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Abstract 

A theory or coherence is formulated for rates of exchange between events. 

The theory can be viewed as a generalization of de Finetti's theory of coherence 

as well as Holzer's theory of conditional coherence. Coherent rates of exchange 

on a fixed Boolean algebra are in one-to-one correspondence with finitely 

additive conditional probability measures on the algebra. Results of Renyi and 

Krauss on conditional probability spaces are used to show that coherent rates of 

exchange are generated by ordered families of finitely additive measures, 

possibly infinite measures. This provides an interpretation of improper prior 

distributions in terms of coherence. An extension theorem is proved and gives a 

generalization of extension theorems for finitely additive probability measures. 
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1. Heuristics. 

Suppose the sample space n tor some chance experiment is the set of points 

on the real line. A statistician believes that sets having the same finite, 

positive Lebesgue measure are equally likely; so Lebesgue measure, µ 1, might be 

used as an improper prior. However, the statistician also reels that finite 

sets of the same cardinality are equally likely. Now Lebesgue measure gives all 

such sets measure zero and so counting measure, µ0 , seems more appropriate for 

finite sets. Finally the statistician feels that sets having the same positive 

density are equally lik~ly, where the density or a set A is the limit 

when the limit exists. Now if µ2(A) > O, both µ
0

(A) and µ
1

(A) are infinite. In 

the past statisticians wishing to express vague prior information have often 

chosen an improper distribution such as µ 1, which assesses all "large" sets as 

having infinite mass. Some have used finitely additive proper priors like µ 2 

which give all "small" sets mass zero. 

Is there a way of expressing these opinions simultaneously and of assessing 

their coherence? To answer these questions, we propose a theory of exchange 

rates. The idea is that, if two sets are believed to be equally likely, the 

statistician should be willing to trade a prospective payoff on the one for an 

equal payoff on the other. The usual theory of coherence involves comparing a 

payoff on each event to a payoff on the whole sample space (a sure thing). This 

theory is inadequate for comparing two events both of which are infinitesimally 

2 



small in relation to the whole space. The theory of exchange rates makes such 

comparisons quite natural. 

The appropriate notion of coherence for exchanges involving a finite number 

of "small" sets cannot be the usual one of avoiding a sure loss. The union of 

all the sets involved in any such exchange can again be "small." We will call a 

rate locally coherent if no exchange involving a finite number of sets results 

in a loss on all of their union. (Formal definitions are in the next section.) 

Every measure~ determines a natural exchange rate between sets of finite 

positive measure; p(A) one-dollar payoffs on A are worth p(B) one-dollar payoffs 

on B. Thus the theory of coherence for rates of exchange will also apply ·;c 

measures including improper ones like Lebesgue measure. (This idea that 

p(A)/p(B) is the relative value of a ticket on A to one on Bis mentioned by 

Hartigan [6, p. 15].) 

2. Definitions and summary of results. 

Let n be the sample space for a chance experiment and let Q be a collection 

of pairs (A,B) or subsets of n such that the second element Bis not empty. A 

rate of exchanger on Q is a mapping from Q to [O,m]. Associated to each pair 

(A,B) £ Q is the simple exchange 

sA,B - r(A,B)B - A. 

(In this expression and in the sequel. events and their indicator functions are 

identified.) We imagine that a bookie offers such simple exchanges to a 

gambler. If B occurs, the bookie pays $r(A,B) to the gambler, and if A occurs, 
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the gambler pays the bookie $1. If neither A nor B occurs, no money changes 

hands. (Some readers may wish to interpret r(A,B) as the bookie's odds on A 

against B.) 

An exchange e is any well-defined linear combination ot simple exchanges. 

(The usual conventions are made about arithmetic operations with m and -m. In 

particular, m - m and O •mare not defined. By the way, we could avoid the use 

of infinite numbers by interpreting a rate r(A,B) •mas meaning that the bookie 

will accept any exchange rB - A where r > O.) Let l be a real-valued function 

defined on Q which is zero except for a finite number ot pairs (A,B) and let 

(2.1) e(l) • I l(A,B)SA 8, 
(A,B) ' 

assuming the sum is well-defined. Every exchange e is of this form for some A. 

For each l, let the support of l be the set supp(A) • U{AUB: l(A,B) - O}. 

Notice that, for an exchange e(l), no money changes hands if supp(l) does not 

occur. This suggests the following notion of coherence tor the bookie. 

Definition. The rate ot exchanger is locally coherent if there is no exchange 

e(A) which is strictly positive on supp(A). 

Notice that if e(l) > O on supp (l), then e(l) has a positive intimum on 

supp(l). This is because exchanges have only finitely many possible values. 

