a 

plausible remedy. On the other hand, lacking substantial justification, the 

mere statistical signicance of an outlier based on the conventional 

assumption of normality casts as much doubt on that assumption as on the 

va11d1ty of the case. In such an case, accommodation, rather than separate 

treatment, is arguab 1 y the proper course. 

Robust methods have been suggested as one form of accommodat1 on. 

A not unrelated alternative· course 1s to abandon the usual 
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parameterization in terms of conditional expectations, and adopt a more 

stable parameter1zatf on, for 1nstance, 1n terms of cond1tiona1 medians or 

trimmed means. Th1s is espec1a11y appropriate 1f the assumption of 

symmetry 1s questionable. Many robust estimators can be interpreted in 

this light. For instance the one sample M-estimate, T, defined by the 

estimat1ng equat1on 

can be sensibly viewed as estimating the parameter J.l defined by 

J~(y-µ)dF=O 

where F is the underlying distribution of y, avoiding the somewhat 

art1f1cial assumption of symmetry. 

4.2 Influential sets 

Regard1ng f nterpretatf on of 1nfluentf a1 sets 1n general, one first 

notes that the inherent ambiguity that accompanies the identification of 

influential cases 1s likely to be exacerbated 1n the case of subsets. A 

related df fff culty is the ·swamping- phenonemon, which arises when the 

apparent h1gh influence of a set 1s 1n fact attributable solely to a proper 

subset, e.g. one particularly influential observation. The problem is 

illustrated in Table 4 by the fact that the vast majority of apparently 

influential pairs contain case 27. Similar calculations for m=3 produce 

20 sets with 01 exceeding 4 and 241 such sets for m=4. 

Due to swamping, an inherent difficulty associated with the 

screening approach to 1dent1ftcat1on of 1nnuent1a1 sets 1s that any 

tabulation of sets complete enough to include all potentially interesting 

sets will inevitably include many non-1nterest1ng subsets. Cook and 

Weisberg's approach to m1tf gat1ng the problem is to omit sets w_hich 
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themselves contain 1nnuent1a1 s~bsets. Th1s provides an overly strtngent 

solution, as pointed out by Welsch ( 1962), s1nce substant1ve1y meaningful 

sets wh1ch happen to include singly lnfluenttal cases w111 be overlooked. 

Thus, even 1f the computational problem of screenf ng can be solved, there 

still remains the need for efficient means of exam1n1ng the large number 

of subsets that screening tends to produce. Th1s aspect of the problem 

seems to have been inadequately constdered, perhaps because the screening · 

problem needs itself to be solved before the swamping 1ssue ar1ses. 

However, f11ter1ng out the ·relevant"° 1nfluent1al sets poses a substantial 

obs tac 1 e to the prof 1 tab 1 e app 11 cat1 on of methodo 1091 es a1 med at 

uncovering 1nfluent1a1 sets. 

One strategy which m1t1gates both of the above problems consists 

of simply re-arranging the order or attack. Rather than screening all 

subsets and then looking ror the meaningful ones, one may start with an 

1n1tia1 reduction to potentially relevant sets, to wh1ch influence measures 

may then be app11ed. By relevant sets, we will generally mean sets having 

some more or less simple structure lending 1tself to 1nterpretatlon w1th 

regard to Influence related issues. The nature of such structure Is 

considered be 1 ow. 

Recall that one of the two aims In find1ng influent1al sets 1s to 

relate influential observation in meaningful groups, 1.e groups whf ch have 

some common explanatory character1st1c. 5uch character1stics may arise 

out of the predictors already in the model, or may stem from ·1urk1ng· 

variables. Wh11e the latter poss1b111ty can never be discounted, it 1s not 

an eventua11ty that 1s easy to anttc1pate 1n any formal methodology. our 

efforts are 1f ke 1 y to be more prof1tab 1 e if expended in the d1 rect1 ons 1 n 

wh1ch we have pr1or susp1c1ons. One class of relevant sets to consider 
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first are those which are similar in some respect in the predictor 

var1ables, 1.e. clusters in the predictor space. This 1ntu1t1vely plausible 

move can be given further heur1st1c support by the following argument. 

