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Summary 

Either of two stochastic processes (arms) is selected for observation at each of 

times O,•••,n-1. Each observation is the survival time of the experimental unit 

and the observations are in real time. Arm xis conditionally geometric with 

parameter e E (0,1) which is random with priorµ. Army is known to have mean 

K. The arm observed at time j can depend on the previous selections and 

observations, but the observations are censored at time j. The objective is to 

maximize the expected sum of the observations, possibly discounting over time. 

Under a regularity condition on the discount sequence there exists a manifold in 

the state space such that both arms are optimal on the manifold, arm 1 is 

optimal on one side, and arm 2 on the other. Properties of the manifold are 

investigated. 

1. Introduction 

1.1. The One-armed Bandit with Delayed Responses 

The one-armed bandit with delayed responses is introduced by Eick (1985) as 

a model for sequential clinical trials. Patients arrive sequentially at times 

0,1,2,•••,n-1 (n =mis allowed) and must receive one of two irreversible 

treatments, say x or y. When the next patient arrives the treatment assignment 

is based on the information available at that time, however, the previous 

patients' lifetimes are censored. This assumption differs from the classical 

approach taken by Bradt, Johnson, and Karlin (1956), Bellman (1956), Feldman 

(1962), Gittins and Jones (197~), Rodman (1978), Bather (1981), and Berry and 

Fristedt {1985) in which, when applied to clinical trials, it is assumed that 
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all patients respond immediately. The objective is to assign treatments to 

maximize the expected total patient survival time, possibly discounting future 

patients. 

I assume that patients treated with x have conditionally i.i.d. geometric 

lifetimes: x1,x2,···,Xn given e E (0,1) have probability mass function (1-a)et, 

t = 0,1, ••• ,m. I take a Bayesian approach and assume a is random with prior 

distributionµ. The sufficient statistics are the number of patient time period 

successes Sand patient failures F, The expected lifetime of patients treated 

with y is known to be K: E[Y1] = K, i = 1 ,•••,n. 

The state of a bandit summarizes all information available when the next --
patient is to be treated. In the current setting the state consists of the 

tuple ((s,f)µ,p;K;A). The first element, (s,f)µ, is the distribution of e 

conditioned by the sufficient statistics sand f. Whens m f = 0, (0,0)µ = µ 

and in general 

d(s,f)µ s f 
= e (1-a) dµ/b(s,f) ( 1 .1) 

where 

b(s,f) = J\5 c,-a/ dµ(B). 
0 

( 1 • 2) 

I assume thatµ is not concentrated at a single point and thatµ assigns no 

mass to {0,1}. The parameters sand fare allowed to be continuous but 

restricted such that (s,f)µ is defined and E[Xjl(s,f)µ] < =. A necessary and 

sufficient condition for the pairµ and (s,f) to be considered is b(s,f-1) < m. 
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The second element in the state is p, the number of patients previously 

treated with x whose lifetimes are censored when the current patient is treated. 

These patients form an information bank; information accrues as they respond, 

either positively or negatively. There is a simple relationship between S, F, 

and the information bank. The observed patient time period successes Sis the 

sum of the information bank size over all previous times and the observed 

failures Fis the number of patients treated with x minus the.information bank 

size at the current time. The third element in the state is K. Successes, 

failures, and patients treated with y are not included since they cannot affect 

The discount sequence A is the final component in the state. I consider 

general discounting and allow A= (a
1 

,a
2
,•••) to an arbitrary summable sequence 

of nonnegative numbers. After n patients have been treated the discount 

sequence for the bandit presenting itself is A(n) = (an+l'an+
2
,•••). This 

discount sequence is obtained from A by deleting the first n elements of A. The 

horizon of A is inf{i: a.= 0, j > i}. If this set is empty then A is said to 
J 

have an infinite horizon. It is often convenient to work with finite horizon 

discount sequences. The horizon n truncation of A is A = n 

(a
1

,a
2

,•••,an,O,O,•••). The jth tail mass of A is 

Y. = l ai. 
J j 

By assumption Yj -> 0 as j -> ~ 

A strategy for the (µ,p;K;A)-bandit indicates with treatment to use at each 

3 



stage in the trial depending on past treatments and the patient lifetimes 

censored at the present time. The~ of a strategy is the expected 

discounted total patient lifetime when the strategy is followed: 

where Zj is Xj if T indicates x at time j-1 or Yj if t indicates y. The value 

of the (µ,p;K;A)-bandit is the supremum of the worths: 

V = V(µ,p;K;A) = sup W(T). 
t 

A strategy is optimal if W(t) = V. An arm is optimal if there exists an 

optimal strategy which indicates it initially; an optimal arm is the first 

selection of an optimal strategy. The worth of selecting x and then following 

an optimal strategy given the result is 

v(x) = v<x>(µ,p;K;A) = sup{W(t)IT indicates x initially}. 