We use the term "local coherence" rather than "coherence" because the bookie 

is required to avoid losses on certain proper subsets of the outcome space. The 

usual theory of de Finetti [2,3] only requires the bookie to avoid sure losses 
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on the whole space. In an interesting paper (15], Smith develops a notion of 

"consistency" which is related to local coherence. 

There is a simple relationship between the de Finetti theory and that 

presented here. Let~ be the collection of sets A such that (A,O) e Q and set 

p(A) • r(A,O). Then 

S • p(A) - A A,0 

and we can regard $p(A) as the bookie's price for a ticket worth $1 if A occurs. 

The support of any exchange involving a will, of course, be n. Thus if r is a 

coherent rate of exchange, then p will be coherent in the sense of de Finetti 

(i.e. no linear combination of exchanges sA,O is everywhere positive.) However, 

the converse is easy to disprove. For example, r could be incoherent when~ is 

empty or r could be incoherent because of bad behavior on p-null sets. 

A number of authors, including de Finetti, have studied notions of 

conditional coherence. In a recent paper [8] which is closely related to this 

one, Holzer introduces a notion of conditional coherence for a real-valued 

mapping P(•I•) with domain!, a collection of pairs (A,B) of subsets of n such 

that the second element Bis not empty. If one sets r(AnB,B) • P(AIB), then r 

is unambiguously defined on the collection~• {(AnB,B): (A,B) e !}. Also, r is 

locally coherent if and only if Pis conditionally coherent in the sense or 

Holzer. Thus the conditionally coherent previsions or Holzer are in one-to-one 

correspondence with locally coherent rates of exchange whose domains satisfy the 

requirement that (A,B) e Q implies Ac B. This is a quite natural restriction 
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if the exchange rate is viewed in terms of conditional probability. However, it 

rules out many exchanges which we wish to consider. 

A stronger requirement than local coherence is that a bookie avoid exchanges 

which are positive somewhere and non-negative everywhere. 

Definition. The rate of exchanger is strictly coherent if there is no exchange 

e withe~ 0 on all of a with strict inequality holding somewhere. 

The notion of strict coherence was studied by Kemeny [9] in the context of 

betting odds rather than rates of exchange. 

The next section establishes some of the basic properties of locally 

coherent exchange rates. In section 4 it is shown that locally coherent rates 

of exchange on an algebra of sets are in one-to-one correspondence with 

conditional probability measures. This correspondence together with Renyi's 

characterization of conditional probabilities in terms of linearly ordered 

families of measures leads to an analogous characterization of locally coherent 

rates in section 5. This characterization is useful for the interpretation of 

improper priors and also results in a simple characterization of strictly 

coherent rates of exchange. It is shown in the final section that a locally 

coherent rate defined on an arbitrary domain can always be extended to the 

algebra-of all subsets. 

No attempt is made here to develop a theory of local coherence for 

statistical models comparable to the coherence theories of Heath, Lane, and 

Sudderth (7,11,12]. Such a theory is no doubt possible and would be of interest 

to us. 
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3. Elementary properties of locally coherent rates. 

Assume in this section that the domain Q of the rate of exchanger consists 

of all pairs (A,B), where A and Bare elements of a ring for subsets of n and e 

is not empty. This assumption about the domain of r is not necessary for the 

following proposition, as will follow from the extension theorem of section 6. 

Theorem 3.1. Let r be a locally coherent rate or exchange. Then the following 

are true whenever the quantities are well-defined: 

(1) r(A,A) • 1 

(ii) r(A1UA2,B) • r(A,,B> + r(A2,B) if A1nA2 • 0, 

(111) r(A1,B) ~ r(A2,B) if Al c A2, 

(iv) r(A,B)r(B,C) • r(A,C) 

(v) r(A,B) • r(B,A)-1 

(vi) r(A,B) • r(A,C)r(B,C)-l 

(vii) r(A,B
1

) ~ r(A,B
2

) if s
1 

c s
2

• 

Proof: (1) if r (A,A) > 1, then r(A,A)A - A> O on A. If r(A,A) < 1, then 

-[r(A,A)A - A]> 0 on A. 

(ii) Suppose the left-hand-side is larger than the right and is a finite 

number. Then there is an e >Osuch that 
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(If r(A 1UA2,B) • m, it can be replaced by a finite number for which the 

inequality still holds.) Consider the exchange 

e • {r(A,~A2,B)B-(A,uA2)] - (1+e)[r(A,,B)B-A,J - (1+e)[r(A2,B)B-A2] 

• oB + e(A,UA2>· 

Then e > O on BUA1UA2, a contradiction. 