Suppose that a subset, I, of observations are subject to a similar b1as 

relative to the model, 6, i.e. E(y1)=XdS+61, where 1 is a column vector of 

m .. 1 ·'s. Then E(ecn)=61 and ecntHJ8(1), the key factor in DJ will 

approximately equal 62 1tH11. If x1=m- 11 tx1, the average predictor vector, 

by 1 etti ng Z1=X1-1 x1 one has that 

1tH11 = m2x1{mx1t XJ + z1tz1 + Xcntxcn }- 1 XJ 

is maximized when the entries of Z1 are 0, i.e. when the cases in I are 

replicates. This suggests that large 01 values will tend to occur in 

clusters of exact or near rep11cates. 

The second major aim, uncovering masked i nfl uent1 a 1 sets deserves 

reconsideration, as well. One notes that masking can either arise out of 

the more or less coincidental juxtaposition of anomalous observations, or 

can reflect systematic def1c1encies in the model. The first possib111ty 

will by 1ts own nature be somewhat of a rare occurence, albeit 

unfortunate, but thereby, one w1th wh1ch we cannot be overly concerned. 

The presence of systematic defects is an issue which must be paid greater 

attention. The typical masking configurations given in Figure 1 can be re

appraised in this light. The presence of an influential cluster, as 1n 

conf1guratton A suggests localized Inadequacy 1n the model formulation, 

perhaps a departure from 11 near1 ty 1 n the extremes of the predictor space. 

The occurrence of separated sets of mutually mask1ng cases, as 1n 

Configuration B, has the aspect of coincidence. Of course such 

conf1gurat1ons may correspond to underlying relationships, wh1ch may be 

deduced by a sufficiently perceptive and/or persistent invest1ga~or. In 
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e1 ther case, however chance seems to p 1 ay a s1 gn1 f 1 cant ro 1 e 1 n connectt on 

w1th th1s sort of conf1guration, 1n that one must e1ther be unlucky for 

them to occur, and/or rather lucky to be able to make any sense from 

them. On the other hand, the occurrence of high influence clusters 1s 

more likely to be substantially s1gnif1cant and informat1ve. 

By the arguments above, both major mot1vations in cons1der1ng 

influential subsets w111 be well served by first cons1der1ng sets which are . 

clusters, with possible emphasis on the predictors. such an 1n1t1al 

reduct1on is a reasonable, 1f not, foolproof tact1c, part1cularly, 1n 11ght or 

the problems which arise tf no such 1n1t1al reduction is made. Of course, 

other sorts or mean1ngfu1 structure, generally ar1s1ng out of a problems 

peculiar context, can also be addressed. c1uster1ng, however, has been 

found to be a serviceable general purpose tool 1n elaborating structure in 

hfgh_-d1mens1onal problems. In the next section we consider relevant 

clustering strategtes. 

5. Cl uster1 ng r or 1 nn uence 

5.1 C1uster1ng 

Clustering as a diagno1st1c aid has been considered previously 1n the 

context of diagnostics for regression models (see Dantel & Wood, 1960), 

and extended to generalfzed 11near models (Landwehr, Pregtbon, & 

Shoemaker, 1964). In those places, h1erarch1ca1 c1Uster1ng algorithms 

were used to partition observations into near-replicates, for the purpose 

of computing lack-of-fit statistics. 

The use of clustertng 1n the present connection has already been 

considered by Gray and L1ng ( 1964), whose methods seem to work in 

practice, without having a strong theoretical Justt ff cat1on. The relevance 



of their use of H*, however, can be elucidated when one notes that its 

e 1 ements can be written (assuming the inc 1 usi on of a constant term} as, 
nh*ij = 1 +(x\-?)t sx*- 1 Cx*rx*> 

where x*1=<x"y1)t, ? = n-1 lX*i, and 5x* = n- 1 l Cx\-x*)t (x*1-?). 
The h*1j' s relate the cases in terms of 1nner products with respect to 

their estimated covariance structure in the (p+ 1 ) observation space. As 

well, they can be related directly to the Mahalanobis distance, 
dM(X*1,X*j)=(X*1-X*j)t5X*- 1 (x*1-X*j), 

by noting that dM(Zi,Zj)=h*1;+h*jr2h*ij, wh1ch together with the above, 

imp 1i es that 
n h*ij = .5*{dM(X*i,x*) + dM(X*j,t')- dM(X*i,X*j)} + 1. 