An analogous definition holds for V(y). Then arm xis optimal if and only if 

v<x) = V and similarly for army. When A has finite horizon the optimal 

strategy and value can be calculated recursively using the dynamic programming 

equation. See Eick (1985). 

1.2. Summary of Results 

This paper investigates the optimal initial selection as a function of the 

state. In Section 2.1, I consider 6 = v<x) - v<Y); 6 ~ o when arm xis optimal 
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and 6 ~ 0 when army is optimal. Theorem 2.1 presents an exact formula for 6 

when A has horizon 2. Theorem 2.5 expresses 6 as the life expectancy difference 

between a single selection on arm x and army, plus the difference in value 

functions when an extra patient is added to the information bank. Section 2.4 

develops recursive formulas for A involving the discount sequence. 

Theorem 3.1 is the main result in this paper. Under a regulartty condition 

on the discount sequence, it says that 6 is monotone ins, f, and K •. For fixed 

p this reduces the decision problem to finding the manifold in (s,f;K)-space on 

which 6 vanishes. 

2. The 6-Function 

2.1. Definition of 6 

The delta function,~, is the difference in worths between pulling arm x and 

proceeding optimally given the result versus pulling army and proceeding 

optimally: 

6(µ,p;K;A) 
(x) (y) V (µ,p,K;A) - V (µ,p;K;A). (2 .1) 

The sign of 6 determines the optimal initial selection. A large positive 

value of 6 indicates that xis strongly preferred toy; 6 is the amount lost if 

army is selected initially even if an optimal strategy is.followed thereafter. 

There is a special relationship between 6(µ,p;K;A 1) = a1{E[Xlµ]-K} and the 

myopic strategies; those which maximize the lifetime of the current patient at 

each stage in the trial. A strategy is myopic if it indicates arm x when 

6(µ,p;K;A
1

) is nonnegative and army when 6(µ,p;K;A 1) is nonpositive. 
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2.2. The A-function for Horizon 2 Bandits 

When A is the horizon 2 uniform an explicit formula for A(µ,p;K;A) exists. 

For notational ease let 

g(s,f) = E[Xf (s,f)µ], 

for O ~ j ~ p. Then a(p,j) is the probability that j of p patients survive to 

the next time period and g(s,f) is the life expectancy of the next patient 

treated with arm x when the sufficient statistics ares and f. 

Theorem 2.1. Suppose A is uniform with horizon 2. Then for allµ, p and K, 

0 if K ~ g(O,p+l), 

A(µ,p;K;A) m A{µ,p;K;A
1

) + 

(~) 
_+_l_ a(p+l,k)(K - g{k,p+l-k)) 

(Pk ) if g(k,p+l-k) ~ K ~ g{k,p-k), 

(~) 
p+1 a(p+1,k+1){g(k+1,p-k) - K) 

(k+l) if g{k,p-k) ~ K ~ g{k+l,p-k), 

0 if g{p+l,O) ~ K. 

The proof of Theorem 2.1 is easy and so is omitted. 

For the general finite horizon case, A{µ,p;K;A) - A(µ,p;K;A 1) is 

nonnegative, piecewise linear, and has compact support. 
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2.3. General Properties of 6 

The 6-function is continuous ins, f, Kand A since Vis continuous (Eick, 

1985). The next proposition says that 6(µ,p;K,A) -> 6(µ,p;K;A 1) asp-> m. 

This shows, for example, that the myopic selection is optimal for sufficiently 

large p. 

Proposition 2.2. For allµ, p, Kand A, asp-> m, 6(µ,p;K;A) -> 

6(µ,p;K;A1). 

Proof: Proposition 2.2 follows from Theorem 4.4 of Eick (1985). o 

The intuitive justification of Proposition 2.2 is that for sufficiently 

large p complete information will be available at the next stage since by the 

law of large numbers the fraction of patients surviving converges toe. The 

initial patient should be treated to maximize his or her life expectancy. 

Surprisingly, the convergence in Proposition 2.2 is not monotone in p. There 

exist e~amples where 6(µ,p;K;A) < O for all odd p and 6(µ,p;K;A) > O for all 

even p SM, where M can be arbitrarily large. 

The following theorem expresses 6 in terms of v<x) and v<Y) asp varies. 