A contradiction is reached by a similar argument if the right-hand-side is 

assumed larger than the left. 

(111) By (11), 

(iv) Suppose the left-hand-side is larger than the right. Choose c in 

(0,1) so that 

6 s (1-e)r(A,B)r(B,C) - (1+e)r(A,C) > O. 

(If r(A,B) or r(B,C) equals m, replace them by real numbers which preserve the 

inequality.) Consider the exchange 

e • [r(A,B)B-A] + (1-e)r(A,B)(r(B,C)C-B] - (1+e)[r,(A,C)C-A] 

- oC + er(A,B)B + £A. 

Then e > o on AUBUC, a contradiction. (Notice r{A,B) > O if the left side of 
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(iv) is larger than the right.) 

Next suppose the right-hand-side of (iv) is larger than the left. Choose c 

in (0,1) so that 

6 • (1-£)r(A,C) - (1+£)r(A,B)r(B,C) > O. 

(If r(A,C) • m, replace it by a finite number, and if r(A,B) • O, replace it by 

a positive number so that the inequality still holds.) Consider the exchange 

e • -[r(A,B)B-A] - (1+£)r(A,B)[r(B,C)C-B] + (1-£)[r{A,C)C-A] 

• 6C + £r(A,B)B + £A. 

Then e > O on AUBUC, a contradiction. (In the case where r(A,B) a 0, replace 

its second occurence in the definition of e by the positive number used to 

replace it in the definition of 6.) 

(v) If O < r(A,B) < m, the desired equality follows from (1) and {iv). 

If r(A,B) • O and r(B,A) <•,then 

1 • r(A,A) • r(A,B)r(B,A) • O, 

a contradiction~ 

Similarly, if r(A,B) • m, we must have r(B,A) a Oto avoid a contradiction. 
-1 (vi) By {v), r(B,C) • r(C,B). Now use (iv). 

(vii) Use (111) and (v). c 
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4. Conditional probability and rates of exchange. 

0 Let@ be an algebra or subsets of Q and let@ be the collection of non-

empty sets in@• 

Definition 4.1. A conditional probability P ~@ is a mapping P • P(·I·> from 

@x@0 to the real numbers satisfying 

(a) P(•IB) is a finitely additive probability measure on@ for every B £ 

BO - ' 

(b) P(Analc> • PCAIC)PCBIAnc> for A,B in@, c, AflC in @0
• 

This definition is from Krauss [10] and is essentially that or Renyi [14] 

except that countable additivity or the conditional measures is not required 

here. 

0 
A rate of exchanger with domain@•@ is said to be a rate of exchange on@. 

The result of this section is that locally coherent rates of exchange and 

conditional probabilities on an algebra can be viewed as different aspects of 

the same objects. Together with Holzer's equivalence property ([8], Theorem 

5.3), it also shows the equivalence of these notions with his coherent 

conditional previsions on an algebra. 

Theorem 4.1. (1) It r is a locally coherent rate of exchange on@ and P ls 

defined by 

PCAIB> • r(Ane,s) 

- 0 

if Ans. 0 

if Ans - 0 
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0 for A e @, B £~,then Pis a conditional probability on@. 

(11) If Pis a conditional probability on~ and r is defined by 

r(A,B) • P(A AUS) if P(BIAUB) > O 
P(B AUB) 

• • if P(BIAUB) • 0 

0 for A e ~.Be~, then r is a locally coherent rate of exchange on@• 

(111) The mappings r -> P and P -> r defined in (1) and (ii) are inverses 

of each other and therefore define a one-to-one corrrespondence. 

Proof: (1) Use (1),(11), and (iv) of Theorem 3.1. 

(11) Let e • e(A) be an exchange with C • supp(A). Write 

n 
and C - u (AiUBi). 

1•1 
In order to reach a contradiction, assume 

inf e > o. 
C 

An immediate consequence is that, if r(A
1
,s1) ••,then A

1 
> o. 

Let E(•IC) be the expectation operator corresponding to the measure P(•fC). 
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To reach a oontradiction, it suffices to show 

(4.1) 

for i • 1, ••• , n, for then E(efC) ~ o. To prove (4.1), we will consider three 

cases and, to simplify notation, we will omit the subscript 'i'. 

Case 1. O < r(A,B) < ~. 

In this case, 

E(lSfC) • l[r(A,B)P(BfC) - P(AfC)] • 0 

because 

P(A AUB) P(A C) 
r(A,B) • P(B AUB) • P(B C) if P(AUBfC) > O. 