The measure of similiarity afforded by the use of H* thus takes into 

account the remoteness of cases considered separately, in addition to 

their proximity. Consequently, clustering on the matrix H* tends to give 

rise to (pote.ntially influential) outlying clusters relative to the 

Mahalanobis distance. 

Though the above sheds some light on the apparent utility of the 

Gray and Ling method, the heuristic nature of the method offers little 

assistance in the subsequent interpretation of identified subsets. In 

particular their approach fails to take into account the response

explanatory distinction. The question then is what type of clustering is 

likely to best serve our ultimate aims. 

5.2 Case distances. 

Clustering methods in general have the following outline. Since the 

aim of clustering is to define sets of "similar· cases, the fundamental 
construct is the distance matrix, l1=(51j), which describes d1sstmilar1ties 
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between pa1rs of cases (1,J). Tak1ng the s1mple v1ew that cases 

correspond to (p+ 1 )-variate observations (xi, y1), one can refer to the 

cluster1ng lfterature to f1nd any number or distance measures. Accord1ng 

to our prev1ous arguments, measures that reflect the response-explanatory 

d1chotomy are requ1red. One poss1b111ty 1s to base distances solely on the 

explanatory variables. An inherent benef1t of this 1s that the samp11ng 

behaviour of subsequently derived measures, such as lack-of-f1t 

statistics, w111 be easier to calibrate. This is the approach adopted 1n 

Landwehr, Preg1bon and 5hoemaker( 1984), who use stmple Euclidean 

d1 stance based on the x's. 

A number of p1tf alls 11m1t the ut111ty of th1s strategy. Ftrstly, the 

lack of 1nvar1ance under scale changes requires that the choice of scales 

be carefully thought out. Secondly, and perhaps more 1mportant1y, the 

relevance or the distance measure is all too easily corrupted by the 

1nclus1on or 1rreJevant or redundant var1ables. For th1s reason, Atkinson 

and McCu11agh ( 1984) suggest that the distance be based on fitted values. 

The danger fn th1s approach, of course, 1s that 1t 1s heavny re11ant on the 

aptness of the ff tted values, whfch depends strongly on the very model 

whose validity is tn doubt. 

A compromise strategy wh1ch m1t1gates, though cannot e11m1nate, 

the above d1ff1culties, 1s given by Dan1e1 and Wood tn their motivating 

paper, which uses the di stance, Aow, with entries 

6jj 2= 2k= 1 ... p {bk(Xik-Xjk)}2 • 

Th1 s measure shares to some extent the defects and v1 rtues of the above 

alternatives. The associated geometry fs invariant under scale changes 1n 

the explanatory variables, though not under arb1tary affine 

transformations of x. Irrelevant variables are downwe1ghted tn the 

17 



distance, with some attendant dependence on the reliablity of b. This is 

not altogether undesirable, for if a part1cular coefficient is spuriously 

large due to the 1nfluence of a cluster of cases, such clust~rs are likely to 
emerge using 6ij as the distance measure. If however, a variables effect 

has been masked, due to such a cluster, the methods based on flow may 
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tend to overlook th1s sort of structure. This can be mitigated by the 
incorporation of a robust, bounded influence form of b in 6jj, which will be . 

sensitive to th1 s sort of structure, {but then by the same token, be 

1nsens1tfve to that mentioned just previously). 

The above measures by no means comprise an exhaustive catalog. In 

particular app11cat1ons, substantial cons1derat1ons may 1nd1cate more 

appropriate distance measures. In formu1at1ng a d1agnost1c approach, 

however, rea1istic limits must be placed on our ambitions. As a good all 
purpose di stance measure, flow, represents a p 1 ausi b 1 e compromise 

between our various, and possibly cpnf11cting, aims. 

5.3 ~lustering approaches 
Settling, at lec,st provisionally, on the use of h.ow as the distance 

measure, it rema1 ns to choose among the var1 ous proposed c 1 usteri ng 

strategies (see e.g. Everitt, 1960). Hierarchical methods have received 

most attention in the statistical literature, and are implemented 1n the 

commonly available packages, thus seem1ng a natural choice. one 

difficulty, however, is the more or less arbitrary choice that needs to be 

made between the competing approaches, which include complete-linkage, 

si ngl e-11 nkage, average di stance, and k-cl usteri ng (Ling, 1972) methods. 