Part (a) says that ~(µ,p;K;A) = A(µ,p;K;A 1) plus the increase in value when arm 

y is selected initially and pis changed to p+1. Part (b) is a similar result 

for arm x. 

Theorem 2.3. The following hold for allµ, Kand A. 

(a) For arbitrary p: 
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(2.2) 

(b) For p ~ 1: 

(x) (x) A(µ,p;K;A) = A(µ,p;K;A1) + V (µ,p;K;A) - V (µ,p-1;K;A). (2.3) 

Proof. Let P(x) be the random bank size at time 1 when arm xis selected at 

time O and P(y) when army is selected. Then wh~n xis selected at time O the 

state at time 1 is ((P{x>,p+1-P(x))µ;P(x);K;A( 1)) and when y is selected at time 

O the state at time i is ((P(y) ,p-P(y))µ;P(y);K;A( 1)). The distribution of P(x) 

given e is binomial with sample size p + 1. There are p patients initially 

alive and the patient treated at time O receives treatment x. When army is 

selected at time O, the number of patients alive at time in the (µ,p+1;K;A)-

bandit is also conditionally binomial with sample size p + 1. Excluding the 

stage 1 lifetimes, v<Y)(µ,p+1;K;A) and v<x)(µ,p;K;A) are equal. This is so 

since the states of both bandits have identical distributions at time 1. The 

difference in stage one lifetimes is -A(µ,p;K;A 1). This shows 

v<Y>(µ,p+1;K;A) + A(µ,p;K;A
1

) = v<x>(µ,p;K;A). (2.4) 

Equation (2.2) is obtained by substituting (2.4) into (2.1). The derivation of 

(2.3) is similar. a 

Theorem 2.3 is particularly interesting because it decomposes A(µ,p;K;A) 

into A(µ,p;K;A 1) for the myopic selection plus an information factor. This 

factor is nonnegative and represents the increase in value due to a better 

allocation of future treatments which could be obtained if an extra patient were 
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in the x information bank. 

2.4. Recursive Formulas for A 

The upcoming three theorems develop recursive formulas for A. Theorem 2.4 

is the delayed response analogue of a standard result for classical bandits 

(Berry, 1972). Theorems 2.5 and 2.6 are delayed response extensions of Theorem 

2.4. These results are peculiar to the delayed response setting and have no 

classical bandit analogue. Besides being interesting in its own right, Theorem 

2.6 will be used to prove the forthcoming Theorem 3.1. 

Theorem 2.4 decomposes A into three parts. The first term is related to 

life expectancy difference between the arms, the second is the expected 

difference in the positive and negative parts of A at time 1, and the third is 

the difference in value functions averaged over the states at time 2. 

Let s<x) be the random number of successes at time 1 when xis selected at 

time O and S(xy) be the random number of successes at time 2 when y is then 

selected at time 1. Similar definitions apply to s<Y), s<yx), F(x), F(xy), 

F(y), F(yx), P(x), P(xy), P(y), and P(yx). 

Theorem 2.4. For allµ, p, Kand A, the delta function satisfies: 

A(µ,p;K;A) = (a1-a2){E[XjµJ-K} 

+ E[A+(S(x) ,F<x))µ,P(x);K;A(l)) - A-((S(y) ,F(y)µ;P(y);K;A( 1))] 

(2.5) 
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Proof. Write 

(2.6) 

In (2.6), replace v by 6+ + v<Y) and -v by -6- - v<x): 

- E[6-((S(y) ,F(y))µ;P(y);K;A( 1)) + v<x>,,s<Y) ,F(y))µ,P(y);K;A(l))]. 
(2.7) 

In the first expectation on the right-hand side of (2.7) write v<Y) as K + V and 

in the second, write V(x) as E[Xf((~(y),F(y))µ] + v. Then (2.5) follows from 

the linearity of the expectation. o 

Lett= (xyy•••) be a deterministic strategy which indicates x initially and 

y at every subsequent stage independently of the accumulating data. Leto= 

(yxx•••) also be deterministic indicating y initially then x at all subsequent 

stages. t t t Let S., F., and P. be the ~andom number of successes, failures, and 
J J J 

bank size at time j when following t and similarly for a. Then the 

decomposition of 6 in Theorem 2.4 can be extended ton time periods. 
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Theorem 2.5. For allµ, p, and K, the delta function satisfies: 

6(µ,p;K;A) 
n 

= {a1 - 2 a.}{E[Xlµ]-K} 
j=2 J 

n~ 1 [ + t t t (j ) - o o a ( j ) I ] 
+ l E A (( S . , F . ) µ , Pj ; K; A ) - 6 (( S . , F . ) µ , P . ; K; A µ 

·1 J J J J J J= 

[ 
t t -r (n) a a a (n) I ] 

+ E V((S ,F )µ,P ;K;A ) - V((S ,F )µ,P ;K;A ) µ • n n n n n n (2.8) 

Proof. Iterate the replacement of V by A++ V(y) and -V by -6- - v<x) in 

the right hand side of (2.7). Equation (2.8) follows after n-1 iterations. o 

Theorem 2.6 provides a recursive formula for A when A has finite horizon. 