To verify the last equality, use (b) in the definition or conditional 

probability to calculate 

(4.2) PCAIC> - PCAUB)nAfc> 

• P(AUBfC)P(Af (AUB)OA) 

• P(AUBfC)P(AfAUB) 

and similarly 
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P(BIC) - P(AUBIC)P(BfAUB). 

Case 2. r(A,B) • o. 

By the definition or r in (11), P(AfAUB) • o, and then by the calculation in 

(4.2), P(AfC) • o. Hence, E(ASfC) • o. 

Case 3. r(A,B) am. 

As was remarked above, A> 0 in this case. Also, P(BfAUB) a O and hence 

P(BfC) • o. We make the usual convention that integrals over sets or measure 

zero are also zero and conclude that 

E(ASfC) • -AP(AfC) SO. c 

It will follow from Theorem 4.1 and the extension theorem of section 6 that 

a locally coherent rate of exchange on an arbitrary domain Q is consistent with 

some conditional probability on the algebra of all subsets. However, the 

correspondence will not in general be one-to-one. 

5. The Reny! ordering, improper priors, and strict coherence. 

For a conditional probability Pon an algebra~. there is a natural ordering 

of nonempty events: A~ B if and only if P(BfAUB) > 0 and A< B if and only if 

P(AfAUB) • o. This is a linear ordering with associated equivalence relation 

A - B if and only if both P(AfAUB) and P(BfAUB) are positive. This ordering was 

introduced by Reny! (14] for his countably additive conditional probabilities 

and studied by Krauss (10] in the general finitely additive setting. 
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Supposer is a locally coherent rate of exchange on~ and Pis the 

associated conditional probability as in Theorem 4.1. 

Lemma 5.1. If A and Bare nonempty members of@, then 

(1) A - B if and only if 0 < r(A,B) ( CD 

if and only if 0 < r(B,A) < a, 

( 11) A < B if and only if O • r(A,B) 

if and only if r(B,A) • CD 

(111) A S B if and only if r(A,B) ( CD 

if and only if O < r(B,A). 

Proof: Use Theorem 4.1 and Theorem 3.1(v). o 

Let [BJ be the equivalence class of B under - and set r equal to the 

collection of all equivalence classes. For a,8 £ r, write a S S when A~ B for 

some A Ea, B t 8. 

Theorem 5.1 (Reny!, Krauss). The set r or equivalence classes is linearly 

ordered under s. For each a er, there is a finitely additive measure m on B 
a 

which is unique up to proportionality and such that 

(i) O < m (B) < CD for B ca 
a 

(11) m (B) • 0 for [BJ< a 
a 

(iii) m (B) • CD for a< (B] 
a 
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(iv) 

(v) 

r(A,B) • m (A)/m (B) if B £ a, A£~ 
a a 

Conversely, supposer is a linearly ordered set and {m ,a£ r} is a family a 

or measures on@ satisfying (v). Suppose also that, for every nonempty B £ @, 

there is an a£ r such that O < m (B) < ~. For that a, which is unique by (v), a 

define 

(5.1) r(A,B). m (A)/m (B) 
a a 

for all A e @. Then r is a locally coherent rate of exchange on@• 

The proof of this result can be found in Reny! (14] and Krauss (10] although 

these authors work with conditional probabilities rather than the equivalent 

rates. The proof is not difficult, and the measure m on the equivalence class a 

[BJ is just r(•,B) up to a proportionality constant. 

Example 5.1. Let m be a finitely additive measure on an algebra@ and define 

r(A,B) • m(A)/m(B) 

whenever the right-hand-side is well-defined. (@ could be the algebra of Borel 

n sets in R and m could be Lebesgue measure on@.) 

Example 5.2. Let~ be the Borel subsets of the real line; let µ0 be counting 

measure; let u1 be Lebesgue measure; and let u2 be any finitely additive 
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extension or the density to~- (See section 1.) It is easily verified that 

pi(B) < m •> pj(B) • 0 for i < J and B t ~- Define 

whenever the right-hand-side is well-defined. The ri agree on any points which 

lie in ~he domains of more than one and so we can let r(A,B) • r 1(A,B) on the 

domain or r 1• 

Example 5.3. n Let@ be the Borel subsets or R and, for O ~a~ n, let m be aa 

dimensional Hausdorff measure on~- Define a rater by equation (5.1) whenever 

the denominator is finite and positive. 

The rates defined in all three examples are locally coherent. This follows 

from the second half of Theorem 5.1 together with the following lemma. 

Let {m ,a£ I} be a family of finitely additive measures on B. Say the 
a -

family is linearly ordered if it sa~ifies condition (v) of Theorem 5.1, and call 

the family complete if, for each B £ ~o, there is an a£ I such that O < ma(B) < 

Lemma 5.2. Every linearly ordered family is contained in a complete, linearly 

ordered family. 