That so many clustering strategies have emerged is a consequence of that 

fact that no single hierarchial method captures the diverse scope of 



cluster structures. The narrow focus such c1uster1ng algortthms results 

Jargely from the restr1ct1on to a part1t1on-11ke structure Inherent in the 

h1erarch1cal approach. 

An approach which is not so r1g1d, but sti11 tractable can be based 

on the use of near neighborhoods, described as ronows. For a case 1 

choose h,ji, ... ,jn, such that 61J,1 61fa1 ... 161Jn, giving rise to the nested 

sets, {i}, {i,fa},... , {i,j 1,... ,j 0}. These near neighborhoods provide a 

complete characterization or the topology induced by 6. More importantly, 

they are natural candidates for consideratton as hfgh influence subsets, 

and provide a flexible basts for 1nvestfgat1on of such sets which avoids 

the diff1cu1t1es of part1t1on1ng strategtes. 51nce smaller neighborhoods 

are or most 1nterest, a Judlc1ous chotce to restrict to sets 9f s1ze m or 

smaller w111 generally be made, and influence measures computed for such 

sets. The basic algorithm ts simple, and the calculation of influence 

measures can be streamlfned by taking advantage of the nested structure 

of sets. 

The results of ca1culat1on are natura11y displayed using 

genera11zat1ons of the index plots used 1n dealing with single cases. To 

mf tf gate the swamping effect, it 1s most 1nformat1ve to plot successive 

d1fferences 1n measures for consecutive nest~d neighborhoods, rather than 

the raw measures themselves. For instance, with reference to Di 
differences of the form ~k=DK-Di, where I={i, ... ,jk-1} and K={i, .... ,jk} can be 

plotted and the results displayed in superimposed index plots. As an 

example, in Figure 4 such a plot describes Di for ilow based neighborhoods 

up to m=5 from the house price data. Referr1ng to Table 5, which 

describes the relevant ne1ghborhoods, the Jofnt 1nf1uence of cases 9 and 

1 o becomes apparent. 
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The real potential of the above method is in application to a larger 

data sets, where competing methods tend to be extremely cumbersome or 

lose sens1tfv1ty. Consider for example the gaso11ne vapor data referred to 

in Cook and Weisberg ( 1960) and described more fully 1n Weisberg ( 1965). 

The data consists or 125 cases describing the results or an experf ment 

aimed at relating the quant1ty of vapors released on the f1111ng of a 

gasoline tank (y), to initial tank temperature (x1), gasoline temperature 

(x2), 1n1ttal vapour pressure (x3), and vapour pressure of the gaso11ne (x4). 

Single case measures g1ve some 1nd1catf on of potential problems in 

Figures 5 and 6. Investigation of 1 arger size subsets was considered by 

Cook and Weisberg, from a purely computational viewpoint, who 111ustrated 

the high computational cost of consfder1ng even small subsets based on an 

a·11 possible subsets approach. 

Figure 7 describes Di for Aow neighborhoods up to size 6. The plot 

i nd1 cat es high 1 nf 1 uence neighborhoods 1 n the vi ci ni ty of cases 76-77 and . 
near cases 61-66. Closer examination of the neighborhoods tabulated 1n 

Table 6 reveals two apparently influential sets, one involving cases 61-65 

and the other involving cases 56 and 73-77. The anomolous nature of 

these sets can be assessed further by inclusion of indicator variables for 

the two sets in question. The relevant t-tests (2-side) yield observed 

levels of s1gnif1cance smaller than .oo 1, 1ndf cat1ng apparent lack of fit. 

On closer examination the cases were found to be among a group of 17 

which had unusually high values of X1• Fitting a separate model to this 

distinct group yielded a result sign1f1cantly different from the f1t of the 

remaining observations, indicating a breakdown of the model in this 

isolated region of the predictor space. 
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6. Leverage and out11er sets . 

6.1 Leverage sets 

The above proposed strategy 1s effect1ve 1n 1dent1fy1ng potentially 

1nterest1ng inf1uent1a1 sets. Further understand1ng of the precise 

1mp11catfons of tnd1v1dua1 sets can be augmented by cons1derat1on of the 

1 everage-outl 1 er df chotomy. We beg1 n by cons1 der1 ng the measurement of 

1 everage for a set. 