Theorem 2.6. For allµ, p, and K, the delta function satisfies: 

00 

, [ + 1 -r t (j) - a a a (j) ] 
+ l E 6 ((S.,F.)µ,P.;K;A ) - 6 ((S.,F.)µ,P.;K;A ) • 

j=1 J J J J J J 
(2.9) 

Proof. Let n -> 00 , in (2.8). Then (2.9) follows from the bound in Theorem 

4.1 of Eick (1985). o 

3. Characterization Theorems 

3.1. Monotonicity Results 

The upcoming Theorem 3.1 shows for discount sequences satisfying aj ~ Yj+1 

(see Section 1.1 for notation) that 6 is nondecreasing ins and nonincreasing in 

f and K. This characterizes the optimal strategy in the following sense. For 
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* fixed s, f, and p there exists a K such that arm xis optimal if and only if K 

* * 
~ K. Similarly, for fix~d s, Kand p there exists an f such that arm xis 

* * optimal if and only if f ~ f and for fixed f, K, and p there exists ans such 

* * * * that arm xis optimal if and only ifs~ s. However, the s, f, and K are 

very difficult to calculate. In particular, these results hold for geometric 

2 discounting, A= (1,a,a ,•••), when a~ 1/2. 

I conjecture that a similar result holds for all nonincreasing discount 

sequences. I have verified this conjecture for geometric discounting under the 

additional restriction p = o. 

Theorem 3.1. Suppose the discount sequence A satisfies 

(3.1) 

for j = 1,2,•••. Then for allµ, and p, A((s,f)µ,p;K;A) is nondecreasing ins, 

and nonincreasing inf and K. Furthermore, 

A((s,f)µ,p+1;K;A) ~ A((s,f+1)µ,p;K;A). (3.2) 

Ifµ is not concentrated at a single point and there is strict inequality in 

(3.1) for j = 1, then A is increasing ins and decreasing inf and K. 

Furthermore, in this case there is strict inequality in (3.2). 

The proof of Theorem 3.1 will be developed gradually in Lemmas 3.2, 3.3, and 

3.4. Lemma 3.2 shows that Theorem 3.1 holds under the additional assumption 

that A has finite horizon. Lemma 3.3 extends the result to infinite horizons 

and Lemma 3.4 proves "strictness." 
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Lemma 3.2. Theorem 3.1 holds when the horizon of A is finite. 

Remark. The proof of this lemma depends on the following observation which 

is proved in Theorem 6.4 and Lemma 6.6 of Eick. (1985). Lett and o be as 

defined in Section 2.4. The dis~ributions of e, P;, and P; are stochastically 

monotone: for any wand p, P{e ~ wf (s,f)µ}, P{P; ~ Pl(s,f)µ}, and P{P; ~ 

pf (s,f)µ} are nondecreasing ins and nonincreasing inf. 

Proof of Lemma 3.2. Proceed by induction. When A has horizon 1 the results 

are trivial. In this case A= A1 and (3.2) follows since A((s,f)µ,p;K;A 1) does 

not depend on p and is nonincreasing inf. Assume the result holds for all 

horizons m < n and that A has horizon n. Consider (2.9): 

The first term on the right-hand side of {3.3) is nondecreasing ins and 

nonincreasing inf and K. 

Consider the jth term in the sum: 

(3.4) 

I show the first term in (3.4) is nondecreasing ins and nonincreasing inf and 

the second is similar. t t For notational ease let sj = sj, Fj ~ Fj, and Pj = 

Write S = S. + P and F. = p + 1 - PJ., where S = P +•••+ P • 
j J-1 j J j-1 1 j-1 

Then 
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+ ( . ) 
fl ((s + s. 'f + Fj)µ,Pj;qA J ) = 

J 

+ ( . ) 
fl ((s + s. 1 + p. 'f + p + 1 - Pj)u,Pj;K;A J ). 