Proof: By Zorn's Lemma, there is a m~ximal linearly ordered family {m ,a£ J} a 

containing the given family. Suppose it is not complete. Then there is a set B 
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e B such that m (B) is O or m for every a£ J. Let J •{a£ J: m (B) am} and 
- a m a 

J O • {a e J: m
0

(B) • O}. Then c • (J.,JO) is a Dedekind cut or J and we can 

adjoin c tor setting r' • ru{c} with the ordering on r' to satisfy a< c < 8 

for a e Jm, Se J O• Let f be the collection of all sets Ac@ such that m8(A) a 

o for some a c J. and let! be the collection of A e@ such that m8(A) • o for 

alls c J O• Then 

fU{B} ct!• 

Define!• @nB to be the algebra or sets in@ which are subsets or B. Then !Of 

is a proper ideal in! and, consequently, there is a finitely additive 

probability measure m on! which annihilates !Of. 

m (A)• m(AnB) 
C 

-. 
if A£ f!, 

if A t, f!, 

Define m on B by setting 
C -

for Ac@. Then {m ,a c r'} is a linearly ordered family contradicting the 
a 

maximality or {m ,a c r}. a a 

The converse half of Theorem 5.1 shows how to construct a locally coherent 

rater from a complete, linearly ordered family of measures. There is a more 

recent technique of Carlson [1] which makes it possible to obtain a locally 

coherent rate from any complete family after the index set is well-ordered. 

Theorem 5.2. Let I be a well-ordered set and let {m ,a c I} be a complete 
a 
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family of finitely additive measures on~- For A£~. B £ ~0• let a(B) be the 

least a£ I such that O < m (B) < m, and define a 

P(AIB> • ma(B)(AnB)/ma(B}(B), 

r(A,B) • ma(AUB)(A)/ma(AUB)(B) 

- m if not. 

if ma(AUB)(B) > 0, 

Then (1) Pis a conditional probability on~ ar-1 (11) r is the locally coherent 

rate of exchange associated with P. 

Proof: (1) Part (a) of definition 4.1 is obvious. To check (b), notice that, 

if ma(C)(AOC) > o, then a(AnC) • a(C), and 

PCAIC)PCBIAnc). _ma __ c_c __ >< __ An~c_> ma(C)(Ananc) 
ma(C)(C) • ma(C)(Ahc) 

- PCAne1c>. 

If ma(C)(Anc) • o, then PCAIC) • o • P(AnBIC) and (b) holds. 

(11) This is easily verified using the formula in Theorem 4.1(11). c 

The construction of Theorem 5.2 makes it easy to define countably additive 

conditional probabilities, a problem found difficult by Krauss [10, p. 236]. 

Apply Lemma 5.2 and Theorem 5.1 to a singleton {m} as in Example 5.1 to see 

that every improper (or proper) prior mis consistent with a locally coherent 

rate of exchange. 

Not every m determines a strictly coherent rate, but it is now easy to 
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characterize those which do. 

Theorem 5.3. A rate or exchanger on~ is strictly coherent it and _only if 

there is a finitely additive measure m on~ such that, for every A e@ and every 

Be @0, O < m(B) < m and r(A,B) • m(A)/m(B). 

Proof: Supposer is strictly coherent. Then r is certainly locally coherent. 

Let {m ,a£ r} be the family given by Theorem 5.1. We need to show that r 
a 

contains only a single element. Suppose to the contrary that a,8 er with a< 

s. Choose sets A ea, Bes. Then r(A,B) • m
8

(A)lm8(B) • Olm8(B) • o. Thus 

the exchange 

e - -(r(A,B)B - A) 

• A 

is everywhere nonnegative and positive on A, contradicting strict coherence. 

For the converse, suppose mis a measure on~ which is everywhere finite and 

positive on ~0• and that r(A,B) a m(A)/m(B) tor A e B, B £ ~o. Then every 

simple exchange and, hence, every exchange has integral zero with respect tom. 

Thus no exchange e can be everywhere nonnegative and somewhere positive. (The 

0 set where e > O would belong to~ and have positive measure under m.) c 

Kemeny (9] argues that strict coherence is a reasonable requirement in his 

framework. It seems a bit stringent to us, because, in view or Theorem 5.2, it 

would rule out even proper, countably additive priors on an algebra such as the 
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Borel subsets of the unit interval. 

6. An extension theorem. 

Let r be a rate of exchange defined on an arbitrary domain 2 consisting of 

pairs (A,B) in @x@O. (Recall that ~o • @\{0}.) 