From an algebraic point of view, at least, Hr is the natural analogue 

of hj1 when dealing with subsets. Since its matrix form is somewhat 

Inconvenient, we are lead to consider its reductton to a scalar quantity. 

From the viewpoint of comparing subsets within a model, Di is determined 

by the quadratic form, 8(I)tH18(1), and whereas 8(I)""N(O,o2(1-HJ)- 1), a 

natural measure of leverage ts 

o1= sup { e E nm I (etH1 e)/(et(I-H1)e) }. 

It is easily seen that 01 = hJ/( 1-hJ) (see Cook and Weisberg, 1982, p.141) 

where hJ is the largest eigenvalue of H1, so that hr represents a convenient 

e~tension of the single case leverage, hji, t? subsets. 

Just as hii can be considered on its own as an 1 nf 1 uence measure, 

one might consider wholesale screening for high leverage sets. The 

wholesale calculation of hr for all su~sets is computationally impractical, 

and as the following reveals, unnecessary. suppose I 1s the d1sJofnt unton 

of sets J and K, of sizes mJ and mK, respectively, with m=mJ+mK. Then 

hr 1 min(hJ,hK) and, more importantly, hi 1 hJ+hK, implying that 

hJ/m 1 max(hJlmJ,hK/mK). By the latter we see that the union of two low 

leverage subsets cannot g1Ye rtse to a h1gh leverage subset, and thus that 

masking ts not a ser1ous 1ssue f n lool<tng for high leverage sets. Indeed by 

the simple extension of the above upper bound on hJ, we have hJ1liEJhji 
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(Cook and Weisberg 1982, p. 146) and consequent1y, h1/m 1 max(hu, i EI), so 

that any high leverage set must contain leverage points. This lower bound 

shows that a high leverage case will tend to give rise to a large number 

of apparently influential subsets, due to ·swamping-. Thus, screening all 

subsets for apparently high leverage sets does not appear necessary, nor 

even desi rab 1 e. 

Some gu1 de 11 nes are requ1 red for assess1 ng magnitudes of hi. 

Firstly, some allowance for subset size is necessary. One notes that if I 

cons1 sts of m exact rep 11 cat es then hJ=mhii, where hii ts the common case 

leverage. Thus, subsets of differing sizes can reasonably be compared in 

terms or h1/m, where m 1s subset s1ze. Add1t1ona11y, s1nce for any 

part1t1on of the data, ll=U1, 12, .... , Ik}, the bound L!En h11 p holds, Informal 

cutoffs of the form h1/m > cxp/n, generalizing the single case guidelines, 

seem reasonable. Additionally one notes that the Euclidean length norm, 

( ) 1/2 

t:1 = t:(H1) = (trace( H1tH1))112 = I LiJEI hjj2 I, 
l J 

provides a useful and computationally convenient bound, hJ1t:i, if one 

wishes to avoid eigenva1ue calculations. 

It is convenient to apply hi to nearest neighbor clusters and plot 

successive differences for nested neighborhoods in superimposed index 

plots. In Figure 8, set leverages, hi, are described for the nearest 

neighbor systems of the house price data and the gas vapour data. In the 

house price plot, no unusally leveraged sets emerge, wh11e tn the vapour 

plot, the high leverage of the already noted influential sets is revealed. 
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6.2 outl 1 er subsets. 

The remaining component of Di, ecn, carries the information 

regard1ng the response, and hence 1s more directly 1nformat1ve of 

discrepant behaviour w1 th respect to the mode 1. Assessment of the 

apparent magnitude of this discrepancy is based on Qi=ecutO-Hi)ecn, 

owing to the fact that, under the model, \/ar(ecn> = 0 20-Hi)- 1• Our 

1nvest1gat1on 1n the previous sect1on g1ves us that 

Di i (ps2)- 1 hi Qi/( l -h1). 

The use of Qi in screening outlier subsets has been considered by 

Gentleman and W11k ( 1975) and by Draper and John ( 1961). As previously 

indicated, Qi can be used as the basis for formal tests for mean shift 

alternatives, E(Ycn> =Xii+ 6. One has under the preliminary model that 

Fi= Qi {ms2cn }- 1- F(m,n-p-m). 

Large values of Fi provide evidence that I contains anomalous cases, 

spec1f1ca11y that one or more of the cases 1s not adequately described by 

the model. 