J- J 

By induction, 

+ p,)µ,p,;K;A(j)) (3.5) fl ((s + s. + p. ,f + p + 1 -
J-1 J J J 

is nondecreasing ins, s. 1 , and nonincreasing inf and K. Also (3.2) implies 
J-

that (3.5) is nondecreasing in pj. However, Pj, conditional on Pj-l and e, is 

binomial and hence stochastically nondecreasing in e and P. 1• Therefore J-

is nondecreasing in e, sj_1, Pj-l' ands and nonincreasing inf and K. But Sj-l 

and P. 
1 

are stochastically nondecreasing in a. Whence 
J-

(3.6) 

is nondecreasing ins and e, and nonincreasing inf and K. Finally, since e is 

stochastically monotone the expectation of (3.6) when e - (s,f)µ is 

nondecreasing ins and nonincreasing inf and K. 

To complete the induction I show that each term in (3.4) satisfies 

fl((s,f)µ,p+1;K;A) - fl((s,f+1)µ,p;K;A) ~ O. 

Let* denote a random variable from the ((s,f)µ,p+1;K;A)-bandit as opposed to 

the ((s,f+1)µ,p;K;A)-bandit. Consider the first term in (3.4); the second is 
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+ 
analogous. Write the jth difference of 6 functions as 

+ * * * (j) + (j) 
h. ((s+S.,f+F.)µ,P.;qA ) - !). ((s+S.,f+1+F.)µ,P.;qA ) 

J J J J J J 

+ * 8 ((s + P
1 

+ 
- 6 ((s + p 1 

* * * (j) PJ.,f + p + 2 - P.)µ,K;P.;A ) 
J J 

+•••+ 
( . ) 

PJ.,f + p + 2 - P.)µ,k;P.;A J ). 
J J 

(3.7) 

Then the random number of failures in the respective terms on the right-hand 

* * side of (3.7) is f + p + 2 - P. and f + p + 2 - P .• 
J J 

But P. is stochastically 
J 

* larger than P. and P +•••+ 
J 1 

* Pj is stochastically larger than P
1 

+•••+ Pj. 

result follows by induction using (3.2). o 

The 

The next step in the proof of Theorem 3.1 is to extend Lemma 3.2 to infinite 

horizons. 

Lemma 3.3. Theorem 3.1 holds when the horizon of A is infinite. 

Proof. This is immediate from Lemma 3.2 since 6 is continuous in A. o 

The proof of Theorem 3.1 is completed by proving the strictness assertion. 

Lemma 3.4. Ifµ is not concentrated at a single point and there is strict 

inequality in (3.1) for j = 1, then 6 is increasing ins and decreasing f and K. 

Furthermore, (3.2) holds with strict inequality. 

Proof. Strictness in (3.1) and the hypothesis onµ implies the first term 

in (3.3) is increasing ins, decreasing inf and K, and satisfies (3.2) with 
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strictness. o 

The following corollary provides a condition when an optimal strategy is to 

indicate y at all stages. 

Corollary 3.5. Suppose A is geometric with a S 1/2. Assume army is 

optimal at stage 1 in the (µ,p;K;A)-bandit and all p patients in the information 

bank fail. Then an optimal strategy is to indicate army at all subsequent 

stages. 

Proof. Since y is optimal initially, then O ~ 6(µ,p;K;A). Since a~ 1/2, 

the regularity condition of Theorem 3.2 is satisfied. From (3.2): 

0 > aA(µ p·K·A) = A(µ,p,·K·,A( 1)) - u , , , u 

( 1) 
~ 6((0,1)µ,p-1;K;A ) ~---~ ( 1) 

6((0,p)µ,O;K;A ). 

Then army is optimal in the ((O,p)µ,O;K;A(l))-bandit. When army is selected 

the state of the bandit presenting itself at the next stage differs from the 

current state only by a multiple of the discount sequence. This does not effect 

the optimal arm and so army continues to be optimal. o 

11. Discussion 

In this paper I characterize optimal strategies for two-armed delayed 

response bandits. Under a regularity condition on the discount sequence Theorem 

3.1 shows that 6((s,f)µ,p;K;A) is nondecreasing ins and nonincreasing inf and 

K for each fixed p. This partitions the state space into connected regions 
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where xis optimal and where y is optimal. On the boundary, both x and y are 

optimal. The decision regions are determined by the sign of 6 and the boundary 

by the manifold where 6 vanishes. For each fixed p and A, 6 defines a different 

manifold in (s,f;K)-space. When xis optimal ands is increased, x remains 

optimal from the monotonicity of a. Similarly, when y is optimal and for K is 

increased, y remains optimal. Equation (3.2) is a relationship between the 

manifolds for p and p + 1. 
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