Theorem 6.1. If r is locally coherent then r has a locally coherent extension 

to all of @•@0• 

This theorem extends several results in the literature including de 

Finetti's theorem on the extension of coherent previsions [3, p. 78] and 

Holzer's theorem on the extension of coherent conditional previsions [8]. Our 

theorem is closely related to that of Holzer, but the proof will be quite 

different. 

The proof will be given in several lemmas and is based on the study of a 

• partial order~ of the elements of@ which would correspond to the Renyi 

0 ordering if Q were already all of @x@. Until the very last step in the proof 

we will assume that r takes only finite values in [O,m). 

To define the ordering, first let! be the linear space or all exchanges 

e(l) as defined in (2.1). Associate to each such exchange e(l) the sets 

+ E (l) • [e(l) > O], 

E Cl)• [e(l) ~ O] n supp(l). 

Then, for A,B £~.define Ai B if there is an exchange e(l) £!with 
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(6.1) + -E (l)::, A\B and E (l) C: B. 

+ • -(Notice E (l) SE (l) in this ordering.) 

For B £~.define f8 •{A£~: • AS B}. 

Lemma 6.1. fe is an ideal in the Boolean algebra 6, and B £ Ea• 

Proof: For the second assertion, consider the exchange e(l) which is 

+ - + -indentically zero and has E (l) • E (l) • 0. Clearly, E (l)::, B\B and E (l) c:: 

• B. So BS B. 

To prove the first assertion, we must verify these two properties: 

Ca) A1 =A£ fa•> A1 £ f8 , 

(b) A,,A2 £ fe •> A, U A2 £ fe· 

Property (a) is obvious because the exchange e(l) satisfying (~.1) will still 

work it A is replaced by A1• 

To prove (b), notice that we may assume that (A1UA2)0B • 0. Assume this and 

find e(A 1), e{l2) in! so that A
1 

c:: E+{l
1
), 1 • 1,2, and B::, E-(l

1
) U E-(1

2
). 

Let e{l
3

) • e(l 1) + e{l 2). 

Suppose w £ A1• Then e(A 1)(w) > o. Also, wt B whence e{A 2)(w) ~ o. Thus 

+ + A1 c: E (1
3
). Similarly, A2 c: E c1

3
) and, consequently, 

{6.2) 
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To get a contradiction, suppose w i Band say, w c supp (l 1). Then e(l 1)(w) > O 

(because B ~ E (A 1)) and, hence, e(A2 )(w) < o. But then w c E-(A 2) c: B, a 

contradiction. We must conclude that 

Property (b) follows from (6.2) and (6.3). c 

Lemma 6.2. If A1 i A2 and A2 £ f8 , then A1 e fe• 

transitive.) 

Proof: Write 

• (In other words, ~ is 

By lemma 6.1, A2UB e fa and A1n(A2UB) c fe• Thus, by Lemma 6.1 again, we need 

only show that 

(6.4) 

and we can and do assume that 

(6.5) 

To establish (6.4), find e(l 1) and e(A 2) in! such that: E (l 2) c: B, 

22 



+ - + 
E (12) ~ A2\B; E (11) c: A2· E c1,> ~ A1\A2 • A, (by (6.5)). 

Then E+(A
2

) ~ E-(1
1

)\B or e(1 2) > O on E-(1
1

)\B. Hence, there is a positive 

number a such that ae(l2) + e(l
1

) > O on E-(1
1

)\B. Define e(A
3

) • ae(l2) + 

e(A
1
). It now suffices to verify (a) E-(1

3
) c: Band (b) E•c1

3
) => A

1
• 

For (a), suppose we E-(1
3

). Then either we E-(1
1

) or we E-(1 2). By the 

choice of a, wt E-(1
1

) ~ B, and, by the choioe of e(l2), E-(12) c: B. 

For (b), suppose w £ A1 • Then e(A 1 )(w) > o. Also, by (6.5), wt B so that 

e(A 2)(w) ~ o. Hence, e(l
3

) > o. o 

Assume from now on that r is locally coherent. For the proof of Theorem 6.1 

we can also assume that the domain~ of r includes every pair (A,A) for A£~ 

and that r(A,A) • 1. Obviously the addition of these pairs to~ will not 

introduce any incoherency. 

The next lemma is the key to the proof. It produces a measureµ which will 

play the role of one of the measures occuring in Theorem 5.1. 

0 Lemma 6.3. Let Be~. Then the following are true. 

(a) There is a non-zero finitely additive measureµ defined on fa with 

values in co,~) such that 

µ(e) •fedµ• O 

for every exchange e • e(l) e ! satisfying supp(l) e fe• 

(b) For anyµ as in (a), µ(B) > o. 