The above stat1 st1 c is best used as a means or fl agg1 ng observat1 ons 

for subsequent cons1deratf on on more substantial grounds, rather than 1n 

any ·automatic" out11er reJecttng procedure. As noted previously, the 

stat1st1cal s1gn1f1cance any test of H0: &=O calibrated under the Gaussian 

assumpt1 on, 1 s sub J ect to a number of 1 nterpretat1 ons: to the skept1 ca 1, a 

s1 gn1f 1 cant result offers as much ev1 dence aga1 nst the Gauss1 an 

assumption as 1 t does aga1 nst H0• 

Following the general strategy adopted here, Qi, can be calculated 

for relevant clsters, and plotted 1n the super1mpose.d 1ndex plots. F1gure g 

g1ves plots for the examples considered previously. In the house price 

example, cases 9 and 1 o stand out as an out11er pair, whereas 1n. the 

23 



gasoline vapour data, no such characterizatf on seems to apply to the 

detected influential sets. In the latter case, the high leverage of the 

1dent1f1ed set is apparently the key factor. 

7. Conc1uston. 

The ma1n contention here is that the problem of dea11ng w1th 

1nfluential subsets 1s substantially more than the computational problem 

of identifying them, in that useful methods must facilitate the eventual 

interpretation of such sets. The suggested approach is rounded on first 

cons1dering what types of 1nfluential subsets are amenable to 

1nterpretat1on. Wh11e no single and canonical approach presents 1tse1f 1n 

th1s connect1on, a number of plausible and computat1ona11y tractable 

methods can be cons1dered. In particular, the use of a simple measures of 

distance between cases, 1n combination w1th either of hierarchical 

clustering or nearest neighborhoods methods, has been shown to be useful 

in 1dent1fying subsets which are worthy of further considerat1on. 

As 1ncreased comput1ng power becomes available, the computat1ona_1 

problems which prevent wholesale screening may be m1tfgated. However, 

the 1 dentf f 1 cat1 on of mean1 ngf ul structure 1 n a cat a 1 og of apparently h1 gh 

f nfluence subsets itself requires a large scale effort. The development 

of expert systems may hold some promise 1n th1s regard, but before thts 

can be accomp11shed, rorma11zat1on of the notion of meaningful sets 1n 

some relevant and context dependent fashion will clearly be required. 

Many approaches beyond those const dered here are of 1 nterest. 

Further advances may follow from projection pursuit type approaches, 

assuming that suitable figures of merit for 1nf1Uentia1 cases can be 

defined, and incorporated in screening algorithms along with the_ more 
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fundamental measures. It 1s clear that a great variety of 1ntr1gu1ng and 

cha11eng1ng puzzles remain to be posed, let alone solved, along the way 

towards def1n1ng a truly re11able methodology for regression. 
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Table 1. House pr1ce example - Init1a1 fit. 

Intercept 
TAXES 
BATHROOMS 
LOT SIZE 
LI U I HG SPACE 
GARAGE SPACES 
ROOMS 
BEDROOMS 
AGE 
FIREPLACES 

H = 27 

Coef 
6.075697 
1. 235185 
7.311919 
0.1902708 

13.17302 
1. 178733 

-0.7981690 
-0.6265635 
-0.0657891 
2.183505 

Std Err 
7. 239311 
0.7899085 
5.675116 
0. 5620011 
1. 611115 
1.687766 
2.119271 
3.631113 
0.0853271 
2.415502 

Residual Standard Error c '1.16123 
Multiple A-Square= 0.911691 
F Ualue = 32.263 on 9, 17 df 

t Ualue 
0.8392615 
1.563706 
1.215003 
0.3385596 
2.921619 
0.6211059 

-0.3299211 
-0.1725381 
-0.7710222 
0.90395'18 
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Table 2. House pr1ce example - F1t after delet1ng case 27. 

Intercept 
TAXES 
BATHROOMS 
LOT SIZE 
LI U ING SPACE 
GARAGE SPACES 
ROOMS 
BEDROOMS 
RGE 
FIREPLACES 

H = 26 

Coef 
12.17016 
3.339125 
5.321815 

-0. 1919113 
8.029766 
1.019622 

-3.833121 
2.671931 

-0.0258213 
3.626769 

Std Err 
6.891323 
1.111679 
5. 197185 
0.5177901 
1.661281 
1.616135 
2.165511 
3.1741663 
0.07611266 
2.197873 

Residual Standard Error= 3.629835 
Multiple A-Square c 0.957861 
F Ualue = 12.93965 on 9, 17 df 

t Ualue 
1.606756 
2.921719 
1.023985 

-0.3761926 
1.722651 
0.6186522 

-1.512161 
0.7697910 

-0.3379576 
1. 651015 
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Table 3. House pr1ce examp1e - pafrs of cases wfth D1 exceed1ng 1. 

Pair# Cases D1 
1. 1 27 1.378113 
2. 2 27 1. 160718 
3. 3 27 1.199181 
1. 1 27 1 .155101 
5. 5 27 1 .131071 
6. 6 27 1.982067 
7. 7 27 1 .167367 
6. 6 9 1.099251 
9. 8 17 1 .153591 

10. 9 10 1.369632 
11. 9 27 1.512622 
12. 10 27 1.139819 
13 I 11 27 1.170620 

,. 11. 12 27 1.363460 
15. 13 27 1 . 703631 
16. 11 27 1.535012 
17. 15 27 1. 618515 
18. 16 27 1.661531 
19. 17 27 3.083667 
20. 18 27 1. 671008 
21. 19 27 1.106183 
22. 20 27 1 .237719 
23. 21 27 2. 131597 
2i. 22 27 1.550356 
25. 23 27 1.531716 
26. 21 27 1.182688 
27. 25 27 1.285607 
28. 26 27 1.199126 



Table 4. House price example - Fit after deleting cases 9 & 1 O. 

Intercept 
TAXES 
BATHROOMS 
LOT SIZE 
LI U I HG SPACE 
GARAGE SPACES 
ROOMS 
BEDROOMS 
AGE 
FIREPLACES 

H = 25 

Coef 
12.30116 
0.7901007 
8. 111895 
0.3892263 
1.391036 
2.228916 
1.159518 

-3.56i105 
-0.05316637 
0.5115165 

Std Err 
5.327196 
0.5622191 
1.073021 
0.1151120 
3.953067 
1. 307801 
1.826292 
2.856087 
0.0628i116 
1. 706715 

Residual Standard Error= 2.831128 
Multiple A-Square= 0.812691 
F Ualue = 10.11861 on 9, 17 df 

t Ualue 
2.308995 
1.105321 
1. 998980 
0.9366968 
1. 111551 
1. 701316 
0.7991668 

-1.217898 
-0.8160398 
0.3169141 
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Table 5. House price example - netghborhhood systems up to m=5 based 
on llow-

Case no. 
1. 
2. 
3. 
1. 
s. 
6; 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
1-1. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
21. 
25. 
26. 
27. 

Neighbors (in ascending order) 
6 S 3 11 

12 8 1 11 
5 1 11 11 

. 3 5 11 7 
3 11 1 1 
1 5 3 15 

20 1 11 5 
12 2 1 25 
10 26 22 21 
9 26 22 21 

11 5 3 20 
6 2 23 25 

11 1 5 15 
11 5 3 13 
5 6 13 1 

21 26 21 22 
18 23 21 16 
17 21 25 19 
25 16 6 12 
7 11 11 1 

23 16 26 17 
21 26 16 21 
21 16 17 12 
22 16 26 21 
19 12 18 8 
22 21 16 21 
18 19 17 25 
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Table 6. Gaso11ne vapor example - neighborhood systems for cases 
60-80, based on liow• 

Case no. Neighbors (in ascending order) 

60. 59 57 65 61 66 
61. 62 63 61 65 66 
62. 63 61 61 65 66 
63. 62 61 61 65 66 
61. 62 63 61 65 66 
65. 66 61 62 63 6i 
66 .. 65 61 62 63 61 
67. 92 80 94 99 93 
68. 90 97 107 70 108 
69. 88 101 81 89 86 
70. 66 97 96 90 85 
71. 12 5 18 13 19 
72. 71 19 i8 5 13 
73. 71 58 57 77 76 
71. 73 76 58 77 57 
75. 76 71 73 77 58 
76. 75. 71 73 77 58 
77. 78 79 73 71 57 
78. 79 77 73 57 71 
79. 76 77 73 57 71 
60. 91 99 82 63 98 
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