(c) If Ce ~Band fc • f8 , then, for anyµ as in (a), µ(C) > o. 
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Proof: (a) Let c e !a and C:, B. (Such sets exist. For example, take C • B.) 

By definition or f
8

, there is an exchange e(lc) e ! with B :::1 E-(lc), E+(Ac>:, 

C\B. Set D - supp(Ac) u B. 

There is a probability measure v
0 

defined on@ such that (1) v
0

(D) • 1 and 

(11) v0(e(A)) • O for e(A) e ! with supp(l) c: D. This follows from applying a 

separating hyperplane theorem ((5], p. 417) to separate the collection of 

exchanges io • {e(l) e §: 
+ supp(l) c: D} from the cone Q of bounded functions 

+ defined on D which have a positive infimum on D. ~ is open in the sup norm 

+ topology and the assumption that r is locally coherent implies that~ and io 

are disjoint. In addition to (1) and (11), v0 also satisfies (111) v0 (B) > o. 

To see this, suppose to the contrary that v
0

(B) • o. Then v
0

(E-(Ac>> = O 

and, by (11), 

+ + 
Now the infimum of e(Ac) on E (le) is positive and so it follows that v0(E (Ac>> 

• o. But then v0(D) • o·, contradicting (1). 

Next define the measure ~Con~ by 

for A e ~ and regard Pc as a linear functional on the linear space l whose 

elements are finite linear combinations of indicator functions of sets in~-



Notice that, by (11), µc(e(l)) • o when e(l) £~and supp(l) c::: C (because cc::: 

D) • 

Order fa by inclusion and letµ be a limit point of the net {µc: C £ fB} of 

[O,m]-valued functions on~ where such functions are given the topology of 

pofntwise convergence. 

We must verify thatµ restricted to fa has the properties listed in (a) of 

the theorem. Clearly,µ is additive because each µc is; µ(B) • 1 because µc(B) 

• 1 for all C and consequentlyµ is not the zero measure; µ(e(l)) • O if supp(l) 

£ fa because µc(e(l)) is eventually zero. It remains to be shown that µ(A)<~ 

for A e fa• To see this, it suffices to show µ(A\B) < m because µ(Afl.B) ~ µ(B) • 

1. Choose an exchange e • e(l) £!satisfying (6.1). Then µ(E-(l)) ~ µ(B) • 1 

and, hence, 

(6.6) I _ ed ... > -... 
E (1) 

Now E+(l) i E-(A) = B. So, by Lemmas 6.1 and 6.2, E+(l), E-(l) and, 

consequently, supp(l) are elements of fa• Thus 

(6.7) o • 1,1(e(l)) • f _ ed1,1 + 
E (l) 

and, by· (6.6) and (6. 7), 

I+ ed ... <+ ... 
E (l) 

I+ edµ 
E (l) 

+ Use (6.1) and the fact that e O e(l) has a positive infimum on E (l) to get 
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+ p(A\B) ~ p(E (l)) < m, 

which is the inequality we needed. 

(b) Supposeµ has the properties listed in (a). If µ(B) • O, then an 

argument like that in the preceeding paragraph shows µ(A)• O for all A E fe• a 

contradiction. 

(c) Suppose CE fa• fc· Thenµ has the properties listed in (a) when Bis 

replaced there by c. So µ(C) >Oby an application of (b). o 

Notice that, if A1 and A2 are elements of fe and if the pair (A1,A2) is in 

the domain Q ot r, then part (a) of Lemma 6.3 applied to the exchange e • 

(6.8) 

Recall that r has been assumed to be a locally coherent exchange rate 

0 defined on Q c: ~ x ~ with values [O,m). Order the collection or such exchange 

rates by saying that r 1 dominates r 2 if Q1 => Q2 and r 11Q2 • r 2• An obvious 

application of Zorn's Lemma shows there is a maximal locally coherent exchange 

rate with values in [O,m). Assume now that r is such an exchange rate. 

Lemma 6.4. Let CE fe• Then (C,B) £ Q and r(C,B) • µ(C)/µ(B) whereµ is the 

measure in Lemma 6.3. Henceµ is uniquely determined by r up to a 

proportionality constant. 
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Proof: The formula for r(C,B) is immediate from (6.8) once we show (C,B) £ Q. 

Suppose to the contrary that (C,B) t ~- Let Q' • QU{(C,B)} and definer' 

be an exchange rate which agrees with r on Q and has r'(C,B) • µ(C)/µ(B). 

Because r is maximal, r' cannot be locally coherent. So there exists an 

exchange 

e(A') • ± (:~~~ B - c) + e(A) 

where e(A) is an exchange for r such that e(A') > O on supp(A') • supp(A)UBUC. 

It follows that it 

e(A') • µ(C) B - C + e(A), 
µ(B) 

and, by Lemma 6.1, supp(A) £ fa• Then, by Lemma 6.3(a), 

0 < f e(A')dµ • ~~;~ µ(B) - µ(C) + f e(A)dµ • O, 

a contradiction. Similarly, if 

e(A') • C - µ(C) B + e(A), 
µ(B) 

£ fc c:: [ B. Once again 
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0 < f e(A')dp • 0, 

a contradiction. We must conclude that (C,B) e Q. a 

• • For sets A,B E ~. define A~ B if A~ Band B ~ A. 

Lemma 6.5. 0 Let A e @, B c@, and letµ be the measure of Lemma 6.3. 

(a) Ac fa if and only if r(A,B) is defined (as a finite number). 

· (b) If Ac fa• then A~ B if and only if µ(A)> O if and only if O < r(A,B) 

< •. 

Proof: (a) If Ac fe• then r(A,B) is well-defined by Lemma 6.4. Conversely, 

if r(A,B) is defined, consider the exchange 

e(A) • -r(A,B)B + A. 

Clearly, B => E (A) and A\B c:: E+(A). Hence, AS B. 

(b) A~ B •>µ(A)> 0 (by Lemma 6.3(c)) 

•> r(A,B) • µ(A)/µ(B) e (O,•). 

Finally, if Ac fe and O < r(A,B) <•,consider the exchange e(A) • 
+ 

r(A,B)B - A. Then A=> E (A) and B\A c: E (A). So A~ B. a 

• Lemma 6.6. The order~ is complete on@; that is, given A1, A2 in@, either A1 
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Proof: Since 0 ~ A for all A, assume that A1 and A2 are nonempty. Let B m 

A1UA2• Then A1, A2 are in fe and, by Lemma 6.4 

Hence, either r(A1,B) > O or r(A2,B) > O and, by Lemma 6.5, either A1 ~a~ A2 

or A2 ~ B 2 A,. c 

The relation~ is an equivalence relation on@• (Symmetry and reflexivity 

are clear; transitivity follows from the transitivity or 2 (Lemma 6.2).) The 

quotient space@/~ or equivalence classes is linearly ordered in a complete 

fashion by the order induced on@/~ by i. For at@/~, 

pick a representative B ta and letµ be the measure on fa given by Lemma a a a 
6.3. For Ct @\f

8 
, defineµ (C) to be m. The family{µ} has the properties a a a 

required for the Renyi-Krauss representation or Theorem 5.1. 

Lemma 6.7. Eachµ is a finitely additive measure on@ and the family{µ} is a a 

complete and linearly ordered. 

Proof: Easy using the preceeding lemmas. c 

Apply the converse half or Theorem 5.1 to complete the proof of Theorem 6.1 

for the case under consideration in which r takes on only finite values. 

Finally, suppose Q c:@ x !O and r: D -> [O,m] is locally coherent. Let~ 
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be the collection or pairs (B,A) such that (A,B) £ Q and r(A,B) • =. Define 

Q' - Q u ~ 

and definer' on Q' by r'IQ •rand r'(B,A) • O for (B,A) £ ~-

Lemma 6.8. r' is locally coherent on D'. 

Proof: Suppose r(A1,e1) • m for i • 1, ••• , n and there is an exchange 

n 
e(A') • I c

1
[e

1
-oA1] + e(A) 

1•1 

where e(l) is based on rand e(l') ~ £ > O on supp(l'). We will reach a 

contradiction to the local coherence of r by finding an exchange e(A'') based on 

r such that e(A'') ~ c/2 on supp(A''). 

We can assume c1 > O for i • 1, ••• , n. (If some ci < O, then the term 

c1[Bi-0Ai] is nowhere positive and can be deleted from e(l').) Set 

Then 

n 
e(A'') • ...! I [mB -A]+ e(l). 

2n i•l i 1 

e(l'') ~ e(A') - £12 ~ e/2 
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and supp(A'') • supp(A'). a 

Now let 

D' • {(A,B) £ Q': r'(A,B) < m} 

and let 

r'' • r' IQ'' •. 

Obviously, r'' is locally coherent and has only finite values. By the case 

- 0 already treated, r'' has a locally coherent extension r to @x@. But r also 

extends r because r(A,B) • 0 implies r(B,A) • m (Theorem 3.1(v)). 

The proof of Theorem 6.1 is now complete. 
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